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To	identify	genetic	variants	associated	with	head	circumference	
in	infancy,	we	performed	a	meta-analysis	of	seven	genome-
wide	association	studies	(GWAS)	(N	=	10,768	individuals	of	
European	ancestry	enrolled	in	pregnancy	and/or	birth	cohorts)	
and	followed	up	three	lead	signals	in	six	replication	studies	
(combined	N	=	19,089).	rs7980687	on	chromosome	12q24		
(P	=	8.1	×	10−9)	and	rs1042725	on	chromosome	12q15		
(P	=	2.8	×	10−10)	were	robustly	associated	with	head	
circumference	in	infancy.	Although	these	loci	have	previously	
been	associated	with	adult	height1,	their	effects	on	infant	head	
circumference	were	largely	independent	of	height	(P	=	3.8	×	10−7		
for	rs7980687	and	P	=	1.3	×	10−7	for	rs1042725	after	
adjustment	for	infant	height).	A	third	signal,	rs11655470	on	
chromosome	17q21,	showed	suggestive	evidence	of	association	
with	head	circumference	(P	=	3.9	×	10−6).	SNPs	correlated	
to	the	17q21	signal	have	shown	genome-wide	association	
with	adult	intracranial	volume2,	Parkinson’s	disease	and	other	
neurodegenerative	diseases3–5,	indicating	that	a	common	
genetic	variant	in	this	region	might	link	early	brain	growth		
with	neurological	disease	in	later	life.

Head circumference in infancy is used as a measure for brain size and 
development6,7. Normal variation in head circumference seems to 
be associated with cognitive and behavioral development8–10. Larger 
head circumference in infancy is associated with higher IQ scores 
in childhood10–12. The underlying mechanisms, however, are poorly 
understood. Head circumference is a complex trait, with a high herit-
ability of approximately 0.7–0.9 (ref. 13). Several rare mutations with 
large effects on head circumference have been identified14–17, includ-
ing those resulting in microcephaly and intellectual disability15–17. 
Common genetic variants that influence normal variation in head 
circumference in early life have not yet been identified.

To search for common genetic variants associated with head cir-
cumference in infancy, we performed a meta-analysis of multiple 
GWAS. We reasoned that finding such common variants might lead 
to an enhanced understanding of molecular mechanisms important 
for variation in brain development.

We calculated meta-analysis association statistics from ~2.5 million 
directly genotyped and imputed SNPs in infants of European descent 
from seven discovery GWAS (N = 10,768; Supplementary Table 1). 
In all studies, head circumference in infancy (age 18 months, range 6 
to 30 months) was measured from the occipital protuberance to the 
forehead, using a flexible, non-stretching measuring tape according to 

standardized procedures. If multiple measurements were available for 
one individual in this time frame, only the measurement performed 
closest to the age of 18 months was used (Supplementary Tables 1 
and 2). Because the relationship between head circumference and age 
during infancy is nonlinear and the variance increases with age, we 
calculated sex- and age-adjusted standard deviation (s.d.) scores of 
head circumference in each study separately18.

In the discovery phase, we identified three lead signals (shown in 
the Manhattan plot in Supplementary Fig. 1); two independent loci 
on chromosome 12 and one on chromosome 17 showed suggestive 
evidence for association with head circumference in infancy. These 
three loci represent the first three independent loci of the discovery 
analysis and were at 12q24.31 in SBNO1 (rs7980687; Pdiscovery = 3.3 ×  
10−7; Fig. 1a), at 12q15 near HMGA2 (rs1042725; Pdiscovery = 6.6 ×  
10−7; Fig. 1b) and at 17q21.1 near CRHR1-MAPT (rs11655470; 
Pdiscovery = 1.4 × 10−6; Fig. 1c). Other loci with suggestive evidence 
of association with infant head circumference (P < 1 × 10−5) are 
described in Supplementary Table 3.

