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Kari Stefansson10,33, André G. Uitterlinden20, Cornelia M. van Duijn19,

Johannes R. Vingerling18,19, Caroline C.W. Klaver18,19, Rando Allikmets17,34,

Milam A. Brantley Jr25,26, Paul N. Baird16, Nicholas Katsanis11,12,13, Unnur Thorsteinsdottir10,33,

John P.A. Ioannidis2,3,4,5,24,35,36, Mark J. Daly8,9, Robert R. Graham7 and Johanna M. Seddon1,5,∗

1Ophthalmic Epidemiology and Genetics Service, New England Eye Center, 2Center for Genetic Epidemiology and

Modeling, 3Institute for Clinical Research and Health Policy Studies, 4Tufts Clinical and Translational Science Institute

and 5Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, 800 Washington

Street, No. 450, Boston, MA 02111, USA, 6Department of Bioinformatics and Computational Biology and 7Immunology

and Tissue Growth and Repair Department, Human Genetics Group, Genentech, Inc., South San Francisco, CA

94080, USA, 8Center for Human Genetic Research, Massachusetts General Hospital, 185 Cambridge Street, Sixth

Floor, Boston, MA 02114, USA, 9Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, 7

Main Street, Cambridge, MA 02142, USA, 10deCODE genetics, 101 Reykjavik, Iceland, 11Center for Human Disease

Modeling, 12Department of Cell Biology and 13Department of Pediatrics, Duke University, Durham, NC 27710, USA,
14Department of Ophthalmology, University Paris Est Creteil, Hopital Intercommunal de Creteil, Creteil, 94000,
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Despite significant progress in the identification of genetic loci for age-related macular degeneration (AMD),
not all of the heritability has been explained. To identify variants which contribute to the remaining genetic
susceptibility, we performed the largest meta-analysis of genome-wide association studies to date for
advanced AMD. We imputed 6 036 699 single-nucleotide polymorphisms with the 1000 Genomes Project
reference genotypes on 2594 cases and 4134 controls with follow-up replication of top signals in 5640
cases and 52 174 controls. We identified two new common susceptibility alleles, rs1999930 on 6q21-q22.3
near FRK/COL10A1 [odds ratio (OR) 0.87; P 5 1.1 3 1028] and rs4711751 on 6p12 near VEGFA (OR 1.15;
P 5 8.7 3 1029). In addition to the two novel loci, 10 previously reported loci in ARMS2/HTRA1
(rs10490924), CFH (rs1061170, and rs1410996), CFB (rs641153), C3 (rs2230199), C2 (rs9332739), CFI
(rs10033900), LIPC (rs10468017), TIMP3 (rs9621532) and CETP (rs3764261) were confirmed with genome-
wide significant signals in this large study. Loci in the recently reported genes ABCA1 and COL8A1 were
also detected with suggestive evidence of association with advanced AMD. The novel variants identified in
this study suggest that angiogenesis (VEGFA) and extracellular collagen matrix (FRK/COL10A1) pathways
contribute to the development of advanced AMD.

INTRODUCTION

Advanced age-related macular degeneration (AMD) (MIM
603075) is a leading cause of visual impairment and blindness
in people older than 60 years. AMD is a common, late-onset
disease that is modified by covariates including smoking and
body mass index and has recurrence ratios for siblings of a
case that are 3–6-fold higher than in the general population
(1). The burden of this disease is increasing among the
growing elderly population. Among individuals aged 75 or
older, approximately one in four have some sign of this
disease and about one in 15 have the advanced form with
visual loss (2). There are two main forms of advanced
AMD. The neovascular (NV), or ‘wet’, form is characterized
by in-growth of choroidal vessels under the retina. Geographic
atrophy (GA), the advanced ‘dry’ form of the disease, occurs
when there is full thickness loss of the outer retinal layers,
retinal pigment epithelium (RPE) and choriocapillaris in the
central macula. Although anti-vascular endothelial growth
factor (VEGF) therapy has significantly improved the func-
tional and morphological outcomes for patients with NV
disease (3), there are currently no effective therapies or pre-
ventive strategies for GA.

