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OBJECTIVE—Genome-wide association studies have identified
common variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8,
HHEX/IDE, EXT2, and LOC387761 loci that significantly in-
crease the risk of type 2 diabetes. We aimed to replicate these
observations in a population-based cohort of Chinese Hans and
examine the associations of these variants with type 2 diabetes
and diabetes-related phenotypes.

RESEARCH DESIGN AND METHODS—We genotyped 17
single nucleotide polymorhisms (SNPs) in 3,210 unrelated Chi-
nese Hans, including 424 participants with type 2 diabetes, 878
with impaired fasting glucose (IFG), and 1,908 with normal
fasting glucose.

RESULTS—We confirmed the associations between type 2
diabetes and variants near CDKAL1 (odds ratio 1.49 [95% CI
1.27–1.75]; P � 8.91 � 10�7) and CDKN2A/B (1.31 [1.12–1.54];
P � 1.0 � 10�3). We observed significant association of SNPs in
IGF2BP2 (1.17 [1.03–1.32]; P � 0.014) and SLC30A8 (1.12
[1.01–1.25]; P � 0.033) with combined IFG/type 2 diabetes. The
SNPs in CDKAL1, IGF2BP2, and SLC30A8 were also associated
with impaired �-cell function estimated by homeostasis model
assessment of �-cell function. When combined, each additional
risk allele from CDKAL1-rs9465871, CDKN2A/B-rs10811661,
IGF2BP2-rs4402960, and SLC30A8-rs13266634 increased the risk
for type 2 diabetes by 1.24-fold (P � 2.85 � 10�7) or for
combined IFG/type 2 diabetes by 1.21-fold (P � 6.31 � 10�11).
None of the SNPs in EXT2 or LOC387761 exhibited significant
association with type 2 diabetes or IFG. Significant association
was observed between the HHEX/IDE SNPs and type 2 diabetes
in individuals from Shanghai only (P � 0.013) but not in those
from Beijing (P � 0.33).

CONCLUSIONS—Our results indicate that in Chinese Hans,
common variants in CDKAL1, CDKN2A/B, IGF2BP2, and
SLC30A8 loci independently or additively contribute to type 2
diabetes risk, likely mediated through �-cell dysfunction.
Diabetes 57:2834–2842, 2008

T
he rapid increase in prevalence of type 2 diabe-
tes has been a major public health challenge
worldwide, including China. The total number of
people with diabetes in China is estimated to

increase from 20.8 million in 2000 to 42.3 million in 2030
(1). Besides the important contribution of environmental
factors, including changes in dietary patterns and lifestyle,
genetic determinants also play a major role in type 2
diabetes susceptibility. Over the past decade, serious
efforts have been put into the search for type 2 diabetes
susceptibility genes, but progress has been slower than
anticipated (2,3). Although common variants in a few
genes including PPARG, KCNJ11, and TCF7L2 have been
convincingly replicated in individuals with European an-
cestry, relatively few studies have been conducted in
Chinese, and, so far, no variants have been unambiguously
confirmed as diabetes susceptibility loci in Chinese. How-
ever, recent advances in genome-wide association studies
(GWASs) have revived the initial optimism and acceler-
ated the discovery of diabetes susceptibility genes (4–6).

