

NIH Public Access

Author Manuscript

Ann Hum Genet. Author manuscript; available in PMC 2013 January 1.

Published in final edited form as:

Ann Hum Genet. 2012 January ; 76(1): 17–24. doi:10.1111/j.1469-1809.2011.00686.x.

Common variants in *FTO* are not significantly associated with obesity-related phenotypes among Samoans of Polynesia

Rebekah Karns¹, Satupaitea Viali², John Tuitele³, Guangyun Sun¹, Hong Cheng¹, Daniel E Weeks^{4,5}, Stephen T McGarvey⁶, and Ranjan Deka^{1,*}

¹Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA

²Ministry of Health, Samoa, Apia, Samoa

³Tafuna Family Health Center, Pago Pago, American Samoa

⁴Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA

⁵Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA

⁶Department of Epidemiology and International Health Institute, Brown University, Providence, RI, USA

Summary

The association between obesity and the fat mass and obesity associated (FTO) gene has been widely replicated among Caucasian populations. The limited number of studies assessing its significance in Asian populations have been somewhat conflicting. We performed a genetic association study of 51 tagging, GWAS, and imputed single nucleotide polymorphisms with twelve measures of adiposity and skeletal robustness in two Samoan populations of Polynesia. We included 465 and 624 unrelated American Samoan and Samoan individuals, respectively; these populations derive from a single genetic background traced to Southeast Asia and represent one socio-cultural unit, although they are economically disparate with distinct environmental exposures. American Samoans were significantly larger than Samoans in all measures of obesity and most measures of skeletal robustness. In separate analyses of American Samoa and Samoa, we found a total of 36 nominal associations between FTO variants and skeletal and obesity measures. The preponderance of these nominal associations (32 of 36) was observed in the Samoan population, and predominantly with skeletal rather than fat mass measures (28 of 36). All significance disappeared, however, following corrections for multiple testing. Based on these findings, it could be surmised that FTO is not likely a major obesity locus in Polynesian populations.

Authors' Contributions

^{*}Corresponding Author: Ranjan Deka, Ph.D., Department of Environmental Health, University of Cincinnati College of Medicine, 3223 Eden Avenue, Cincinnati, Ohio 45267, USA. Phone: 513-558-5989, Fax: 513-558-4397, ranjan.deka@uc.edu.

The Samoan obesity study was conceived and designed by STM. The genetic study was designed by STM, DEW and RD. Field work, data collection and analysis of phenotypic traits were conducted under the supervision of STM. SV and JT provided guidance in the conduct of field work in Samoa and American Samoa, respectively. DEW provided supervision in statistical analysis. RK carried out the primary statistical analysis; RK and RD wrote much of the manuscript in consultation with STM and DEW. SG and HC performed genotyping under the supervision of RD. All the authors read and approved the final manuscript.

obesity; FTO; association analysis; Samoa

Introduction

Genome-wide association studies (GWAS) have provided new insights into obesity genetics with the identification of sequence variants in several genes including INSIG2, FTO, MC4R, BDNF, SH2B1 (Herbert et al. 2006; Frayling et al. 2007; Dina et al. 2007; Loos et al. 2008; Chambers et al. 2008; Thorleifsson et al. 2009). Among these genes, FTO has emerged as the strongest candidate conferring risk to obesity, with replication of common variants across populations of European and Hispanic descent (Dina et al. 2007; Frayling et al. 2007; Scuteri et al 2007; Grant et al. 2008; Thorleifsson et al. 2009). Less certain and inconclusive, however, are the associations of FTO variants with body fatness measures in Asian populations (Cha et al. 2008; Ng et al. 2008; Tan et al. 2008; Li et al. 2008; Yajnik et al. 2009; Fang et al. 2010; Li et al. 2010). In comparison to most worldwide populations, levels of obesity are considerably higher in Oceanic populations (Collins et al. 1990) and associations of GWAS obesity-related loci among these populations are yet to be thoroughly explored. Based on a relatively smaller number of subjects, Ohashi et al. (2007) reported that FTO variants are not associated with obesity in six Oceanic populations, including one Polynesian group from Tonga. We conducted an association study of common FTO variants with obesity-related traits among Samoans of Polynesia who have a remarkably high prevalence of overweight and obesity (McGarvey 1991; Keighley et al. 2006).

Samoans of Polynesia are distributed in two polities, the independent nation of Samoa and the U.S. territory of American Samoa. Both groups share a common evolutionary history, form a single socio-cultural unit with frequent exchange of mates and genetically represent a single homogenous population without evidence of substructure (McGarvey 2001; Tsai et al. 2004). There is, however, substantial economic disparity between the two locales, which reflects the patterns of distribution of adiposity in the two groups. Based on the Polynesian body mass index (BMI) standards of 26-32 kg/m², and >32 kg/m² defining overweight and obesity, respectively (Swinburn et al. 1999), 59% of men and 71% of women are obese in American Samoa compared to 29% of men and 53% women in the less developed nation of Samoa (Keighley et al. 2006). To determine the significance of FTO variants in this population, we conducted a comprehensive association analysis of FTO tagging variants, supplemented with previously identified GWAS SNPs and SNPs imputed from the Phase III HapMap database with measures of obesity in adults residing in the Samoan islands. We expanded the phenotypic traits beyond those typically included in GWAS (classical measures including weight and BMI) to 12 anthropometric measures of body fatness and skeletal robustness. In all, we tested association of 51 FTO variants in a sample of 1,089 unrelated individuals.