Several genetic loci have been associated with advanced
AMD, including complement pathway genes CFH (4–9), C2
(8,10), CFB (8,10), C3 (11), CFI (12) and the ARMS2/HTRA1
(13,14) region. Recent genome-wide studies in large cohorts
have also identified the association between advanced AMD
and variants in LIPC (15), a gene in the high-density lipoprotein
(HDL) pathway, and TIMP3 (16), and suggested association
with other loci in the HDL pathway. The discovery of the mul-
tiple associations with complement-related genes revealed an

unanticipated central role for this pathway in disease pathogen-
esis. This has led directly to the initiation of multiple clinical
trials of drugs that alter the complement pathway in AMD
patients (17). A combined risk score including these multiple
genetic loci along with demographic, environmental and
macular characteristics which modify risk is highly predictive
of progression from the early and intermediate stages of AMD
to the advanced stages which cause visual loss (18,19).

The genetic variants known to date are estimated to account
for ,50% of the heritability of the disease (8,20). To identify
additional loci that contribute to the genetic risk of advanced
AMD and to illuminate new candidate physiological processes
that might be involved, we performed a meta-analysis of
genome-wide association study (GWAS) for advanced AMD
that consisted cases/controls from the Tufts/Massachusetts
General Hospital (MGH) GWAS Cohort Study (15), the
Michigan, Mayo, Age-Related Eye Disease Study (AREDS),
Pennsylvania (MMAP—Michigan, Mayo, AREDS, Pennsyl-
vania Cohort Study) Cohort Study (16), as well as controls
from the Myocardial Infarction Genetics Consortium
(MIGen) (21) and the Genetic Association Information
Network (GAIN) Schizophrenia Study (22). We imputed a
large number of single-nucleotide polymorphisms (SNPs)
using the 1000 Genomes Project reference data to search
deeply throughout the genome in this large merged data set
of Tufts/MMAP/MIGen/GAIN (TMMG). We then sought
direct replication of the top representative SNPs of each
clumped region in 10 independent cohorts from Johns
Hopkins University (JHU), Columbia University (COL), Gen-
entech, deCODE (Iceland), Washington University (Wash-U),
Centre for Eye Research Australia (AUS), the Rotterdam
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Study (RS), an independent replication sample from Tufts/
MGH, Hopital Intercommunal de Creteil (FR-CRET) and
The Queen’s University of Belfast (Irish). We also conducted
a combined analysis for the results of top SNPs in all
participating cohorts using a fixed effects model.

RESULTS

After the quality control analyses (see Materials and Methods;
Supplementary Material, Table S1), the TMMG data set con-
sisted of genotype data for 2594 individuals with advanced
AMD and 4134 controls, all of European ancestry. A set of
6 036 699 high-quality SNPs from imputation using the 1000
Genomes Project data was tested for the association with
advanced AMD. We plotted our meta-analysis of GWAS
P-values in quantile–quantile plots. The strong associations
of previously reported SNPs distorted the P-values distribution
toward the top-end of the plot (Supplementary Material,
Fig. S1A). After removing these well-validated associated
loci, we observed little statistical inflation in the remaining
distribution of association statistics (inflation factor lgc ¼
1.047; Supplementary Material, Fig. S1B). Since inflation
factor scales with sample size, we estimated the value that
would be expected in a study of 1000 cases and 1000 controls
(l1000 ¼ 1.015). Again, there was little evidence of any
general inflation of the test statistics. As expected, we
observed highly statistically significant association signals at
SNPs in six previously published loci, including ARMS2/
HTRA1 (rs10490924, P ¼ 1.2 × 102144), CFH (rs1061170,
P ¼ 5.6 × 102138, and rs1410996, P ¼ 2.1 × 102134), CFB
(rs641153, P ¼ 2.9 × 10222), C3 (rs2230199, P ¼ 1.4 ×
10218), C2 (rs9332739, P ¼ 4.3 × 10212), CFI (rs10033900,
P ¼ 2.4 × 10211) and LIPC (rs1532085, P ¼ 1.0 × 1027)
(Fig. 1).

In addition to the previously identified loci, we detected a
region at 6q21–q22.3 (Fig. 2A) that contained 30 SNPs in
tight LD (R2 . 0.8) which were strongly associated with
AMD status in the TMMG sample (P , 5 × 1027). The
associated region contains the genes COL10A1 (encoding the
alpha chain of type X collagen) and FRK (encoding the fyn-
related kinase). To confirm the new locus for advanced
AMD, we selected two SNPs rs12204816 (P ¼ 1.73 × 1027,
near COL10A1) and rs1999930 (P ¼ 3.1 × 1027, between
FRK and COL10A1) from this block for further replication
study. In addition to the FRK/COL10A1 variants, we also
sought to replicate 37 other previously unreported candidate
loci (P , 5 × 1025 in the TMMG meta-analysis), as well as
previously reported loci.

