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Abstract

Common genetic variants have been shown to explain a fraction of the inherited variation for many common diseases and
quantitative traits, including height, a classic polygenic trait. The extent to which common variation determines the
phenotype of highly heritable traits such as height is uncertain, as is the extent to which common variation is relevant to
individuals with more extreme phenotypes. To address these questions, we studied 1,214 individuals from the top and
bottom extremes of the height distribution (tallest and shortest ,1.5%), drawn from ,78,000 individuals from the HUNT
and FINRISK cohorts. We found that common variants still influence height at the extremes of the distribution: common
variants (49/141) were nominally associated with height in the expected direction more often than is expected by chance
(p,5610228), and the odds ratios in the extreme samples were consistent with the effects estimated previously in
population-based data. To examine more closely whether the common variants have the expected effects, we calculated a
weighted allele score (WAS), which is a weighted prediction of height for each individual based on the previously estimated
effect sizes of the common variants in the overall population. The average WAS is consistent with expectation in the tall
individuals, but was not as extreme as expected in the shortest individuals (p,0.006), indicating that some of the short
stature is explained by factors other than common genetic variation. The discrepancy was more pronounced (p,1026) in
the most extreme individuals (height,0.25 percentile). The results at the extreme short tails are consistent with a large
number of models incorporating either rare genetic non-additive or rare non-genetic factors that decrease height. We
conclude that common genetic variants are associated with height at the extremes as well as across the population, but
that additional factors become more prominent at the shorter extreme.
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Introduction

Height is a highly heritable trait, with estimates of heritability as

high as 90% [1]. Recent genome-wide association studies of height

have discovered over 180 common variants associated with height

[2]. These variants have small effect sizes and collectively explain

approximately 10% of the heritability. While these 180 common

variants are robustly associated with height when studied as a

quantitative trait in the general population, it is not known

whether these variants have similar associations with stature in

individuals at the extreme tails of the height distribution. If these

common variants do not show the expected association with

stature at the extremes (based on their continuous distribution

effect sizes), then other factors beyond common variants must
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contribute to extreme stature. Although there are multiple possible

scenarios, one possible explanation is the existence of rare or low

frequency variants with larger effect sizes, which have been

proposed to explain a portion of the heritability not accounted for

by the known common variants [3–5] and which may provide

novel biological insights into mechanisms that affects height.

Understanding the role of common variants in the tails of the

height distribution will also provide methodological insight into the

utility of extreme tails analysis for future genetic studies of

quantitative traits.

In this paper, we describe our approach to determine whether

common alleles known to be associated with height in the general

population have the expected distribution in individuals from the

extremes of the height distribution. We used DNA samples from

individuals with extreme heights from two population-based

cohorts of Finnish (FINRISK) and Norwegian (HUNT) ancestry

and genotyped them for common variants known to be associated

with height. Under a polygenic model in which there are many

variants and each variant additively contributes a small effect to

the phenotype, we found that for individuals within ,2.81

standard deviations of the mean, the common variants have the

predicted associations with height, consistent with their effect sizes

estimated from the previous population study [2]. However, in

individuals with more extreme short stature (the shortest 0.25% of

the distribution), common variants play a less prominent role in

explaining phenotype, and the data are consistent with various

models in which rare variants, non-additive effects or rare non-

genetic factors contribute to short stature in these individuals.

Results

Individual common variants are associated with height in
the extremes

We attempted to genotype SNPs at the 180 loci previously

associated with height in individuals from the short and tall

extremes of the FINRISK and HUNT cohorts and then

performed association analyses for each SNP with height using

the Cochran-Mantel-Haenszel test and logistic regression respec-

tively. In FINRISK, SNPs at 158 of the height loci were

successfully genotyped in 181 short and 192 tall individuals from

the 1% tails of the height distribution. In the HUNT study, SNPs

at 160 of the height loci were successfully genotyped in 385 short

and 456 tall individuals from the ,1.5% tails of height. Here we

focus on the 279 short and 309 tall individuals from the 1% tails of

the HUNT study, so as to provide consistency with the FINRISK

study. In both cohorts, the majority of SNPs had effect directions

consistent with the published results [2] (HUNT 137/160,

p,0.0001; FINRISK 122/155, p,0.0001) and there was a

significant enrichment in SNPs reaching nominal significance for

association with height (Table S1; Table S2). We then combined

the data from both cohorts in a meta-analysis of 141 overlapping

loci (Table S3). Ninety-one percent of SNPs (128/141, p,0.0001)

had directions of effect consistent with previously published results

[2] and 49 SNPs had p-values,0.05, as opposed to 7 expected by

chance (p,5610228). This result confirms that, as a group, SNPs

found to be associated with height in the general population are

also associated with height at the extremes of the phenotypic

spectrum.

The effect sizes of individual common variants on height
are similar in the extremes and the general population

We next tested whether the observed odds ratios (OR) are

consistent with the expected odds ratios, based on the previously

estimated effect sizes from the GIANT study [2] and study specific

allele frequencies (see Materials and Methods). Overall, the

number of SNPs with observed odds ratio greater than expected

odds ratios was no different than expectation under the model of

equal effect sizes in extremes and the general population (HUNT

79/160 SNPs, p = 0.94; FINRISK 75/155 SNPs, p = 0.48 and

combined 75/141, p = 0.45); (Table S1; Table S2 and Table S3).

Next, for each SNP we tested for a difference between the

expected and observed odds ratio in the individual studies and in

the meta-analysis. Overall there were no more or fewer significant

associations than would be expected under the equal effect size

model (Figure S1). This result demonstrates that the individual

SNPs have similar effects at the extremes as in the general

population.