Materials and Methods

Subjects

A total of 1,089 adult individuals (465 American Samoan and 624 Samoan) were included in this study. The sample from American Samoa included 260 males and 205 females; the Samoan sample included 300 males and 324 females. These subjects were recruited in a previous longitudinal study of adiposity and cardiovascular disease risk factors performed from 1990 to 1995 (Galanis et al. 1999; McGarvey 2001). They were between the ages of 25 and 59 years with all four grandparents of Samoan ancestry. Anthropometric measurements of height (Ht), weight (Wt), waist circumference (WC), hip circumference (HC) were

obtained following standard protocols. Body mass index (BMI = Wt in kg/Ht in m²), and waist-hip ratio (WHR = WC/HC) were calculated. A set of body fat measures including thigh circumference (THICIR), upper arm circumference (UAC), and calf circumference (CLFCIR) were obtained. In addition, three measures of skeletal mass and frame size were obtained according to Lohman et al. (1998), including the elbow breadth (distance between the epicondyles of the humerus), wrist breadth (distance between the medial aspect of ulna styloid and lateral aspect of radial styloid), and knee breadth (the distance between the most medial and lateral aspects of the femoral condyles). All data were collected at baseline, 1990 to 1991.

SNP Selection and Genotyping

A total of 32 SNPs, including 24 tagging SNPs within 30kb upstream and 30kb downstream of the original and potentially most significant FTO SNP (rs9939609) reported by Frayling et al (2007) and seven additional significant SNPs from previous GWAS (rs9939973, rs1421085, rs1121980, rs17817449, rs8050136, rs3751812, rs7190492) were genotyped. Tagging SNPs were selected based on pairwise r^2 (≥ 0.8) among all common SNPs with minor allele frequency (MAF ≥ 0.05) using the approach of Carlson et al. (2004). These SNPs fall within introns 1 and 2 of the FTO gene. In addition, we imputed SNPs to increase the coverage of FTO variants within a 70 kb region containing the original SNPs. Imputation was performed using all available populations in HapMapIII as reference, since the inclusion of multiple reference haplotypes increases the performance and quality of the imputation in novel populations (Marchini & Howie, 2010). The final set of SNPs included in the study was 60, with 24 tagging, 8 GWAS and 28 imputed SNPs. The SNPlex protocol (Applied Biosystems) was used for SNP genotyping, which is a multiple oligonucleotide ligation/PCR assay with universal ZipChute probe detection. Six internal replicates and negative controls were included to assure genotypic quality control, the consistency rate was 100%. The overall genotype call rate of the 32 genotyped SNPs was >99.5%.

Statistical Analysis

Descriptive statistics of the study sample were computed using SAS v.9.2 (SAS Institute, Inc. Carey, NC USA). All phenotypic traits were normalized using the Box-Cox method, and adjusted for age and gender. Linkage disequilibrium (LD; r^2) between markers was estimated in Haploview (v.4.1) (Barrett et al. 2005). Genotype imputation was performed in Mach1, a Markov chain-based haplotyper for unrelated populations (Li et al. 2009) and imputed SNPs were compiled with original SNPs prior to association testing. All genetic association analyses were performed using PLINK v1.07 (Purcell, 2007), using a 1 df linear model to assess the additive effects of the SNPs. A permutation test with 10,000 replications was used to assess significance after accounting for the presence of multiple markers. Association results were combined through fixed-effects meta analyses using PLINK v1.07. Genotype frequencies and their conformity to Hardy-Weinberg equilibrium (HWE) were also assessed in PLINK, using an exact test (Wiggington et al. 2005). SNPs that showed significant deviations from HWE with a *P*-value of <.01 and/or had an MAF of <.05 were excluded from analysis.

Results

Descriptive statistics of the 12 anthropometric measures from both polities are presented in Table 1. As previously stated, all measures were adjusted for the effects of age and gender due to their correlation with body fat. The American Samoans had significantly higher fat-related measures, were taller, and significantly larger skeletal measurements except elbow breadth in comparison to the Samoans.

Two genotyped SNPs and seven imputed SNPs were excluded from the analysis due to low MAF (<.05) and deviations from HWE (P <.01). The pairwise LD plot of the remaining 51 SNPs was identical for American Samoa and Samoa (data not shown). There were no significant differences in allele frequencies between American Samoa and Samoa; compiled SNP statistics with comparative minor allele frequencies from Asian (CHB) and Caucasian (CEU) HapMaps are presented in Table 2. In general, Samoan allele frequencies were relatively closer to those of the Asian population than those of the Caucasian population. Of note, MAFs of the previously reported eight GWAS SNPs were significantly lower in both Samoan groups (0.161–0.239) than the CEU (0.292–0.478).

We tested associations of 51 SNPs with the anthropometric traits adjusted for age and gender. The analysis was performed separately for American Samoan and Samoan samples due to significant differences in phenotypic traits between the two polities (see Table 1). Thirty-six out of 1,224 *P*-values were nominally significant, though none were previous GWAS SNPs (Table 3; all data with the nominal *P*-values are presented in Supplementary Tables 1 and 2). Thirty-two of the thirty six nominal associations were observed in Samoan sample. Of these, 26 were associated with measures of skeletal robustness (height and knee, wrist, and elbow breadth). No significant association, however, was found with any SNP after correction for multiple testing. A combined analysis and gender-specific analysis of the *FTO* SNPs in the American Samoa and Samoa did not uncover any further associations (data not shown). Finally, a meta analysis was performed to uncover any consistent signals of association observed in both polities, but the results did not change (Supplementary Table 3). A second meta analysis was performed to combine the association signals of rs9939609 in both Samoan polities and the Tongan population reported by Ohashi et al (2007), but the signal remained insignificant (P=0.424).