The first GWAS, conducted in a French case-control
cohort, confirmed TCF7L2 as a major type 2 diabetes
susceptibility gene and identified four novel loci consis-
tently associated with type 2 diabetes (7). These loci are
located in chromosomal regions that harbor several genes
involved in �-cell function or development, including a
variant in the SLC30A8 (zinc transporter solute carrier
family 30 member 8) gene, variants located in a linkage
disequilibrium (LD) block that contains the IDE (insulin-
degrading enzyme), KIF11 (kinesin family member 11),
and the HHEX (hematopoietically expressed homeobox)
genes, as well as variants in another LD block that
contains genes encoding EXT2 (exostosin 2). A fourth
locus mapped to a hypothetical gene LOC387761 on
chromosome 11. Four subsequent GWASs (8–12), per-
formed in European case-control studies, confirmed the
SLC30A8 and HHEX/IDE genes as type 2 diabetes suscep-
tibility loci. Furthermore, additional variants in several
new gene regions were also identified, including single
nucleotide polymorhisms (SNPs) in the CDKAL1 gene,
which encodes the CDK5 regulatory subunit associated
protein 1-like 1; in the CDKN2A/B genes, which encode the
cyclin-dependent kinase inhibitor p15INK4a and p16INK4b; in
the IGF2BP2 gene, which encodes the IGF-2 mRNA
binding protein 2; and a variant in a region of chromosome
11, not known to contain any genes. Most of these newly
identified loci are suggested to play a role in the regulation
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of insulin production and �-cell function (5,7,9,12–15). It is
unclear whether these variants have the same effect in
Chinese populations, which have a different genetic back-
ground and lower diabetes prevalence compared with
European populations (16–18).

Although case-control studies provide a useful design
for the discovery of susceptibility loci, they are limited in
providing insight into the mechanisms through which
genetic variants exert their effect on the risk of type 2
diabetes. Population-based cohort studies with detailed
measures of diabetes-related traits, however, might un-
ravel the physiopathology that underlies the association
between the newly discovered genetic variants and diabe-
tes. The purpose of this study is to examine whether these
novel variants are individually or collectively associated
with type 2 diabetes and related traits in a population-
based Chinese Han cohort including 3,210 unrelated indi-
viduals from Beijing and Shanghai.

RESEARCH DESIGN AND METHODS

The study sample consisted of 3,210 individuals (1,423 men and 1,787 women)
from the Study on Nutrition and Health of Aging Population in China. The
study population, design, and protocols of this population-based cohort study
have been previously described (19). Briefly, all participants were unrelated
Chinese Hans, aged 50–70 years, with at least 20 years residence in Beijing or
Shanghai. Among them, 424 participants had type 2 diabetes (267 had
previously diagnosed type 2 diabetes and 157 had screen-detected and
treatment-naive type 2 diabetes), 878 participants had impaired fasting
glucose (IFG) (all 878 were screen detected and treatment naive), and
1,908 participants had normal fasting glucose (NFG). Type 2 diabetes was
defined by either 1999 World Health Organization criteria (20) or previ-
ously diagnosed type 2 diabetes. NFG and IFG were defined as fasting
glucose �5.6 mmol/l (100 mg/dl) and 5.6 mmol/l (100 mg/dl) less than or
equal to fasting glucose �7.0mmol/l (126 mg/dl), respectively. The study
was conducted simultaneously in both Beijing and Shanghai from March to
June 2005. The participants were recruited from two urban districts (400
participants for each district) and one rural district (800 participants),
representing people with high to low socioeconomic status, using a
multistage sampling method in each city. All participants were selected
randomly from the eligible candidates listed in the residential registration
record. One person from each household was allowed to participate, and at
least 40% of the total participants were men in each district. Individuals
with the following conditions were excluded from the study: 1) severe
psychological disorders, physical disabilities, cancer, cardiovascular dis-
ease, Alzheimer’s disease, or dementia, within 6 months; or 2) currently
diagnosed with tuberculosis, AIDS, and other communicable diseases. All
participants attended a physical examination, during which standard
anthropometric measurements and overnight fasting blood samples were
collected. Glucose was measured enzymatically on an automatic analyzer
(Hitachi 7080; Hitachi, Tokyo, Japan) with reagents purchased from Wako
Pure Chemical Industries (Osaka, Japan). Fasting insulin was determined
by radioimmunoassay (Linco Research, St. Charles, MO). A1C concentra-
tions were measured by turbidometric immunoassay in red blood cells on

