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Objective: We aimed to examine the association between gestational diabetes mellitus (GDM) and
11 recently identified type 2 diabetes susceptibility loci.

Research Design and Methods: Type 2 diabetes risk variants in TCF7L2, CDKAL1, SLC30A8, HHEX/
IDE, CDKN2A/2B, IGF2BP2, FTO, TCF2, PPARG, KCNJ11, and WFS1 loci were genotyped in a cohort
of women with a history of GDM (n � 283) and glucose-tolerant women of the population-based
Inter99 cohort (n � 2446).

Results: All the risk alleles in the 11 examined type 2 diabetes risk variants showed an odds ratio
(OR) greater than 1 for the GDM group compared with the control group ranging from 1.13 [95%
confidence interval (CI) 0.88–1.46] to 1.44 (95% CI 1.19–1.74) except for the WFS1 rs10010131
variant with OR 0.87 (95% CI 0.73–1.05). Combined analysis of all 11 variants showed a highly
significant additive effect of multiple risk alleles on risk of GDM [OR 1.18 (95% CI 1.10–1.27)] per
risk allele, P � 3.2 � 10�6). Applying receiver-operating characteristic showed an area under the
receiver-operating characteristic curve of 0.62 for the genetic test alone and 0.73 when combining
information on age, body mass index, and genotypes of the 11 gene variants.

Conclusions: The prevalence in a prior GDM group of several previously proven type 2 diabetes
risk alleles equals the findings from association studies on type 2 diabetes. This supports the
hypothesis that GDM and type 2 diabetes are two of the same entity. (J Clin Endocrinol Metab
94: 145–150, 2009)

Gestational diabetes mellitus (GDM) is defined as an abnor-
mal glucose tolerance diagnosed for the first time in preg-

nancy (1) and complicates 2–3% of Danish pregnancies (2).
GDM is an important predictor for later development of type 2
diabetes (3), and we have previously found that 40% of a Nordic
Caucasian cohort of women with prior diet-treated GDM had
developed overt diabetes (89% type 2 diabetes) at a median of
10 yr after pregnancy (4). The majority of women with prior
GDM is obese and insulin resistant and has a relatively im-
paired insulin secretion thereby resembling the pathogenesis
of type 2 diabetes (5).

The epidemic increase in type 2 diabetes has called for ex-
tensive scientific exploration in the pathogenesis for type 2 dia-
betes. Recently candidate gene studies and genome-wide asso-
ciation studies have successfully identified several variants in
previously unknown genomic regions to be associated with type
2 diabetes, impaired insulin response, and obesity (6–17). The
type 2 diabetes risk variants are located both in biological can-
didate and noncandidate genes. The pathophysiologic role of
some of the risk alleles is through the WNT signaling pathway
involved in cell proliferation and normal embryogenesis includ-
ing the development of the pancreas (18). Impaired �-cell func-
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tion (KCNJ11, WFS1, CDKAL1, SLC30A8, HHEX/IDE,
CDKN2A/B, IGF2BP2), insulin resistance (PPARG), and obe-
sity (FTO) are major pathophysiological traits associated with
variants in type 2 diabetes susceptibility loci (11, 19–22). These
traits are also found in women with current or prior GDM (5,
23). The strongest known type 2 diabetes association is found
with variants in TCF7L2 (14), and two variants in TCF7L2,
rs7903146 and rs12255372, associate with GDM (24, 25). In
one study, the rs12255372 variant was found to interact with
percentage of body fat to alter insulin secretion (25).

Besides the studies of TCF7L2 and studies regarding mono-
genic forms of diabetes such as maturity-onset diabetes of the
young, little is known about the genetic background of GDM.
Because GDM often progresses to type 2 diabetes, we aimed at
testing association of variants in 11 genomic regions recently
shown to be associated with type 2 diabetes (PPARG, KCNJ11,
TCF7L2, CDKAL1, SLC30A8, CDKN2A/2B, HHEX/IDE,
IGF2BP2, TCF2, WFS1, and FTO) with GDM and incident
post-GDM type 2 diabetes. Furthermore, we tested the combined
additive effect of all type 2 diabetes susceptibility alleles on risk
of GDM and performed receiver-operating characteristic (ROC)
curves to assess the discriminative accuracy of these genetic
variants.