Since the majority of previous FTO reports have included BMI as the principal phenotype, we have estimated the effect sizes of nominally significant SNPs on BMI in the American Samoa and Samoan samples. There was no commonly associated SNP with BMI between the two polities; the effect size estimates for the two SNPs in Samoa (rs1861869, $\beta = -0.347$; rs7186521, $\beta = -0.586$) were lower than the SNP effect size estimate in American Samoa (rs1164281, $\beta = -0.931$). The confidence intervals of these estimates (Table 3) overlapped with reported point estimates in previous GWAS.

Discussion

We investigated the association of 51 tagging, GWAS and imputed SNPs with an expanded set of obesity-related anthropometric measures among Samoans and American Samoans. With respect to the phenotypic traits, there were significant differences in all measures of fatness and skeletal robustness (except elbow breadth) between the two Samoan groups, with the American Samoans showing significantly higher mean values of these traits. This likely reflects the effect of differential exposure to modernization with relatively higher affluence in American Samoa and a more neo-traditional life in Samoa (Keighley et al. 2006; McGarvey 1991, 1994). There was, however, no difference in allele frequency distributions and LD patterns between the two groups reaffirming that the American Samoans share a common genetic background as reported previously (Deka et al. 1994; Tsai et al. 2004).

Although *FTO* has emerged as a major gene influencing obesity particularly in populations of European descent, results from Asian populations have been less conclusive. Our study does not provide replication among the Samoans, which can be attributed to several reasons. First, our sample size (465 American Samoans and 624 Samoans) may not have adequate power to capture the effect of the variants. For example, we have 80% power to detect a

BMI effect size of 1.01 kg/m² in the American Samoan sample, 0.88 kg/m² in the Samoan sample, and 0.664 kg/m² in the combined sample, based on the allele frequency in our study populations of the widely replicated obesity-related FTO SNP (rs9939609) at alpha equal to 0.05. We have the power to detect only effect sizes that are somewhat larger than those reported in previous studies of FTO in Asian and Oceanic populations (Ohashi et al. 2007); therefore, we cannot conclusively rule out the involvement of FTO with obesity. Although we have greater power to detect smaller effect sizes in the combined sample, there were significant differences in phenotypic measurements between the two groups, and as noted above a meta analysis combining the two samples did not reveal significant associations after correcting for multiple testing. Effect size confidence intervals of SNPs nominally associated with BMI in our study population include the point estimates of previous GWAS reports, which might indicate inadequate power to maintain significance following adjustment for multiple testing. The effect size of FTO SNPs on BMI was stronger in the American Samoa sample than the Samoan sample, which may reflect the decreased power to detect smaller effects due to lower sample size, or the environmental component of excess caloric intake and sedentary lifestyles may obscure the direct genetic impact. Second, Samoan allele frequencies are significantly different from those in the reported GWAS and replication studies, particularly the European populations. Corollary to this is the evolutionary history of the Polynesians, who migrated from Southeast Asia about 4,000 to 5,000 years ago (Kirch 2000; Soares 2011). This together with a likely founder effect followed by genetic drift resulting in allele frequency changes could have masked the contribution of the FTO variants on obesity-related phenotypes among the Polynesians. Third, body compositions of contemporary Samoans are different from the Europeans with higher body and subcutaneous fat mass, bone mineral density as well as higher proportion of fat-free soft tissue (Swinburn et al, 1999). This may suggest that mechanisms underlying energy balance in Polynesians are different. This could implicate instead other genetic loci with stronger influence on obesity-related traits that may be influenced by physiological and anthropometric differences between Asian and Caucasian populations. In addition, the high BMI of the population per se may contribute to the non-replication, which could account in part for the limited signal detection in the American Samoan sample. A study among six Oceanic populations that included 116 Tongans from Polynesia also did not replicate the association of FTO variants with BMI (Ohashi et al. 2007); though this study was somewhat underpowered, these and the combined results from our second meta analysis substantiate our non-replication. Based on inconclusive studies, it could be surmised that FTO is not likely a major obesity locus in populations of Asian descent.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This study was supported by NIH grants R01-DK59642 and R01-HL093093 (STM PI). RK was supported by a training grant fellowship from the National Institutes of Environmental Health Sciences, USA (T32 ES010957).

