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Abstract
Background—Common variants in the LRRK2 gene influence risk of Parkinson’s disease (PD)
in Asians, but whether the same is true in European-derived populations is less clear.
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Methods—We genotyped 66 LRRK2 tagging single nucleotide polymorphisms (SNPs) in 575
PD patients and 689 controls from the Northwestern U.S. (Tier 1). PD-associated SNPs (p<0.05)
were then genotyped in an independent sample of 3617 cases and 2512 controls from the U.S. and
Spain (Tier 2). Logistic regression was used to model additive SNP genotype effects adjusted for
age and sex among white individuals.

Results—Two regions showed independent association with PD in Tier 1, and SNPs in both
regions were successfully replicated in Tier 2 (rs10878226, combined odds ratio [OR], 1.20; 95%
confidence interval [CI], 1.08-1.33; p=6.3×10−4; rs11176013, OR, 0.89; CI, 0.83-0.95;
p=4.6×10−4).

Conclusions—Our data suggest that common variation within LRRK2 conveys susceptibility
for PD in individuals of European ancestry.

Keywords
Parkinson’s disease; LRRK2; SNP

Introduction
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene account for 1-2% of
Parkinson’s disease (PD) in individuals of European ancestry. Furthermore, two common
single nucleotide polymorphisms (SNPs) within LRRK2 (rs34778348 [G2385R] and
rs33949390 [R1628P]) that are specific to Asians have consistently been demonstrated to
associate with PD.1-5 Whether or not common variation in LRRK2 alters PD risk in
populations of European origin is less clear. Initial studies of white PD case-control samples
focused solely on LRRK2 and using a tagging SNP approach yielded largely negative
findings.6, 7 Subsequent genome-wide association studies (GWAS) and GWAS meta-
analyses from Europe and North America have yielded varying levels of support for an
association between PD and LRRK2 ranging from none8-10 to marginal,11

intermediate,12, 13 or strong (surpassing the genome-wide significance threshold).14, 15

Here we present findings from an analysis of LRRK2 in which a comprehensive set of
tagging SNPs was examined in a PD case-control sample of 1264 subjects from the U.S.
(Tier 1) with replication in a case-control sample of 6129 individuals from Spain and the
U.S. (Tier 2).

Subjects and Methods
Subjects

The study population was divided into two tiers. Tier 1 was comprised of 575 PD patients
and 689 controls from the Northwestern U.S. who were enrolled in the Parkinson’s Genetic
Research Study (PaGeR)16 or in a population-based study of PD at the University of
Washington and Group Health Cooperative (UW-GHC).17 The mean age (±SD) at
enrollment was 67.2 ± 10.3 years for cases and 68.9 ± 9.2 years for controls. Cases were
60.0% male and controls were 60.2% male. Tier 2 included 3617 patients with PD and 2512
controls; subjects were enrolled in studies from the U.S. (PaGeR, Parkinson’s Environment
and Genes Study [PEG],18 University of Pennsylvania Center for Neurodegenerative
Disease Research) or at academic centers from four regions of Spain (Asturias, Cantabria,
Navarra and Andalucia). Cases were 63.4% male with a mean age at enrollment of 67.5 ±
11.0 years. Controls were 43.4% male with a mean age at enrollment of 66.7 ± 12.3 years.

Patients in UW-GHC and PEG met clinical diagnostic criteria for PD as previously
described.17,18 Patients in all other studies met UK PD Society Brain Bank clinical
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diagnostic criteria for PD.19 Controls who were unrelated to cases and had no history of a
neurodegenerative disease were recruited in the same geographic locations as the cases.
Only individuals who self-reported their race as white were included in the analysis.

The Institutional Review Board of each participating institution approved the study, and all
participants provided informed consent.

Marker Selection and Genotyping
We partitioned LRRK2 SNPs from the HapMap CEU panel into 50 “bins” using an r2

threshold of 0.80 and a minor allele frequency cutoff of 5%. We then selected one tagging
SNP from each bin and a second SNP from bins containing > 5 SNPs. In total, 66 SNPs
were genotyped using Affymetrix GeneChip Universal 3K Tag Arrays (Tier 1) or TaqMan
assays (Tier 2). If a SNP failed genotyping by TaqMan Assay for any reason, we substituted
a highly correlated SNP from the same bin.

Data Analysis
We used logistic regression to model the association between PD and each SNP under an
additive model adjusting for sex and age at enrollment using homozygotes for the major
allele as the reference. For Tier 1 we used a nominal significance level of 0.05 to be more
inclusive of potential PD-associated SNPs. We used fixed-effects meta-analysis to obtain a
summary estimate and p-value combining Tier 1 and Tier 2 results.

Further details on SNP selection, genotyping and data analysis are provided in the
Supplement.

