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Abstract

Primary open-angle glaucoma (POAG) is a major cause of irreversible blindness worldwide. We

performed a genome-wide association study in an Australian discovery cohort comprising 1,155

advanced POAG cases and 1,992 controls. Association of the top SNPs from the discovery stage

was investigated in two Australian replication cohorts (total 932 cases, 6,862 controls) and two US

replication cohorts (total 2,616 cases, 2,634 controls). Meta-analysis of all cohorts revealed three

novel loci associated with development of POAG. These loci are located upstream of ABCA1

(rs2472493 [G] OR=1.31, P= 2.1 × 10-19), within AFAP1 (rs4619890 [G] OR=1.20, P= 7.0 ×

10-10) and within GMDS (rs11969985 [G] OR=1.31, and P= 7.7 × 10-10). Using RT-PCR and

immunolabelling, we also showed that these genes are expressed within human retina, optic nerve

and trabecular meshwork and that ABCA1 and AFAP1 are also expressed in retinal ganglion cells.
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POAG, the most common subtype of glaucoma, is characterised by a progressive loss of

peripheral vision but patients may remain undiagnosed until central vision is affected1,2.

POAG etiology and pathogenesis are poorly understood. Linkage, candidate gene and

genome-wide association studies (GWAS) have identified several loci reproducibly

associated with development of POAG3-7. Our previous GWAS of advanced POAG

identified two loci at TMCO1 and CDKN2B-AS16, with studies of non-advanced POAG also

implicating CAV15, SIX6 and a region on 8q227. Here we use a three-stage GWAS to

identify additional genetic loci associated with POAG in participants of European descent.

The stage 1 discovery cohort comprised 1,155 advanced glaucoma cases from the Australian

& New Zealand Registry of Advanced Glaucoma (ANZRAG), and 1,992 controls,

genotyped on Illumina Omni1M or OmniExpress arrays (Supplementary Notes,

Supplementary Table 1). The genotype data from cases and controls were combined and

cleaned, and 569,249 SNPs were used as the base of imputation against 1000 Genomes

Phase 1 European ethnicity dataset. 7,594,768 SNPs were successfully imputed with Minor

Allele Frequency (MAF) >0.01 and imputation quality score >0.8. Association analysis was

performed using an additive model adjusted for sex and 6 principal components. The P-

values from the association analysis were corrected for the estimated genomic inflation

factor lambda, 1.06 (quantile-quantile plot shown in Supplementary Figure 1).

The stage 1 association results across the genome are shown in Supplementary Figure 2, and

the association results for all SNPs with P<1×10-7 are shown in Supplementary Table 2.

Two previously unreported regions reached genome-wide significance (P<5×10-8) in the

stage 1 discovery cohort, with a further novel region associated at close to genome-wide

significance (Table 1). The top novel associated SNPs were rs2472493[G] upstream of the

ATP-Binding Cassette, Sub-Family A, Member 1 (ABCA1) gene on chromosome 9

(OR=1.43 and P=2.0×10-10), rs11827818[G] close to Rho guanine nucleotide exchange

factor 12 (ARHGEF12) gene (OR=1.52 and P=9.2×10-9) on chromosome 11, and

rs114096562[A] in GDP-mannose 4,6-dehydratase (GMDS) gene (OR=1.55 and

P=7.0×10-8) on chromosome 6. The regional association results for these three SNPs are

shown in Figure 1. We also performed the analysis after removing controls affected by other

diseases (Supplementary Notes) and found the effect sizes were similar (Supplementary

Table 3).

Associations of top SNPs in the discovery cohort were then investigated in a stage 2 set

comprising two Australian replication datasets (ANZRAG and Blue Mountains Eye Study

[BMES] datasets, in total 932 cases, 6,862 controls, Supplementary Notes, Supplementary

Table 1). All replication cohort participants were of European descent. To make maximum

valid use of our cohorts, for replication we focused on SNPs directly genotyped on the

Illumina Human610/670 arrays; proxy genotyped SNPs were used where imputed data was

not available for replication cohorts (Online Methods).

Examining all autosomal SNPs with P <1×10-4 in stage 1 (twenty four SNPs with the best

P-values were used as the lead SNPs, Supplementary Table 4), four regions showed nominal

evidence (P<0.05 for seven SNPs in/near ABCA1, GMDS, ITIH1 and AFAP1) for replication

in the ANZRAG replication samples (Supplementary Table 4). When stages 1 and 2 were

Gharahkhani et al. Page 3

Nat Genet. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



combined, SNPs near ABCA1 and in AFAP1 exceeded genome-wide significance (P<5×10-8

for rs2472493 and rs4619890) with consistent effect sizes and direction of effects among the

cohorts (Supplementary Table 4, Table 2).