Subjects and Methods

Subjects
The study population consisted of 283 women with previous GDM

who were admitted to the Department of Obstetrics, Copenhagen Uni-
versity Hospital, Rigshospitalet, Denmark, during 1978–1996 and who
had participated in a follow-up study during 2000–2002.

Women selected for the present study were Danish Caucasians by
self-identification and were not diagnosed with type 1 diabetes or ma-
turity-onset diabetes of the young (n � 32). Mean age was 43.1 yr [95%
confidence interval (CI) 42.3–44.0] and body mass index (BMI) 28.9
kg/m2 (95% CI 28.1–29.7). Women with GDM in the years 1978–1985
were diagnosed by a 3-h, 50-g oral glucose tolerance test (OGTT) (26),
whereas women with GDM in 1987–1996 were diagnosed by a 3-h, 75-g
OGTT (27). Women with GDM were routinely offered an OGTT 2
months postpartum and subsequently with 1- to 2-yr intervals, unless
diabetes was diagnosed. At inclusion in the study, women without
known diabetes (n � 236) underwent a 75-g OGTT after an overnight
fast (10 h) with measurements of venous plasma glucose. Women re-
porting known diabetes (n � 47) had measurements of fasting levels of
plasma glucose only. The OGTT was evaluated in accordance with the
World Health Organization criteria from 1999 (28): normal glucose
tolerance was found in 106 (37.4%), 75 (26.5%) had impaired fasting
glucose or impaired glucose tolerance, 55 (19.5%) had diabetes diag-
nosed at follow-up, and 47 (16.6%) had known diabetes at enrollment.

The control group consisted of 2446 middle-aged glucose-tolerant
Danish women from the population-based Inter99 cohort (clinicaltri-
als.gov, ID no. NCT00289237) (29, 30). Mean age was 45.2 yr (95% CI
44.9–45.5) and BMI 25.0 kg/m2 (95% CI 24.8–25.2). All women in the
control group were examined during 1999–2000 at the Research Centre
for Prevention and Health, Copenhagen County, with a 75-g OGTT. No
information considering previous pregnancies was available.

Before participation informed and written consent was obtained
from all subjects. The study was approved by the Ethical Committee of
Copenhagen and was in accordance with the principles of the Declara-
tion of Helsinki II.

Genotyping
Genotyping of the TCF7L2 rs7903146, CDKAL1 rs7756992,

SLC30A8 rs13266634, CDKN2A/2B rs10811661, HHEX/IDE
rs1111875, IGF2BP2 rs4402960, TCF2 rs7501939, WFS1 rs10010131,
PPARG rs1801282, KCNJ11 rs5219, and FTO rs9939609 variants was
performed using Taqman allelic discrimination (KBioscience, Herts, UK).
Genotype data were obtained in 95–98% of the DNA samples with a ge-
notype error rate of less than 0.5% for all variants estimated from 1464
duplicate samplesgenotypedsimultaneously in the sameassay.All genotype
groups obeyed Hardy-Weinberg equilibrium except for the CDKN2A/2B
rs10811661 variant (P � 0.032). That one of 11 single-nucleotide poly-
morphisms did not obey Hardy-Weinberg equilibrium is expected by
chance.Also, thegenotyping success rateanderror rate for rs10811661was
98and0.14%,respectively.Thus, this single-nucleotidepolymorphismwas
included in the analysis.

Statistical power
We estimated statistical power in the case-control study including

283 GDM patients and 2446 glucose-tolerant women assuming an ad-
ditive model. Assuming minor allele frequencies of 20 and 40%, we had
67 and 79% statistical power to detect an allelic relative risk of 1.3.
Similarly, we had 87 and 93% power to detect a relative risk of 1.4.

Statistical analysis
Logistic regression analyses with adjustment for age and BMI and

Fisher’s exact test were applied to test for differences in genotype dis-
tribution or allele frequencies. To assess the combined effect of multiple
risk alleles, we applied a linear model assuming equal effects of each risk
allele at the 11 loci and compared this with a model lacking the risk allele
parameter. However, to make such assumptions, we first tested whether
the effect size of each allele was equal. Because we examined only the
association with GDM for alleles previously found to be associated with
type 2 diabetes and because an additive effect of the alleles has been found
in other studies, we included all 11 variants in the analysis of an additive
effect. We used logistic regression to construct ROC curves and estimate
area under the curves (AUC). Genetic data were entered numerically to
assume an additive model for each locus. The statistical analyses were
performed using RGui version 2.6.2 (http://www.r-project.org). A P �
0.05 was considered significant.