Weighted Allele Score (WAS) analysis: The additive effect
of the common variants differs significantly from
expected in the short extremes

After determining that the individual SNPs have similar effects

at the extremes of the height distribution as in the general

population, we then performed additional analyses on the

combined set of height-associated variants. We asked whether

extremely short and extremely tall individuals show overall

enrichment of height-decreasing and height-increasing alleles,

respectively, to the extent expected under a purely polygenic

additive model. If the enrichment is less than expected, this result

would suggest that the common variants are not explaining as

much of the phenotypic variation in the extremes as in the general

population. To test this possibility, we first calculated the weighted

allele score (WAS) for each individual using the height-associated

SNPs previously described. The WAS is the cumulative effect of all

of the SNPs on height weighted by each SNP’s estimated effect size

(b). In Figure 1, we show a plot of each individual’s WAS based on

the 143 loci genotyped in both cohorts versus the individual height

Z-scores. As expected, the WAS are significantly different between

the tall extremes and the short extremes (p,3610286), with

individuals in the tall extreme having higher WAS on average than

individuals in the short extremes.

We then tested whether the WAS in the short and tall groups are

within expectations based on the population specific allele

Author Summary

Although there are many loci in the human genome that
have been discovered to be significantly associated with
height, it is unclear if these loci have similar effects in
extremely tall and short individuals. Here, we examine
hundreds of extremely tall and short individuals in two
population-based cohorts to see if these known height
determining loci are as predictive as expected in these
individuals. We found that these loci are generally as
predictive of height as expected in these individuals but
that they begin to be less predictive in the most extremely
short individuals. We showed that this result is consistent
with models that not only include the common variants
but also multiple low frequency genetic variants that
substantially decrease height. However, this result is also
consistent with non-additive genetic effects or rare non-
genetic factors that substantially decrease height. This
finding suggests the possibility of a major role of low
frequency variants, particularly in individuals with extreme
phenotypes, and has implications on whole-genome or
whole-exome sequencing efforts to discover rare genetic
variation associated with complex traits.

Common Variants9 Effects on Height Extremes
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frequencies and previously estimated effect sizes of these SNPs,

assuming a purely polygenic model. To generate the distribution

of WAS under these expectations, we simulated populations that

mimicked our ascertainment of extreme samples from the HUNT

and FINRISK populations (see Materials and Methods). For each

cohort, we compared the observed mean WAS with the

distribution of mean WAS under the simulated model (Figure S2

and Figure S3). For the HUNT study the sample of 1224

individuals from the middle of the distribution suggest our

modeling is behaving as expected (Figure S2). Finally, we analyzed

the data by combining both studies using the 143 SNPs present in

both data-sets (Figure 2). In each study separately and in the

combined analysis, the mean observed WAS for the tall individuals

was within expectation, but we observed a significant upward

deviation of the mean observed WAS in the short extremes

(p = 0.006 for the combined-analysis). These results suggest that

the collective effect of the common variants in the short extremes

do not account for as much of the phenotypic variation in height

as predicted from the effects seen in the general population.

The reduced effect of common variants is limited to the
most extreme short individuals

Having established that the common variants do not explain as

much phenotypic variation in the short extremes, we then sought

to determine if this finding was accentuated in individuals with the

most extreme short stature. We stratified our analysis in several

ways (Figure 2; Figure S2; Figure S3). First, we removed the most

extreme individuals: those below the 0.25 percentile and above the

99.75 percentile. In the combined cohorts, the mean observed

WAS in the short extremes was no longer significantly different

than expected (p = 0.526), indicating that the shift in WAS is driven

by the most extremely short individuals. To further explore this

hypothesis, we then selected more extreme individuals at two

thresholds, including only the top and bottom 0.5% or 0.25% of

the population (See Materials and Methods). For both strata, there

was a more pronounced deviation of the mean observed WAS in

the short extremes (p = 7.1261026 and p = 9.8861027 for the

0.5% and 0.25% extremes respectively), but again no deviation in

the tall extremes. Similar observations occurred when we analyzed

the cohorts separately using the same stratification procedure

(Figure S2; Figure S3). We repeated the analysis using Z-scores

based on inverse normal transformation, and with the three 26

SD outliers removed, and the results were essentially unchanged.

The difference observed in the WAS analysis is also supported by

the individual SNP analysis: when we performed the combined

analysis described above for the 0.25% extremes rather than the

entire cohort, 60% (84/139) of the SNPS have an observed effect

size smaller than expected (p = 0.02) (Table S4). This analyses

clearly suggest that the initial marginally significant shift of the

mean observed WAS in the short extremes is primarily driven by

the most extreme short individuals. Therefore, in general, as one

selects individuals with more extreme short stature, in particular

those with heights below the 0.25 percentile, the common variants

play a much smaller role in explaining stature, indicating that

there must be other factors contributing to the phenotypic

variation in these extremely short individuals.