References

- Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005; 21:263–265. [PubMed: 15297300]
- Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA. Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet. 2004; 74:106–120. S0002-9297(07)61949-1 [pii]; 10.1086/381000 [doi]. [PubMed: 14681826]

- Cha SW, Choi SM, Kim KS, Park BL, Kim JR, Kim JY, Shin HD. Replication of genetic effects of FTO polymorphisms on BMI in a Korean population. Obesity. 2008; 16:2187–2189. [PubMed: 18551112]
- Chambers JC, Elliott P, Zabaneh D, Zhang W, Li Y, Froguel P, Balding D, Scott J, Kooner JS. Common genetic variation near MC4R is associated with waist circumference and insulin resistance. Nat Genet. 2008; 40:716–718. [PubMed: 18454146]
- Collins, V.; Dowse, G.; Zimmet, P. Prevalence of obesity in Pacific and Indian Ocean populations. In: Baba, S.; Zimmet, P., editors. World data book of obesity. Amsterdam: Elsevier Science; 1990. p. 29-32.
- Deka R, McGarvey ST, Ferrell RE, Kamboh MI, Yu LM, Aston CE, Jin L, Chakraborty R. Genetic characterization of American and Western Samoans. Hum Biol. 1994; 66:805–822. [PubMed: 8001911]
- Dina C, Meyre D, Gallina S, Durand E, Korner A, Jacobson P, Carlsson LM, Kiess W, Vatin V, Lecoeur C, Delplanque J, Vaillant E, Pattou F, Ruiz J, Weill J, Levy-Marchal C, Horber F, Potoczna N, Hercberg S, Le SC, Bougneres P, Kovacs P, Marre M, Balkau B, Cauchi S, Chevre JC, Froguel P. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet. 2007; 39:724–726. ng2048 [pii];10.1038/ng2048 [doi]. [PubMed: 17496892]
- Fang H, Li Y, Du S, Hu X, Zhang Q, Liu A, Ma G. Variant rs9939609 in the FTO gene is associated with body mass index among Chinese children. BMC Med Genet. 2010; 11:136. [PubMed: 20858286]
- Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JR, Elliott KS, Lango H, Rayner NW, Shields B, Harries LW, Barrett JC, Ellard S, Groves CJ, Knight B, Patch AM, Ness AR, Ebrahim S, Lawlor DA, Ring SM, Ben-Shlomo Y, Jarvelin MR, Sovio U, Bennett AJ, Melzer D, Ferrucci L, Loos RJ, Barroso I, Wareham NJ, Karpe F, Owen KR, Cardon LR, Walker M, Hitman GA, Palmer CN, Doney AS, Morris AD, Smith GD, Hattersley AT, McCarthy MI. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007; 316:889–894. 1141634 [pii];10.1126/science.1141634 [doi]. [PubMed: 17434869]
- Galanis DJ, McGarvey ST, Quested C, Sio B, Afele-Fa'amuli SA. Dietary intake of modernizing Samoans: implications for risk of cardiovascular disease. J Am Diet Assoc. 1999; 99:184–190. [PubMed: 9972185]
- Grant SF, Li M, Bradfield JP, Kim CE, Annaiah K, Santa E, Glessner JT, Casalunovo T, Frackelton EC, Otieno FG, Shaner JL, Smith RM, Imielinski M, Eckert AW, Chiavacci RM, Berkowitz RI, Hakonarson H. Association analysis of the FTO gene with obesity in children of Caucasian and African ancestry reveals a common tagging SNP. PLoS One. 2008; 3:e1746. 10.1371/ journal.pone.0001746 [doi]. [PubMed: 18335027]
- Herbert A, Gerry NP, McQueen MB, Heid IM, Pfeufer A, Illig T, Wichmann HE, Meitinger T, Hunter D, Hu FB, Colditz G, Hinney A, Hebebrand J, Koberwitz K, Zhu X, Cooper R, Ardlie K, Lyon H, Hirschhorn JN, Laird NM, Lenburg ME, Lange C, Christman MF. A common genetic variant is associated with adult and childhood obesity. Science. 2006; 312:279–283. 312/5771/279 [pii]; 10.1126/science.1124779 [doi]. [PubMed: 16614226]
- Keighley ED, McGarvey ST, Turituri P, Viali S. Farming and adiposity in Samoan adults. Am J Hum Biol. 2006; 18:112–122. [PubMed: 16378333]
- Kirch, PV. On the Road of the Winds: An Archaeological History of the Pacific Islands before European Contact. Berkeley: University of California Press; 2000.
- Li H, Wu Y, Loos RJF, Hu FB, Liu Y, Wang J, Yu Z, Lin X. Variants in the fat mass- and obesityassociated (FTO) gene are not associated with obesity in a Chinese Han population. Diabetes. 2008; 57:264–268. [PubMed: 17959933]
- Li X, Song F, Jiang H, Zhang M, Lin J, Bao W, Yao P, Yang X, Hao L, Liu L. A genetic variation in the fat mass- and obesity-associated gene is associated with obesity and newly diagnosed type 2 diabetes in a Chinese population. Diabet Metab Res Rev. 2010; 26:128–132.
- Li Y, Willer C, Sanna S, Abecasis G. Genotype imputation. Ann Rev Genomics Hum Genet. 2009; 10:387–406. [PubMed: 19715440]
- Lohman, TG.; Roche, AF.; Martorell, R. Anthropometric Standardization Reference Manuals. Champaign 11: Human Kinetics Press; 1998. p. 33-38.