In the stage 3 replication, the newly identified top SNPs from stage 2 were examined in data

available from two additional replication cohorts (see Supplementary Notes, Supplementary

Table 1): NEIGHBOR and MEEI (total 2,616 cases, 2,634 controls). We also performed a

meta-analysis of the results for these SNPs between all cohorts (discovery and all four

replication cohorts) using the effect sizes and their standard errors. In the meta-analysis

results, SNPs in/near ABCA1, AFAP1 and GMDS genes clearly reached genome-wide

significance (P<5×10-8) (Table 2).

The top SNP within ARHGEF12 gene (rs2276035) did not reach the significance level

(P<5×10-8) in our standard meta-analysis (Table 2), primarily due to heterogeneity between

stage 1 and stages 2/3. This heterogeneity could be explained by the difference in the

glaucoma status in these cohorts, the “winner's curse” effect that leads to inflated OR

estimates in GWAS, or due to chance. The top SNP within ITIH1 (rs2710323) was not

genome-wide significant in our meta-analysis (Table 2).

At each of the novel loci, the effect size is larger in the discovery cohort than in the

replication cohorts (Table 2). The discovery cohort comprises only advanced POAG cases,

whereas the replication cohorts contained POAG cases representing a range of disease

severity. One cannot directly infer however that the true effect size is largest in advanced

POAG. A “winner's curse” effect in the ANZRAG discovery cohort would inflate the OR

estimates. Furthermore, there may have been greater diagnostic certainty in advanced

POAG. To further investigate if the novel loci conferred higher risk in advanced compared

with non-advanced POAG, we performed a sub-analysis on the ANZRAG replication

cohort. We found no consistent difference between the ORs for the non-advanced (N=605)

and advanced (N=220) POAG cases separately (Supplementary Table 5). This sub-analysis,

together with the significant results in the replication cohorts taken alone, suggest that the

novel loci in this study are associated with POAG in general (not only advanced POAG),

indicating the generalizability of our findings.

Intraocular pressure (IOP) was not a criterion in the definition of POAG in this study,

because POAG patients may have normal or elevated IOP8. Thus, the novel loci identified in

this study are associated with POAG in general, regardless of IOP levels. However, we had

peak IOP measures available for 1,039 of the 1,155 cases in the ANZRAG discovery cohort.

330 (31.8%) of the individuals had Normal Tension Glaucoma (NTG) (IOP<=21 mm Hg),

and 709 (68.2%) had High Tension Glaucoma (HTG) (IOP>21 mm Hg). We investigated

the association of the novel loci identified in this study with 330 NTG and 709 HTG cases

versus 1,992 population controls in the discovery cohort (Supplementary Table 6). The

direction and magnitude of effect of the risk alleles were similar for NTG, HTG, and all

POAG (Supplementary Table 6 and Table 2). However, the analysis for NTG and HTG was

less powerful compared to POAG due to the smaller sample size of the subgroups.
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None of our newly identified POAG loci overlap with the previously published loci

associated with the POAG sub-phenotypes including IOP and vertical cup-disk ratio

(VCDR)9-11. We also investigated the association of the novel loci identified in this study

with peak measured IOP in 1,039 POAG cases with available data in the ANZRAG

discovery cohort. The novel loci were not associated with peak IOP in the ANZRAG

discovery cohort (Supplementary Table 7), although the ABCA1 SNP showed a trend toward

significance (P=0.0675, two-sided test). The ABCA1 glaucoma risk increasing allele acts in

the expected direction on IOP (allele increases IOP), resulting in a P of 0.034 if one

conducts a one-sided test. Larger sample sizes and further meta-analysis of multiple studies

will unambiguously determine if the novel loci in this study are associated with sub-

phenotypes such as IOP.

We also investigated previously reported GWAS hits identified in other studies5-7 in the

meta-analysis of results between our discovery and replication cohorts (Supplementary

Table 8). The TMCO1, CDKN2B-AS1 and SIX6 loci were clearly genome-wide significant

(P<5×10-8) while CAV1/CAV2 and the locus on chromosome 8 were associated with POAG

but not at genome-wide significance level. (. SNP rs11669977 at NTF4 was not associated

with POAG.

