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Abstract

Genome-wide association studies (GWAS) have not consistently detected replicable genetic risk

factors for ischemic stroke, potentially due to etiological heterogeneity of this trait. We performed

GWAS of ischemic stroke and a major ischemic stroke subtype (large artery atherosclerosis,

LAA) using 1,162 ischemic stroke cases (including 421 LAA cases) and 1,244 population controls

from Australia. Evidence for a genetic influence on ischemic stroke risk was detected, but this

influence was higher and more significant for the LAA subtype. We identified a new LAA

susceptibility locus on chromosome 6p21.1 (rs556621: odds ratio (OR) = 1.62, P = 3.9 × 10−8)

and replicated this association in 1,715 LAA cases and 52,695 population controls from 10

independent population cohorts (meta-analysis replication OR = 1.15, P = 3.9 × 10−4; discovery

and replication combined OR = 1.21, P = 4.7 × 10−8). This study identifies a genetic risk locus for

LAA and shows how analyzing etiological subtypes may better identify genetic risk alleles for

ischemic stroke.

Stroke affects approximately 15 million persons worldwide each year1 and is a leading cause

of death and adult acquired disability2,3. The vast majority of strokes are ischemic, involving

cerebral artery blockage by atherosclerotic plaque or embolus. Although clinical risk factors

for ischemic stroke are well established4, the genetic risk alleles are incompletely identified.

Genetic influences on stroke risk are supported, however, by higher concordance among

monozygotic than dizygotic twins5, increased risk among family members of affected

individuals6 and high heritability of intermediate predictors, including carotid intima-media

thickness (IMT: h2 ≈ 30–60%)7,8 and white matter lesions (h2 ≈ 50–70%)9,10.

With the exception of the 4q25 locus associated with atrial fibrillation and ischemic

stroke11,12, the 9p21 region associated with coronary artery disease and ischemic stroke13,14

and a recently described 7p21.1 association with LAA15, GWAS for ischemic stroke have

identified few convincingly associated variants. Inability to replicate many reported

associations may be attributable to phenotypic heterogeneity, a challenge that could be

partly addressed by more complete subtyping of ischemic stroke etiology. At least three

major ischemic stroke etiologi-cal types are commonly distinguished: (i) large artery

atherosclerosis (LAA); (ii) cardioembolism (CE); and (iii) small vessel occlusion (SVO)16.

Genetic heterogeneity may contribute to this phenotypic diversity; a recent, well-powered

GWAS of ischemic stroke detected heterogeneity of risk locus effects across stroke

subtypes15, and family studies have also identified differences in subtype heritability, owing

perhaps to variable roles of heritable intermediate phenotypes, such as hypertension and

large vessel atherosclerosis17. The greatest familial risk has been associated with LAA, for

which family history confers significant risk, even beyond the seventh decade of life6.

We conducted a GWAS of ischemic stroke in an Australian sample of European ancestry

involving 1,230 cases and 1,280 population controls. The causal subtype of ischemic stroke

was classified using TOAST criteria16. Demographic and clinical characteristics of the

Australian Stroke Genetics Collaborative (ASGC) data set are summarized in

Supplementary Table 1.

After quality control filtering of genotype data, data on 551, 514 SNPs from 1,162 ischemic

stroke cases and 1,244 controls were used for genotype imputation and genetic analysis.

Before performing genome-wide association analyses, we assessed the genetic contribution
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to ischemic stroke and the LAA, CE and SVO subtypes using a recent method18 that

estimates the proportion of phenotypic variance (Vg/Vp) attributable to variation in

genotyped SNPs, where Vg is the component of phenotypic variance attributable to variation

in genotyped SNPs and Vp is the total observed phenotypic variance. For ischemic stroke,

the estimated genetic load was substantial (Vg/Vp IS = 0.39), with SNPs explaining a

significant proportion of phenotypic variation (P = 4.5 × 10−4). For cases classified in the

LAA subtype, we observed a higher, more significant estimate of genetic load (Vg/Vp LAA =

0.66; P = 5.6 × 10−5), consistent with previous reports of high familial risk for LAA6.

Evidence for genetic contribution was less significant for the CE and SVO subtypes (Vg/

Vp CE = 0.6, P = 0.0026 and Vg/Vp SVO = 0.1, P = 0.33, respectively; Table 1).

