
The University of Manchester Research

Common Workflow Language, v1.0

DOI:
10.6084/m9.figshare.3115156.v2

Document Version
Final published version

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Amstutz, P. (Ed.), Crusoe, M. R. (Ed.), Tijani, N. (Ed.), Chapman, B., Chilton, J., Heuer, M., Kartashov, A., Leehr,
D., Ménager, H., Nedeljkovich, M., Scales, M., Soiland-Reyes, S., & Stojanovic, L. (2016). Common Workflow
Language, v1.0. figshare . https://doi.org/10.6084/m9.figshare.3115156.v2

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:26. Aug. 2022

https://doi.org/10.6084/m9.figshare.3115156.v2
https://www.research.manchester.ac.uk/portal/en/publications/common-workflow-language-v10(741919f5-d0ab-4557-9763-b811e911423b).html
/portal/soiland-reyes.html
https://www.research.manchester.ac.uk/portal/en/publications/common-workflow-language-v10(741919f5-d0ab-4557-9763-b811e911423b).html
https://www.research.manchester.ac.uk/portal/en/publications/common-workflow-language-v10(741919f5-d0ab-4557-9763-b811e911423b).html
https://doi.org/10.6084/m9.figshare.3115156.v2

Common Workflow Language (CWL) Workflow Description,
v1.0
This version:

https://w3id.org/cwl/v1.0/ (https://w3id.org/cwl/v1.0/)

Current version:

https://w3id.org/cwl/ (https://w3id.org/cwl/)

Authors:

Peter Amstutz peter.amstutz@curoverse.com (mailto:peter.amstutz@curoverse.com), Arvados Project, Curoverse
Michael R. Crusoe michael.crusoe@gmail.com (mailto:michael.crusoe@gmail.com), Common Workflow Language project
Nebojša Tijanić nebojsa.tijanic@sbgenomics.com (mailto:nebojsa.tijanic@sbgenomics.com), Seven Bridges Genomics

Contributors:

Brad Chapman bchapman@hsph.harvard.edu (mailto:bchapman@hsph.harvard.edu), Harvard Chan School of Public Health
John Chilton jmchilton@gmail.com (mailto:jmchilton@gmail.com), Galaxy Project, Pennsylvania State University
Michael Heuer heuermh@berkeley.edu, (mailto:heuermh@berkeley.edu,),UC Berkeley AMPLab
Andrey Kartashov Andrey.Kartashov@cchmc.org (mailto:Andrey.Kartashov@cchmc.org), Cincinnati Children's Hospital
Dan Leehr dan.leehr@duke.edu (mailto:dan.leehr@duke.edu), Duke University
Hervé Ménager herve.menager@gmail.com (mailto:herve.menager@gmail.com), Institut Pasteur
Maya Nedeljkovich maja.nedeljkovic@sbgenomics.com (mailto:maja.nedeljkovic@sbgenomics.com), Seven Bridges Genomics
Matt Scales mscales@icr.ac.uk (mailto:mscales@icr.ac.uk), Institute of Cancer Research, London
Stian Soiland-Reyes soiland-reyes@cs.manchester.ac.uk (mailto:soiland-reyes@cs.manchester.ac.uk), University of Manchester
Luka Stojanovic luka.stojanovic@sbgenomics.com (mailto:luka.stojanovic@sbgenomics.com), Seven Bridges Genomics

Abstract
One way to define a workflow is: an analysis task represented by a directed graph describing a sequence of operations that transform an input data set to output.
This specification defines the Common Workflow Language (CWL) Workflow description, a vendor-neutral standard for representing workflows intended to be
portable across a variety of computing platforms.

Status of this document
This document is the product of the Common Workflow Language working group (https://groups.google.com/forum/#!forum/common-workflow-language). The
latest version of this document is available in the "v1.0" directory at

https://github.com/common-workflow-language/common-workflow-language (https://github.com/common-workflow-language/common-workflow-language)

The products of the CWL working group (including this document) are made available under the terms of the Apache License, version 2.0.