In aggregate, the replication data sets consisted of 5640
cases and 52 174 controls from 10 independent cohorts from
JHU, COL, Genentech, Iceland, Wash-U, AUS, RS,
FR-CRET, Irish and an independent replication sample from
Tufts/MGH (Supplementary Material, Table S2). The effec-
tive sample sizes of each cohort are noted in Supplementary
Material, Table S3. Of the two SNPs we selected for replica-
tion in FRK/COL10A1 locus, rs12204816 failed the genotyp-
ing quality criteria in the replication phase, but rs1999930
was successfully genotyped in all 10 replication cohorts. In
the TMMG meta-analysis, the minor T allele frequency of

rs1999930 was 26% in cases and 30% in controls (Table 1),
with an odds ratio (OR) of 0.81 and a 95% confidence interval
(CI) range of 0.74–0.88 (Fig. 2B; Supplementary Material,
Table S3). Combining the effect sizes of all independent repli-
cation cohorts using a fixed effects model confirmed the
association (OR ¼ 0.90, P ¼ 8.3 × 1024). In the combined
analysis of all the samples, the T allele of rs1999930 signifi-
cantly (P ¼ 1.1 × 1028) reduced the risk of advanced AMD
[OR ¼ 0.87 (95% CI: 0.83–0.91)]. There was no significant
evidence for heterogeneity under Cochran’s Q-test (P ¼
0.32, I2 ¼ 15%) across data sets.

Another previously unreported locus (rs4711751)
near VEGFA with a suggestive association signal (P ¼ 2.2
× 1025) in the TMMG meta-analysis was confirmed in our repli-
cation study. The T allele of rs4711751, with an allele frequency
of 0.54 in cases and 0.50 in controls, was associated with
increased risk of advanced AMD [OR ¼ 1.21 (95% CI:1.11–
1.32)]. The results were consistent in direct replication genotyp-
ing in an independent set of 5419 cases and 47 687 controls
[OR ¼ 1.13 (95% CI: 1.06–1.19), P ¼ 4.3 × 1025]. This SNP
reached genome-wide significance [OR¼ 1.15 (95% CI:
1.10–1.21), P ¼ 8.7 × 1029] in the combined analysis
(Fig. 2C and D; Supplementary Material, Table S4), including
all replication cohorts except the Rotterdam Study, in which
rs4711751 was not genotyped. We found no significant evidence
for heterogeneity (P ¼ 0.26, I2 ¼ 24%) for the rs4711751
association results across the nine cohorts tested.

Besides the two novel FRK/COL10A1 and VEGFA loci,
three recently reported loci were also associated with
advanced AMD (Table 1). The risk variants in TIMP3
(rs9621532, P ¼ 2.2 × 10215) and HDL pathway genes
LIPC (rs10468017, P ¼ 2.7 × 10212) and CETP (rs3764261,
P ¼ 6.9 × 1029) reached genome-wide significance in the
combined analysis. Two other variants in ABCA1
(rs1883025, P ¼ 1.2 × 1027) and COL8A1 (rs13095226,
P ¼ 9.7 × 1027) which were reported in our previous
GWAS (15) are also still noteworthy candidates (Supplemen-
tary Material, Table S5). Supplementary Material, Table S6,
shows other published candidate SNPs which were not associ-
ated with advanced AMD in this GWAS meta-analysis.

We also investigated the specific association with GA and
NV subtypes of AMD in our TMMG samples. The minor
allele (T) of rs1999930 had a similar effect size for GA
[OR ¼ 0.78 (0.69–0.89), P ¼ 1.0 × 1024] and NV [OR ¼
0.82 (0.75–0.90), P ¼ 4.1 × 1025]. The risk allele (T) of
rs4711751 also had a similar magnitude of effect on GA
[OR ¼ 1.23 (1.08–1.40), P ¼ 2.0 × 1023] and NV [OR ¼
1.20 (1.09–1.32), P ¼ 2.5 × 1024]. Association signals at
CFH, C2, CFB, C3, CFI and ARMS2/HTRA1 were also signifi-
cant for both GA and NV compared with controls. ARMS2/
HTRA1 was more strongly related to NV compared with GA
as previously reported (23).