The associations of these three lead SNPs in each cohort are shown 
(Table 1). We followed up these three associations in six independent 
replication samples of European descent (N = 8,321; Supplementary 
Table 2). We genotyped the most strongly associated SNP from 
each locus (rs7980687 from 12q24.31, rs1042725 from 12q15 and 
rs11655470 from 17q21.1) or a closely correlated proxy SNP (selected 
by HapMap r2 value). Consistent associations were observed for both 
signals on chromosome 12 in the replication samples (P = 0.003 and 
8.1 × 10−5 for rs7980687 and rs1042725, respectively). Marginal evi-
dence of association for rs11655470 was seen in the replication samples  
(P = 0.093). Genomic control correction was applied during the dis-
covery meta-analysis stage to adjust the statistics generated within 
each cohort (λ values ranged from 1.007–1.054; Supplementary 
Table 1). Results from the replication cohorts were combined with 
the genomic control–corrected discovery results to generate overall  
meta-analysis results. Combining discovery and replication samples  
(N = 19,089; Table 1), each A allele of rs7980687 in SBNO1 was 
robustly associated with 0.074 s.d. larger head circumference (95% 
confidence interval (CI) = 0.049 to 0.099; P = 8.1 × 10−9; explained 
variance = 0.24%), and each T allele of rs1042725 near HMGA2 was 
associated with 0.065 s.d. smaller head circumference (95% CI =  
−0.085 to −0.045; P = 2.8 × 10−10; explained variance = 0.33%). 
This reflects differences of ~1.2 and ~1.0 mm in head circumfer-
ence, respectively. The effect of each T allele of rs11655470 near 
CRHR1-MAPT did not reach genome-wide significance in the 
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 combined analysis (effect of 0.048 s.d. larger head circumference; 95%  
CI = 0.028 to 0.068; P = 3.8 × 10−6; explained variance = 0.21%). These 
three associations showed low heterogeneity (P > 0.1, heterogeneity 
statistic (I2) = 5–33%).

Additionally, the signals in SBNO1 and near HMGA2 but not the 
one near CRHR1-MAPT were associated with height measured at the 
same time as head circumference (Supplementary Table 4). When we 
adjusted the model for current height, the associations of rs7980687 
and rs1042725 with head circumference were slightly attenuated (effect 
size of 0.057 s.d.; 95% CI = 0.035 to 0.080; P = 3.8 × 10−7 and effect size 
of −0.048 s.d.; 95% CI = −0.066 to −0.030; P = 1.3 × 10−7 for rs7980687 
and rs1042725, respectively; Supplementary Table 5). The associa-
tion of the third signal near CRHR1-MAPT was unaffected. In-depth 
mediation analysis showed that the effects of rs7980687 and rs1042725 

on head circumference were only partly explained by height (12% 
and 24%, respectively) (Supplementary Fig. 2 and Supplementary 
Table 6). The effect of rs11655470 was a completely direct effect 
of the SNP on head circumference (Supplementary Table 6).  
To further adjust for possible population stratification, we added prin-
cipal components to the model in cohorts where these measures were 
available (total N = 12,763). This did not materially change the effect 
on head circumference, indicating that the association tests used 
were robust to population stratification (Supplementary Table 7).  
The three variants were not associated with other covariates, such 
as breastfeeding, socioeconomic status or educational level (data 
not shown). We did not find evidence for an interaction of these 
variants with infant sex or breastfeeding after Bonferroni correction  
(P > 0.017; Supplementary Tables 8 and 9).
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Figure 1 Regional association plots of the three lead signals. (a–c) Directly genotyped and imputed SNPs are plotted using filled circles with their meta-
analysis P values (−log10 values) as a function of genomic position (NCBI Build 36). In each plot, the discovery stage SNP taken forward to replication 
is represented by a purple diamond (defining a global meta-analysis P value). Local LD structure is reflected by the plotted estimated recombination 
rates (from HapMap) in the region around the associated SNP and its correlated proxies. The correlations of the lead SNP to other SNPs at the locus 
are indicated by color. The recombination rates (light blue line, second y axis) are superimposed on the plot. Gene annotations are shown as dark 
blue arrows. Regional association plots are shown for the 12q24.31 (a), 12q15 (b) and 17q21.1 (c) loci. rs9915547 (r2 = 0.22 with rs11655470 in 
HapMap CEU) is indicated in c downstream of the main signal and showed association with genome-wide significance with adult intracranial volume  
(P = 1.5 × 10−12)2. Regional plots were drawn using LocusZoom software36.

table 1 Individual association results by study and meta-analysis

Study type Study
Year(s)  
of birth

Median  
age 

(months)
Total  
(N)