Table of contents
Common Workflow Language (CWL) Workflow Description, v1.0
Abstract
Status of this document
1. Introduction

1.1 Introduction to v1.0
1.2 Purpose
1.3 References to other specifications
1.4 Scope
1.5 Terminology

2. Data model
2.1 Data concepts
2.2 Syntax
2.3 Identifiers
2.4 Document preprocessing
2.5 Extensions and metadata

3. Execution model
3.1 Execution concepts
3.2 Generic execution process
3.3 Requirements and hints
3.4 Parameter references
3.5 Expressions
3.6 Executing CWL documents as scripts
3.7 Discovering CWL documents on a local filesystem

4. Workflow
4.1 WorkflowOutputParameter

4.1.1 Expression
4.1.2 CommandOutputBinding
4.1.3 LinkMergeMethod
4.1.4 CWLType
4.1.5 File

4.1.5.1 Directory
4.1.6 OutputRecordSchema
4.1.7 OutputRecordField

https://w3id.org/cwl/v1.0/
https://w3id.org/cwl/
mailto:peter.amstutz@curoverse.com
mailto:michael.crusoe@gmail.com
mailto:nebojsa.tijanic@sbgenomics.com
mailto:bchapman@hsph.harvard.edu
mailto:jmchilton@gmail.com
mailto:heuermh@berkeley.edu,
mailto:Andrey.Kartashov@cchmc.org
mailto:dan.leehr@duke.edu
mailto:herve.menager@gmail.com
mailto:maja.nedeljkovic@sbgenomics.com
mailto:mscales@icr.ac.uk
mailto:soiland-reyes@cs.manchester.ac.uk
mailto:luka.stojanovic@sbgenomics.com
https://groups.google.com/forum/#!forum/common-workflow-language
https://github.com/common-workflow-language/common-workflow-language

4.1.7.1 OutputEnumSchema
4.1.7.2 OutputArraySchema

4.2 WorkflowStep
4.2.1 WorkflowStepInput

4.2.1.1 Any
4.2.2 WorkflowStepOutput
4.2.3 ScatterMethod
4.2.4 InlineJavascriptRequirement
4.2.5 SchemaDefRequirement

4.2.5.1 InputRecordSchema
4.2.5.2 InputRecordField

4.2.5.2.1 InputEnumSchema
4.2.5.2.2 CommandLineBinding
4.2.5.2.3 InputArraySchema

4.2.6 SoftwareRequirement
4.2.7 SoftwarePackage
4.2.8 InitialWorkDirRequirement

4.2.8.1 Dirent
4.2.9 SubworkflowFeatureRequirement
4.2.10 ScatterFeatureRequirement
4.2.11 MultipleInputFeatureRequirement
4.2.12 StepInputExpressionRequirement
4.2.13 ExpressionTool

4.2.13.1 InputParameter
4.2.13.2 ExpressionToolOutputParameter
4.2.13.3 CWLVersion

1. Introduction
The Common Workflow Language (CWL) working group is an informal, multi-vendor working group consisting of various organizations and individuals that have
an interest in portability of data analysis workflows. The goal is to create specifications like this one that enable data scientists to describe analysis tools and
workflows that are powerful, easy to use, portable, and support reproducibility.

1.1 Introduction to v1.0
This specification represents the first full release from the CWL group. Since draft-3, this draft introduces the following changes and additions:

The inputs and outputs fields have been renamed in and out .
Syntax simplifcations: denoted by the map<> syntax. Example: in contains a list of items, each with an id. Now one can specify a mapping of that
identifier to the corresponding InputParameter .

in:
 - id: one
 type: string
 doc: First input parameter
 - id: two
 type: int
 doc: Second input parameter

can be

in:
 one:
 type: string
 doc: First input parameter
 two:
 type: int
 doc: Second input parameter

The common field description has been renamed to doc .

1.2 Purpose
The Common Workflow Language Command Line Tool Description express workflows for data-intensive science, such as Bioinformatics, Chemistry, Physics, and
Astronomy. This specification is intended to define a data and execution model for Workflows that can be implemented on top of a variety of computing
platforms, ranging from an individual workstation to cluster, grid, cloud, and high performance computing systems.