- Loos RJ, Lindgren CM, Li S, Wheeler E, Zhao JH, Prokopenko I, Inouye M, Freathy RM, Attwood AP, Beckmann JS, Berndt SI, Jacobs KB, Chanock SJ, Hayes RB, Bergmann S, Bennett AJ, Bingham SA, Bochud M, Brown M, Cauchi S, Connell JM, Cooper C, Smith GD, Day I, Dina C, De S, Dermitzakis ET, Doney AS, Elliott KS, Elliott P, Evans DM, Sadaf FI, Froguel P, Ghori J, Groves CJ, Gwilliam R, Hadley D, Hall AS, Hattersley AT, Hebebrand J, Heid IM, Lamina C, Gieger C, Illig T, Meitinger T, Wichmann HE, Herrera B, Hinney A, Hunt SE, Jarvelin MR, Johnson T, Jolley JD, Karpe F, Keniry A, Khaw KT, Luben RN, Mangino M, Marchini J, McArdle WL, McGinnis R, Meyre D, Munroe PB, Morris AD, Ness AR, Neville MJ, Nica AC, Ong KK, O'Rahilly S, Owen KR, Palmer CN, Papadakis K, Potter S, Pouta A, Qi L, Randall JC, Rayner NW, Ring SM, Sandhu MS, Scherag A, Sims MA, Song K, Soranzo N, Speliotes EK, Syddall HE, Teichmann SA, Timpson NJ, Tobias JH, Uda M, Vogel CI, Wallace C, Waterworth DM, Weedon MN, Willer CJ, Wraight, Yuan X, Zeggini E, Hirschhorn JN, Strachan DP, Ouwehand WH, Caulfield MJ, Samani NJ, Frayling TM, Vollenweider P, Waeber G, Mooser V, Deloukas P, McCarthy MI, Wareham NJ, Barroso I, Jacobs KB, Chanock SJ, Hayes RB, Lamina C, Gieger C, Illig T, Meitinger T, Wichmann HE, Kraft P, Hankinson SE, Hunter DJ, Hu FB, Lyon HN, Voight BF, Ridderstrale M, Groop L, Scheet P, Sanna S, Abecasis GR, Albai G, Nagaraja R, Schlessinger D, Jackson AU, Tuomilehto J, Collins FS, Boehnke M, Mohlke KL. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet. 2008; 40:768-775. ng.140 [pii];10.1038/ng.140 [doi]. [PubMed: 18454148]
- Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat Rev Genet. 2010; 11:499–511. [PubMed: 20517342]
- McGarvey S. Obesity in Samoans and a perspective on its etiology in Polynesians. Am J Clin Nutr. 1991; 53:1586S–1594S. [PubMed: 2031491]
- McGarvey ST. The thrifty gene concept and adiposity studies in biological anthropology. J Polyn Soc. 1994; 103:1586–1594.
- McGarvey ST. Cardiovascular disease (CVD) risk factors in Samoa and American Samoa, 1990–95. Pac Health Dialog. 2001; 8:157–162. [PubMed: 12017817]
- Ng MCY, Park KS, Oh B, Tam CHT, Cho YM, Shin HD, Lam VKL, Ma RCW, So WY, Cho YS, Kim H-L, Lee HK, Chan JCN, Cho NH. Implication of genetic variants near TCF&L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in type 2 diabetes and obesity in 6,719 Asians. Diabetes. 2008; 57:2226–2233. [PubMed: 18469204]
- Ohashi J, Naka I, Kimura R, Natsuhara K, Yamauchi T, Furusawa T, Nakazawa M, Ataka Y, Patarapotikul J, Nuchnoi P, Tokunaga K, Ishida T, Inaoka T, Matsumura Y, Ohtsuka R. FTO polymorphisms in Oceanic populations. J Hum Genet. 2007; 52:1031–1035. [PubMed: 17928949]
- Purcell S, Neale B, Todd-Brown K, Thomas L, Ferriera MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Dally MJ, Sham PC. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet. 2007; 81
- Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, Najjar S, Nagaraja R, Orru M, Usala G, Dei M, Lai S, Maschio A, Busonero F, Mulas A, Ehret GB, Fink AA, Weder AB, Cooper RS, Galan P, Chakravarti A, Schlessinger D, Cao A, Lakatta E, Abecasis GR. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 2007; 3:e115. 07-PLGE-RA-0253 [pii];10.1371/journal.pgen.0030115 [doi]. [PubMed: 17658951]
- Soares P, Rito T, Trejaut J, Mormina M, Hill C, Tinkler-Hundal E, Braid M, Clarke DJ, Loo DH, Thomson N, Denham T, Donohue M, Macaulay V, Lin M, Oppenheimer S, Richards MB. Ancient Voyaging and Polynesian Origins. Am J Hum Genet. 2011; 88:239–247. [PubMed: 21295281]
- Swinburn BA, Ley SJ, Carmichael HE, Plank LD. Body size and composition in Polynesians. Int J Obes Relat Metab Disord. 1999; 23:1178–1183. [PubMed: 10578208]
- Tan JT, Dorajoo R, Seielstad M, Sim XL, Ong RT-H, Chia KS, Wong TY, Saw SM, Chew SK, Aung T, Tai E-S. FTO variants are associated with obesity in the Chinese and Malay populations in Singapore. Diabetes. 2008; 57:2851–2857. [PubMed: 18599522]
- Thorleifsson G, Walters GB, Gudbjartsson DF, Steinthorsdottir V, Sulem P, Helgadottir A, Styrkarsdottir U, Gretarsdottir S, Thorlacius S, Jonsdottir I, Jonsdottir T, Olafsdottir EJ, Olafsdottir GH, Jonsson T, Jonsson F, Borch-Johnsen K, Hansen T, Andersen G, Jorgensen T, Lauritzen T, Aben KK, Verbeek AL, Roeleveld N, Kampman E, Yanek LR, Becker LC, Tryggvadottir L, Rafnar T, Becker DM, Gulcher J, Kiemeney LA, Pedersen O, Kong A,