This study provides an opportunity to establish a prediction
model for advanced AMD with all the associated genetic risk
factors combined together. We evaluated a risk score based on
the sum of the genotype dosage of 14 risk variants (SNPs in
Table 1 plus rs1883025 in ABCA1 and rs13095226 in
COL8A1 in Supplementary Material, Table S5) which were
validated or suggested in this study, each weighted by the
natural logarithm of OR estimated by a multivariate logistic
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regression model of these 14 variants in TMMG samples. It is
estimated that there is a .50-fold difference in advanced
AMD risk between the high-risk individuals (risk score .2)
and the low-risk individuals (risk-score ,22) (Supplementary
Material, Fig. S2).

DISCUSSION

In this study aiming to find new genetic factors for advanced
AMD, we report a genome-wide significant association near
FRK/COL10A1 (rs1999930, P ¼ 1.1 × 1028), a locus not
previously implicated in advanced AMD. We also identified
a novel locus (rs4711751, P ¼ 8.7 × 1029) for advanced
AMD near VEFGA. In addition, we confirmed strong associ-
ation with the previously reported genetic variations at 10
loci including ARMS2/HTRA1 (rs10490924, P ¼ 3.6 ×
102322), CFH (rs1061170, P ¼ 1.3 × 102261, and rs1410996,
P ¼ 7.4 × 102235), CFB (rs641153, P ¼ 5.5 × 10231), C3
(rs2230199, P ¼ 4.6 × 10229), C2 (rs9332739, P ¼ 2.4 ×
10223), CFI (rs10033900, P ¼ 4.1 × 10210), LIPC
(rs10468017, P ¼ 2.7 × 10212), TIMP3 (rs9621532, P ¼
2.2 × 10215) and CETP (rs3764261, P ¼ 6.9 × 1029) in the
combined analysis. Our analyses also support previously
identified loci in ABCA1 and COL8A1.

The estimated heritability based on twin studies is 71%
for advanced forms of this disease (24). Using a standard
liability threshold model (25), the previously reported loci
combined with the new loci discovered in this study
explain �39% of the total variance (or 55% of the heritabil-
ity) of advanced AMD. Therefore, there are still unidentified
genetic variants that may explain the missing heritability.
Additional AMD risk variants likely remain to be discovered
and will require a combined strategy of larger AMD meta-
analyses to detect variants of more modest effect, genome
scans using higher density SNP arrays to capture previously
missed variants and exome-sequencing studies to identify
rare variants.

VEGFA is a member of the VEGF family and functions to
increase vascular permeability, angiogenesis, cell growth and
migration of endothelial cells. VEGFA is the target for mul-
tiple therapies including ranibizumab, a molecule that is
FDA-approved for the treatment of wet AMD. It has been
hypothesized that activation of VEGFA may induce patholo-
gic angiogenesis beneath the RPE layer. The newly identified
SNP (rs4711751) is 60 kb downstream of VEGFA and .90 kb
away from a SNP (rs2010963) in the VEGFA promoter region
which has been reported to be associated with AMD (26).
However, SNP rs4711751 appears to be independent of the
rs2010963 variant (R2 ¼ 0.015, D′ ¼ 0.14 in samples of Euro-
pean ancestry); therefore, the association we identified near
VEGFA was in a novel region and is not likely due to LD
with SNPs in the VEGFA promoter region. Of note, the pre-
viously reported rs2010963 SNP showed no evidence of
association in the TMMG meta-analysis (P ¼ 0.26) (Sup-
plementary Material, Table S6). In addition, rs4711751 is in
moderate LD with nearby genome-wide significant variants
reported in type 2 diabetes, waist–hip ratio and chronic
kidney disease (R2¼ 0.31, D′ ¼ 0.91 to rs881858). However,
rs881858 was not significantly associated with advanced
AMD in the TMMG meta-analysis (P ¼ 0.11) and cannot
explain the association we observe in rs4711751.

Finally, we note that the newly identified SNP rs4711751 is
in strong LD with rs943080 (R2 ¼ 1.0 in 1000 Genomes CEU
data), a variant that resides in a highly evolutionarily con-
served region (Fig. 3). The risk allele (T) at rs4711751 is on
the same haplotype as the evolutionarily conserved allele (T)
at rs943080. Allelic change from T to C on this conserved
region may disrupt a putative transcription factor-binding
site for cone–rod homeobox (CRX), which is an essential
transcription factor highly expressed in RPE and retinal
ganglion cells (27). This suggests a possible mechanism for
the candidate causal SNP rs943080. Individuals with the pro-
tective allele (C) at rs943080 may have decreased binding of
CRX at the locus, leading to decreased expression of
VEGFA, which in turn protects these individuals from

Figure 1. Manhattan plot. Log (P) values of association results from the cleaned TMMG data set are plotted for SNPs on each chromosome. SNPs with P , 5 ×
10– 7 are colored in red and the representative genes for each associated region are labeled.
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development of neo-vascularization involved in wet AMD.
This hypothetical mechanism needs future experimental
validation.