Low frequency or rare variants with larger effect sizes
could explain the phenotypic variation in the short
extremes

We hypothesized that lower frequency and rare genetic variants

with larger effect sizes than the common variants may explain the

phenotypic variation in the short extremes. To test this hypothesis,

we performed population simulations with rare-variants of various

allele frequencies and effect sizes, and asked if our observed data

were consistent with these simulated scenarios (Figure 3; Figure

S4; Figure S5). As a negative control, we first modeled an

additional 180 SNPs, each with allele frequency of 0.3 and average

effect sizes of 20.05 SD, which is similar to the allele frequency

and effect size for previously discovered common variants

associated with height. In this simulation, the mean WAS

distribution did not change, indicating that adding additional

common variants of similar effect sizes cannot explain the

phenotypic variation in the short extremes. We then modeled a

single rare variant of very large effect: frequency 0.005 and effect

size of 24 SD. In this model, the mean WAS distribution in the

extremely short individuals shifts more than we observed in our

population. This simulation essentially excludes the possibility of a

0.5% variant of very large effect within our cohort. Such a variant

would also be likely to be discovered in linkage studies of several

thousand sib-pairs [6].

However, there are several rare variant models that would likely

not have been detected in previous linkage analyses of height and

generate a shift in the mean WAS consistent with our observed

data (Figure 3; Figure S4; Figure S5). One such possibility is a

single low frequency variant (allele frequency = 0.005) with an

effect size of 22 SD; another model consistent with our data

includes 10 variants each with an allele frequency of 0.005 and a

moderate effect size of 21 SD. These simulations suggest that

individuals with very short stature may harbor small numbers of

low frequency variants of moderately large effect or a greater

number of low frequency variants of moderate effects contributing

to their short stature. This result stands in contrast to the

remainder of the height distribution in which a polygenic effect of

common and rare variants with small effects could explain the

majority of the heritability of height, even though only a small

Figure 1. Plot of weighted allele scores (WAS) against Height Z-
scores for HUNT and FINRISK cohorts. The plot shows the WAS, a
measure of the genetic prediction of height by known common
variants, against the height Z-scores. The tall individuals (Z-score.2.14)
have generally larger WAS than the short individuals (Z-score,22.14).
Individuals from the HUNT study are labeled blue and individuals from
the FINRISK study are labeled red.
doi:10.1371/journal.pgen.1002439.g001
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percentage of height-associated common variants have been

identified.

Sibling analysis provides support for a different genetic
architecture in extreme short individuals

To provide further support for a different genetic architecture in

individuals in the extreme short tails we performed an analysis in

siblings from the HUNT study. We queried the entire HUNT

database (N = 106,455) and identified 21,365 siblings pairs. The

correlation of age and gender adjusted height between siblings was

high (r = 0.466). We then identified 98 individuals (aged between

20–70 yrs) with a Z-score,22.81 (,0.25% tails) and 80 with a Z-

score.2.81 who also had at least one sibling in the database (the

results are similar if we use inverse normal transformation). The

average height Z-score for the siblings of the extreme short group

was 20.97 (95% CI: 20.80, 21.15); the average Z-score for the

full siblings of the extreme tall group was 1.29 (95% CI: 1.14, 1.45)

which are significantly different (t-test, p = 0.007 after reversing

signs for the short group). We then performed this same analysis

for the 0.25% to 1.5% tails individuals and there was no significant

difference in z-scores of siblings between the short (21.05 95% CI:

21.13, 20.97) and tall (1.11 95% CI: 1.03, 1.18) groups (t-test,

p = 0.28). So the differential regression to the mean appears to be

limited to the shortest ,0.25% of individuals with this group

regressing more quickly than the tall extreme group. This is

consistent with the results we observe with the weighted allele

score (WAS) approach.

We do not have the twin data that would allow us to separate

out the environmental and genetic effects in this group and our

data is consistent with both. If the effect were due to genetics, then

a model with de novo mutations and/or multiple recessive rare

variants could cause an increased regression to the mean in

extremely short individuals, although there are other plausible

explanations.

Discussion

We have assessed whether common variants robustly associated

with height in the general population also associate with height at

the extreme tails of the height distribution. We further tested

whether this association is to the extent expected under a purely

polygenic model. By genotyping ,160 height SNPs identified

from the GIANT study [2] (that explain ,10% of the population

variation in height) in individuals from the ,1% tails of height

from two large population based cohorts, we have shown that the

polygenic model can explain the associations in the ,1% tails of

height. However, our data indicate that the polygenic model starts

to break down in extreme short individuals near the 0.25

percentile cut off. This conclusion is supported by our sibling

analysis, which demonstrated that siblings in the 0.25% short tail

regress to the mean more than those in the 0.25% tall group.

Interestingly, the overall height distribution also shows a slight

asymmetric deviation from normality, with an excess of individuals

with extremely short stature but not for extremely tall stature.

While in general the individuals in the ,1% tails carry as many

height increasing alleles as would be predicted based on their

height, there was a clear deviation for individuals in the shortest

0.25% tail. On average, these individuals carry significantly more

‘‘tall’’ alleles at the 160 SNPs than would be expected if common

alleles were explaining their short stature. This suggests that the

heights of these individuals are explained by factors other than

common variants. Our simulations suggest that rare variants could

explain this difference in the 0.25% shortest tail. For example, 10

rare variants with modest effects on height (1SD) are consistent

with our observed data, as is a single variant with a 2SD effect.

The sibling analysis also suggests a role for de novo or multiple

recessive variants in the extreme short individuals. While rare

height-decreasing variants of large effect are a plausible explana-

tion, there are many other genetic models consistent with our data,

including a mixture of height-decreasing with a smaller number of

height-increasing rare variants, or variants having non-additive

effects. While non-additive genetic effects could explain the data,

no evidence was found for dominance or gene-gene interaction

effects for the SNPs used in this study in the original GIANT

publication [2]. It is also possible that these individuals are short

for non-genetic reasons. One could suggest that these individuals

are short because of differences in ancestry, but we have taken

steps to remove any possible ethnic outliers from our extremes (See

Materials and Methods, Figure S6 and Figure S7). Measurement

or recording error is another possibility, although the fact that the

tall group does not show this effect (which presumably is equally

likely to contain measurement error as the short group) suggests

this is an unlikely explanation. Non-genetic factors could also be a

possibility, for example, poor early-life nutrition, severe infection,

or other chronic childhood diseases could have prevented these

individuals from reaching their genetic height potential.