We used ENCODE project data12 and the Genevar database13 (expression quantitative trait

locus, eQTL, database) to predict the possible functional effects of the top SNPs identified

in this study. The top SNP rs2472493 located upstream of the ABCA1 gene is an eQTL in

lymphoblastoid cell lines (Genevar database) and may alter the sequence of motifs for

proteins such as FOXJ2 and SIX5 (HaploReg v214). One of the SNPs in high linkage

disequilibrium (LD, r2>0.8) with the top SNP near ABCA1 (rs2472494) alters the regulatory

motif for binding of PAX6 (HaploReg v2). PAX6 is an established master control gene in

eye development15. A SNP (rs28495790) in high LD (r2>0.8) with the best SNP in AFAP1

gene (rs4619890) is likely to affect binding of proteins (score 2b in RegulomeDB16) such as

CTCF and RAD21 in variety of cell lines including WERI-Rb-1 (retinoblastoma).

rs28495790 alters the sequence of regulatory motifs for binding of several proteins including

PAX6 (HaploReg v2). This may suggest a regulatory role of this SNP in gene expression in

a similar pathway to that of rs2472494 near ABCA1 gene. In GMDS, rs3046543 (in high LD,

r2=0.8, with top imputed SNP rs114096562) alters the sequence of the regulatory motif for

binding of SIX6; SIX6 variants confer glaucoma risk7. SNPs close to SIX6 also clearly

reached genome-wide significance in the meta-analysis in this study (top SNP

rs10483727[T] OR=1.32; P =1.56×10-17). These data suggest that the top SNPs identified in

this study may have important regulatory roles.

ABCA1 is a membrane-bound receptor involved in phospholipid and cholesterol efflux from

cells. ABCA1 is expressed in retinal ganglion cells in monkey retina17; the cells that undergo

apoptosis in glaucoma. We analysed expression of ABCA1 mRNA in human ocular tissues

by RT-PCR and found that the iris, ciliary body, retina, optic nerve head, optic nerve and

trabecular meshwork cell lines derived from normal and glaucomatous eyes express the

main transcript that encodes the full-length protein (Supplementary Figure 3a). We also

detected an alternative transcript in the ocular tissues (Supplementary Figure 3a) with

unknown function18,19. Immunolabelling of sections of normal human eye with the anti-
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ABCA1 specific antibody (Supplementary Figure 4) showed distribution of the protein in

the trabecular meshwork, all layers of the retina (including retinal ganglion cells), and the

optic nerve (Figure 2). Similar ABCA1 labelling was observed in a glaucomatous eye

including in the layers of the retina (Figure 2g). ABCA1 has been reported to regulate

neuroinflammation and neurodegeneration through co-ordinated activity in various cell

types in mouse brain20 and it may be involved in glaucoma through a similar function in the

retina.

AFAP1 encodes a protein that binds to actin filaments and allows their crosslinking21,22.

Actin cytoskeleton-modulating signals have been shown to be involved in the regulation of

aqueous outflow and intraocular pressure23-25, which are important parts of glaucoma

pathogenesis. AFAP1 encodes two isoforms, the neuronal cell-specific A isoform and the

ubiquitously expressed B isoform. By RT-PCR, we detected expression of both the A and B

isoforms, in human retina (Supplementary Figure 3c) and expression of the B isoform in

other ocular tissues including iris, ciliary body, lens, optic nerve and optic nerve head, and in

cultured trabecular meshwork cells (Supplementary Figure 3b). Consistent with the mRNA

expression data, in normal human eye, AFAP1 positive immunolabelling was observed in

the trabecular meshwork, retina (including retinal ganglion cells), and optic nerve

(Supplementary Figure 5) using AFAP1-specific antibody (Supplementary Fig. 6). Similar

AFAP1 labelling was observed in a glaucomatous eye including in the retina

(Supplementary Figure 5g and 5h). These data indicate that AFAP1 function in the

trabecular meshwork and retina may be relevant in glaucoma pathogenesis.

GMDS encodes a protein that is required for the first step in de novo synthesis of fucose26.

Fucose is required for diverse biological functions such as growth factor receptor

signalling27. Several studies have suggested the effects of growth factors on development of

glaucoma23,28-32. GMDS expresses two variant transcripts, 1 and 2. We detected expression

of the variant 1 transcript in human ocular tissues and cultured trabecular meshwork cells by

RT-PCR (Supplementary Figure 3d), which indicates ubiquitous expression of the gene in

the eye.