1.3 References to other specifications
Javascript Object Notation (JSON): http://json.org (http://json.org)

JSON Linked Data (JSON-LD): http://json-ld.org (http://json-ld.org)

YAML: http://yaml.org (http://yaml.org)

Avro: https://avro.apache.org/docs/1.8.1/spec.html (https://avro.apache.org/docs/1.8.1/spec.html)

Uniform Resource Identifier (URI) Generic Syntax: https://tools.ietf.org/html/rfc3986 (https://tools.ietf.org/html/rfc3986))

Internationalized Resource Identifiers (IRIs): https://tools.ietf.org/html/rfc3987 (https://tools.ietf.org/html/rfc3987)

Portable Operating System Interface (POSIX.1-2008): http://pubs.opengroup.org/onlinepubs/9699919799/
(http://pubs.opengroup.org/onlinepubs/9699919799/)

Resource Description Framework (RDF): http://www.w3.org/RDF/ (http://www.w3.org/RDF/)

1.4 Scope

http://json.org/
http://json-ld.org/
http://yaml.org/
https://avro.apache.org/docs/1.8.1/spec.html
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3987
http://pubs.opengroup.org/onlinepubs/9699919799/
http://www.w3.org/RDF/

This document describes CWL syntax, execution, and object model. It is not intended to document a CWL specific implementation, however it may serve as a
reference for the behavior of conforming implementations.

1.5 Terminology
The terminology used to describe CWL documents is defined in the Concepts section of the specification. The terms defined in the following list are used in
building those definitions and in describing the actions of a CWL implementation:

may: Conforming CWL documents and CWL implementations are permitted but not required to behave as described.

must: Conforming CWL documents and CWL implementations are required to behave as described; otherwise they are in error.

error: A violation of the rules of this specification; results are undefined. Conforming implementations may detect and report an error and may recover from it.

fatal error: A violation of the rules of this specification; results are undefined. Conforming implementations must not continue to execute the current process
and may report an error.

at user option: Conforming software may or must (depending on the modal verb in the sentence) behave as described; if it does, it must provide users a means
to enable or disable the behavior described.

deprecated: Conforming software may implement a behavior for backwards compatibility. Portable CWL documents should not rely on deprecated behavior.
Behavior marked as deprecated may be removed entirely from future revisions of the CWL specification.

2. Data model
2.1 Data concepts
An object is a data structure equivalent to the "object" type in JSON, consisting of a unordered set of name/value pairs (referred to here as fields) and where the
name is a string and the value is a string, number, boolean, array, or object.

A document is a file containing a serialized object, or an array of objects.

A process is a basic unit of computation which accepts input data, performs some computation, and produces output data. Examples include
CommandLineTools, Workflows, and ExpressionTools.

An input object is an object describing the inputs to an invocation of a process.

An output object is an object describing the output resulting from an invocation of a process.

An input schema describes the valid format (required fields, data types) for an input object.

An output schema describes the valid format for an output object.

Metadata is information about workflows, tools, or input items.

2.2 Syntax
CWL documents must consist of an object or array of objects represented using JSON or YAML syntax. Upon loading, a CWL implementation must apply the
preprocessing steps described in the Semantic Annotations for Linked Avro Data (SALAD) Specification (SchemaSalad.html). An implementation may formally
validate the structure of a CWL document using SALAD schemas located at https://github.com/common-workflow-language/common-workflow-
language/tree/master/v1.0 (https://github.com/common-workflow-language/common-workflow-language/tree/master/v1.0)

2.3 Identifiers
If an object contains an id field, that is used to uniquely identify the object in that document. The value of the id field must be unique over the entire
document. Identifiers may be resolved relative to either the document base and/or other identifiers following the rules are described in the Schema Salad
specification (SchemaSalad.html#Identifier_resolution).

An implementation may choose to only honor references to object types for which the id field is explicitly listed in this specification.

2.4 Document preprocessing
An implementation must resolve $import (SchemaSalad.html#Import) and $include (SchemaSalad.html#Import) directives as described in the Schema Salad
specification (SchemaSalad.html).

Another transformation defined in Schema salad is simplification of data type definitions. Type <T> ending with ? should be transformed to [<T>, "null"] .
Type <T> ending with [] should be transformed to {"type": "array", "items": <T>}

2.5 Extensions and metadata
Input metadata (for example, a lab sample identifier) may be represented within a tool or workflow using input parameters which are explicitly propagated to
output. Future versions of this specification may define additional facilities for working with input/output metadata.

Implementation extensions not required for correct execution (for example, fields related to GUI presentation) and metadata about the tool or workflow itself (for
example, authorship for use in citations) may be provided as additional fields on any object. Such extensions fields must use a namespace prefix listed in the
$namespaces section of the document as described in the Schema Salad specification (SchemaSalad.html#Explicit_context).

Implementation extensions which modify execution semantics must be listed in the requirements field.

3. Execution model
3.1 Execution concepts
A parameter is a named symbolic input or output of process, with an associated datatype or schema. During execution, values are assigned to parameters to
make the input object or output object used for concrete process invocation.