This result also suggests that these families would be good

candidates to investigate in sequencing studies, as they may be

enriched for rare or de novo, higher penetrance alleles. More

generally, the weighted allele score (WAS) method developed here

could be used to select individuals to sequence in the search for

these types of rarer variants, not only for height but also for other

polygenic traits and diseases. Specifically, individuals in the

extreme tails of a trait distribution who have an unexpectedly

high or low weighted allele score may be particularly useful to

sequence, especially if multiple relatives with these characteristics

were present in the extreme tails.

Our study also demonstrates empirically that selecting individ-

uals from the extreme tails of a complex trait distribution is an

efficient approach for genetic studies, as was proposed both for

linkage studies [7,8] and association studies [9,10]. Despite a quite

modest sample size (N,1000), we replicated a large fraction of the

individual SNPs identified in the GIANT study in our extreme

height analysis. Ninety-one percent of the SNPs had odds ratios

that were directionally consistent with the direction in the

published GIANT study (p,0.0001), and 35% (49/141) of SNPS

had p,0.05 in the consistent direction. Our analyses also

demonstrate that, outside of the 0.25% tails, this level of

association is entirely consistent with that expected given the

extreme tail ascertainment of our samples and the individual SNP

continuous distribution effect sizes. Given this result, the

ascertainment of our 923 samples from the ,1% to 0.25% tails

Figure 2. Comparison of the observed versus simulated mean weighted allele score (WAS) in the combined cohort. The plot shows the
result of comparing the mean WAS of the short and tall individuals observed from both the HUNT and FINRISK cohorts against that obtained from
simulation. Each row represents a different stratification of the extremes. The percentiles and number of individuals in the short and tall extreme
respectively are listed for each stratum. The p-values represent the comparison between the observed and simulated mean WAS. The observed mean
WAS for the tall individuals are not different from the simulation in any of the strata. The observed mean WAS for the short individuals is not different
from the simulation in the first stratum. As a progressively more extreme sample is used, the short individuals’ mean WAS becomes progressively
more significantly different than the simulation.
doi:10.1371/journal.pgen.1002439.g002
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provides equivalent power to approximately 6000 samples

randomly selected from the general population for a variant

explaining approximately 0.1% of the variation in height. Indeed,

the ability to detect associations in samples ascertained for extreme

phenotypes has been recently demonstrated in studies of bone

mineral density [11], body mass index [12], triglyceride levels [13],

and type 2 diabetes (using a liability threshold model [14]). Also,

our results suggest that the statistical power of detecting these small

effect variants would be reduced if we were to include the most

extreme tails of the phenotypic distribution (in our case, the

shortest 0.25% of individuals), consistent with predictions made

based on simulation studies of mixtures of common and rare

variants [15]. Nonetheless, our findings suggest that the use of

individuals with the most extreme phenotypes could be particu-

larly valuable to detect rarer variants with larger effect sizes more

efficiently.

In conclusion, we have shown that common genetic variants

associated with height in the general population are also associated

with height at the ,1% tails of the height distribution. Our data

suggest that common variants play less of a role, and the effect of

rarer larger-effect alleles and/or strong environmental factors start

to predominate around the 0.25% extreme. This finding may also

have broader implications for studies of disease, in that the

polygenic model may apply well to those diseases that represent

the tails of an underlying normal distribution, but perhaps less well

to diseases that correspond to more extreme phenotypes.

Materials and Methods

Ethics statement
Both studies were conducted according to the principles

expressed in the Declaration of Helsinki. Attendance was

voluntary, and each participant signed a written informed consent

including information on genetic analyses. Local institutional

review boards approved study protocols.

Subjects
The HUNT study. The Nord-Trøndelag Health Study

(HUNT) is a comprehensive population based health study (www.

ntnu.edu/hunt) with personal and family medical histories on

approximately 120,000 people from Nord-Trøndelag County,

Norway, collected during three intensive studies (HUNT 1, 2, and

3). Inviting all citizens aged 20 and over, information was collected

from self-reported questionnaires consisting of .200 health-related

questions, standardized clinical examinations, urine and non-fasting

venous blood sample. The population in Nord-Trøndelag County is

ethnically homogeneous, ,3% of non-Caucasian ethnicity, making

it especially suitable for epidemiological genetic research. Height

was measured by trained personnel to the nearest 1.0 cm with the

participants wearing light clothes without shoes according to

standardized methods [16].

For this study we sourced data from HUNT 2 (1995–97) in

which 65,258 individuals participated (71.2% of invited). We

generated age and gender standardized height for the whole

population, and selected the shortest 1000 individuals and the

tallest 1000 individuals from the 54,909 participants aged between

18 and 70 yrs. We removed known 1st degree relatives based on

information from the Medical Birth Registry of Norway, those

reporting to be living outside of Norway their first year of life, and

those with low DNA concentrations. We then genotyped the

remaining shortest 471 individuals (,22.14 SDs) and the tallest

479 individuals (.2.14 SDs) from the cohort. Mean height and

age of the extreme tails are given in Table S5. We also genotyped

1,458 individuals of all ages with a Z-score between +/22 SDs as

our middle group.