In this study, we identified three novel risk loci for POAG and we suggested related

candidate genes and pathways that might be involved in developing POAG. These new loci,

in addition to the previously known risk loci, will improve risk profiling for glaucoma with

better opportunities for management of high-risk individuals. At present many cases of

glaucoma remaining undiagnosed until severe visual loss occurs; early detection and

treatment can slow disease progression and prevent blindness33. Further dissection of these

new POAG risk loci is likely to lead to insights into the etiology of this common,

irreversible cause of blindness.

Online methods

Study design

In total 1,155 glaucoma cases and 1,992 controls, genotyped on Illumina Omni1M or

OmniExpress arrays and imputed to the 1000 Genomes Phase 1 Europeans panel, were used

as discovery cohort in this study to perform a genome-wide association study for Primary
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Open Angle Glaucoma (POAG) (stage 1). The association results for the top SNPs from the

discovery cohort were replicated in stage 2 and then stage 3 replication cohorts. The cohort

details, genotyping platforms for each cohort and diagnostic criteria are listed in the

Supplementary Notes. In addition, we performed a meta-analysis for the top SNPs in the

discovery and replication cohorts. In this method section we have described the methods

used for imputation and statistical analysis for the discovery cohort. Methods used for each

replication cohort are present in the Supplementary Notes.

Quality Control (QC)

The QC for the discovery cohort was performed in PLINK34 by removing individuals with

more than 3% missing genotypes, SNPs with call rate <97%, minor allele frequency (MAF)

<0.01, and Hardy-Weinberg equilibrium P<0.0001 in controls and P<5e-10 in cases. We

used the same QC protocol before merging the cases and controls in our discovery cohort to

avoid mismatches between the merged datasets. Following merging, the genotypes for

569,249 SNPs common to the arrays were taken forward for analysis. Identity by descent

was computed in PLINK based on autosomal markers, with one of each pair of individuals

with relatedness of > 0.2 removed. Principal components were computed for all participants

and reference samples of known northern European ancestry (1000G British, CEU, Finland

participants) using smartpca package from EIGENSOFT software35,36. Participants with

PC1 or PC2 values > 6 standard deviations from the known northern European ancestry

group were excluded.

Imputation

Imputation was conducted using IMPUTE237 in 1Mb sections, with the 1000 Genomes

Phase 1 38 Europeans (March 2012 release) as the reference panel. Genotyped SNPs who

were strand ambiguous (e.g. A/T, C/G) were dropped from the input genotype panel prior to

imputation; given these are deliberately under-represented on Illumina arrays this has

limited effects on ability to impute data but gives greater confidence in the imputation's

quality. Imputation was performed with the recommended settings for IMPUTE2 including

a 250kb buffer flanking imputation sections; and the effective size of the sampled population

as 20,00037. Reference panel SNPs with a minor allele <0.001 in Europeans were not

imputed. SNPs with imputation quality score (INFO) > 0.8 and MAF> 0.01 were carried

forward for analysis.

Statistical analysis

Association testing on the imputed data was performed in SNPTEST39,40 using additive

model (-frequentist 1) and full dosage scores (-method expected) with sex and the first 6

principal components fitted as covariates. Genomic inflation factor lambda was calculated to

investigate the presence of population stratification and inflation. The P-values were

corrected for genomic inflation factor lambda. Q-Q and Manhattan plots were created in

R41 . Regional association plots for the regions reaching genome-wide significance were

created using LocusZoom42 .

In order to investigate whether any hits identified in the discovery cohort were driven by a

subset of controls affected by the other diseases (oesophageal cancer, Barrett's oesophagus,
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and inflammatory bowel diseases) we also performed a genome-wide association analysis

after removing the controls who were affected by the other diseases (refer to the

Supplementary Notes for the structure of controls in the discovery cohort). This analysis

included 1,155 glaucoma cases and 1,147 controls.