COL10A1 encodes the alpha chain of type X collagen, a
short-chain collagen expressed by hypertrophic chondrocytes
during endochondral ossification. In patients with osteoar-
thritis, expression of COL10A1 was significantly downregu-
lated (28). Another collagen matrix pathway gene
(COL8A1), which was implicated in our previous GWAS
(15), also showed suggestive association to advanced AMD
in our combined association analysis (P ¼ 9.7 × 1027). The
C-terminal non-collagenous (NC1) domain of the collagen
has been reported as an inhibitor of angiogenesis (29–31).
FRK has also been shown to have negative function on the

stimulation of microvascular survival of the developing
retina by mediating the downstream signaling of
thrombospondin-1 and the thrombospondin receptor (CD36),
which has been shown to antagonize VEGFA signaling of
the Akt pathway (32). The risk locus rs1999930 associated
with advanced AMD in our study is in strong LD (R2 ¼
0.81 in 1000 Genomes CEU data) with a functional variant
rs9488843. The allele (G) at rs9488843, which creates a poss-
ible transcription factor-binding site for paired box 3 (PAX3)
near the promoter region of COL10A1, is on the same haplo-
type as the allele (T) at rs1999930. Individuals with the protec-
tive allele (G) at rs9488843 may have increased binding of
PAX3 at the locus, leading to elevated expression of
COL10A1 or FRK which results in the suppression or

Figure 2. FRK/COL10A1 and VEGFA regions and association with AMD. (A) Observed association in the 500 kb region surrounding the FRK/COL10A1 locus in
meta-analysis of TMMG data sets. The representative SNP (rs1999930) for this region with P ¼ 3.1 × 1027 is shown by a small purple circle. In the combined analy-
sis including all 11 cohorts, this SNP was associated with AMD at P ¼ 1.1 × 1028 (large purple diamond). (B) Forest plot for rs1999930 association across 11
cohorts. (C) Observed association in the 500 kb region surrounding the VEGFA locus in meta-analysis of TMMG data sets. The represented SNP (rs4711751)
for this region of P ¼ 2.2 × 1025 is shown by a small purple circle. In the combined analysis including all 10 cohorts, this SNP was associated with AMD at
P ¼ 8.7 × 1029 (large purple diamond). (D) Forest plot for rs4711751 association across 10 cohorts.
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Table 1. Genes associated with AMD in genome-wide meta-analysis and analysis of all samples combined

SNP Gene CHR BP EAa TMMG meta-analysis Replication Combined analysis
Frequency INFOb OR P-value
Cases Controls ORc P-valuec OR P-value Samplesd

Newly identified SNPs associated with AMD susceptibility
rs1999930 FRK/COL10A1 6 116 387 134 T 0.26 0.30 0.97 0.81 3.1 × 1027 0.90 8.3 × 1024 0.87 1.1 × 1028 abcdefghijK
rs4711751 VEGFA 6 43 828 582 T 0.54 0.50 0.68 1.21 2.2 × 1025 1.13 4.3 × 1025 1.15 8.7 × 1029 ABCDEFGIJK