Male  
(%)

rs7980687[A] at 12q24 (SBNO1)
rs1042725[T] at 12q15  
(nearest gene HMGA2)

rs11655470[T] at 17q21  
(nearest genes CRHR1-MAPT)

MAF β S.E. P MAF β S.E. P MAF β S.E. P

ALSPAC (D) 1991–1992 18.9 1,748 53 0.19 0.105 0.038 6 × 10−3 0.47 −0.071 0.031 0.02 0.41 0.114 0.031 3 × 10−4

CHOP 2006–2010 18.5 1,008 59 0.20 0.041 0.058 0.48 0.48 −0.017 0.046 0.72 0.39 0.036 0.048 0.45

COPSAC 1998–2001 18.1 369 49 0.19 0.083 0.086 0.33 0.47 −0.026 0.065 0.69 0.45 0.159 0.063 0.01

Discovery Generation R 2002–2006 13.1 2,240 52 0.21 0.064 0.031 0.04 0.49 −0.059 0.026 0.02 0.42 0.060 0.026 0.02

LISA (D) 1998–1999 11.8 357 56 0.21 −0.045 0.077 0.56 0.48 −0.059 0.060 0.33 0.39 0.068 0.061 0.26

NFBC1966 1966 12.3 4,287 49 0.20 0.181 0.041 1 × 10−5 0.49 −0.074 0.033 0.02 0.49 0.068 0.033 0.04

RAINE 1989–1991 13.1 759 53 0.19 0.108 0.058 0.06 0.50 −0.179 0.043 4 × 10−5 0.41 −0.001 0.044 0.09

Discovery meta-analysis 10,768 0.091 0.018 3.3 × 10−7 −0.072 0.014 6.6 × 10−7 0.070 0.015 1.4 × 10−6

ALSPAC (R) 1991–1992 18.9 3,163 51 0.20 0.042 0.030 0.16 0.49 −0.088 0.024 3 × 10−4 0.40 0.044 0.024 6 × 10−4

DNBC 1996–2002 12.1 531 54 0.20 0.120 0.070 0.09 0.45 −0.049 0.058 0.40 0.45 0.060 0.058 0.30

Replication EFSOCH 2000–2004 12.1 703 52 0.20 0.054 0.061 0.37 0.50 −0.019 0.046 0.67 0.41 0.027 0.046 0.56

INMA 2004–2007 13.9 693 53 0.16 0.020 0.062 0.75 0.44 −0.029 0.045 0.52 0.36 0.022 0.046 0.64

GINI+LISA (R) 1995–1999 11.8 698 51 0.21 0.020 0.060 0.74 0.50 −0.092 0.049 0.06 0.40 −0.070 0.050 0.16

NFBC1986 1985–1986 12.0 2,533 48 0.22 0.082 0.035 0.02 0.49 −0.034 0.029 0.25 0.50 0.019 0.287 0.51

Replication meta-analysis 8,321 0.055 0.018 2.5 × 10−3 −0.058 0.015 8.3 × 10−5 0.025 0.015 0.093

Overall meta-analysis 19,089 0.074 0.013 8.1 × 10−9 −0.065 0.010 2.8 × 10−10 0.048 0.010 3.6 × 10−6

MAF, minor allele frequency; S.E., standard error; D, discovery cohort; R, replication cohort. β reflects differences in head circumference s.d. score per minor allele (additive model). P values are obtained from 
linear regression of each SNP against the head circumference s.d. score (additive model). All study samples were of European descent.
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In order to further investigate the effect of the three lead signals 
on fetal head growth, we assessed the associations of the variants 
with head circumference using third trimester fetal ultrasound data 
(N = 3,781) and head circumference measured at birth (N = 17,695) 
in discovery and replication cohorts that had these data available 
(Supplementary Table 2). All three signals showed evidence of asso-
ciation with head circumference in the third trimester of pregnancy 
and at birth (Table 2). The directions of the effects were consistent 
with those in infancy.