Associations of top autosomal SNPs in the discovery cohort (P < 1×10-4) (stage 1) were

investigated in the replication cohorts (stage 2 and 3) (refer to the Supplementary Notes for

the structure of replication cohorts, QC and statistical analysis for each cohort). Stage 2

included two Australian replication data sets (total 932 cases, 6,862 controls) and stage 3

included two US cohorts (total 2,616 cases, 2,634 controls). For replication in stage 2,

twenty four SNPs with the best P-values in the discovery cohort were used as the lead SNPs

for the autosomal regions with P < 1×10-4 (Supplementary Table 4). The SNPs that were

nominally replicated in stage 2 (P<0.05) were taken forward for replication in stage 3. To

make maximum valid use of our cohorts, for replication we focused on SNPs directly

genotyped on the Illumina Human610/670 arrays. Since a portion of the stage 2 cases were

genotyped on a non-genomewide platform (Sequenom) we could not accurately evaluate the

imputed SNPs from stage 1. Hence the most-associated SNP upstream of the ABCA1

(rs2472493), and SNPs in high LD with the most-associated SNP near ARHGEF12

(rs11217878 and rs2276035, r2=1 and r2=0.94, respectively with rs11827818) were used in

the replication studies. Similarly, SNPs with high LD with the most-associated SNP in

GMDS (rs2761233 and rs11969985, r2=0.93 and r2=0.87, respectively) with rs114096562,

the most associated SNP in GMDS, were used for replication studies.

Fixed-effects meta-analysis for the top SNPs was performed between the discovery and

replication cohorts in METAL43 using the effect sizes and their standard errors for the risk

alleles. Presence of heterogeneity between the cohorts for effect sizes of risk alleles was

investigated using the I2 statistic, as implemented in METAL.

Identifying candidate genes

Candidate genes in the regions of association were selected based on the location and

function of the genes, the pathways that the genes are involved in, tissue location of the

expression of the gene, and whether similar phenotypes were reported to be caused by

mutations in these genes. This information was found in Ensembl44 , NCBI , UCSC genome

Bioinformatics45 , Genecards46 , and UniprotKB47 , as well as available published data. To

predict functional effects of the top POAG associated SNPs identified in this study, we used

the ENCODE project data48 and the associated databases, RegulomeDB49 and HaploReg

v250 . We used Genevar database51 to investigate expression quantitative trait loci within

genetic regions of interest.

Expression analysis of genes at associated loci in ocular tissues and cells

Ocular tissues from post-mortem human eyes were obtained through the Eye Bank of South

Australia, according to guidelines of the Southern Adelaide Clinical Human Research Ethics

Committee. Normal and glaucomatous trabecular meshwork cell lines, NTM-5 and GTM-3,

were a kind gift from Dr Clark Abbot, Alcon Research Ltd., USA. Both the cell lines tested

negative for mycoplasma contamination. Total RNA was extracted using the RNeasy Mini
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Kit (Qiagen Pty Ltd., Doncaster, Australia). First strand cDNA was synthesised using the

Superscript III reverse transcriptase (Invitrogen, Life Technologies Australia Pty Ltd.,

Mulgrave, Australia) and random hexamers. PCR was performed using the Hot Star Taq

Plus polymerase (Qiagen) and gene-specific primers (Supplementary Table 9). PCR was

performed at the conditions specified in Supplementary Table 9. The enzyme was activated

at 95°C for 5 min, denaturation was at 95°C for 30 sec, and elongation at 72°C. Additional

elongation at 72°C for 5 min was allowed after completion of the amplification cycles.

Specificity of each amplified product was confirmed by sequencing.

Immunohistochemical labelling

Eye tissue was fixed in neutral buffered formalin and embedded in paraffin. For

immunolabelling, 4 μm sections were blocked with 5% normal goat serum and incubated

with the mouse anti-ABCA1 (1:2000, cat# Ab66217, Sapphire Biosciences, NSW,

Australia) or anti-AFAP (1:1000, BD Transduction Laboratories, CA, USA, cat# 610200)

primary antibody at 4°C overnight. Primary antibody binding was detected with the

Novolink Polymer detection kit (Leica Microsystems, Bannockburn, IL, USA) and

Chromogen substrate coloration (Dako, Glostrup, Denmark). Sections were counterstained

with haematoxylin and mounted in dePeX (Merck KGaA, Darmstadt, Germany). Light

microscopy was performed on Olympus BX50 brightfield upright microscope attached with

a Q-Imaging colour CCD camera; images were taken using the QCapture software (Q-

Imaging Corporate, Surry, BC, Canada).