the Hitachi 7080 Analyzer using reagents from Roche Diagnostics (India-
napolis, IN). Homeostasis model assessment (HOMA) of insulin sensitivity
(HOMA-S) and �-cell function (HOMA-B) were estimated using Levy’s
computer model (21). Written informed consent was obtained from all
participants, and study protocols were approved by the institutional review
board of the Institute for Nutritional Sciences. The phenotypic character-
istics of the population are shown in Table 1.
Genotyping. Genomic DNA was extracted from peripheral blood leukocytes
by the salting-out procedure (available at http://humgen.wustl.edu/hdk_lab_
manual/dna/dna2.html). SNP genotyping was performed with the GenomeLab
SNPstream Genotyping System (Beckman Coulter), according to the manu-
facturer’s protocol. Seventeen SNPs previously reported to be associated with
type 2 diabetes by at least one of the GWASs (7–12) were successfully
genotyped in our population. These include SNPs near CDKAL1 (rs10946398,
rs7754840, rs7756992, and rs9465871), HHEX/IDE (rs1111875, rs5015480, and
rs7923837), EXT2 (rs1113132, rs11037909, and rs3740878), CDKN2A/B

(rs10811661 and rs564398), IGF2BP2 (rs4402960 and rs1470579), SLC30A8

(rs13266634) (R325W), LOC387761 (rs7480010), and an intergenic SNP
(rs9300039) in chromosome 11. The genotyping success rate was �97.1%, and
the concordance rate was �99% based on 12% duplicate samples (n � 384).
Samples with ambiguous base calling were genotyped again. Genotype
frequencies of all 17 SNPs were consistent with Hardy-Weinberg equilibrium
(P � 0.01), and most of the minor allele frequencies observed in this study
were comparable with those in the HapMap CHB (Chinese Han in Beijing)
sample (online appendix Table 1 [available at http://dx.doi.org/10.2337/db08-
0047]). Genotypic distributions were similar in Beijing and Shanghai popula-
tions (P � 0.05), except for the three HHEX SNPs (P � 0.041, 0.003, and 0.005
for rs1111875, rs5015480, and rs7923837, respectively).
Statistical analyses. Hardy-Weinberg equilibrium was tested using a likeli-
hood ratio test. LD between SNPs was estimated using Haploview version 3.2
(available at http://www.broad.mit.edu/mpg/haploview). The association be-
tween each SNP and the risk of type 2 diabetes and IFG was examined using
logistic regression. Generalized linear regression was applied to study the
associations between each SNP and type 2 diabetes–related quantitative traits.
Participants with known diabetes or receiving glucose-lowering treatment
(n � 267) were excluded from the type 2 diabetes–related quantitative trait
analyses. All association analyses assumed an additive effect of the risk allele
and were adjusted for sex, age, BMI (where appropriate), and geographical
region (Shanghai versus Beijing). BMI, insulin, and HOMA-S were log trans-
formed before analyses, and the data were presented as geometric means.
Likelihood ratio tests were used to examine genotype distribution in Beijing
and Shanghai. Because of a significant difference in genotype distribution of
the three HHEX/IDE SNPs (P � 0.05) and in diabetes prevalence between the
Shanghai and Beijing participants (P � 0.0001), analyses for these SNPs were
performed for Shanghai and Beijing separately.

Gene-gene interactions were assessed by including the respective interac-
tion terms of pairwise SNPs in logistic regressions using the maximum
likelihood estimation. The combined effect of multiple SNPs on the risk of
type 2 diabetes and/or IFG was determined by logistic regression after
categorizing the participants into groups according to the number of the risk
alleles they carried. Participants with one or no risk alleles served as the
reference group. Bonferroni correction was used to adjust for multiple testing
in the quantitative trait analyses. Association analyses were performed with
SAS version 9.1 (SAS Institute, Cary, NC). Meta-analyses were conducted with
Stata (version 9.2; Stata, College Station, TX). Cochran’s Q test was performed
to assess heterogeneity among different groups. Power calculations were