SNPs previously associated with AMD
rs10490924 ARMS2/HTRA1 10 124 214 448 T 0.41 0.21 0.97 3.19 1.2 × 102144 2.80 5.0 × 102181 2.94 3.6 × 102322 ABEFIJK
rs1061170 CFH 1 196 659 237 C 0.61 0.37 1.00 2.74 5.6 × 102138 2.21 2.3 × 102129 2.41 1.3 × 102261 ABEFGIJ
rs1410996 CFH 1 196 696 933 G 0.80 0.58 1.00 3.12 2.1 × 102134 2.43 4.4 × 102106 2.71 7.4 × 102235 ABEIJK
rs641153 CFB 6 31 914 180 A 0.05 0.10 0.91 0.46 2.9 × 10222 0.61 7.8 × 10212 0.54 5.5 × 10231 abeijk
rs2230199 C3 19 6 718 387 C 0.24 0.19 0.57 1.68 1.4 × 10218 1.43 5.2 × 10213 1.53 4.6 × 10229 ABIJk
rs9332739 C2 6 31 903 804 C 0.02 0.04 0.89 0.45 4.3 × 10212 0.46 8.2 × 10213 0.46 2.4 × 10223 abeijk
rs9621532e TIMP3 22 33 084 511 C 0.04 0.05 1.00 0.72 3.7 × 1024 0.59 3.0 × 10213 0.63 2.2 × 10215 abcdefijk
rs10468017 LIPC 15 58 678 512 T 0.26 0.29 0.87 0.83 4.6 × 1025 0.84 1.3 × 1028 0.84 2.7 × 10212 abcdefgijk
rs10033900 CFI 4 110 659 067 T 0.52 0.46 0.81 1.31 2.4 × 10211 1.09 1.3 × 1022 1.18 4.1 × 10210 ABEIjk
rs3764261 CETP 16 56 993 324 A 0.36 0.33 0.98 1.16 1.2 × 1024 1.14 1.4 × 1025 1.15 6.9 × 1029 ABCdEFGIJk

aEffective allele (EA): frequency and OR based on this SNP for each locus coded by the plus strand of reference human genome.
bINFO: information content, R2 quality metric for imputation.
cReplication P-values and ORs were derived from meta-analysis results of all replication samples independent of the TMMG sample.
dSamples participated in the combined analysis for each SNP were indicated by letters (A/a to K/k). A capital letter indicates the effective allele of the SNP-increased risk of AMD in the specific sample.
A lower case letter indicates the effective allele of the SNP-reduced risk of AMD in the specific sample. ‘a’ represents Tufts/MMAP/MIGen/GAIN (TMMG) samples; ‘b’, deCODE genetics sample
replication (Iceland); ‘c’, the Columbia University sample replication (COL); ‘d’, the Johns Hopkins University sample replication (JHU); ‘e’, Genentech sample replication (Genentech); ‘f’, Washington
University sample replication (WASH-U); ‘g’, the Centre for Eye Research Australia sample replication (AUS); ‘h’, the Rotterdam study sample replication (RS); ‘i’, the independent replication sample of
Tufts/MGH (Tufts/MGH replication); ‘j’, the Hopital Intercommunal de Creteil sample replication (FR-CRET); ‘k’, the Queen’s University of Belfast sample replication (Irish).
eThe result of this SNP was from imputation data based on HapMap2 Project; all other SNPs were imputed based on 1000 Genomes Project.
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inhibition of angiogenesis. Further experimental work is
required to investigate the functional role of rs9488843 in
the development of advanced AMD.

The sample size of this study is the largest of all published
association studies for advanced AMD to date. A major advan-
tage of the study design is the careful diagnosis of cases across
all cohorts. Since we included only subjects with advanced
AMD in our study and excluded subjects with intermediate
or large drusen, heterogeneity due to phenotype definition is
reduced. However, it is possible that associations exist for
other endophenotypes, like macular drusen, an early or inter-
mediate stage of the disease, as suggested for loci in the
HDL pathway (33).

Our novel findings are not likely caused by population
admixture or population substructure, because subjects in all
cohorts are of European ancestry, and we adjusted for the
genetic ancestry components in our study. The large number
of replication cohorts and samples reduced the chance of false-
positive findings. The effect sizes of both rs1999930 and
rs4711751 in the replication cohorts are smaller than the
effect sizes estimated in the TMMG analysis. The larger
effect size observed in the discovery cohort (TMMG) could
be due to a ‘winner’s curse’ phenomenon where association
is often exaggerated relative to the estimated effect in
follow-up studies (34).

For this study, we utilized the generally accepted genome-
wide level of significance (P , 5 × 1028) as our threshold
for association. However, that threshold assumes a multiple
hypothesis testing burden of �1 000 000 independent SNPs.
Indeed, in our study, since we used the 1000 Genomes
Project imputation data, there were many more individual
SNPs tested. However, many of those SNPs are highly inter-
correlated. To our knowledge, there are no empirical studies
that address levels of genome-wide significance for the 1000
Genomes Project-derived data.

Our genetic risk score model provides a framework for
future research, and the clinical utility of genetic risk profiling
of advanced AMD needs to be further evaluated in indepen-
dent samples. Compared with other complex diseases, the
associated risk variants for advanced AMD are more informa-
tive in terms of predicting risk of disease. As this prediction
model only included genetic risk factors, we expect an
improvement of the performance of advanced AMD risk
assessment with additional environmental and demographic
factors in prospective studies as in our previous calculations
(18,19).