Thorsteinsdottir U, Stefansson K. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet. 2009; 41:18–24. ng.274 [pii];10.1038/ng. 274 [doi]. [PubMed: 19079260]

- Tsai H-J, Sun G, Smelser D, Viali S, Tufa J, Jin L, Weeks DE, McGarvey ST, Deka R. Distribution of genome-wide linkage disequilibrium based on microsatellite loci in the Samoan population. Hum Genomics. 2004; 1:327–334. [PubMed: 15588493]
- Wiggington JE, Cutler DJ, Abecasis GR. A Note on Exact Tests of Hardy-Weinberg Equilibrium. Am J Hum Genet. 2005; 76:887–893. [PubMed: 15789306]
- Yajnik CS, Janipalli CS, Bhaskar S, Kulkarni SR, Freathy RM, Prakash S, Mani KR, Weedon MN, Kale SD, Deshpande J, Krishnaveni GV, Veena SR, Fall CHD, McCarthy MI, Frayling TM, Hattersley AT, Chandak GR. FTO gene variants are strongly associated with type 2 diabetes but only weakly with obesity in South Asian Indians. Diabetologia. 2009; 52:247–252. [PubMed: 19005641]

Table 1

Descriptive statistics of the phenotypic measures

	American Samoa (N = 465)	Samoa (N = 624)	
Trait	Mean ± S.D.	Mean ± S.D.	Р
Age (years)	38.58 ± 7.83	38.09 ± 8.82	0.34
Height [*] (cm)	166.86 ± 8.02	164.97 ± 8.03	0.0001
Body Mass Index [*] (kg/m ²)	34.71 ± 6.16	29.90 ± 5.22	< .0001
Weight [*] (kg)	97.24 ± 19.72	81.43 ± 15.22	< .0001
Waist Circumference* (cm)	108.04 ± 15.01	95.10 ± 13.37	<.0001
Hip Circumference [*] (cm)	114.74 ± 12.71	103.48 ± 10.20	< .0001
Waist-Hip-Ratio*	$0.94 \pm .06$	$0.92\pm.07$	< .0001
Calf Circumference (cm)	42.59 ± 4.47	39.47 ± 3.80	< .0001
Thigh Circumference* (cm)	48.38 ± 6.08	44.54 ± 5.37	<.0001
Upper Arm Circumference [*] (cm)	37.65 ± 4.85	34.03 ± 4.11	<.0001
Elbow (cm)	$6.88\pm.76$	6.94 ± 0.66	0.16
Wrist [*] (cm)	$5.68 \pm .58$	5.57 ± .44	0.0004
Knee [*] (cm)	10.41 ± 1.21	10.05 ± 1.08	<.0001

* Denotes American Samoa mean values are significantly greater than Samoa mean values

Table 2

SNP ID, origin, genomic position and minor allele frequencies

	SNP Infor	mation		Mino	r Allele Fr	equencies	
rs Number	Origin	Position	Minor Allele	Am Samoa	Samoa	CHB*	CEU*
rs7186637	Imputed	52337603	Т	0.466	0.464	0.177	0.256
rs1861869	Tagging	52347682	C	0.268	0.250	0.533	0.284
rs1077128	Tagging	52349154	Г	0.417	0.405	0.207	0.389
rs7186521	Tagging	52350423	IJ	0.243	0.216	0.5	0.159
rs13334933	Imputed	52353137	IJ	0.467	0.466	0.155	0.389
rs16952517	Imputed	52354558	A	0.238	0.244	0.067	0.289
rs4784323	Imputed	52355066	Α	0.257	0.241	0.292	0.244
rs7206790	Tagging	52355409	A	0.188	0.173	0.509	0.167
rs9930333	Imputed	52357478	IJ	0.209	0.197	0.482	0.182
rs12446228	Imputed	52357888	А	0.242	0.240	0.345	0.302
rs9939973	GWAS	52358069	Α	0.187	0.173	0.482	0.186
rs9940128	Imputed	52358255	А	0.187	0.173	0.475	0.189
rs1421085	GWAS	52358455	U	0.182	0.168	0.448	0.114
rs16952520	Tagging	52360539	IJ	0.356	0.384	0.059	0.433
rs10852521	Tagging	52362466	Г	0.440	0.434	0.417	0.356
rs12447107	Tagging	52362593	C	0.005	0.002	0.025	0.067
rs11075986	Tagging	52362845	IJ	0.373	0.397	0.102	0.477
rs9922047	Imputed	52363781	C	0.436	0.432	0.415	0.356
rs16952522	Imputed	52364999	IJ	0.070	0.067	0.022	0.058
rs17817288	Tagging	52365265	A	0.441	0.434	0.441	0.422
rs1477196	Imputed	52365759	А	0.238	0.235	0.341	0.302
rs1121980	GWAS	52366748	А	0.193	0.172	0.475	0.189
rs7193144	Imputed	52368187	C	0.188	0.170	0.442	0.122
rs16945088	Tagging	52370025	IJ	0.068	0.060	0.084	0.111
rs8057044	Imputed	52370115	Α	0.256	0.230	0.542	0.233
rs17817449	GWAS	52370868	IJ	0.189	0.170	0.447	0.125
rs8063946	Tagging	52370999	Ţ	0.373	0.397	0.049	0.512