TABLE 1
Characteristics of the study population

All samples Beijing Shanghai P

n (% male) 3,210 (44.3) 1,574 (45.2) 1,636 (43.5)
Age (years) 58.6 � 6.0 58.3 � 5.9 58.9 � 6.0 0.0095
BMI (kg/m2) 24.2 (22.0–26.6) 25.1 (22.8–27.4) 23.5 (21.3–25.9) �0.0001
Fasting glucose (mmol/l) 5.84 � 1.74 6.16 � 1.96 5.53 � 1.42 �0.0001
A1C (%) 5.99 � 1.10 6.08 � 1.22 5.90 � 0.96 �0.0001
Fasting insulin (pmol/l) 82.2 (59.4–112.2) 81.0 (57.6–110.7) 84.0 (61.8–114.0) 0.0777
HOMA-B (%) 110.3 � 47.0 100.1 � 44.9 120.0 � 46.9 �0.0001
HOMA-S (%) 63.7 (47.1–86.9) 64.0 (47.3–89.5) 63.5 (46.9–85.1) 0.0454
IFG (%) 878 (27.4) 579 (36.8) 299 (18.3) �0.0001
Type 2 diabetes (%) 424 (13.2) 272 (17.3) 152 (9.3) �0.0001

Data are means � SD, median (interquartile range), or n (%), unless otherwise indicated. P represents significance of the differences between
individuals from Beijing and from Shanghai.
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performed using Quanto software (available at http://hydra.usc.edu/gxe/), and
the power shown in online appendix Table 1 was calculated for association
between each SNP and type 2 diabetes using the odds ratios (7–12) reported
in the original studies and sample size and minor allele frequencies in our own
study.

RESULTS

We first examined the association with the risk of type 2
diabetes and IFG (Table 2). The four CDKAL1 SNPs
spanned two LD blocks (r2 � 1.0 for rs7754840 and
rs10946398 and 0.96 for rs7756992 and rs9465871) and
were each significantly associated with type 2 diabetes
(odds ratios ranged between 1.38 and 1.49; P � 1.9 � 10�5)
and with combined IFG/type 2 diabetes (between 1.20 and
1.22; P � 0.0013). The CDKN2A/B rs10811661 variant was
also associated with type 2 diabetes (odds ratio 1.31 [95%
CI 1.12–1.54]; P � 0.001) and combined IFG/type 2 diabe-
tes (1.26 [1.13–1.41]; P � 2.76 � 10�5). The second
CDKN2A/B SNP (rs564398), which was not in LD with
rs10811661 (r2 � 0), was not associated with type 2
diabetes or combined type 2 diabetes/IFG. The two SNPs
in IGF2BP2 (r2 � 0.83) and the SLC30A8 SNP
(rs13266634) showed modest association with combined
IFG/type 2 diabetes (odds ratios between 1.12 and 1.17;
P � 0.013–0.033) but not with type 2 diabetes alone.

The three EXT2 variants were in complete LD (r2 � 1.0)
and occurred less frequently in our population (58%) than
in European populations (70%). These variants, as well as
those in chromosome 11 (rs7480010 and rs9300039, r2 �
0.037), were not associated with type 2 diabetes or IFG.
Analyses for the three SNPs in the HHEX/IDE LD block
were performed separately in Shanghai and Beijing popu-

lations, as the difference in genotype distribution and
prevalence of type 2 diabetes and IFG could lead to
spurious associations due to population stratification (Ta-
ble 2). All three HHEX/IDE SNPs were significantly asso-
ciated with type 2 diabetes in Shanghai participants, with
rs5015480 and rs7923837 also associated with combined
IFG/type 2 diabetes. Meta-analyses suggested that the
associations exhibited significant heterogeneity for SNPs
rs1111875 (P � 0.006) and rs5015480 (P � 0.028) between
Beijing and Shanghai populations.

We next examined the association between genetic
variants and type 2 diabetes–related quantitative traits
(glucose, A1C, insulin, HOMA-B, HOMA-S, and BMI) to
investigate whether these variants conferred risk of type 2
diabetes through their effects on any of these intermediate
traits (Table 3). Consistent with the case-control analyses,
the SNPs that showed significant evidence for association
with diabetes-related phenotypes were those that were
also associated with type 2 diabetes or IFG, except for
CDKN2A/B rs10811661 and LOC387761 rs7480010. All
four CDKAL1 SNPs were significantly associated with A1C
(P values 0.036–0.0096) and HOMA-B (P values 0.024–
0.0009). The SNPs (rs7756992 and rs9465871) in the sec-
ond LD block of this locus also showed significant
association with fasting glucose levels (P � 0.04). Inter-
estingly, the allele of SLC30A8 SNP rs13266634 that in-
creases the risk of combined IFG/type 2 diabetes was
significantly associated with lower BMI (P � 0.0087) and
marginally associated with decreased HOMA-B (P � 0.05).
Only the associations of CDKAL1-rs10946398, rs7754840,
and IGF2BP2-rs4402960 with HOMA-B remained signifi-