In summary, we have identified two novel associations for
advanced AMD near FRK/COL10A1 and VEGFA. We also con-
firmed associations for 10 previously published advanced AMD
loci in a combined analysis. The genetic loci associated with
AMD suggest that the disease process may be explained in
part by dysregulation of the alternative complement pathway
(CFH, C2, CFB, C3, CFI), HDL cholesterol metabolism
(LIPC, CETP, ABCA1), angiogenesis (VEGFA) and degradation
of extracellular matrix (COL10A1, COL8A1, FRK, TIMP3, and
possibly ARMS2).

MATERIALS AND METHODS

The TMMG meta-analysis data set consisted of: (i) 1242 cases
and 492 controls from the Tufts/MGH GWAS Cohort Study
(15), which were derived from ongoing AMD study protocols
as described previously (8,15,24,35–37); (ii) 1355 cases and
1076 controls from the MMAP Cohort Study (16); (iii) 1188
controls from the (MIGen) Consortium Study (21) and
(iv) 1378 controls from the GAIN Schizophrenia Study (22).
For the Tufts/MGH sample, cases had GA or NV disease
based on fundus photography and ocular examination [clinical
age-related maculopathy grading system (CARMS) stages

Figure 3. rs934080 in a putative CRX transcription factor-binding site. rs4711751 is in strong LD with rs934080, a variant which resides in a highly evolutionarily
conserved region (UCSC genome browser) and disrupts a putative CRX transcription factor-binding site (CAA[T/C]C).
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4 and 5] (38). Examined controls were unrelated to cases,
60 years of age or older and were defined as individuals
without macular degeneration, categorized as CARMS stage
1, based on fundus photography and ocular examination.
MMAP subjects were obtained and selected based on the
dbGaP (phs000182.v2.p1) phenotype information (16). We
included only MMAP controls and MMAP cases with GA or
NV in the analysis; other MMAP subjects with large drusen
were excluded. MIGen controls have been included in our pre-
vious GWAS study and described in detail (15). Shared con-
trols from the GAIN Schizophrenia Study were obtained
from dbGap (phs000021.v3.p2) and described in Manolio
et al. (22).

The Tufts/MGH and MIGen samples were genotyped at the
Broad Institute and National Center for Research Resources
(NCRR) Center for Genotyping and Analysis, using the Affy-
metrix SNP 6.0 GeneChip (AFFY 6.0, 909 622 SNPs) (39).
Shared controls from the GAIN study obtained from dbGap
were also genotyped by using the Affymetrix SNP 6.0 Gene-
Chip. MMAP samples obtained from dbGap were genotyped
on the Illumina HumanCNV370v1 Bead Array (ILMN 370,
370 404 SNPs) (16). All samples included in this study met
quality control measures as described previously (15,16).
Briefly, individuals with call rates ,0.95, SNPs with call
rates ,0.98, Hardy–Weinberg equilibrium P , 1026 and
minor allele frequency (MAF) ,0.01 were excluded. Potential
relatedness between individuals was identified through a
genome-wide identity-by-state (IBS) matrix using PLINK
(40). IBS was estimated for each pair of individuals, and one
individual from each duplicate pair or related pair (pihat .
0.2) was removed. Ancestry outliers were identified based on
principal components analysis using EIGENSOFT (Sup-
plementary Material, Fig. S3) (41). After these quality control
analyses (Supplementary Material, Table S1), the merged
data set of TMMG contained 6728 samples, of which 4300
were genotyped by AFFY 6.0 and 2428 were genotyped by
ILMN 370. The TMMG data set genotyped by AFFY 6.0
(644 413 SNPs passing quality control checks) was imputed
using the phased CEU and TSI samples (566 haplotypes) as
part of Pilot 3 of the 1000 Genomes Project as a reference by
BEAGLE version 3.0 (42,43). Separate imputation was per-
formed on the TMMG data set genotyped on the ILMN 370
(329 315 SNPs passing quality control checks) using the
same method. For the meta-analysis of GWAS, we included
only imputed genotypes with imputation quality scores .0.6,
where the score is defined as the ratio-of-variances (empiri-
cal/asymptotic) of each genotype. This score is commonly
applied as a quality filter for imputed genotypes and is equival-
ent to the RSQR_HAT value by MACH and the information
content (INFO) measure by PLINK (44). Since the imputation
accuracies are relatively low for SNPs with low MAF, we only
included imputed genotypes of common variants (MAF .0.01)
in the analysis. A consensus set of 6 036 699 high-quality SNPs
from each imputed data set was analyzed by PLINK, using a
generalized linear model controlling for the genotyping
platform and genetic ancestry based on principal component
analysis. The imputed genotypes were coded by the genotype
probabilities (dosages) for each SNP, which were given less
weights in the analysis than individuals with certain genotypes
coded by (0, 1, 2). The eigenvector scores with nominal