Next, we assessed the associations of the three lead signals with 
intracranial volume (ICV) in adulthood, measured by magnetic 
resonance imaging (MRI) in 8,175 individuals in the CHARGE 
Consortium2. There was evidence of association between the signals 
near HMGA2 and CRHR1-MAPT and ICV (Table 2). For the signal  
near CRHR1-MAPT, a variant further downstream (rs9915547; 
r2 = 0.22 in the HapMap Utah residents of Northern and Western 
European ancestry (CEU) population) showed an association at 
genome-wide significance (P < 5 × 10−8). All directions of the effects 
were consistent with the observed associations for head circumference 
in infancy (Table 2).

We also assessed whether there were functional common variants 
in linkage disequilibrium (LD; r2 > 0.50) with our three lead SNPs 
that were either nonsynonymous SNPs or expression quantitative 
trait loci (eQTLs). One variant, rs1060105, in high LD with our lead 
signal (rs7980687; HapMap r2 = 0.89), was a nonsynonymous SNP 
located in exon 5 of SBNO1 (missense mutation c.2186G>A (encod-
ing p.Ser729Asn)). The rs1060105[A] minor allele was associated 
with increased head circumference in infancy (effect size = 0.081 
s.d.; 95% CI = 0.048 to 0.115; P = 2.4 × 10−6 (N = 10,768)). The under-
lying mechanism for this is unknown. Considering that transcription 
regulation is highly cell type specific, we next evaluated whether we 
could find known eQTLs in brain tissue but did not find any eQTLs 
in publicly available brain expression data19. Subsequently, we also 
explored eQTL databases from other tissues and identified three SNPs 
in LD with rs7980687 (r2 > 0.7 with HapMap CEU) associated with 
gene transcript expression of CDK2AP1 and MPHOSPH9 in liver  
tissue, monocytes and lymphoblastoid cell lines20–22. Little is known 
about these genes, except that both are involved in cell cycle regula-
tion (Supplementary Table 10)23,24.

To our knowledge, this is the first GWAS on head circumference 
in infancy. The top two signals associated with infant head circum-
ference (rs7980687 in SBNO1 and rs1042725 near HMGA2) have 
previously been associated with adult height1. Therefore, we also 
assessed the association between the 180 known height variants and 
head circumference during infancy1. A strong deviation from the null 
hypothesis of no association was observed on the quantile-quantile 
plot (Supplementary Fig. 3). Besides SBNO1 and HMGA2, 23 other 
height variants were nominally associated with head circumference 
in infancy (Supplementary Table 11). After applying Bonferroni 

 correction for multiple testing in this candidate gene analysis  
(P < 2.8 × 10−4), markers in or near ZNFX1 (P = 6.1 × 10−6), OR2J3 
(P = 1.8 × 10−5) and ZBTB38 (P = 1.8 × 10−4) still showed statistically 
significant association with head circumference in infancy.

The relative effect size of rs1042725 near HMGA2 was similar for 
infant head circumference (0.065 s.d.) and adult height (0.060 s.d.). 
However, the effect size of rs7980687 in SBNO1 on infant head circum-
ference (0.074 s.d.) was considerably larger than for adult height 
(0.035 s.d.). As head size is correlated with total body size25, it might 
be the case that the top two loci have a more general regulatory role in 
skeletal growth and bone development. It also could be possible that 
variants in SBNO1 affect brain growth and concurrent head circum-
ference or that they affect skull growth rather than skeletal growth. 
The SBNO1 gene is involved in the Notch signaling pathway26. In 
Drosophila melanogaster, a similar gene (sno) is required for early 
embryogenesis, and absence of this gene leads to maldevelopment of 
the central nervous system26. In humans, SBNO1 has been implicated 
in oncogenic processes27,28.

The variant near HMGA2 was one of the first to be associated 
with adult height. Deletions and truncations in the HMGA2 gene 
in mice and humans have been associated with small and large 
 stature29,30. The effect of HMGA2 is similar for head circumference 
and adult height; thus, it seems likely that it has a more general role in  
skeletal growth.