Results
Of the 66 SNPs selected for screening in Tier 1, one (rs1491942) failed genotyping and
three deviated significantly (p<0.001) from Hardy-Weinberg equilibrium in controls. These
four SNPs were excluded from further analysis. Of the remaining 62 SNPs, three were
significantly (p<0.05) associated with PD in Tier 1 (Figure 1 and Table 1). Two of the SNPs
(rs7294619 and rs10878226), located in the promoter region, were highly correlated with
one another (r2=0.98) and tagged the same association signal. Thus, we selected only one of
these two SNPs (the one with the lower p value, rs10878226) for replication in Tier 2. The
third PD-associated SNP (rs11176013), a synonymous substitution (K1637K) in exon 34,
appeared to represent an independent signal as it was only weakly correlated with the other
two SNPs (rs7294619, r2=0.04; rs10878226, r2=0.04). Though we initially chose this SNP
for replication, it failed TaqMan Assay design and was replaced by a highly correlated SNP
(rs10878371, r2=1). In Tier 2, after adjustment for age and sex both rs10878226 and
rs10878371 were associated with PD (Table 1). Furthermore, both SNPs displayed the same
direction of effect in Tiers 1 and 2. A meta-analysis showed strong evidence for an
association for both SNPs (Table 1). We did not detect significant evidence of heterogeneity
across study sites for either SNP using the Breslow-Day test (p>0.36), or by using “site” as a
covariate in the logistic regression model (data not shown).

Discussion
Using an approach in which we systematically assayed common variation in a discovery
sample and then successfully replicated findings in a large case-control sample, we observed
an association between LRRK2 SNPs and PD. The effect size seen in our sample was small
(Table 1), but was consistent with that reported in previous positive studies of LRRK2 from
Europe and the U.S. in which the ORs ranged from 1.15-1.30.11-14 In contrast, substantially
larger effects sizes have been reported for the G2385R and R1628P SNPs in Asian PD case-
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control samples, with ORs between approximately 2-3.1-3 This might explain why
association analyses of common LRRK2 variants have produced more consistent results in
Asians than in populations of European origin.

We detected evidence of two independent association signals in the study, one in the
upstream region of the gene (tagged by rs10878226) and the other further downstream
(tagged by rs11176013). Previous GWAS have not directly addressed the possibility of
multiple distinct association signals within LRRK2. However, the strongest signal from the
largest individual studies and meta-analyses published to date has come from the 5′ end of
the gene. A web-based PD GWAS of 3,426 cases and 29,624 controls showed an association
peak at a SNP located in intron 5 of LRRK2 (rs10878246; p=2.79 × 10−6).12 In two partially
overlapping PD GWAS meta-analyses the LRRK2 marker with the lowest p-value was
rs1491942 which lies within intron 2 (p=3.23 × 10−8 and p=6.44 ×10−15, respectively). 14,15

The top SNPs from these studies were moderately correlated with rs10878226 (rs1491942,
r2=0.51; rs10878246, r2=0.44) and thus all three SNPs might tag the same underlying
functional variant(s).

An analysis of 121 LRRK2 exonic variants in 6995 white PD patients and 5595 controls
recently validated a protective haplotype comprised of three highly correlated variants
(N551K-R1398H-K1423K) that was first identified in Asians.1,20 We genotyped two of
these SNPs (N551K and K1423K) in Tier 1 but neither showed significant association with
PD (p=0.52 and p=0.74, respectively). Conversely, rs11176013 which tagged the
downstream signal in our sample was not observed to associate with PD in the
aforementioned study (OR, 1.02; CI, 0.94-1.11). The reason for discordance between studies
is not clear, but potential explanations include insufficient power, effects of unrecognized
population structure, and population-specific environmental interactions.

In Asians, there is evidence to suggest that at least two PD-associated SNPs directly modify
Lrrk2 function and are in fact “true” risk variants. For example, G2385R and R1628P have
both been shown to alter kinase activity in dopaminergic cell lines.1 However, the identity of
the risk variants responsible for the association signal at LRRK2 in populations of European
origin is not yet known. In our dataset, inspection of the bins tagged by rs10878226 and
rs11176013 revealed no obvious candidate functional SNPs. The former contained a total of
five SNPs, two in the upstream region (1-2 kb from the transcription start site) and three in
intron 2. Neither of the upstream SNPs occurred within a transcription factor binding site as
predicted by TF-SEARCH (http://www.cbrc.jp/research/db/TFSEARCH.html). The latter
contained a total of 32 SNPs, two synonymous substitutions (K1637K and G1819G) and 30
intronic variants, and none of these occurred near intron-exon boundaries. Though one or
more of these SNPs might still affect LRRK2 expression or splicing, it is also possible that
the risk variants in question reside in other bins or were not adequately captured by the
tagging SNP set used in this study. Additional fine-mapping combined with functional
assays will be necessary to address this issue in the future.

Our findings add to a growing body of evidence indicating that common variants in the
LRRK2 gene convey risk for PD in individuals of European origin. This suggests that in
such populations, LRRK2 is both a “causal” gene harboring infrequent mutations that result
in autosomal dominant PD and a susceptibility gene in which polymorphisms exert a modest
influence on disease risk.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Association plot of the 65 LRRK2 SNPs successfully genotyped in Tier 1. The Y-axis
denotes the association test result as -log(p value). The horizontal red line denotes the
threshold for significance in Tier 1. The most significant SNP (rs10878226) is denoted by a
circle. Color coding represents r2 values between each SNP and rs10878226.
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