TABLE 2
Associations with type 2 diabetes or IFG and type 2 diabetes combined

SNP
identification Gene

Major/
minor
allele*

Type 2 diabetes vs. normal Type 2 diabetes and IFG vs. normal
Minor allele
frequency Odds ratio

(95% CI) P(add)

Minor allele
frequency Odds ratio

(95% CI) P(add)Case Control Case Control

All samples
rs10946398 CDKAL1 A/C 0.500 0.409 1.47 (1.25–1.73) 2.32 � 10�6 0.457 0.409 1.20 (1.07–1.33) 0.0012
rs7754840 CDKAL1 G/C 0.501 0.407 1.49 (1.27–1.75) 8.91 � 10�7 0.459 0.407 1.22 (1.10–1.36) 0.0003
rs7756992 CDKAL1 G/A 0.426 0.497 1.38 (1.17–1.62) 9.35 � 10�5 0.454 0.497 1.21 (1.09–1.35) 0.0004
rs9465871 CDKAL1 C/T 0.415 0.493 1.41 (1.21–1.66) 1.80 � 10�5 0.449 0.493 1.21 (1.09–1.35) 0.0003
rs10811661 CDKN2A/B T/C 0.418 0.483 1.31 (1.12–1.54) 0.0010 0.432 0.483 1.26 (1.13–1.41) 2.76 � 10�5

rs564398 CDKN2A/B T/C 0.131 0.128 1.07 (0.84–1.26) 0.59 0.135 0.128 0.99 (0.85–1.16) 0.92
rs4402960 IGF2BP2 G/T 0.264 0.241 1.14 (0.95–1.35) 0.16 0.263 0.241 1.17 (1.03–1.32) 0.014
rs1470579 IGF2BP2 A/C 0.272 0.246 1.15 (0.97–1.38) 0.11 0.268 0.246 1.17 (1.03–1.32) 0.013
rs13266634 SLC30A8 C/T 0.417 0.432 1.09 (0.93–1.27) 0.28 0.411 0.432 1.12 (1.01–1.25) 0.033
rs1113132 EXT2 C/G 0.390 0.418 1.12 (0.96–1.32) 0.15 0.410 0.418 1.04 (0.93–1.15) 0.53
rs11037909 EXT2 T/C 0.381 0.418 1.16 (0.99–1.36) 0.07 0.406 0.418 1.04 (0.94–1.16) 0.43
rs3740878 EXT2 A/G 0.405 0.431 1.11 (0.95–1.31) 0.19 0.418 0.431 1.06 (0.95–1.18) 0.29
rs7480010 LOC387761 A/G 0.223 0.225 0.98 (0.80–1.18) 0.79 0.230 0.225 1.00 (0.88–1.13) 0.97
rs9300039 Unknown C/A 0.279 0.274 0.96 (0.80–1.14) 0.62 0.265 0.274 1.06 (0.94–1.19) 0.34

Beijing
rs1111875 HHEX A/G 0.306 0.309 1.00 (0.81–1.25) 0.94 0.279 0.309 0.89 (0.76–1.04) 0.13
rs5015480 HHEX T/C 0.202 0.185 1.13 (0.88–1.46) 0.33 0.173 0.185 0.94 (0.78–1.13) 0.52
rs7923837 HHEX A/G 0.244 0.231 1.09 (0.86–1.39) 0.48 0.229 0.231 1.01 (0.84–1.20) 0.95