We performed two primary GWAS in the Australian discovery sample, comparing (i) all

ischemic stroke cases (n = 1,162) and (ii) LAA cases (n = 421) with population controls (n =

1,244). GWAS of the CE and SVO subtypes, which both had fewer cases and a less

significant Vg/Vp estimate, were performed as supplementary analyses (Supplementary Figs.

1 and 2 and Supplementary Tables 2 and 3). Genotypic effects were estimated using logistic

regression models (1-degree-of-freedom additive trend tests) adjusted for age and sex.

Results were compared with a prespecified significance threshold of 5 × 10−8,

corresponding to Bonferroni adjustment for 1 × 106 independent tests. Quantile-quantile

plots indicated excellent quality of the GWAS data and an absence of systematic bias caused

by population substructure or other artifacts (Supplementary Fig. 3).

Analyses of ischemic stroke detected the strongest signals at several SNPs within the

SLC5A4 gene on chromosome 22q12.3 (Fig. 1, Supplementary Fig. 4 and Supplementary

Table 4). Peak association was detected at rs5998322 (Ptrend = 3.91 × 10−7; OR = 1.97, 95%

confidence interval (CI) = 1.51–2.57) within exon 11. A strong signal was also detected 4

Mb downstream of this peak at a number of SNPs located within and upstream of the

APOL2 gene (peak association at rs4479522: Ptrend = 3.23 × 10−6; OR = 1.34, 95% CI =

1.18–1.51). Analysis of rs5998322 adjusted for allele dosage at rs4479522 produced similar

results to the unadjusted analysis (Ptrend = 4.47 × 10−7), suggesting independence of the two

associated loci at 22q.

The GWAS of LAA detected two associated SNPs on chromosome 6p21.1 exceeding the

prespecified threshold for genome-wide significance (α = 5 × 10−8; Figs. 1 and 2). These

variants, rs556621 (Ptrend = 3.92 × 10−8; OR (A allele) = 1.62, 95% CI = 1.36–1.93) and

rs556512 (Ptrend = 4.25 × 10−8; OR (A allele) = 1.62, 95% CI = 1.36–1.93) were in perfect

linkage disequilibrium (LD) in HapMap Phase 2 Utah residents of Northern and Western

European ancestry (CEU) data (r2 = 1, D′ = 1; Supplementary Table 5), with a minor (A)

allele population frequency of 0.33. The rs556621 SNP was directly genotyped in our

sample, whereas rs556512 was imputed with excellent reliability (imputation r2 = 0.99).

Very similar effect sizes for rs556621 were estimated in logistic models further adjusted for

the first ten ancestry principal components and several correlated clinical risk factors

(Supplementary Table 6), indicating a lack of confounding by population substructure or

clinically related heritable traits. Consistent but attenuated association of the 6p21.1 variants

was observed for the broad ischemic stroke phenotype, with peak association also detected

at rs556621 (P = 5.6 × 10−5; OR (A allele) = 1.29, 95% CI = 1.14–1.47) (Table 2).

Supplementary analyses of CE and SVO subtypes revealed no association with rs556621 (P
= 0.73 and 0.39, respectively; data not shown). In addition to the 6p21.1 locus, the LAA

GWAS also detected clusters of suggestively associated SNPs (P < 1 × 10−5) at 14q32.33

and the second 22q12.3 locus detected in the GWAS of ischemic stroke (Supplementary Fig.

5 and Supplementary Table 7).
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In a subsequent LAA GWAS adjusted for rs556621 genotype, no SNP showed evidence of

strong independent association with LAA (peak P = 5.6 × 10−6 for rs11625862 at 14q32.33).

Haplotype association tests across the 6p21.1 region also did not detect multi-marker

haplotypes that were more strongly associated with LAA than the two index SNPs (data not

shown).