Results

In the present study, we examined the frequency of 11 validated
type 2 diabetes susceptibility alleles in 283 women with a history
of GDM compared with 2446 glucose-tolerant women in the
control group. The individual allele odds ratios (ORs) are pre-
sented in Table 1 and were all above 1.0, ranging from 1.13 (95%
CI 0.88–1.46) to 1.44 (95% CI 1.19–1.74) except for the WFS1
rs10010131 variant with OR 0.87 (95% CI 0.73–1.05). For
three of the risk alleles, the TCF7L2 rs7903146, CDKAL1
rs7756992, and TCF2 rs7501939, the age- and BMI-adjusted
additive model was nominal statistically significant (P �

0.00017, 0.049, and 0.039 respectively).
Subsequently we tested the additive effect of multiple alleles

on risk of GDM by combined analysis of all 11 variants. Each
individual could therefore harbor between 0 and 22 possible risk
alleles. Figure 1 shows the distribution of risk alleles in patients
with GDM and in glucose-tolerant control subjects. No subjects
with less than five or more than 19 risk alleles were observed. We
found a highly statistically significant additive effect of multiple
alleles on risk of GDM with an OR of 1.18 per allele (95% CI
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1.10–1.27, P � 3.2 � 10�6) in a logistic regression model ad-
justing for age and BMI. Comparing the extremes of the distri-
bution showed a 3.30-fold increased risk (95% CI 1.69–6.39) of
GDM for women carrying 15 or more risk alleles [ncases � 21
(7.4% of population), ncontrols � 99 (4.0%)] compared with
women with nine or fewer risk alleles [ncases � 26 (9.2%),
ncontrols � 406 (16.6%)] (P � 2.8 � 10�4).

We evaluated the discriminative power of a genetic test based
on 11 gene variants in combination with information on age and
BMI by calculating the area under the ROC curve. The area
under the ROC curve was 0.62 for the genetic test alone, 0.68
when including age and BMI but not the genetic test, and 0.73
when all three parameters were included (Fig. 2).

An exploratory study of the potential effects of the individual
variants on incident type 2 diabetes within the GDM group was
performed for all the risk genes. We found that CDKN2A/2B
rs10811661 T allele and the WFS1 rs10010131 G allele were

significantly associated with incident type 2 diabetes. The
women who were homozygote carriers of the CDKN2A/2B
rs10811661 T allele had a 2.5-fold (95% CI 1.31–4.79, prec �

0.0054), and women being a homozygote carrier of the WFS1
rs10010131 G allele a 1.82-fold (1.03–3.22, prec � 0.039) risk
of having type 2 diabetes after adjustment for age and BMI com-
pared with the women without diabetes at follow-up.

Discussion

This is the first study evaluating the impact of the most recent
identified type 2 diabetes risk variants in a GDM cohort. The
study provides evidence of the strong genetic background for the
development of GDM in a multigenetic manner. We have shown
ORs above 1.0 for GDM with 10 of the 11 investigated known
type 2 diabetes risk genes. Only the WFS1 rs10010131 variant

TABLE 1. Studies of association of variants in 11 type 2 diabetes risk genes with GDM in 283 women with prior GDM and 2446
glucose-tolerant control women

Variant/nearest gene Allele

Genotype distribution Risk allele frequencies Unadjusteda Adjustedb

GDM, n
(%)

Control, n
(%)

GDM, %
(95% CI)

Control, %
(95% CI)

Allele frequency
model OR (95% CI)