The FINRISK Study. FINRISK is a Finnish national survey

on risk factors of chronic and non-communicable diseases. It is

carried out every five years since 1972 using independent, random

and representative population samples from different parts of

Finland [17]. For this study, we selected individuals from 4

different sub-populations divided by geography (East vs. West

Finland) and gender (Table S6). Individuals aged 25 to 74 years

were included. We then took approximately the tallest and shortest

50 individuals (Table S6) from each tail of the distribution from

each sub-population (extremes) and performed genotyping.

Genotyping and quality control
The HUNT study. Blood sampling was done whenever

subjects attended HUNT 2. DNA was extracted from peripheral

blood leukocytes from whole blood or blood clots stored in the

HUNT Biobank, using the Puregene kit (Gentra Systems,

Minneapolis, MN) manually or with an Autopure LS (Gentra

Systems). Laboratory technicians were blinded to the results of the

height measurements. Details on the DNA extraction and the

HUNT Biobank are described elsewhere [16].

Genotyping of short and tall individuals were done at the

Norwegian University of Science and Techonology, Norway using

the iSelect Metabochip (Illumina, San Diego, CA) and the

Infinium HD ultra protocol. Each 96-well plate included both

tall and short individuals and one sample of identical reference

DNA. Genotype calling was done using GenTrain version 2.0 in

GenomeStudio V2010.3 (Illumina, San Diego, CA). Genotyping

of the middle group was done on the Metabochip at the Center for

Inherited Disease Research (CIDR, MD) and called with

BeadStudio 3.3.7 with Gentrain version 1.0 (Illumina, San Diego,

CA).

Samples that did not meet a 99% completion threshold were

excluded from further analysis (N = 19; 0.7%). Additional post-

Figure 3. Comparison of the observed versus simulated mean WAS with models incorporating additional variants. The plot shows the
result of comparing the mean WAS of the short and tall individuals observed from both the HUNT and FINRISK cohorts against that obtained from
simulation with different scenarios of additional variants. All rows use the approximate 1.5% tails of the height distribution as extremes, resulting in
566 short and 648 tall individuals. The 1st row shows the result where the model has no additional variants affecting height and thus is identical to
that from the 2nd row of Figure 2. The 2nd row shows a model where there are 180 additional common variants that slightly decreases height (allele
frequency = 0.3 and effect size (b) = 20.05). This model does not result in any significant change to the simulated WAS of the short individuals and the
observed WAS is still significantly different (p = 0.00756). The 3rd row shows a model where there is 1 additional low frequency variant with a large
height decreasing effect (allele frequency = 0.005 and effect size (b) = 24). This model results in a large shift in the simulated WAS of the short
individuals to the right. The observed WAS is still significantly different (p = 4.5461028) than the simulation but in the opposite direction and thus is
not consistent with our data. The 4th row shows a model where there is 1 additional low frequency variant that decreases height significantly (allele
frequency = 0.005 and effect size (b) = 22). This model results in a shift in the simulated WAS of the short individuals to the right such that the
observed WAS is no longer different from the simulation (p = 0.544). The 5th row shows a model where there are 10 additional low frequency variants
that moderately decreases height (allele frequency = 0.005 and effect size (b) = 21). This model also results in a shift in the simulated WAS of the short
individuals to the right such that the observed WAS is no longer different from the simulation (p = 0.39). The final two models are consistent with our
observed data.
doi:10.1371/journal.pgen.1002439.g003
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genotyping exclusions based on gender discrepancy (N = 11) and

first-degree relatedness (pi-hat .0.2; N = 152, 6.3%) were done

using PLINK [18]. Ethnic outliers (N = 174, 7.2%) were excluded

using the EIGENSTRAT software package [19]. After quality

assessment 2,063 individuals (85.7%) remained for further

analysis, 385 (81.2%) short, 456 (95.2%) tall and 1,224 (83.9%)

individuals in the middle group.

106 SNPs of the 180 GIANT height hits were directly typed on

the Metabochip. In addition, we used the SNP Annotation and

Proxy Search to map 54 of the remaining 74 SNPs with a

HapMap r2.0.8 linkage disequilibrium proxy result [20]. These

160 SNPs (i.e. 106 directly typed and 54 proxies) were used in

subsequent analyses. All SNPs showed a genotyping success rate

.98% and were in Hardy Weinberg equilibrium.

The FINRISK study. We directly genotyped the samples for

the 180 previously identified height SNPs. The genotyping was

done at Children’s Hospital Boston using Sequenom iPLEX

genotyping (Sequenom, Inc, San Diego, CA, USA). In total, 186

short individuals and 192 tall individuals were successfully

genotyped for 158 SNPs. All 158 SNPs had a genotyping

success rate $90% and the overall genotyping rate was 97.85%

(Table S7). One of these SNPs (rs1809889) is not part of the 180

GIANT SNPs, but data were available for this SNP from the

GIANT meta-analysis so it was included in our analysis.

We genotyped an additional 49 ancestry informative markers

(AIMs) to identify ethnic outliers [21]. We inputted genotype data

from our subjects as well as the reference HAPMAP samples

(CEU, YRI, CHB+JPT) for the 49 AIMs together with 130 height

SNPs into Structure 2.3.3 [22]. We detected 5 ethnic outliers with

.10% Asian ancestry who were excluded from further analysis

leaving a total of 181 short and 192 tall individuals as our

FINRISK study group.

Statistical analysis
Individual SNP analysis. For FINRISK, we calculated the

observed odds ratio for each of our 158 SNPs using the Cochran-

Manzel-Hansel test, which is a stratified chi-square test. We

stratified the individuals into 4 sub-cohorts based on geography

and gender (Table S6) and performed the test using PLINK [18].