The variant (rs11655470) in the promoter region of CRHR1-MAPT 
was also related to head circumference, although this signal did not 
reach genome-wide significance. rs11655470 lies within the 17q21 
inversion but is not strongly correlated with the inversion (r2 = 0.22 
with HapMap CEU). The 900-kb region corresponding to the conver-
sion contains several genes. The SNP is closely related to the CRHR1 
gene (r2 = 0.59 with rs171440 in HapMap CEU). Variants in or near 
CRHR1 have been associated with brain development and bone mineral  
density31,32, although the underlying mechanisms are largely 
unknown. Another gene included in the 17q21 inversion is MAPT 
(r2 = 0.22 with HapMap CEU). Both common variants and mutations 
in MAPT are known to be associated with Parkinson’s disease and 
other neurodegenerative diseases3–5,33,34. Other genes in this region 
are STH (encoding saitohin) and GRN (encoding granulin). STH has 
been associated with progressive supranuclear palsy and increased 
risk of late-onset Alzheimer’s disease35,36. Mutations in GRN have 
been shown to cause frontotemporal degeneration37. It might be the 
case that common genetic variants in or near CRHR1-MAPT affect 
early brain development by altering the stability and assembly of 
microtubules. In an accompanying paper, Ikram et al.2 show that a 
correlated SNP in the same region (rs9303525; HapMap r2 = 0.22 
with rs11655470) is associated with adult intracranial volume with 
genome-wide significance. Because the LD between the variants is 
low, it is possible that they represent separate, independent effects 
on different phenotypes. When we adjusted the effect of rs11655470 

table 2 Association of the three lead signals related to head circumference with other phenotypes

Marker

Head circumference in third trimester of  
pregnancy (s.d. score) Head circumference at birth (s.d. score) Intracranial volume (ml)

Total (N) β S.E. P Total (N) β S.E. P Total (N)

Mean age at  
measurement 

(years) β S.E. P

rs7980687[A] at 12q24 3,781 0.089 0.029 1.9 × 10−3 17,330 0.050 0.012 5.2 × 10−5 8,175 67.5 0.72 2.03 0.72

rs1042725[T] at 12q15 3,781 −0.075 0.023 9.9 × 10−4 17,074 −0.031 0.010 1.9 × 10−3 8,175 67.5 −7.18 1.61 8.8 × 10−6

rs11655470[T] at 17q21 3,781 0.049 0.024 0.037 17,695 0.030 0.010 2.0 × 10−3 8,175 67.5 3.54 1.69 0.036a

S.E., standard error. β reflects differences in the head circumference s.d. score per minor allele or differences in intracranial volume per minor allele (additive model). P values are obtained from linear regression 
of each SNP and sex against the head circumference s.d. score in fetal life (additive model); SNP, sex and gestational age against birth head circumference s.d. score at birth (additive model); and SNP, age and 
sex against Intracranial volume (additive model)2. All study samples were of European descent.
aA variant further downstream (rs9915547; r2 = 0.22 with HapMap CEU) showed association at genome-wide significance (P = 1.5 × 10−12) with adult intracranial volume2.
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on infant head circumference for the CHARGE Consortium ICV sig-
nal (rs9915547), the effect was attenuated but remained significant 
(0.059 s.d.; P = 1.0 × 10−5 and 0.037 s.d.; P = 7.3 × 10−3 before and 
after adjustment for rs9915547, respectively), suggesting that these 
signals both represent a third marker influencing both phenotypes 
(Supplementary Table 12). However, although the association atten-
uates after conditioning on the CHARGE Consortium ICV signal, the 
two signals might still independently mark different causal variants in 
the region, and the attenuation might be due to the weak LD between 
the two signals caused by proximity. The marker associated with head 
circumference is in low LD with the chromosome 17q21 inversion, 
whereas the CHARGE Consortium ICV signal is in high LD with the 
inversion. Therefore, it does not seem likely that the 17q21 inversion 
is causally related to infant head circumference. The biological mecha-
nisms underlying these associations are largely unknown.

Our study highlights the early effect of variants in or near SBNO1 
and HMGA2 on head circumference in fetal life and infancy and 
shows that a variant near CRHR1-MAPT is marginally associated with 
head circumference in infancy. Our findings suggest that the genetic 
variants in the CRHR1-MAPT region might link early brain growth 
with neurological disease in later life. Further research is needed to 
elucidate whether these variants influence brain growth and neuro-
development in early life.