The addition of rs556621 genotypes to a risk prediction model containing various clinical

traits associated with LAA occurrence produced a small but significant increase in the area

under the receiver operator characteristic (ROC) curve (ΔAUC = 0.01; P = 1.2 × 10−5;

Supplementary Table 8), although this ΔAUC estimate may be inflated by estimation in the

discovery cohort. To further assess the internal validity of the association at rs556621, the

sample was randomly partitioned into training and test groups containing two-thirds and

one-third of the LAA cases and controls, respectively. Association with LAA was evaluated

in the training set, with genotyped SNPs reaching P < 1 × 10−4 (n = 44) then assessed in the

test set (the remaining third of the sample). The index SNP at 6p21.1 (rs556621) reached P
= 5.69 × 10−5 in the training set and was the only SNP associated with LAA in the

independent test set after permutation- based adjustment for the testing of 44 non-

independent SNPs (familywise adjusted P = 6.74 × 10−3; Supplementary Table 9).

External validity of the observed association of rs556621 with LAA risk was assessed in a

replication study involving 10 independent population cohorts contributing 1,715 LAA cases

(1,323 European and 392 US) and 52,695 controls (39,509 European and 13,186 US) of

confirmed European ancestry. Details of the individual cohorts are provided in

Supplementary Table 10 and the Supplementary Note. Association analyses for the index

SNP at 6p21.1 (rs556621) were performed separately within each of the ten cohorts, with

the results combined using fixed-effects, inverse variance–weighted meta-analysis. Because

association evidence was assessed for a single SNP in the independent replication study, no

multiple-testing adjustment was indicated, and the result was compared with a prespecified

significance threshold of 0.05.

The replication study confirmed association of rs556621 with LAA (Ptrend = 3.9 × 10−4; OR

(A allele) = 1.15, 95% CI = 1.06–1.24), with no evidence of between-study heterogeneity (P
= 0.50, I2 = 0.0%) (Fig. 3, Table 2 and Supplementary Table 11). The estimated population-

attributable risk for rs556621 in the replication study was ~5%. When the discovery and

replication cohorts were combined, meta- analyses yielded Ptrend = 4.7 × 10−8 for the

association (OR = 1.21, 95% CI = 1.13–1.30). However, the heterogeneity statistic for the

combined analysis was moderately significant (P = 0.02, I2 = 43.4%), indicating some

inflation of the effect size in the discovery cohort (winner’s curse). For this reason, the

estimated effect in the independent replication study is likely a better estimate of the true

population effect. Meta-analyses of rs556621 for overall ischemic stroke in the replication

study showed no evidence for association, despite a greater than fivefold increase in case

numbers (9,552 cases and 52,695 controls; Ptrend = 0.29; OR (A allele) = 1.02, 95% CI =

0.98–1.06; Supplementary Fig. 6). These results support the existence of a common 6p21.1

risk variant of modest but genuine effect specific to the LAA stroke subtype. Neither this

SNP nor SNPs in high LD with rs556621 have previously been reported to be associated

with coronary heart disease risk.

The 6p21.1 SNPs are located in an intergenic region of moderate LD (Supplementary Fig.

7), ~200 kb upstream of the SUPT3H gene (forward strand) and ~180 kb upstream of

CDC5L (reverse strand). rs556621 and rs556512 both lie within a small length of genomic

sequence that contains BCL3 and PBX3 transcription factor–binding motifs and enriched for

enhancer- and/or promoter-associated marks of histone protein modification. The associated

SNPs or other correlated variants may thus function in regulating gene expression via altered
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responsiveness of key transcription factor–binding sites19. A number of predicted

microRNAs (miRNAs) also lie in the vicinity of rs556621 (Supplementary Table 12),

suggesting that variants in LD with rs556621 could also potentially regulate gene expression

through alteration of regulatory miRNA sequences. Queries of four public expression

quantitative trait locus (eQTL) databases did not identify rs556621 or proxy SNPs in high

LD with rs556621 as cis eQTLs in the assayed tissue or cell types. Future targeted

investigations in atherosclerotic neurovascular tissue may help to elucidate the mechanisms

by which the associated SNPs influence LAA risk.

Suggestive association with both ischemic stroke and LAA was also detected for variants in

a chromosome 22q12.3 region containing the APOL1-APOL4 gene cluster. These primate-

specific genes are implicated in lipid metabolism and vascular biology20,21, where their

expression is strongly induced by proinflammatory cytokines22–24. APOL2, APOL3 and

APOL4 are thought to encode intracellular proteins; APOL2, across which association

evidence was strongest, is almost exclusively expressed in the brain, with reduced

expression in the heart23.