Western blotting

For Western blotting, proteins from NTM-5 and GTM-3 human trabecular meshwork cells,

respectively, established from a normal and an individual with glaucoma, were extracted in

RIPA buffer, analysed by SDS-PAGE using the mini-PROTEAN TGX gel and transferred

onto PVDF membrane (Bio-Rad Laboratories Pty. Ltd., NSW, Australia). Western blotting

was performed using the mouse anti-ABCA1 (1:500, cat# Ab66217, Sapphire Biosciences,

NSW, Australia) or anti-AFAP (1:250, BD Transduction Laboratories, CA, USA, cat#

610200) primary antibody followed by hybridisation with the hydrogen peroxide conjugated

goat anti-mouse IgG secondary antibody (1:1000, Jackson ImmunoResearch Laboratories

Inc., Brisbane, Australia, cat# 115-035-003). ABCA1 antibody binding was detected using

the Pierce SuperSignal West Pico (Jackson ImmunoResearch Laboratories Inc., Brisbane,

Australia) and AFAP1 antibody binding using ECL Prime (GE Healthcare Australia and

New Zealand, Sydney, Australia), chemiluminescence reagents.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Association results for the regions reaching genome-wide significance
These plots show the regional association (using logistic regression with sex and the first 6

principal components fitted as covariates) and recombination rates for the top SNPs in the

discovery dataset (1,155 advanced POAG cases and 1,992 controls). In each plot, the solid

diamond indicates the top-ranked SNP in the region based on two-sided P-value. The colour

box at the right or left corner of each plot indicates the pairwise correlation (R2) between the

top SNP and the other SNPs in the region. The blue spikes show the estimated

recombination rates. The box underneath each plot shows the gene annotations in the region.
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Each plot was created using LocusZoom (http://csg.sph.umich.edu/locuszoom/) for the top-

ranked SNP in each region with 400-kb region surrounding it. (a) The top-ranked SNP for

this plot is rs2472493 on chromosome 9 upstream of ABCA1 gene with P=2.0×10-10. (b)

The top-ranked SNP for this plot is rs11827818 on chromosome 11 near ARHGEF12 with P

= 9.2 × 10−9. (c) The top-ranked SNP for this plot is rs114096562 on chromosome 6 in

GMDS gene with P=7.0×10-8. (d) This plot is centred on rs4619890 SNP on chromosome 4

in AFAP1 gene with P=9.7×10-6. This SNP clearly reached genome-wide significance

(P=7.0×10-10) in the meta-analysis of the results between the discovery and replication

cohorts.
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Figure 2. Distribution of the ABCA1 protein in human ocular tissues
Sections of a normal human eye were immunolabelled with the anti-ABCA1 antibody

(brown) and counterstained with haemotoxylin to visualise nuclei (blue). Positive

immunolabelling was detected in the trabecular meshwork (a and b), throughout the retina

(c and d) and in the optic nerve (e and f). In the retina (c), comparatively pronounced

ABCA1 immunolabelling was observed at the tips of photoreceptors, in the outer limiting

membrane (OLM), outer plexiform layer (OPL) and nerve fibre layer (NFL). (d) Labelling

was also pronounced in some cells in the inner nuclear layer (INL; arrow), in retinal

Gharahkhani et al. Page 17
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ganglion cells in the ganglion cell layer (GCL; arrowhead) and retinal blood vessel wall (not

shown). In the optic nerve (e and f), the protein was distributed in the nerve fibre bundles (e,

asterisk) and at the cell boundary of astrocytes in the glial columns (f, arrow). In sections of

a glaucomatous eye, (data not shown), including in the retina (g), similar distribution of the

protein to that in the normal eye, was observed. The experiment was repeated for

reproducibility. (h) Section hybridised with the secondary detection reagent alone as

negative control. sc, Schlemm's canal; RPE, retinal pigment epithelium; OS, outer segment;

IS, inner segment; ONL, outer nuclear layer; IPL, inner plexiform layer. Scale bar=100μm.

Gharahkhani et al. Page 18

Nat Genet. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Gharahkhani et al. Page 19

Table 1

Association results for the best SNPs in previously unreported regions with P-values < 1 × 10−7 in the

discovery cohort.

CHR
a SNP Position

b Gene Risk allele
P 

c OR SE Frequency
d

9 rs2472493 107695848
ABCA1

* G 2.0 × 10−10 1.43 0.05 0.51/ 0.43

11 rs11827818 120198728
ARHGEF12

* G 9.2 × 10−9 1.52 0.07 0.20/0.14

6 rs114096562 1984385 GMDS A 7.0 × 10−8 1.55 0.08 0.88/0.83

a
CHR, chromosome

b
position in build 37

c
P corrected for genomic inflation factor lambda (λ=1.06)

d
allele frequency in cases/controls

*
indicates that the corresponding SNP is not in the indicated gene, instead, characterised gene nearby those SNPs have been shown.
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