URLs. SIMBioMS, http://www.simbioms.org/; The International 
HapMap Project, http://hapmap.ncbi.nlm.nih.gov/; Growth Analyser 
3.0, http://www.growthanalyser.org/; METAL, http://www.sph.umich.
edu/csg/abecasis/metal/index.html; SNAP, http://www.broadinstitute.
org/mpg/snap/; GTEx eQTL browser, http://www.ncbi.nlm.nih.gov/
gtex/test/GTEX2/gtex.cgi; eqtl.uchicago.edu, http://eqtl.uchicago.
edu/cgi-bin/gbrowse/eqtl/.

METhodS
Methods and any associated references are available in the online 
 version of the paper at http://www.nature.com/naturegenetics/.

Note: Supplementary information is available on the Nature Genetics website.
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oNLINE	METhodS
Stage 1: GWAS meta-analysis of head circumference. Discovery samples, 
 genotyping and imputation. We selected seven population-based studies with 
head circumference measured in infancy (study cohort–specific median age 
range of 11–18 months) and GWAS data available by the beginning of March 
2010 (combined N = 10,768), including the Avon Longitudinal Study of Parents 
And Children (ALSPAC; N = 1,748); The Children’s Hospital of Philadelphia 
(CHOP; N = 1,008); the Copenhagen Study on Asthma in Childhood (COPSAC; 
N = 369); The Generation R Study (Generation R; N = 2,240); the Lifestyle–
Immune System–Allergy Study (LISA; N = 357); the Northern Finland 1966 
Birth Cohort (NFBC1966; N = 4,287) and the Western Australian Pregnancy 
Study (RAINE; N = 759). Genotypes were obtained using high-density  
SNP arrays and were then imputed for ~2.4 million HapMap SNPs (Phase 2, 
release 21/22). The basic characteristics, exclusions (for example, samples of 
non-European ancestry), genotyping, quality control and imputation methods 
for each discovery sample are presented in Supplementary Table 1.

Statistical analysis within discovery samples. Head circumference was measured 
in infancy (age window: 6–30 months). If multiple measurements were avail-
able for one individual within this age range, the measurement taken closest to 
18 months was used. Sex- and age-adjusted s.d. scores were constructed using 
Growth Analyser 3.0 (from the Dutch Growth Research Foundation) in each 
study separately18. The association between each SNP and head circumference 
was assessed in each study sample using linear regression of head circumfer-
ence s.d. score against genotype, assuming an additive model. Imputed geno-
types were only used where directly assayed genotypes were unavailable.

Meta-analysis of discovery samples. Data exchange was facilitated by the 
SIMBioMS platform38. Before meta-analysis, SNPs with MAF of <1% 
and poorly imputed SNPs (proper_info of ≤0.4 (SNPTEST) or R2 of ≤0.3 
(MACH2QTL)) were filtered out. Fixed-effects meta-analyses were independ-
ently conducted by two investigators. Meta-analysis was performed using 
the METAL software package, and genomic control39 was applied during  
the meta-analysis stage to adjust the statistics generated within each cohort  
(see Supplementary Table 1 for individual study λ values; the discovery 
meta-analysis λ value was 1.043). Meta-analysis was performed using the 
inverse-variance method; a fixed-effects model was assumed. SNPs available 
in less than four discovery cohorts were excluded. Final meta-analysis results 
were obtained for 2,449,806 SNPs. We considered the top three lead signals  
(representing three distinct genomic regions on chromosomes 12 and 17) 
in the discovery analysis for follow-up in additional samples. The two loci 
on chromosome 12 reached the threshold of P < 1 × 10−6 and were therefore 
selected for replication, and the third locus on chromosome 17 was just above 
that threshold (P = 1.4 × 10−6) and was selected because of previous knowledge 
of a nearby association at genome-wide significance with intracranial volume 
described by Ikram et al.2

Stage 2: follow-up of three lead signals in additional samples. Follow-up 
samples, genotyping and analysis. We used six independent study samples 
(combined N = 8,321) to follow up the three lead signals from the GWAS meta-
analysis (represented by index SNPs rs7980687, rs1042725 and rs11655470). 
Details of these study samples are presented in Supplementary Table 2. If 
the index SNP was unavailable, a closely correlated proxy was substituted 
(rs12322888 or rs12316131 for rs7980687 (HapMap r2 = 0.95 for both SNPs); 
rs7970350 or rs1351394 for rs1042725 (HapMap r2 = 1 and 0.91, respectively); 
rs12938031 for rs11655470 (HapMap r2 = 0.58)). In three of the replication 
studies, the index SNPs were imputed from genome-wide genotype data (see 
Supplementary Table 2). Head circumference analysis was performed within 
each study sample as in the discovery phase.