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

CEU* 0.122 0.212 0.1890.298 0.067 0.056 0.022 0.278 0.178 0.4110.122 0.122 0.265 0.122 0.317 0.122 0.202 0.256 0.4090.4220.3440.4650.07 **Minor Allele Frequencies** CHB* 0.017 0.014 0.4480.018 0.4670.017 0.018 0.142 0.357 0.358 0.617 0.462 0.351 0.483 0.475 0.425 0.042 0.45 0.45 0.45 0.45 0.45 0.11 Samoa 0.239 0.3400.398 0.085 0.1690.323 0.168 0.168 0.172 0.339 0.1690.172 0.002 0.171 0.173 0.171 0.3400.4330.1940.104 0.044 0.209 0.364Am Samoa 0.188 0.182 0.1880.189 0.193 0.003 0.1900.242 0.1900.1900.307 0.307 0.4380.198 0.118 0.217 0.0800.306 0.3890.1910.305 0.372 0.052 Minor Allele < < ∢ 4 ΰ Ċ < Ċ Ċ C C ∢ 4 Þ 52373776 52374285 52376209 52378808 52379116 52382989 52387966 52390317 52391106 52396636 52401034 52402080 52402988 52406062 52407580 Position 52374339 52378028 52379363 52382739 52386253 52387953 52404427 52375961 **SNP Information** Tagging Imputed Tagging Imputed Tagging Tagging Imputed Origin GWAS Imputed GWAS Imputed GWAS Imputed Imputed GWAS Imputed Imputed Imputed Imputed **Fagging** Imputed Imputed Imputed rs12597786 rs17218700 rs11642841 rs11075994 rs Number rs6499646 rs1861867 rs8050136 rs4783820 rs3751812 rs3751813 rs9939609 rs7202116 rs7201850 rs9931164 rs9941349 rs7190492 rs9930501 rs9930506 rs2111650 rs7204609 rs8044769 rs9935403 rs9935401

0.467

0.729

0.484

0.489

Ċ

52407671

Tagging

rs1421090

CHB = HapMap Chinese; CEU = HapMap Caucasian

Table 3

SNPs showing nominally significant associations ($P \leq 0.05$) with anthropometric traits in American Samoa and Samoa samples

SNP	$\operatorname{Trait}^{\#}$	Allele	Effect Size	Lower CI	Upper CI	Ρ	Population
$rs11075986^*$	Height	Ð	-0.192	-0.322	-0.062	0.027	Samoa
$rs16945088^{*}$	Height	IJ	-0.559	-0.890	-0.228	0.014	Samoa
$rs8063946^*$	Height	F	-0.131	-0.261	-0.001	0.026	Samoa
rs3751813 [*]	Height	H	0.222	0.093	0.351	0.013	Samoa
rs6499646*	Height	C	-0.165	-0.296	-0.034	0.045	Samoa
rs1861869	Body Mass Index	C	-0.347	-0.693	-0.001	0.050	Samoa
rs7186521 [*]	Body Mass Index	IJ	-0.586	-1.069	-0.102	0.018	Samoa
rs1421090	Hip Circumference	IJ	-0.722	-1.360	-0.084	0.027	Samoa
$rs17218700^{*}$	Waist Hip Ratio	A	0.043	0.026	0.057	0.034	Samoa
rs7186521 [*]	Thigh Circumference	IJ	-0.635	-1.123	-0.148	0.011	Samoa
rs9930333	Thigh Circumference	ŋ	-0.724	-1.397	-0.051	0.038	Samoa
rs16952520	Elbow Breadth	IJ	-0.056	-0.102	-0.011	0.015	Samoa
$rs10852521^{*}$	Elbow Breadth	Т	0.048	0.006	060.0	0.025	Samoa
$rs11075986^*$	Elbow Breadth	IJ	-0.063	-0.108	-0.018	0.006	Samoa
rs9922047*	Elbow Breadth	C	0.048	0.007	0.089	0.021	Samoa
rs17817288*	Elbow Breadth	A	0.052	0.013	0.092	0.020	Samoa
$rs8063946^*$	Elbow Breadth	Г	-0.056	-0.097	-0.015	0.008	Samoa
rs4783820	Elbow Breadth	A	-0.062	-0.112	-0.012	0.016	Samoa
rs12597786	Elbow Breadth	Г	-0.055	-0.104	-0.006	0.029	Samoa
rs2111650	Elbow Breadth	C	-0.054	-0.103	-0.004	0.034	Samoa
rs7204609	Elbow Breadth	C	-0.054	-0.103	-0.004	0.034	Samoa
$rs8044769^*$	Elbow Breadth	Н	0.049	0.007	0.091	0.023	Samoa
rs6499646*	Elbow Breadth	C	-0.061	-0.105	-0.017	0.007	Samoa
rs11075986	Wrist Breadth	IJ	-0.060	-0.116	-0.004	0.037	Samoa
rs16945088*	Wrist Breadth	IJ	-0.101	-0.200	-0.001	0.047	Samoa