A CommandLineTool is a process characterized by the execution of a standalone, non-interactive program which is invoked on some input, produces output,
and then terminates.

http://www.commonwl.org/v1.0/SchemaSalad.html
https://github.com/common-workflow-language/common-workflow-language/tree/master/v1.0
http://www.commonwl.org/v1.0/SchemaSalad.html#Identifier_resolution
http://www.commonwl.org/v1.0/SchemaSalad.html#Import
http://www.commonwl.org/v1.0/SchemaSalad.html#Import
http://www.commonwl.org/v1.0/SchemaSalad.html
http://www.commonwl.org/v1.0/SchemaSalad.html#Explicit_context

A workflow is a process characterized by multiple subprocess steps, where step outputs are connected to the inputs of downstream steps to form a directed
acylic graph, and independent steps may run concurrently.

A runtime environment is the actual hardware and software environment when executing a command line tool. It includes, but is not limited to, the hardware
architecture, hardware resources, operating system, software runtime (if applicable, such as the specific Python interpreter or the specific Java virtual machine),
libraries, modules, packages, utilities, and data files required to run the tool.

A workflow platform is a specific hardware and software implementation capable of interpreting CWL documents and executing the processes specified by the
document. The responsibilities of the workflow platform may include scheduling process invocation, setting up the necessary runtime environment, making input
data available, invoking the tool process, and collecting output.

A workflow platform may choose to only implement the Command Line Tool Description part of the CWL specification.

It is intended that the workflow platform has broad leeway outside of this specification to optimize use of computing resources and enforce policies not covered
by this specification. Some areas that are currently out of scope for CWL specification but may be handled by a specific workflow platform include:

Data security and permissions
Scheduling tool invocations on remote cluster or cloud compute nodes.
Using virtual machines or operating system containers to manage the runtime (except as described in DockerRequirement
(CommandLineTool.html#DockerRequirement)).
Using remote or distributed file systems to manage input and output files.
Transforming file paths.
Determining if a process has previously been executed, and if so skipping it and reusing previous results.
Pausing, resuming or checkpointing processes or workflows.

Conforming CWL processes must not assume anything about the runtime environment or workflow platform unless explicitly declared though the use of process
requirements.

3.2 Generic execution process
The generic execution sequence of a CWL process (including workflows and command line line tools) is as follows.

1. Load, process and validate a CWL document, yielding a process object.
2. Load input object.
3. Validate the input object against the inputs schema for the process.
4. Validate process requirements are met.
5. Perform any further setup required by the specific process type.
6. Execute the process.
7. Capture results of process execution into the output object.
8. Validate the output object against the outputs schema for the process.
9. Report the output object to the process caller.

3.3 Requirements and hints
A process requirement modifies the semantics or runtime environment of a process. If an implementation cannot satisfy all requirements, or a requirement is
listed which is not recognized by the implementation, it is a fatal error and the implementation must not attempt to run the process, unless overridden at user
option.

A hint is similar to a requirement; however, it is not an error if an implementation cannot satisfy all hints. The implementation may report a warning if a hint
cannot be satisfied.

Requirements are inherited. A requirement specified in a Workflow applies to all workflow steps; a requirement specified on a workflow step will apply to the
process implementation of that step and any of its substeps.

If the same process requirement appears at different levels of the workflow, the most specific instance of the requirement is used, that is, an entry in
requirements on a process implementation such as CommandLineTool will take precedence over an entry in requirements specified in a workflow step, and an
entry in requirements on a workflow step takes precedence over the workflow. Entries in hints are resolved the same way.

Requirements override hints. If a process implementation provides a process requirement in hints which is also provided in requirements by an enclosing
workflow or workflow step, the enclosing requirements takes precedence.

3.4 Parameter references
Parameter references are denoted by the syntax $(...) and may be used in any field permitting the pseudo-type Expression , as specified by this document.
Conforming implementations must support parameter references. Parameter references use the following subset of Javascript/ECMAScript 5.1 (http://www.ecma-
international.org/ecma-262/5.1/) syntax, but they are designed to not require a Javascript engine for evaluation.