significant (P , 0.05) association with case/control status
(principal components 1, 2, 3, 4, 5, 6, 7, 11 and 16) and the orig-
inal genotyping platform were included as covariates in the
analysis. The top 40 SNPs were validated using Sequenom gen-
otyping on 1600 samples that were also part of the Tufts/MGH
GWAS. The MAFs were compared for these SNPs and showed
no significant differences between imputed and genotyped fre-
quencies in cases or controls.

The replication data sets consisted of 5640 cases and 52 174
controls from 10 independent cohorts from JHU, COL, Genen-
tech, Iceland, Wash-U, AUS, RS, FR-CRET, Irish and an
independent replication sample from Tufts/MGH. All replica-
tion studies applied the same criteria for the diagnosis of cases.
Population and shared controls were included in Genentech,
Iceland and the RS samples. All participating studies received
approval from institutional review boards (IRBs) and con-
formed to the tenets of the Declaration of Helsinki. All partici-
pants signed informed consent as approved by IRBs.
Characteristics of each participating cohort are shown in Sup-
plementary Material, Table S2. Samples from FR-CRET, Irish
and Tufts/MGH replication data sets were genotyped at the
Broad Institute by the Sequenom iPLEX assay. Samples
from Wash-U were genotyped at the Sequenom Core Labora-
tory of Washington University. Samples from AUS were gen-
otyped in-house and at the Murdoch Children’s Research
Institute Sequenom Platform Facility. Samples from JHU
and COL were genotyped by the TaqMan assay, using the
ABI PRISM 7900 Sequence Detection System (ABI, Foster
City, CA, USA). For the SNPs we intended to replicate, we
obtained directly genotyped or imputed results from Genen-
tech, Iceland and RS samples. Genentech samples included
54 non-overlapping cases and 229 controls from the AREDS
cohort (genotyped using Illumina Human610-Quad), 347
cases from a Genentech trial (Illumina Human660W-Quad),
3390 controls from the SLE GWAS study (45) (Illumina
HumanHap550), 2274 controls from the CGEMS breast
cancer study (46) and 2256 controls from the CGEMS prostate
cancer study (47). For candidate SNPs not directly genotyped
in the Genentech samples, genotype information was imputed
using IMPUTE version 2 (48) with combined reference data of
CEU and TSI population from the 1000 Genomes Project
(June 2010 release) and HapMap3 Project. The Iceland
samples were genotyped using Illumina HumanCNV370v1
Bead Array. Candidate SNPs not directly genotyped were
imputed using IMPUTE version 2 with the reference data of
CEU and TSI population from the 1000 Genomes Project
(June 2010 release), HapMap2 Project (release 22) and a refer-
ence data set of 500–1000 Icelanders genotyped using the 1
million OmniQuad and CardioMetabo chips from Illumina.
Owing to the larger size of the Icelanders data set, the imputa-
tion is more reliable based on the Icelanders data set than the
imputation based on the HapMap or 1000 Genomes Project.
The Rotterdam Study samples were genotyped by Illumina
Infinium II HumanHap550 (cases n ¼ 192, controls n ¼
1887) and Illumina Human610-Quad Array (cases n ¼ 29,
controls n ¼ 2600). Candidate SNPs not directly genotyped
were imputed using MACH 1.0 (49) with the reference data
of CEU and TSI population from the HapMap2 project
(release 22). Genotyping and imputation methods used by
the Rotterdam Study samples have been described in detail
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previously (50). Standard quality control and statistical analy-
sis for these samples were performed by Genentech, Iceland
and RS separately. SNPs which met genotype quality control
criteria in other replication cohorts were tested for association
with advanced AMD, using a generalized linear model in
PLINK. We used an additive model for each SNP (0, 1 or 2
minor alleles). The P-value for the combined analysis was
derived from the effect size estimates and standard errors,
using a fixed effects model by METAL (51). Heterogeneity
of the association between SNP and disease was evaluated
by Cochran’s Q-test.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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