Statistical analysis. Meta-analyses of discovery and replication samples. We per-
formed fixed-effects inverse-variance meta-analyses of the head circumference 
association results for the three lead signals in the seven discovery samples and 
six replication samples combined. Fixed-effects meta-analyses were conducted  
independently by two investigators using RMeta in R (v.2.7.0). We used the 
Cochran Q test and the I2 statistic40 to assess evidence of between-study  
heterogeneity of effect sizes.

Informed consent (or parental consent, as appropriate) was obtained from 
all discovery and follow-up study participants, and study protocols were 
approved by the local ethics committees.

Analyses of potential confounders. To verify that the investigated lead SNPs 
were not associated with other covariates that could theoretically confound 
the observed associations with head circumference (including height, weight 
and age at measurement; sex; breastfeeding and maternal educational level), we 
used linear or logistic regression models to assess the association between each 
covariate and genotype in all discovery and replication samples. For height 
and weight, we constructed sex- and age-adjusted s.d. scores using Growth 
Analyser 3.0 in each study separately, similar to the head circumference s.d. 
score. To investigate possible effects of the three lead signals on head circum-
ference through height, we first conducted linear regression analysis, with 
and without adjustment for height s.d. score. Next, we conducted a media-
tion analysis and assessed direct and indirect SNP effects (mediated through 
height) on head circumference for each of the signals using a seemingly 
unrelated regression model (STATA, StataCorp LP) or a simple path analysis 
model (MPLUS, Muthen & Muthen), which gave identical effect estimates. 
To investigate whether the associations between genotypes and infant head 
circumference were similar in the sexes, we repeated the analyses in males and 
females separately. Furthermore, we evaluated possible effect modification 
by breastfeeding status for each of the SNPs. Where possible, we performed  
meta-analysis on the results to assess overall evidence of association.

Analysis of fetal head circumference and intracranial volume. We explored 
associations of rs7980687, rs1042725 and rs11655470 with third trimester fetal 
head circumference and head circumference at birth, assuming an additive 
model using linear regression. Fetal head circumference was measured by 
ultrasound in three studies (combined N = 3,781 singleton pregnancies) in the 
third trimester of pregnancy (gestational age window of 27–36 weeks). Only 
one measurement per subject was included in the time window. If multiple 
measurements were available within this time frame, the one taken closest to 
the median gestational age of 32 weeks was used. We calculated gestational 
age–specific s.d. scores using previously published growth charts41. This ana-
lysis was adjusted for sex. Head circumference was measured at birth or within 
31 days of life in 12 studies (N = 13,775; Supplementary Table 2). We created 
s.d. scores for head circumference within each of the cohorts and assessed the 
association with each SNP, adjusted for sex and gestational age. If head cir-
cumference was measured in the first month, we used gestational age at birth +  
age (weeks) at measurement in the first month. Combined effect estimates 
were calculated using fixed-effects meta-analyses.

We used the meta-analysis on intracranial volume in adults, measured by 
MRI, in the CHARGE Consortium42 as a third additional phenotype. Data 
collection methods, phenotype definition, baseline characteristics and results 
of the meta-analysis are described elsewhere2,43.

Analysis of known adult height variants with infant head circumference. We 
used the discovery meta-analyses to assess the associations of the previously 
identified 180 known adult height–associated loci1 with head circumference in 
infancy, using the same model. We also determined whether very closely related 
SNPs (HapMap r2 > 0.95) showed higher significance levels than the originally 
reported SNPs. SNPs with a P value lower than 2.8 × 10−4 (0.05/180) were con-
sidered significant.

Variance explained. To estimate the percentage of variation in birth weight 
explained by each of the associated loci, we obtained adjusted R2 from univariate  
linear regression models of head circumference against genotype. We then calculated  
a mean value from all discovery and replication studies weighted by sample size.