In the following BNF grammar, character classes, and grammar rules are denoted in '{}', '-' denotes exclusion from a character class, '(())' denotes grouping, '|'
denotes alternates, trailing '*' denotes zero or more repeats, '+' denote one or more repeats, '/' escapes these special characters, and all other characters are
literal values.

symbol:: {Unicode alphanumeric}+

singleq:: [' (({character - '} | \'))* ']

doubleq:: [" (({character - "} | \"))* "]

index:: [{decimal digit}+]

segment:: . {symbol} | {singleq} | {doubleq} | {index}

parameter reference:: $({symbol} {segment}*)

Use the following algorithm to resolve a parameter reference:

1. Match the leading symbol as the key
2. Look up the key in the parameter context (described below) to get the current value. It is an error if the key is not found in the parameter context.
3. If there are no subsequent segments, terminate and return current value

http://www.commonwl.org/v1.0/CommandLineTool.html#DockerRequirement
http://www.ecma-international.org/ecma-262/5.1/

4. Else, match the next segment
5. Extract the symbol, string, or index from the segment as the key
6. Look up the key in current value and assign as new current value. If the key is a symbol or string, the current value must be an object. If the key is an index,

the current value must be an array or string. It is an error if the key does not match the required type, or the key is not found or out of range.
7. Repeat steps 3-6

The root namespace is the parameter context. The following parameters must be provided:

inputs : The input object to the current Process.
self : A context-specific value. The contextual values for 'self' are documented for specific fields elsewhere in this specification. If a contextual value of
'self' is not documented for a field, it must be 'null'.
runtime : An object containing configuration details. Specific to the process type. An implementation may provide opaque strings for any or all fields of
runtime . These must be filled in by the platform after processing the Tool but before actual execution. Parameter references and expressions may only use
the literal string value of the field and must not perform computation on the contents, except where noted otherwise.

If the value of a field has no leading or trailing non-whitespace characters around a parameter reference, the effective value of the field becomes the value of the
referenced parameter, preserving the return type.

If the value of a field has non-whitespace leading or trailing characters around a parameter reference, it is subject to string interpolation. The effective value of
the field is a string containing the leading characters, followed by the string value of the parameter reference, followed by the trailing characters. The string
value of the parameter reference is its textual JSON representation with the following rules:

Leading and trailing quotes are stripped from strings
Objects entries are sorted by key

Multiple parameter references may appear in a single field. This case must be treated as a string interpolation. After interpolating the first parameter reference,
interpolation must be recursively applied to the trailing characters to yield the final string value.

3.5 Expressions
An expression is a fragment of Javascript/ECMAScript 5.1 (http://www.ecma-international.org/ecma-262/5.1/) code evaluated by the workflow platform to affect
the inputs, outputs, or behavior of a process. In the generic execution sequence, expressions may be evaluated during step 5 (process setup), step 6 (execute
process), and/or step 7 (capture output). Expressions are distinct from regular processes in that they are intended to modify the behavior of the workflow itself
rather than perform the primary work of the workflow.

To declare the use of expressions, the document must include the process requirement InlineJavascriptRequirement . Expressions may be used in any field
permitting the pseudo-type Expression , as specified by this document.

Expressions are denoted by the syntax $(...) or ${...} . A code fragment wrapped in the $(...) syntax must be evaluated as a ECMAScript expression
(http://www.ecma-international.org/ecma-262/5.1/#sec-11). A code fragment wrapped in the ${...} syntax must be evaluated as a EMACScript function body
(http://www.ecma-international.org/ecma-262/5.1/#sec-13) for an anonymous, zero-argument function. Expressions must return a valid JSON data type: one of
null, string, number, boolean, array, object. Other return values must result in a permanentFailure . Implementations must permit any syntactically valid
Javascript and account for nesting of parenthesis or braces and that strings that may contain parenthesis or braces when scanning for expressions.

The runtime must include any code defined in the "expressionLib" field of InlineJavascriptRequirement prior to executing the actual expression.

Before executing the expression, the runtime must initialize as global variables the fields of the parameter context described above.

The effective value of the field after expression evaluation follows the same rules as parameter references discussed above. Multiple expressions may appear in
a single field.

Expressions must be evaluated in an isolated context (a "sandbox") which permits no side effects to leak outside the context. Expressions also must be evaluated
in Javascript strict mode (http://www.ecma-international.org/ecma-262/5.1/#sec-4.2.2).

The order in which expressions are evaluated is undefined except where otherwise noted in this document.

An implementation may choose to implement parameter references by evaluating as a Javascript expression. The results of evaluating parameter references
must be identical whether implemented by Javascript evaluation or some other means.