This is one of the first reported GWAS for large artery atherosclerosis, a major subtype of

ischemic stroke. We report the identification of variants at 6p21.1 that associate with LAA

risk in individuals of European ancestry. We also report a locus within the APOL1-APOL4
gene cluster that is suggestively associated with both LAA and broad ischemic stroke. The

potential pathological function of these variants and their contributions to stroke risk in non-

European populations remain to be determined.

ONLINE METHODS

Study participants: the ASGC discovery sample

ASGC stroke cases comprised stroke patients of European ancestry who were admitted to

four clinical centers across Australia (The Neurosciences Department at Gosford Hospital,

Gosford; the Neurology Department at John Hunter Hospital, Newcastle; The Queen

Elizabeth Hospital, Adelaide; and the Royal Perth Hospital, Perth) between 2003 and 2008.

Stroke was defined by World Health Organization criteria as a sudden focal neurological

deficit of vascular origin, lasting more than 24 h and confirmed by imaging, such as

computerized tomography (CT) and/or magnetic resonance imaging (MRI) brain scan. Other

investigative tests such as electrocardiogram, carotid doppler and trans-esophageal

echocardio-gram were conducted to define ischemic stroke mechanism as clinically

appropriate. Cases were excluded from participation if they were aged <18 years, were

diagnosed with hemorrhagic stroke or had transient ischemic attack rather than ischemic

stroke or if they were unable to undergo baseline brain imaging. On the basis of these

criteria, a total of 1,230 ischemic stroke cases were included in the current study. Ischemic

stroke subtypes were assigned using TOAST criteria on the basis of clinical, imaging and

risk factor data16.

ASGC controls were participants in the Hunter Community Study (HCS), a population-

based cohort of individuals aged 55–85 years, predominantly of European ancestry and

residing in the Hunter Region in New South Wales, Australia. Detailed recruitment methods

for the HCS have been previously described25. Briefly, participants were randomly selected

from the New South Wales State electoral roll and were contacted by mail between 2004

and 2007. Consenting participants completed five detailed self-report questionnaires and

attended the HCS data collection center, at which time a series of clinical measures were

obtained. A total of 1,280 HCS participants were genotyped for the current study.
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All study participants gave informed consent for participation in genetic studies. Approval

for the individual studies was obtained from the relevant institutional ethics committees.

Study participants: replication cohorts

Replication data were contributed by a total of 11 cohorts involved in the Metastroke and

International Stroke Genetics Consortia (ISGC): the Atherosclerosis Risk in Communities

Study (ARIC), the Bio-Repository of DNA in Stroke (BRAINS), deCODE Genetics, the

Baltimore Genetics of Early Onset Stroke (GEOS) Study, the Heart and Vascular Health

(HVH) Study, the Ischemic Stroke Genetics Study/Siblings With Ischemic Stroke Study

(ISGS/SWISS), The Massachusetts General Hospital Genes Affecting Stroke Risk and

Outcome Study (MGH-GASROS), the Milano stroke genetics study, the Rotterdam Study,

the Wellcome Trust Case Control Consortium 2–Munich (WTCCC2-Munich) and the

Wellcome Trust Case Control Consortium 2–UK (WTCCC2-UK). All replication cohorts

defined ischemic stroke and the LAA, CE and SVO subtypes using clinical criteria

consistent with those used for the ASGC discovery sample. Summary demographic data and

clinical phenotyping details for these individual cohorts are provided in Supplementary

Table 2 and the Supplementary Note.

Genome-wide genotyping and quality control: ASGC discovery sample

ASGC cases and controls were genotyped using the Illumina HumanHap610-Quad array.