The observed odds-ratio for each SNP was recorded, along with

the 95% confidence interval. For HUNT the observed odds-ratio

and 95% confidence intervals and the single association analysis

was performed using logistic regression in PLINK.

For both cohorts, we calculated the expected odds ratio for each

SNP by estimating the odds of the height-increasing versus the

height-decreasing allele in both the tall extremes (cases) and the

short extremes (controls) assuming a standard normal distribution

for standardized height, i.e. height,Normal(0,1). For a given SNP,

we defined the height-increasing effect size as b and the height-

increasing allele frequency as p. The mean height for the height-

increasing allele would be Mi = b p and the mean height for the

height-decreasing allele would be Md = 2b (12p). The variance of

height for the both alleles would be V = 12b2 p (12p). We then

calculated the odds of observing the height-increasing allele versus

the height-decreasing allele for both the tall extremes (cases) and

the short extremes (controls) by taking the ratio of the probabilities

of each allele being seen in the cases and the controls respectively.

These are calculated as:

Oddscases~

ð?
2:326

N(xDMi,V )dx

ð?
2:326

N(xDMd ,V )dx

Oddscontrols~

ð{2:326

{?
N(xDMi,V )dx

ð{2:326

{?
N(xDMd ,V )dx

where N(x|M,V) denotes the density function at x of a Normal

distribution with mean M and variance V. We use a cut-off of +/

22.326 to denote the approximate 1% tails. We then calculated

the expected odds-ratio by taking the ratio between Oddscases over

Oddscontrols, i.e.

Expected Odds Ratio~
Oddscases

Oddscontrol

To assess whether individual SNPs had odds ratios significantly

different from expectation, we generated upper and lower 95%

confidence limits for the expected distribution based on the

GIANT beta and standard errors estimates as above, and used the

natural log of these confidence limits to estimate an approximate

standard error for the expected odds ratio, i.e.

SEExpected OR~
ln(Upper){ln(Lower)

2|1:96

We then assessed significance by a Z-test of the difference between

observed odds ratio and expected odds ratio to obtain the Zscore,

i.e.

Zscore~
ln(ORobserved ){ln(ORexpected )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SEObserved OR

2zSEExpected OR
2

q

Meta-analysis. The HUNT and FINRISK studies

genotyped different sets of SNPS, with only 98 of the SNPs

matching exactly across the studies. We therefore used forty-three

of the HUNT SNPs that had r2.0.8 HapMap proxies with a

genotyped FINRISK SNPs (Table S3). We used the inverse

variance method to meta-analyze the odds ratios for these 141

SNPs from the two studies. As opposed to the individual studies,

where study specific allele frequencies were used, we used the

GIANT allele frequency information to generate the expected

odds ratios for the meta-analysis. This did not appreciably affect

the results for individual SNP analysis within the individual

studies, and the meta-analyzed results were consistent to those in

the two individual studies.

Modeling the Weighted Allele Score (WAS). To calculate

the Weighted Allele Score (WAS) for each individual, we took the

sum of the effective allele dosages of the height SNPs multiplied by

their respective estimated effect sizes (bs) using the Stage 1 betas

from the GIANT study, as shown in the formula below.

WAS~
XN

i~1

bi|SNPi{a

b and SNP are the effect size and effective allele dosage (0, 1 or 2)

of the height SNPs and WAS is the weighted allele score. N is the

total number of SNPs available to calculate the weighted allele

score. a is the mean of the sum such that the expected WAS is 0 as

shown by the formula below.
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a~
XN

i~1

2|bi|Frequencyi

Frequency is the allele frequency of the effect allele obtained from

the Finnish or HUNT estimates.

We calculated the statistical difference between the WAS of the

short versus the tall individuals by performing a 2-tailed 2-sample

t-test to obtain the respective p-value. All the calculations were

done using the R statistical software package.

Obtaining Finnish allele frequency estimates. The allele

frequency estimate for each SNP was obtained by taking only the

Finnish individuals from the GIANT height study and calculating

the expected allele frequency. The cohorts used were the FUSION

NIDDM Case control study from Finland, the GenMets Case

control study from Finland and the FINRISK component of the

MIGen cohort. The total number of individuals used for obtaining

the estimates is 3618.

Simulating the distribution of WAS under the null

model. The null model assumes that the only factors

determining height (Z-score) are the cumulative additive effects

of the GIANT height SNPs and noise. We modeled the Z-score

with the formula below.

Zscore~WASzN(0,s2
remaining)

Zscore is the height Z-score, N(0, s2
remaining) is a normally

distributed random variable with mean 0 and variance

s2
remaining. s2

remaining is calculated such that the variance of

Zscore is 1, i.e. s2
remaining is 12var(WAS). The variance of WAS can

be calculated with the formula below,

var(WAS)~
XN

i~1

2|b2
i |Frequencyi|(1{Frequencyi)

On the other hand, a simulated individual’s effective allele dosage

is obtained by sampling from a set of binomial distributions with

N = 2 and p being the allele frequencies of each SNP. The

simulated effective allele dosages can then be used to calculate

each individual’s WAS. The simulation approach for each cohort

was modeled to mirror the methods of subject selection.