Additive model OR
(95% CI)

rs7903146/TCF7L2 CC 118 (42.8) 1292 (54.9) 34.6 26.8 1.45 (1.19–1.75) 1.44 (1.19–1.74)
CT 125 (45.3) 863 (36.7) (30.6–38.7) (25.5–28.1) pfreq � 0.00013 padd � 0.00017
TT 33 (12) 198 (8.4)

rs7756992/CDKAL1 AA 124 (45.1) 1229 (52.5) 31.8 27.6 1.22 (1.01–1.49) 1.22 (1–1.49)
AG 127 (46.2) 929 (39.7) (27.9–35.9) (26.3–28.9) pfreq � 0.04 padd � 0.049
GG 24 (8.7) 181 (7.7)

rs13266634/SLC30A8 TT 22 (7.9) 266 (11.3) 70.8 67.4 1.17 (0.97–1.43) 1.19 (0.97–1.44)
TC 119 (42.7) 998 (42.6) (66.8–74.5) (66–68.7) pfreq � 0.1 padd � 0.092
CC 138 (49.5) 1080 (46.1)

rs10811661/CDKN2A/2B CC 11 (4) 68 (2.9) 84.9 83.4 1.12 (0.87–1.45) 1.13 (0.88–1.46)
CT 61 (22.2) 647 (27.5) 81.6–87.8 (82.3–84.4) pfreq � 0.39 padd � 0.34
TT 203 (73.8) 1640 (69.6)

rs1111875/HHEX/IDE TT 35 (12.8) 412 (17.7) 62.4 58.9 1.16 (0.96–1.4) 1.18 (0.98–1.43)
TC 136 (49.6) 1090 (46.8) (58.2–66.5) (57.5–60.3) pfreq � 0.12 padd � 0.082
CC 103 (37.6) 827 (35.5)

rs4402960/IGF2BP2 GG 115 (42) 1138 (48.8) 33.9 30.4 1.18 (0.97–1.42) 1.16 (0.95–1.41)
GT 132 (48.2) 972 (41.6) (30–38.1) (29.1–31.8) pfreq � 0.096 padd � 0.13
TT 27 (9.9) 224 (9.6)

rs7501939/TCF2 CC 84 (31.1) 832 (35.6) 44.8 39.9 1.22 (1.02–1.47) 1.22 (1.01–1.48)
CT 130 (48.1) 1144 (49) (40.6–49.1) (38.5–41.3) pfreq � 0.029 padd � 0.039
TT 56 (20.7) 360 (15.4)

rs10010131/WFS1 AA 62 (22.9) 409 (18.3) 54.2 57.6 0.87 (0.73–1.05) 0.87 (0.73–1.05)
AG 124 (45.8) 1080 (48.3) 49.9–58.5 56.1–59.0 pfreq � 0.14 padd � 0.14
GG 85 (31.4) 749 (33.5)

rs1801282/PPARG GG 4 (1.5) 51 (2.1) 87.2 86.5 1.06 (0.81–1.41) 1.16 (0.82–1.52)
GC 60 (22.6) 542 (22.7) (84.0–89.9) (85.5–87.4) pfreq � 0.74 padd � 0.30
CC 201 (75.8) 1790 (75.1)

rs5219/KCNJ11 CC 91 (35.7) 985 (40.9) 40.0 27.6 1.17 (0.97–1.41) 1.20 (0.99–1.45)
CT 124 (48.6) 1101 (45.7) (35.7–44.4) (35.0–37.7) pfreq � 0.10 padd � 0.070
TT 40 (15.7) 325 (13.5)

rs9939609/FTO TT 82 (29.7) 833 (35.8) 46.2 40.6 1.26 (1.05–1.51) 1.15 (0.95–1.38)
TA 133 (48.2) 1101 (47.3) (42–50.5) (39.2–42) pfreq � 0.012 padd � 0.15
AA 61 (22.1) 395 (17)

Data are number of subjects with each genotype (percent of each group), risk allele frequencies in percent (95% CI), and OR (95% CI). All variants are shown
according to published diabetes risk allele, which is shown in bold.
a Differences in allele frequencies (pfreq) not adjusted for age and BMI were calculated using Fisher’s exact test.
b The P values compare genotype distributions between women with a history of GDM and glucose-tolerant control subjects, applying an additive (padd) logistic
regression model and adjusting for age and BMI.
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showed an OR less than 1.0. In general, the risk allele fre-
quencies found in the present study in the control group re-
semble the frequencies found in the nondiabetic control
groups in the genome-wide association studies with higher
frequencies in the GDM group resembling the type 2 diabetes
groups (6 –17, 19, 31).