Shanghai
rs1111875 HHEX A/G 0.376 0.276 1.64 (1.25–2.15) 0.0004 0.294 0.276 1.10 (0.92–1.32) 0.30
rs5015480 HHEX T/C 0.218 0.138 1.79 (1.30–2.47) 0.0003 0.183 0.138 1.43 (1.15–1.78) 0.0013
rs7923837 HHEX A/G 0.252 0.186 1.45 (1.08–1.94) 0.0131 0.231 0.186 1.30 (1.07–1.58) 0.0089

Odds ratios represent the effects of risk alleles. The P values were adjusted for age, sex, BMI, and region (where appropriate). *Alleles in bold
are the risk alleles for type 2 diabetes identified by previous studies, while alleles underlined are the risk alleles for type 2 diabetes or IFG
observed in this study. All analyses were based on an additive model, in which individuals homozygous for the nonrisk alleles were coded
as 0, heterozygous individuals were coded as 1, and individuals homozygous for the risk alleles were coded as 2.
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cant after Bonferroni correction for multiple testing (P �
0.0014, 0.05/36 tests).

To examine whether the associations for the CDKAL1
variants were independent, we performed additional mul-
tiple regression analyses that included all four CDKAL1
SNPs in one model. Results showed that none of the four
SNPs remained significant (P � 0.17). Next, we tested
whether the two CDKAL1 “pairs” (rs7754840 and
rs7756992 were chosen to represent each of the pairs)
were independent from each other for the associations
with type 2 diabetes or related quantitative traits in
multiple regression models with both rs7754840 and
rs7756992 genotypes in the model, with age, sex, region,
and BMI (where appropriate) as covariates. The results
revealed that the association seems to be driven by
rs7754840, for the associations with type 2 diabetes, BMI,
and HOMA-B, or by rs7756992, for the association with
A1C, but interestingly, rs7754840 and rs7756992 seem to
have independent effects on the associations with HOMA-S
or insulin (online appendix Table 2).

We also performed a meta-analysis with the data from
the previously published studies (10–12), including those
from Japanese, Korean, and Hong Kong Chinese popula-
tions (22–25), to assess the heterogeneity between Cauca-
sians and Asians for the CDKAL1 and CDKN2A/B loci
(rs7754840 and rs10811661 were chosen to represent each
of them, respectively). The results showed that for the
CDKN2A/B loci (rs10811661), the heterogeneity between
Caucasians and Asians did not reach significance (P �
0.059), while a significant heterogeneity was observed
between Caucasians and Asians (P � 8.872 � 10�6) for the
CDKAL1 loci (rs7754840) (online appendix Fig. 1), and
this is consistent with the recent finding reported by Ng
et al. (25).

Although we did not observe the association among the
LOC387761 SNP rs7480010 and type 2 diabetes or IFG, we
found that the allele that increased the diabetes risk in
European populations was modestly associated (P � 0.03)
with increased insulin sensitivity (HOMA-S) and lower
fasting insulin levels. Furthermore, despite a strong asso-
ciation between the CDKN2A/B SNP rs10811661 and type
2 diabetes, no association was observed with any of the
diabetes-related quantitative traits. The intergenic SNP
rs9300039 and the three EXT2 SNPs (rs3740878,
rs11037909, and rs1113132) were not associated with any
of the diabetes-related quantitative traits.

We found no evidence of multiplicative gene-gene inter-
actions among the main SNPs (rs9465871, rs10811661,
rs4402960, and rs13266634) in each of the CDKAL1,
CDKN2A/B, IGF2BP2, and SLC30A8 genes. A significantly
higher proportion of participants with type 2 diabetes
carry increasing numbers of risk alleles, compared with
participants with NFG (Fig. 1A). In combined analysis,
each additional risk allele increased the risk of type 2
diabetes by 1.24-fold (P � 2.85 � 10�7) (Fig. 1B) and
combined IFG/type 2 diabetes by 1.21-fold (P � 6.31 �
10�11) (Fig. 1C). Participants harboring seven or all eight
risk alleles had a 4.44-fold increased risk for type 2
diabetes (P � 5 � 10�4) compared with those with one or
no risk alleles (Fig. 1B). Consistently, participants with
increasing numbers of risk alleles tended to have in-
creased fasting levels of plasma glucose (P � 0.013) (Fig.
1D) and A1C (P � 0.07) (Fig. 1E), as well as decreased
HOMA-B values (P � 3.34 � 10�7) (Fig. 1F). Of note,
participants with increasing numbers of risk alleles tended
to have significantly lower BMI (P � 5.3 � 10�3) (Fig. 1F),

which is consistent with previous results found for the
CDKAL1 and SLC30A8 polymorphisms (Table 3).