$rs3751813^*$ Wrist Breadth T -0.068 -0.1 $rs3751813^*$ Wrist Breadth C -0.063 -0.1 $rs6499646^*$ Wrist Breadth C -0.063 -0.1 $rs10852521^*$ Knee Breadth T 0.068 0.00 $rs10852521^*$ Knee Breadth T 0.060 0.00 $rs17817288^*$ Knee Breadth A 0.067 0.00 $rs17817288^*$ Knee Breadth A 0.067 0.00 $rs17218700^*$ Knee Breadth A 0.069 0.00 $rs11642841^*$ Body Mass Index A -0.931 -1.7 $rs11642841^*$ Calf Circumference A -0.904 -1.7 $rs11642841^*$ Calf Circumference A -0.069 -0.1	NP	$\operatorname{Trait}^{\#}$	Allele	Effect Size	Lower CI	Upper CI	Α	Population
rs6499646* Wrist Breadth C -0.063 -0.1 rs6499646* Knee Breadth T 0.068 0.06 rs10852521* Knee Breadth T 0.068 0.00 rs9922047* Knee Breadth C 0.060 0.00 rs17817288* Knee Breadth A 0.067 0.00 rs17817288* Knee Breadth T 0.069 0.00 rs17817288* Knee Breadth T 0.069 0.00 rs178169* Knee Breadth A 0.063 0.00 rs11642841* Body Mass Index A -0.931 -1.7 rs11642841* Calf Circumference A -0.904 -1.7 rs11642841* Elbow Breadth A -0.904 -1.7	3751813 [*] V	Vrist Breadth	F	-0.068	-0.124	-0.013	0.017	Samoa
rs10852521* Knee Breadth T 0.068 0.06 rs9922047* Knee Breadth C 0.060 0.06 rs19817288* Knee Breadth C 0.067 0.06 rs17817288* Knee Breadth T 0.067 0.06 rs17817288* Knee Breadth T 0.067 0.06 rs8044769* Knee Breadth T 0.069 0.06 rs17218700* Knee Breadth A 0.069 0.06 rs11642841* Body Mass Index A -0.931 -1.7 rs11642841* Calf Circumference A -0.904 -1.7 rs11642841* Elbow Breadth A -0.069 -0.1	6499646 [*] V	Vrist Breadth	C	-0.063	-0.123	-0.003	0.040	Samoa
$rs9922047^*$ Knee Breadth C 0.060 0.00 $rs17817288^*$ Knee Breadth A 0.067 0.00 $rs17817288^*$ Knee Breadth A 0.067 0.00 $rs17817288^*$ Knee Breadth T 0.069 0.00 $rs1781769^*$ Knee Breadth T 0.069 0.00 $rs17218700^*$ Knee Breadth A 0.082 0.00 $rs11642841^*$ Body Mass Index A -0.931 -1.7 $rs11642841^*$ Calf Circumference A -0.904 -1.7 $rs17218700^*$ Elbow Breadth A -0.069 -0.1	10852521 [*] F	Knee Breadth	F	0.068	0.004	0.132	0.038	Samoa
$rs17817288^*$ Knee Breadth A 0.067 0.06 $rs8044769^*$ Knee Breadth T 0.069 0.06 $rs17218700^*$ Knee Breadth A 0.082 0.06 $rs11542841^*$ Body Mass Index A -0.931 -1.7 $rs11642841^*$ Calf Circumference A -0.931 -1.7 $rs11642841^*$ Calf Circumference A -0.934 -1.7 $rs11642841^*$ Calf Circumference A -0.934 -1.7 $rs17218700^*$ Elbow Breadth A -0.069 -0.1	9922047* F	Knee Breadth	C	0.060	0.001	0.120	0.050	Samoa
$rs8044769^*$ Knee Breadth T 0.069 0.00 $rs17218700^*$ Knee Breadth A 0.082 0.00 $rs17218700^*$ Knee Breadth A 0.082 0.00 $rs11642841^*$ Body Mass Index A -0.931 -1.7 $rs11642841^*$ Calf Circumference A -0.904 -1.7 $rs17218700^*$ Elbow Breadth A -0.069 -0.1	17817288 [*] F	Knee Breadth	A	0.067	0.003	0.131	0.040	Samoa
$r_{s1}7218700^{*}$ Knee Breadth A 0.082 0.00 $r_{s1}1642841^{*}$ Body Mass Index A -0.931 -1.7 $r_{s1}1642841^{*}$ Calf Circumference A -0.904 -1.7 $r_{s1}7218700^{*}$ Elbow Breadth A -0.069 -0.1	8044769* F	Knee Breadth	F	0.069	0.005	0.133	0.036	Samoa
rs11642841* Body Mass Index A -0.931 -1.7 rs11642841* Calf Circumference A -0.904 -1.7 rs11642841* Calf Circumference A -0.904 -1.7 rs17218700* Elbow Breadth A -0.069 -0.1	17218700 [*] F	Knee Breadth	A	0.082	0.002	0.162	0.045	Samoa
rs11642841* Calf Circumference A -0.904 -1.7 rs17218700* Elbow Breadth A -0.069 -0.1	11642841 [*] Bo	dy Mass Index	A	-0.931	-1.774	-0.088	0.031	Am. Samoa
rs17218700* Elbow Breadth A -0.069 -0.1	11642841 [*] Cali	f Circumference	A	-0.904	-1.764	-0.044	0.040	Am. Samoa
	17218700 [*] E	Jbow Breadth	A	-0.069	-0.137	-0.001	0.050	Am. Samoa
rs17218700* Wrist Breadth A -0.101 -0.1	17218700 [*] V	Vrist Breadth	A	-0.101	-0.198	-0.017	0.042	Am. Samoa

#Height was measured in cm, body mass index in kg/m², hip circumference in cm, thigh circumference in cm, elbow breadth in cm, wrist breadth in cm, knee breadth in cm, and calf circumference in cm.