The association with GDM for TCF7L2 rs7903146 found in
our study confirms a previous study in women with GDM (24)
in which an OR of 1.49 per allele was found, which is similar to
the OR found in the present study (1.44). Another study dem-
onstrated a higher frequency of the minor T allele of TCF7L2
rs7903146 in nonobese type 2 diabetes patients and a younger
age at diagnosis (32). A younger age at diagnosis is also a char-
acteristic of women with prior GDM.

Furthermore, we show that type 2 diabetes risk alleles addi-
tively increase the risk of GDM underlining the common genetic
predisposition of type 2 diabetes and GDM. The impact of sev-
eral risk alleles on risk of incident type 2 diabetes has recently
been evaluated in a large cohort of subjects with different gly-
cemic status at baseline followed for up to 9 yr (33). This study
showed an additive effect of multiple risk alleles on both type 2
diabetes and impaired fasting glycemia. An additive effect of the
variants was also found by Lango et al. (31). These results sup-
port our finding of an additive effect of the type 2 diabetes risk
alleles on the risk for GDM.

The discriminative power of genetic testing with the 11 vari-
ants examined in the present study evaluated by the ROC curve
showed an AUC of 0.73. This result is close to the level of 0.75
considered consistent with clinical utility. A recent study by Cau-
chi et al. (34) found an area under the ROC curve of 0.86 by
testing 15 risk alleles, and in a study by Weedon et al. (35), the
AUC was 0.58 when testing the combined effect of PPARG,
KCNJ11, and TCF7L2. Other studies, however, found that add-
ing the genetic risk variants to the effect of age, BMI, and gender
only increased the AUC marginally (31, 36).

The small number of subjects in the GDM cohort obviously
severely impedes statistical power to reach statistical significance
for an association of the individual genotypes with GDM. The
power analysis showed that we only had about 80% power to
detect an allelic relative risk of 1.3, given a minor allele frequency
of 40%. Because the majority of the ORs were below this, we
could not expect the results to be statistically significant. How-
ever, the ORs equals what are found for type 2 diabetes. There-
fore, we assume that the lack of statistical significance is due to
lack of power. We are aware of the need for confirming our
results in other GDM cohorts, keeping in mind that large-scale
studies needed to replicate the results from association studies on
type 2 diabetes (7).

We did not have exact data on the prevalence of GDM in the
control group. However, more than 90% of the controls were
parous, similar to the Danish background population. With a
prevalence of GDM around 2%, approximately 44 women in the
control group could have had GDM. We have previously shown
that only one third of a GDM population have normal glucose
tolerance at a median age of 43 yr. Because the control group
consists of glucose-tolerant subjects only, less than 15 women
could be expected to have had GDM.

In conclusion, several previously proven type 2 diabetes risk
alleles were more frequent among women with a history of
GDM. Women who carry 15 or more type 2 diabetes risk alleles
have a more than 3-fold increased risk of having GDM compared
with women with nine or fewer risk alleles. Knowledge about the
biological function of the different type 2 diabetes risk genes may

FIG. 2. ROC curves in 244 GDM patients and 1883 glucose-tolerant women
with available genotype information for all 11 loci applying a model including
age, BMI, and 11 confirmed type 2 diabetes risk variants (solid line); age and BMI
(dashed line); or only genetic information (dotted line). AUCs were 0.73, 0.70,
and 0.62, respectively.

FIG. 1. Distribution of risk alleles of 11 type 2 diabetes risk variants in women
with previous gestational diabetes (n � 244) and glucose-tolerant control
women (n � 1883). Only women with available genotype information for all 11
loci were included in the analysis. No subjects with less than five or more than 19
risk alleles were found. P value for difference in risk allele distribution was 5 �
10�6. Assuming an additive effect of multiple risk alleles, the increase in risk of
GDM was an OR of 1.18 (95% CI 1.10–1.27), P � 3.2 � 10�6 per risk allele.
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throw light on the causal factors resulting in progression to type
2 diabetes in some but not all women with GDM.
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26. Kühl C 1975 Glucose metabolism during and after pregnancy in normal and
gestational diabetic women. 1. Influence of normal pregnancy on serum glu-
cose and insulin concentration during basal fasting conditions and after a
challenge with glucose. Acta Endocrinol Copenh 79:709–719
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