DISCUSSION

In this study of Chinese Hans, we replicated associations
with several diabetes susceptibility variants recently iden-
tified through GWASs in white Europeans (7–12). Variants
in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX
loci were significantly associated with the risk of type 2
diabetes or combined IFG/type 2 diabetes. Furthermore,
variants in CDKAL1 and IGF2BP2 were strongly associ-
ated with �-cell function estimated by HOMA-B.

The risk alleles of the CDKAL1 variants increased
diabetes risk by �1.4-fold. These associations were stron-
ger than those observed in individuals of European Ances-
try (8–10,12) (online appendix Table 1), and CDKAL1 risk
allele frequencies are also substantially higher in Chinese
(43–55%) than Europeans (15–31%). Moreover, significant
heterogeneity between Caucasians and Asians was found
for the CDKAL1 loci (rs7754840) in the meta-analysis that
combined the data from the previous studies in white
Europeans, Japanese, Korean, Hong Kong Chinese, and
our study (P � 8.872 � 10�6) (online appendix Fig. 1),
while no significant heterogeneity was observed among
the Asians (P � 0.369). These observations suggest that
these CDKAL1 variants might play an even more impor-
tant role in diabetes susceptibility in Chinese. The risk
allele of the first pair of CDKAL1 variants was strongly
associated with reduced �-cell function (HOMA-B) and
increased A1C levels, while the second pair of CDKAL1
variants showed an association with impaired �-cell func-
tion (HOMA-B) and higher glucose levels, as well as with
increased A1C. The results from additional multiple re-
gression analyses suggest that the four SNPs most likely
represent the effects of a single CDKAL1 locus. However,
none of these four SNPs stands out as being the variant
driving the association. Therefore, we assume that none of
them is likely to be the causal variant, but presumably they
are in moderate to high LD with the causal SNP and are
therefore less consistently associated with the traits of
interest. This region would benefit from a detailed fine
mapping to identify possible causal variants in future
studies. These results support previous findings (9,13,26)
that the four CDKAL1 SNPs confer the risk of type 2
diabetes through reduced insulin secretion, although the
causal SNP is yet to be identified.

We also observed significant association between
CDKN2A/B rs10811661 and type 2 diabetes and IFG with a
slightly higher odds ratio (�1.3) than that observed in
Europeans (�1.20) (10–12). The risk allele is twice as
prevalent in Chinese Hans (46%) as in Europeans (21%).
However, we did not observed significant heterogeneity
between Caucasians and Asians in the meta-analysis with
data from the previously published studies (P � 0.059).
Interestingly, none of the diabetes-related traits showed an
association with CDKN2A/B rs10811661. The second
CDKN2A/B variant, rs564398, which is less frequent in
Chinese Hans (13%) than in Europeans (38%), was not
associated with type 2 diabetes or any related traits.