Simulating FINRISK. For the FINRISK study, the

simulations were performed using the following steps. We first

generated the effective allele dosages for each SNP for 200,000

individuals by random sampling. We then randomly sampled

4271, 6582, 5025 and 7610 individuals to represent the 4 sub-

populations and obtained their Z-scores using the previously

described modeling. For each subgroup, we picked the

appropriate number of the most extreme individuals to mimic

the actual sample selection. We then pooled the short and tall

extremes together and randomly dropped individuals to obtain

exactly 181 short extremes and 192 tall extremes. We then

randomly drop SNPs from the simulated individuals to mimic

the missing genotype rate in FINRISK and then calculate the

Weighted Allele Score (WAS) for each simulated individual.

This simulation process was repeated 10,000 times. For the

stratified analyses of various height cut-offs, we adjusted the

numbers of selected individuals in each strata by taking the floor

of the expected number of individuals in that strata. In our

cohort, the top 0.5% extremes included 21, 32, 25 and 38

individuals from each tail of the 4 sub-populations respectively,

and for the top 0.25% extremes included 10, 16, 12 and 19

individuals from each tail of the 4 sub-populations. For the top

,1% to 0.25% extremes, we included all our extremes but

excluded the top 10, 16, 12 and 19 individuals from each tail of

the 4 sub-populations.

Simulating HUNT. The simulations for HUNT were

performed as follows. We generated the effective allele dosages

for each SNP for 400,000 individuals by random sampling. We

then randomly selected 50,000 individuals and obtained their Z-

scores.

We then selected all short and tall extremes with a Z-score cut-

off of 22.14 and +2.14 respectively. Next, we randomly selected

385 short extremes and 456 tall extremes and calculated the WAS.

This process was repeated 10,000 times. As in the FINRISK

simulation, the number of individuals varies for each stratified

analysis. Because we performed stratified analyses for varying

levels of height cut-offs, our definition for the top 0.5% extremes is

a Z-score cut-off below 22.57 and above +2.57 and for the top

0.25% extremes is a Z-score cut-off below 22.81 and above +2.81.

For the top ,1.5% to 0.25% extremes, we used only extremes that

had Z-scores between 22.14 and 22.81 for the short extremes

and between 2.14 and 2.81 for the tall extremes.

Determining if the mean observed WAS is significantly

different from the simulated expectation. We evaluated the

significance of the mean observed WAS by determining the p-value

of the mean observed WAS from the null distribution of the mean

WAS obtained from the simulations. The two-tailed p-value is

calculated by evaluating the mean observed WAS from

Normal(msimulation, s2
simulation) where msimulation is the mean of the

mean WAS and s2
simulation is the variance of the mean WAS from

the simulations.

Modeling rare-variants with moderate to large effect

sizes. Modeling the rare-variant effect into the simulation is

accomplished by adding an additional rare-variant term into the

calculation of the height Z-score without changing the definition of

WAS as shown in the equation below.

Zscore~WASz(
Xn

i~1

Bi|Vi){arvzN(0,s2
remaining)

where n is the number of independent rare-variants, B represents

the effect size of the rare-variants, and V is the allele dosage of the

rare-variant. arv is the mean of the rare-variants score such that

the rare-variants do not change the expected Z-score, i.e. the

expected Z-score is still 0. Similarly, arv can be calculated by the

following formula,

arv~
Xn

i~1

2|Bi|Fi

s2
remaining in this case will have to be adjusted for the rare-variants

such that the variance of the Z-score remains at 1, i.e. s2
remaining is

12var(WAS)2var(S B V). F is the allele frequency of the rare-

variants. Simulations done with modeling rare-variants are

identical to the prior simulations of FINRISK or HUNT except

that the new terms are used for calculating the Z-score.

Supporting Information

Figure S1 QQ Plot of p-values for individual SNPs based on the

meta-analysis of HUNT and FINRISK. The figure shows a Q-Q

plot of the p-values of the difference between the observed odd-

ratios and the expected odd-ratios.

(TIF)
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Figure S2 Comparison of the observed versus simulated mean

weighted allele score (WAS) in the HUNT study. The plot shows

the result of comparing the mean WAS of the short and tall

individuals observed in the HUNT cohort against that obtained

from simulation. Each row represents a different stratification of

the extremes identical to those defined in Figure 2. The plot also

show the mean WAS of 1224 non-extreme individuals taken from

the middle of the height distribution. There is no difference

between the mean WAS of the non-extreme individuals from that

obtained from simulation (p = 0.56).

(TIF)

Figure S3 Comparison of the observed versus simulated mean

weighted allele score (WAS) in the FINRISK study The plot shows

the result of comparing the mean WAS of the short and tall

individuals observed in the FINRISK cohort against that obtained

from simulation. Each row represents a different stratification of

the extremes identical to those defined in Figure 2.

(TIF)

Figure S4 Comparison of the observed versus simulated mean

WAS by incorporating additional variants (HUNT only). The plot

shows the result of comparing the mean WAS of the short and tall

individuals observed from only the HUNT cohort against that

obtained from simulation with different scenarios of additional

variants. Each row represents a different scenario identical to those

defined in Figure 3.

(TIF)

Figure S5 Comparison of the observed versus simulated mean

WAS by incorporating additional variants (FINRISK only). The

plot shows the result of comparing the mean WAS of the short and

tall individuals observed from only the FINRISK cohort against

that obtained from simulation with different scenarios of

additional variants. Each row represents a different scenario

identical to those defined in Figure 3.

(TIF)

Figure S6 Principal component plots from the HUNT study for

the 0.25% short individuals versus all tall individuals. The first two

principal components obtained from Eigenstrat analysis for the

samples in the HUNT study are plotted. There is no significant

difference in principal components between the short and tall

groups.