Implementations may apply other limits, such as process isolation, timeouts, and operating system containers/jails to minimize the security risks associated with
running untrusted code embedded in a CWL document.

Exceptions thrown from an exception must result in a permanentFailure of the process.

3.6 Executing CWL documents as scripts
By convention, a CWL document may begin with #!/usr/bin/env cwl-runner and be marked as executable (the POSIX "+x" permission bits) to enable it to be
executed directly. A workflow platform may support this mode of operation; if so, it must provide cwl-runner as an alias for the platform's CWL implementation.

A CWL input object document may similarly begin with #!/usr/bin/env cwl-runner and be marked as executable. In this case, the input object must include the
field cwl:tool supplying an IRI to the default CWL document that should be executed using the fields of the input object as input parameters.

3.7 Discovering CWL documents on a local filesystem
To discover CWL documents look in the following locations:

/usr/share/commonwl/

/usr/local/share/commonwl/

$XDG_DATA_HOME/commonwl/ (usually $HOME/.local/share/commonwl)

$XDF_DATA_HOME is from the XDG Base Directory Specification (http://standards.freedesktop.org/basedir-spec/basedir-spec-0.6.html)

4. Workflow
A workflow describes a set of steps and the dependencies between those steps. When a step produces output that will be consumed by a second step, the first
step is a dependency of the second step.

When there is a dependency, the workflow engine must execute the preceeding step and wait for it to successfully produce output before executing the
dependent step. If two steps are defined in the workflow graph that are not directly or indirectly dependent, these steps are independent, and may execute in
any order or execute concurrently. A workflow is complete when all steps have been executed.

http://www.ecma-international.org/ecma-262/5.1/
http://www.ecma-international.org/ecma-262/5.1/#sec-11
http://www.ecma-international.org/ecma-262/5.1/#sec-13
http://www.ecma-international.org/ecma-262/5.1/#sec-4.2.2
http://standards.freedesktop.org/basedir-spec/basedir-spec-0.6.html

Dependencies between parameters are expressed using the source field on workflow step input parameters and workflow output parameters.

The source field expresses the dependency of one parameter on another such that when a value is associated with the parameter specified by source , that
value is propagated to the destination parameter. When all data links inbound to a given step are fufilled, the step is ready to execute.

Workflow success and failure
A completed step must result in one of success , temporaryFailure or permanentFailure states. An implementation may choose to retry a step execution which
resulted in temporaryFailure . An implementation may choose to either continue running other steps of a workflow, or terminate immediately upon
permanentFailure .

If any step of a workflow execution results in permanentFailure , then the workflow status is permanentFailure .

If one or more steps result in temporaryFailure and all other steps complete success or are not executed, then the workflow status is temporaryFailure .

If all workflow steps are executed and complete with success , then the workflow status is success .

Extensions
ScatterFeatureRequirement and SubworkflowFeatureRequirement are available as standard extensions to core workflow semantics.

Fields
field type required description

inputs array<InputParameter> | map<InputParameter.id, InputParameter.type> |
map<InputParameter.id, InputParameter>

True Defines the input parameters of the process.
The process is ready to run when all required
input parameters are associated with concrete
values. Input parameters include a schema for
each parameter which is used to validate the
input object. It may also be used to build a
user interface for constructing the input
object.

outputs array<WorkflowOutputParameter> |
map<WorkflowOutputParameter.id, WorkflowOutputParameter.type> |
map<WorkflowOutputParameter.id, WorkflowOutputParameter>

True Defines the parameters representing the
output of the process. May be used to
generate and/or validate the output object.

class string True

steps array<WorkflowStep> True The individual steps that make up the
workflow. Each step is executed when all of its
input data links are fufilled. An
implementation may choose to execute the
steps in a different order than listed and/or
execute steps concurrently, provided that
dependencies between steps are met.

id string False The unique identifier for this process object.

requirements array<InlineJavascriptRequirement | SchemaDefRequirement |
DockerRequirement (CommandLineTool.html#DockerRequirement) |
SoftwareRequirement | InitialWorkDirRequirement | EnvVarRequirement
(CommandLineTool.html#EnvVarRequirement) | ShellCommandRequirement
(CommandLineTool.html#ShellCommandRequirement) | ResourceRequirement
(CommandLineTool.html#ResourceRequirement) |
SubworkflowFeatureRequirement | ScatterFeatureRequirement |
MultipleInputFeatureRequirement | StepInputExpressionRequirement>