The association between variants in IGF2BP2 and type
2 diabetes was not significant, although the odds ratios
were similar to those observed in European populations
(�1.15), suggesting that our study may not have been
sufficiently powered. Indeed, assuming an additive model
and a minor allele frequency of 25%, we had �50% power
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FIG. 1. Combined effects of increasing numbers of the risk alleles from CDKAL1-rs9465871, CDKN2A/B-rs10811661, IGF2BP2-rs4402960, and
SLC30A8-rs13266634. A: The risk allele distribution in the participants with NFG and participants with type 2 diabetes. �, control; f, type 2
diabetes. Each additional risk allele increased the risk of type 2 diabetes by 1.24-fold (P � 2.85 � 10�7) (B) and of IFG and diabetes combined
by 1.21-fold (P � 6.31 � 10�11) (C). B: Participants harboring seven or all eight risk alleles had a 4.44-fold increased risk for type 2 diabetes (P �
5 � 10�4) compared with the reference group. Consistently, participants with increasing numbers of risk alleles tended to have increased fasting
levels of plasma glucose (P � 0.013) (D) and A1C (P � 0.07) (E), as well as decreased HOMA-B values (P � 3.34 � 10�7) (F) and lower BMI (P �
5.3 � 10�3) (H), but showed no association with plasma insulin (P � 0.13) (G).
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to detect previously reported odds ratios at P � 0.05. We
did, however, find a significant association with combined
IFG/type 2 diabetes. The associations with HOMA-B sug-
gest that IGF2BP2 confer type 2 diabetes risk through a
reduced �-cell function. Similarly, we found no association
between the SLC30A8 rs13266634 variant and type 2
diabetes, while an association with combined IFG/type 2
diabetes reached borderline significance. Interestingly, the
risk allele that increased diabetes risk in Europeans was
also associated with a lower BMI in this population.

We also failed to find any evidence for association
between type 2 diabetes and the SNPs in EXT2 (rs3740878,
rs11037909, and rs1113132) and the intergenic SNP
rs9300039, despite �80% power to detect previously re-
ported effect estimates (7). Although these SNPs exhibited
marginal associations with type 2 diabetes in the original
study (7), they were largely negative in the subsequent
four GWASs and other replication studies in samples from
U.K. (8,12), Finnish (10,11), Swedish (10), Icelandic (9),
German (27), and Japanese (23) populations. Therefore,
the original associations for these SNPs were either pop-
ulation specific or overestimated due to the “winner’s
curse” (28,29), but the consistent lack of replication sug-
gests that these findings were more likely false-positives.
Meta-analyses or studies with larger sample sizes will be
required to draw definitive conclusions. Although there
was no association between rs7480010 (LOC387761) and
type 2 diabetes or IFG, the allele conferring risk of
diabetes in Europeans was associated with increased
insulin sensitivity and showed a tendency toward a re-
duced �-cell function as well. For the three SNPs in
HHEX/IDE gene region, the associations with type 2
diabetes or IFG were observed only in Shanghai individu-
als in whom each risk allele resulted in 1.45- to 1.79-fold
increased diabetes risk, suggesting that geographical strat-
ification may exist in our population for these SNPs and
their roles in type 2 diabetes susceptibility. However, given
the relatively small sample size, we cannot rule out
sampling bias. This observation needs to be confirmed in
larger studies.

We found no evidence of pairwise synergistic gene-gene
interactions on type 2 diabetes and the related phenotypes
among CDKAL1-rs9465871, CDKN2A/B-rs10811661,
IGF2BP2-rs4402960, and SLC30A8-rs13266634. In joint
analyses, the risk of type 2 diabetes was increased by
1.24-fold for each additional risk allele, and participants
with seven or all eight risk alleles (3.8%) had a 4.44-fold
increased risk of type 2 diabetes (P � 5 � 10�4) compared
with those with one or no risk allele. These results are
consistent with those reported by Scott et al. (11), who
examined combined effects of 10 risk variants in a GWAS
of European populations. Compared with Scott’s study,
the advantage of our study is that our data are based on
the general population. However, a replication in larger
population is required to examine whether combinations
of risk alleles from these variants have good predictive and
diagnostic potential in Chinese Hans.

In conclusion, we replicated the association of type 2
diabetes with the SNPs in CDKAL1 and CDKN2A/B genes
and confirmed that the SNPs in SLC30A8 and IGF2BP2
were associated with the risk of combined IFG/type 2
diabetes. Most of these SNPs were also associated with the
impaired �-cell function. Importantly, the risk variants in
CDKAL1, CDKN2A/B, IGF2BP2, and SLC30A8 appear to
act in an additive manner to increase the risk of type 2
diabetes and related phenotypes. These results provide

solid evidence for the notion that these variants individu-
ally or collectively contribute to the risk of type 2 diabetes
in the Chinese Han population, possibly by impairing
�-cell function or reducing insulin secretion.
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