Quality control excluded SNPs with genotype call rate of <0.95, deviation from Hardy-

Weinberg equilibrium (P < 1 × 10−6) or minor allele frequency of <0.01. At the sample

level, quality control excluded individuals with (i) genotype call rate of <95% (n = 4); (ii)

genome-wide heterozygosity of <23.3% or >27.2% (n = 9); (iii) inadequate clinical data or

inconsistent clinical and genotypic gender (n = 45); and (iv) an inferred first- or second-

degree relative in the sample identified on the basis of pairwise allele sharing estimates

(estimated genome proportion shared identical by descent (IBD); π̂ > 0.1875; n = 37). After

these exclusions, Eigenstrat principal-components analysis (PCA) was performed,

incorporating genotype data from Phase 3 HapMap populations (CEU, Han Chinese in

Beijing, China (CHB), Japanese in Tokyo, Japan (JPT), Toscani in Italia (TSI) and Yoruba

from Ibadan, Nigeria (YRI)). In eigenvector plots, the majority of ASGC samples clustered

closely with European (CEU and TSI) reference populations. Eighteen samples (16 cases

and 2 controls) showed prominent evidence of Asian ancestry and were removed. Principal-

component and IBD analyses were performed using a pruned subset of quasi-independent

SNPs (~130,000 SNPs) to avoid confounding by LD. After quality control, 1,162 cases and

1,244 controls were available for association analyses at 551,514 SNPs.

Genotype imputation in the filtered sample was performed using MACH v1.0.16 on the

basis of HapMap Phase 2 (release 24) phased haplotypes for samples of European ancestry

(CEU). Subsequent quality control excluded imputed SNPs with minor allele frequency of

<0.01 or ratio of observed dosage variance to expected binomial variance (r2) of <0.3.

Genotyping and quality control: replication cohorts

Each replication cohort performed genome-wide genotyping, quality control and imputation

as part of its own primary study. The particular arrays and quality control filters used by the

individual cohorts are described in the Supplementary Note. Of the 11 cohorts, 6 directly

genotyped rs556621, and 5 imputed allelic dosages for this SNP. To ensure the accuracy of

results, imputed data were only included if the quality of imputation was high, defined as a

ratio of observed to expected binomial dosage variance (r2) of >0.7. This resulted in the

exclusion of one sample (HVH; r2 = 0.64). All other samples had r2 ≥0.95 for rs556621.
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Estimating the proportion of phenotypic variation attributable to genotyped SNPs

The proportion of case-control variation attributable to variation in genotyped SNPs was

estimated in the discovery sample with GCTA software18,26, which uses genome-wide SNP

data to estimate additive genetic relationships (correlations) between essentially unrelated

individuals, using a linear mixed model (LMM) to estimate the contribution of genotyped

SNPs (and causal variants in LD with genotyped SNPs) to observed variation in case-control

status. Before analysis, additional quality control of genotype data was performed to reduce

bias in variance estimates from the accrued effects of small genotyping errors27. We

excluded SNPs with missingness of >0.1% or Hardy-Weinberg equilibrium P value of <1 ×

10−4 and individuals with >0.1% missing genotype data or estimated relatedness of >0.05

(approximately closer than second cousins)27. After quality control, genotypes at 457,533

SNPs were available for estimating genetic effects for 1,079 ischemic stroke cases, 400

LAA cases, 288 SVO cases and 226 CE cases. Each case group was evaluated in a separate

analysis using a common control sample of 1,172 individuals; all fitted LMMs were

adjusted for age and sex. Heritability estimates shown in Table 1 relate to the observed

(binary) risk scale and case-control proportions. We note that, although these estimates do

not represent heritability in the conventional sense, the test statistics and their associated

significance levels are invariant under adjustment for ascertainment bias or liability scale28.

Genome-wide association analyses in the Australian discovery cohort

Genome-wide association analyses were performed using 1-degree-of-freedom trend tests,

assuming an additive effect of allele dosage. Parameters were estimated using logistic

regression models adjusted for age and sex. Analyses were not adjusted for principal

components of population ancestry, as observed genomic inflation factors in unadjusted

models (λ = 1.031, λ1,000 = 1.026 for ischemic stroke; λ = 1.007, λ1,000 = 1.011 for LAA)

indicated an absence of bias due to population stratification. Meta-analysis genomic control

inflation factors (λ) were calculated as previously described, as were standardized values for

a sample of 1,000 cases and 1,000 controls (λ1,000)29. Secondary analyses of peak regions

were adjusted for ancestry principal components and clinical traits, including hypertension,

hypercholesterolemia, diabetes mellitus, atrial fibrillation, myocardial infarction and

smoking status, to investigate potential confounders of the observed genetic associations.