False Declares requirements that apply to either the
runtime environment or the workflow engine
that must be met in order to execute this
process. If an implementation cannot satisfy
all requirements, or a requirement is listed
which is not recognized by the
implementation, it is a fatal error and the
implementation must not attempt to run the
process, unless overridden at user option.

hints array<Any> False Declares hints applying to either the runtime
environment or the workflow engine that may
be helpful in executing this process. It is not
an error if an implementation cannot satisfy all
hints, however the implementation may report
a warning.

label string False A short, human-readable label of this process
object.

doc string False A long, human-readable description of this
process object.

cwlVersion CWLVersion False CWL document version. Always required at the
document root. Not required for a Process
embedded inside another Process.

4.1 WorkflowOutputParameter

http://www.commonwl.org/v1.0/CommandLineTool.html#DockerRequirement
http://www.commonwl.org/v1.0/CommandLineTool.html#EnvVarRequirement
http://www.commonwl.org/v1.0/CommandLineTool.html#ShellCommandRequirement
http://www.commonwl.org/v1.0/CommandLineTool.html#ResourceRequirement

Describe an output parameter of a workflow. The parameter must be connected to one or more parameters defined in the workflow that will provide the value of
the output parameter.

Fields
field type required description

id string True The unique identifier for this parameter object.

label string False A short, human-readable label of this object.

secondaryFiles string | Expression | array<string | Expression> False Only valid when type: File or is an array of items: File .

Describes files that must be included alongside the primary file(s).

If the value is an expression, the value of self in the expression must
be the primary input or output File to which this binding applies.

If the value is a string, it specifies that the following pattern should be
applied to the primary file:

1. If string begins with one or more caret ^ characters, for each
caret, remove the last file extension from the path (the last
period . and all following characters). If there are no file
extensions, the path is unchanged.

2. Append the remainder of the string to the end of the file path.

format string | array<string> | Expression False Only valid when type: File or is an array of items: File .

For input parameters, this must be one or more IRIs of concept nodes
that represents file formats which are allowed as input to this
parameter, preferrably defined within an ontology. If no ontology is
available, file formats may be tested by exact match.

For output parameters, this is the file format that will be assigned to
the output parameter.

streamable boolean False Only valid when type: File or is an array of items: File .

A value of true indicates that the file is read or written sequentially
without seeking. An implementation may use this flag to indicate
whether it is valid to stream file contents using a named pipe. Default:
false .

doc string | array<string> False A documentation string for this type, or an array of strings which
should be concatenated.

outputBinding CommandOutputBinding False Describes how to handle the outputs of a process.

outputSource string | array<string> False Specifies one or more workflow parameters that supply the value of to
the output parameter.

linkMerge LinkMergeMethod False The method to use to merge multiple sources into a single array. If not
specified, the default method is "merge_nested".

type CWLType | OutputRecordSchema | OutputEnumSchema
| OutputArraySchema | string | array<CWLType |
OutputRecordSchema | OutputEnumSchema |
OutputArraySchema | string>

False Specify valid types of data that may be assigned to this parameter.

4.1.1 Expression
'Expression' is not a real type. It indicates that a field must allow runtime parameter references. If InlineJavascriptRequirement is declared and supported by the
platform, the field must also allow Javascript expressions.

Symbols
symbol description

ExpressionPlaceholder

4.1.2 CommandOutputBinding
Describes how to generate an output parameter based on the files produced by a CommandLineTool.

The output parameter is generated by applying these operations in the following order:

glob
loadContents
outputEval

Fields

field type required description

glob string |
Expression |
array<string>

False Find files relative to the output directory, using POSIX glob(3) pathname matching. If an array is provided, find
files that match any pattern in the array. If an expression is provided, the expression must return a string or an
array of strings, which will then be evaluated as one or more glob patterns. Must only match and return files
which actually exist.

loadContents boolean False For each file matched in glob , read up to the first 64 KiB of text from the file and place it in the contents field of
the file object for manipulation by outputEval .

outputEval string |
Expression

False Evaluate an expression to generate the output value. If glob was specified, the value of self must be an array
containing file objects that were matched. If no files were matched, self must be a zero length array; if a single
file was matched, the value of self is an array of a single element. Additionally, if loadContents is true , the
File objects must include up to the first 64 KiB of file contents in the contents field.