Nonsynonymous SNPs and eQTLs. We assessed SNPs in LD with the three 
lead signals and looked for nonsynonymous SNPs or eQTLs to identify pos-
sible functional variants explaining the associations with head circumfer-
ence. First, we used SNP Annotation and Proxy search (SNAP) developed 
by the Broad Institute to select all SNPs in LD (r2 > 0.50) with our three lead 
signals. We used the 1000 Genomes Project Pilot 1 data set as the SNP data 
set for rs7980687 and rs1042725 and the HapMap Release 22 data set as the 
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SNP data set for rs11655470 (r2 > 0.50). Next, we evaluated whether these 
SNPs were nonsynonymous using the dbSNP search engine from NCBI. 
To evaluate whether there were cis eQTLs in LD with our lead signals, we 
searched publicly available eQTL databases through the NCBI Genotype-
Tissue Expression (GTEx) eQTL Browser and the eqtl.uchicago.edu genome 
browser. In total, these browsers search nine databases for eQTLs. Only 
cis associations (defined as genes within 1 Mb) that reached the P-value 
threshold for significance used in the original papers describing the gene 
expression data sets were considered (Supplementary Table 10). The statis-
tics behind the eQTL analysis and calculation of the threshold for declaring 
significance of the associations are described in the published and validated 
eQTL data sets20–22.

38. Krestyaninova, M. et al. A System for Information Management in BioMedical 
Studies–SIMBioMS. Bioinformatics 25, 2768–2769 (2009).

39. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 
997–1004 (1999).

40. Higgins, J.P., Thompson, S.G., Deeks, J.J. & Altman, D.G. Measuring inconsistency 
in meta-analyses. Br. Med. J. 327, 557–560 (2003).

41. Verburg, B.O. et al. New charts for ultrasound dating of pregnancy and assessment 
of fetal growth: longitudinal data from a population-based cohort study. Ultrasound 
Obstet. Gynecol. 31, 388–396 (2008).

42. Psaty, B.M. et al. Cohorts for Heart and Aging Research in Genomic Epidemiology 
(CHARGE) Consortium. Design of prospective meta-analyses of genome- 
wide association studies from 5 cohorts. Circ. Cardiovasc. Genet. 2, 73–80 
(2009).
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Corrigendum: Common variants at 12q15 and 12q24 are associated with 
infant head circumference
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Chawes, Johan Eriksson, David M Evans, Albert Hofman, John P Kemp, Cecilia EKim, Norman Klopp, Jari Lahti, Stephen J Lye,  
George McMahon, Frank D Mentch, Martina Müller-Nurasyid, Paul F O’Reilly, Inga Prokopenko, Fernando Rivadeneira,  
Eric A P Steegers, Jordi Sunyer, Carla Tiesler, Hanieh Yaghootkar, The Cohorts for Heart and Aging Research in Genetic Epidemiology 
(CHARGE) Consortium, Monique M B Breteler, Stéphanie Debette, Myriam Fornage, Vilmundur Gudnason, Lenore J Launer,  
Aad van der Lugt, Thomas H Mosley Jr, Sudha Seshadri, Albert V Smith, Meike W Vernooij, The Early Genetics & Lifecourse 
Epidemiology (EAGLE) Consortium, Alexandra I F Blakemore, Rosetta M Chiavacci, Bjarke Feenstra, Julio Fernandez-Banet,  
Struan F A Grant, Anna-Liisa Hartikainen, Albert J van der Heijden, Carmen Iñiguez, Mark Lathrop, Wendy L McArdle, Anne Mølgaard, 
John P Newnham, Lyle J Palmer, Aarno Palotie, Annneli Pouta, Susan M Ring, Ulla Sovio, Marie Standl, Andre G Uitterlinden,  
H-Erich Wichmann, Nadja Hawwa Vissing, Charles DeCarli, Cornelia M van Duijn, Mark I McCarthy, Gerard H Koppelman, Xavier 
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Joachim Heinrich, Marjo-Riitta Jarvelin & Vincent W V Jaddoe for the Early Growth Genetics (EGG) Consortium 
Nat. Genet. 44, 532–538 (2012); published online 15 April 2012; corrected after print 8 May 2013

In the version of this article initially published, Thorkild I.A. Sørensen was listed incorrectly as a contributing member of the EGG Consortium. 
The error has been corrected for the HTML and PDF versions of this article.
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