Association tests were performed using maximum-likelihood estimated dosages for imputed

SNPs and observed integer dosages for genotyped SNPs. Logistic models were fitted using

mach2dat software, which calculates significance levels for estimated parameters using a

likelihood-ratio test30,31. The two secondary logistic analyses conditioned on rs4479522 and

rs556621 genotypes were adjusted for age, sex and integer-valued dosage of the test allele at

conditioned SNPs.

Pairwise LD between SNPs was assessed and visualized using Haploview software32 on the

basis of European (CEU) HapMap Phase 2 data. Haplotype analyses of the 6p21.1 region

used genotyped data and maximum-likelihood genotypes for SNPs imputed with high

reliability (r2 > 0.7). Sliding window hap-lotypes incorporating from two to six adjacent

SNPs were estimated and assessed for association with LAA case-control status using

UNPHASED software33. Regional association plots were constructed using LocusZoom

software34.

Meta-analysis of rs556621 in replication cohorts

For rs556621, each replication sample performed logistic regression using a 1-degree-of-

freedom trend test relating the presence of stroke (LAA or overall ischemic stroke) to allelic

dosage, assuming an additive effect of the test allele. The test allele, estimated β coefficient,

standard error and effective sample size were provided for the combined replication

analysis. Fixed-effects, inverse variance–weighted meta-analyses of the ten replication
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cohorts providing high-quality data for rs556621 was performed using METAL software.

Between-study heterogeneity was investigated using Cochran’s Q statistic with its

associated P value and the I2 metric, representing the percentage of between-study

heterogeneity exceeding the value expected by chance. Population-attributable risk (PAR%)

was estimated for rs556621 using the formula

where OR is the odds ratio estimated using independent replication data and p is the

prevalence of the risk allele in controls35.

Predictive modeling using ROC curves

Predictive models incorporating clinical and genetic risk factors were evaluated for their

ability to discriminate between case and control participants by calculating the area under

the receiver operator characteristic (ROC) curve (AUC). ROC curves show the relationship

between sensitivity (true positive rate) and 1-specificity (false negative rate) for all possible

cut-points of a diagnostic test. For specified covariates, the ROC curve was fitted and the

AUC calculated using Stata software36, on the basis of parameter estimates from logistic

regression models. Likelihood-ratio tests were used to assess the significance of changes in

model fit.

eQTL analyses

For the lead SNP at 6p21.1 (rs556621), proxy SNPs with r2 of >0.8 were identified from

HapMap CEU Phases 1 and 2 (release 22) and 3 data (release 2) using SNAP (v2.2). Four

publicly available eQTL databases were searched to determine whether genotypes of the

lead or proxy SNPs have been previously associated with gene expression in cis in a range

of tissue and cell types. We defined potential cis eQTLs as candidate SNPs associated with

expression of a gene transcript mapping to a genomic region within 1 Mb37 at a nominal

significance level of 1 × 10−3. The databases searched were (i) SCAN–SNP and CNV

Annotation Database; (ii) the NCBI GTEx (Genotype-Tissue Expression) eQTL Browser;

(iii) the Pritchard laboratory UChicago eQTL browser; and (iv) mRNA by SNP Browser

v1.0.1. The tissue and cell types assessed in these databases include liver, brain,

lymphoblastoid cell lines (LCLs), monocytes, fibroblasts and T cells.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Genome-wide association results. (a,b) Data are shown for ischemic stroke (a) and LAA

(b). The plots show −log10-transformed P values for genotyped and imputed SNPs with

respect to their physical positions. The threshold for association at genome-wide

significance (P = 5 × 10−8) is shown by the upper dashed line, and the lower dashed line

corresponds to P = 1 × 10−5.
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Figure 2.
Regional association results for the chromosome 6p21.1 locus showing association at

genome-wide significance with LAA. The index associated SNP is labeled (rs556621: P =

3.9 × 10−8).
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Figure 3.
Forest plot showing association of rs556621 with LAA across the ten replication cohorts.

For each cohort, the square and horizontal line show the estimated OR and 95% CI,

respectively, representing the effect of each additional copy of the risk (A) allele on the odds

of disease. The size of the square is inversely proportional to the standard error of the

estimated allelic effect. A fixed-effects, inverse variance–weighted meta-analysis was used

to combine association evidence across cohorts. There was no evidence of effect size

heterogeneity across the ten cohorts (P = 0.5).
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