(TIF)

Figure S7 Principal component plots from the HUNT study for

the 0.25% short vs. the 0.25% tall individuals. The first two

principal components obtained from Eigenstrat analysis for the

samples in the HUNT study are plotted. There is no significant

difference in principal components between the short and tall

groups.

(TIF)

Table S1 Individual SNP analysis for HUNT cohort. The table

shows the results for the SNPs used in the individual association

analysis in the HUNT cohort.

(XLS)

Table S2 Individual SNP analysis for FINRISK cohort. The

table shows the results for the SNPs used in the individual

association analysis in the FINRISK cohort.

(XLS)

Table S3 Meta-analysis of individual SNPs for HUNT and

FINRISK cohort. The table shows the results for the SNPs used in

the meta-analysis of the HUNT and FINRISK cohorts.

(XLS)

Table S4 Meta-analysis of individual SNPs for HUNT and

FINRISK cohort using only the top 0.25% tails. The table shows

the results for the SNPs used in the meta-analysis of the HUNT

and FINRISK cohorts using only the top 0.25% tails as extremes.

(XLS)

Table S5 Mean height and age of the individuals in the extreme

tails of HUNT. Table of various stratification of extremes, the

number of individuals in each strata separated by gender with

their corresponding mean height (cm) and age (years) for the

HUNT cohort.

(XLS)

Table S6 The FINRISK cohort divided into 4 sub-populations.

The table shows the number of individuals used for each of the

FINRISK sub-populations. The FINRISK cohort is sub-divided

between male and female as well as individuals from east and west

Finland.

(XLS)

Table S7 The genotyping rate of FINRISK. The table shows

the number of SNPs genotyped in FINRISK and the genotyping

rate for the short and tall extremes. The rate is calculated based on

having 181 short individuals and 192 tall individuals.

(XLS)
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FINRISK DNA samples.

Author Contributions

Conceived and designed the experiments: YC OLH AD TMF JNH MNW.

Performed the experiments: YC OLH AD LV ASH FS KK KS TTN CW

MB MP AP VS KH TMF JNH MNW. Analyzed the data: YC OLH AD

TMF JNH MNW. Contributed reagents/materials/analysis tools: LV

ASH FS KK KS TTN CW MB MP AP VS KH. Wrote the paper: YC

OLH AD TMF JNH MNW. Made revisions to the paper: YC OLH AD

FS MB TMF JNH MNW.

References

1. Visscher PM, Macgregor S, Benyamin B, Zhu G, Gordon S, et al. (2007)

Genome partitioning of genetic variation for height from 11,214 sibling pairs.

Am J Hum Genet 81: 1104–1110.

2. Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, et al. (2010)

Hundreds of variants clustered in genomic loci and biological pathways affect

human height. Nature.

3. Eichler EE, Flint J, Gibson G, Kong A, Leal SM, et al. (2010) Missing

heritability and strategies for finding the underlying causes of complex disease.

Nat Rev Genet 11: 446–450.

4. Cirulli ET, Goldstein DB (2010) Uncovering the roles of rare variants in common

disease through whole-genome sequencing. Nat Rev Genet 11: 415–425.

5. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, et al. (2009)

Finding the missing heritability of complex diseases. Nature 461: 747–753.

6. Sham PC, Cherny SS, Purcell S, Hewitt JK (2000) Power of linkage versus

association analysis of quantitative traits, by use of variance-components models,

for sibship data. Am J Hum Genet 66: 1616–1630.

7. Lander ES, Botstein D (1989) Mapping mendelian factors underlying

quantitative traits using RFLP linkage maps. Genetics 121: 185–199.

8. Risch N, Zhang H (1995) Extreme discordant sib pairs for mapping quantitative

trait loci in humans. Science 268: 1584–1589.

9. Van Gestel S, Houwing-Duistermaat JJ, Adolfsson R, van Duijn CM, Van

Broeckhoven C (2000) Power of selective genotyping in genetic association

analyses of quantitative traits. Behav Genet 30: 141–146.

10. Abecasis GR, Cookson WO, Cardon LR (2001) The power to detect linkage

disequilibrium with quantitative traits in selected samples. Am J Hum Genet 68:

1463–1474.

Common Variants9 Effects on Height Extremes

PLoS Genetics | www.plosgenetics.org 10 December 2011 | Volume 7 | Issue 12 | e1002439



11. Duncan EL, Danoy P, Kemp JP, Leo PJ, McCloskey E, et al. Genome-wide

association study using extreme truncate selection identifies novel genes affecting
bone mineral density and fracture risk. PLoS Genet 7: e1001372. doi:10.1371/

journal.pgen.1001372.

12. Cotsapas C, Speliotes EK, Hatoum IJ, Greenawalt DM, Dobrin R, et al. (2009)
Common body mass index-associated variants confer risk of extreme obesity.

Hum Mol Genet 18: 3502–3507.
13. Hegele RA, Ban MR, Hsueh N, Kennedy BA, Cao H, et al. (2009) A polygenic

basis for four classical Fredrickson hyperlipoproteinemia phenotypes that are

characterized by hypertriglyceridemia. Hum Mol Genet 18: 4189–4194.
14. Guey LT, Kravic J, Melander O, Burtt NP, Laramie JM, et al. (2011) Power in

the phenotypic extremes: a simulation study of power in discovery and
replication of rare variants. Genet Epidemiol.

15. Allison DB, Heo M, Schork NJ, Wong SL, Elston RC (1998) Extreme selection
strategies in gene mapping studies of oligogenic quantitative traits do not always

increase power. Hum Hered 48: 97–107.
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