4.1.3 LinkMergeMethod
The input link merge method, described in WorkflowStepInput.

Symbols
symbol description

merge_nested

merge_flattened

4.1.4 CWLType
Extends primitive types with the concept of a file and directory as a builtin type.

Symbols
symbol description

null no value

boolean a binary value

int 32-bit signed integer

long 64-bit signed integer

float single precision (32-bit) IEEE 754 floating-point number

double double precision (64-bit) IEEE 754 floating-point number

string Unicode character sequence

File A File object

Directory A Directory object

4.1.5 File
Represents a file (or group of files if secondaryFiles is specified) that must be accessible by tools using standard POSIX file system call API such as open(2) and
read(2).

Fields
field type required description

class File_class True Must be File to indicate this object describes a file.

location string False An IRI that identifies the file resource. This may be a relative reference, in which case it must be
resolved using the base IRI of the document. The location may refer to a local or remote resource; the
implementation must use the IRI to retrieve file content. If an implementation is unable to retrieve the
file content stored at a remote resource (due to unsupported protocol, access denied, or other issue) it
must signal an error.

If the location field is not provided, the contents field must be provided. The implementation must
assign a unique identifier for the location field.

If the path field is provided but the location field is not, an implementation may assign the value of
the path field to location , then follow the rules above.

path string False The local host path where the File is available when a CommandLineTool is executed. This field must be
set by the implementation. The final path component must match the value of basename . This field
must not be used in any other context. The command line tool being executed must be able to to
access the file at path using the POSIX open(2) syscall.

As a special case, if the path field is provided but the location field is not, an implementation may
assign the value of the path field to location , and remove the path field.

If the path contains POSIX shell metacharacters
(http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_02) (| , & , ; ,
< , > , (,) , $, ` , \ , " , ' , <space> , <tab> , and <newline>) or characters not allowed
(http://www.iana.org/assignments/idna-tables-6.3.0/idna-tables-6.3.0.xhtml) for Internationalized
Domain Names for Applications (https://tools.ietf.org/html/rfc6452) then implementations may
terminate the process with a permanentFailure .

basename string False The base name of the file, that is, the name of the file without any leading directory path. The base
name must not contain a slash / .

If not provided, the implementation must set this field based on the location field by taking the final
path component after parsing location as an IRI. If basename is provided, it is not required to match
the value from location .

When this file is made available to a CommandLineTool, it must be named with basename , i.e. the final
component of the path field must match basename .

dirname string False The name of the directory containing file, that is, the path leading up to the final slash in the path such
that dirname + '/' + basename == path .

The implementation must set this field based on the value of path prior to evaluating parameter
references or expressions in a CommandLineTool document. This field must not be used in any other
context.

nameroot string False The basename root such that nameroot + nameext == basename , and nameext is empty or begins with
a period and contains at most one period. For the purposess of path splitting leading periods on the
basename are ignored; a basename of .cshrc will have a nameroot of .cshrc .

The implementation must set this field automatically based on the value of basename prior to
evaluating parameter references or expressions.

nameext string False The basename extension such that nameroot + nameext == basename , and nameext is empty or
begins with a period and contains at most one period. Leading periods on the basename are ignored; a
basename of .cshrc will have an empty nameext .

The implementation must set this field automatically based on the value of basename prior to
evaluating parameter references or expressions.

checksum string False Optional hash code for validating file integrity. Currently must be in the form "sha1$ + hexadecimal
string" using the SHA-1 algorithm.

size long False Optional file size

secondaryFiles array<File | Directory> False A list of additional files that are associated with the primary file and must be transferred alongside the
primary file. Examples include indexes of the primary file, or external references which must be
included when loading primary document. A file object listed in secondaryFiles may itself include
secondaryFiles for which the same rules apply.

format string False The format of the file: this must be an IRI of a concept node that represents the file format, preferrably
defined within an ontology. If no ontology is available, file formats may be tested by exact match.

Reasoning about format compatability must be done by checking that an input file format is the same,
owl:equivalentClass or rdfs:subClassOf the format required by the input parameter.
owl:equivalentClass is transitive with rdfs:subClassOf , e.g. if owl:equivalentClass <C> and
 owl:subclassOf <A> then infer <C> owl:subclassOf <A> .

File format ontologies may be provided in the "$schema" metadata at the root of the document. If no
ontologies are specified in $schema , the runtime may perform exact file format matches.

contents string False File contents literal. Maximum of 64 KiB.

If neither location nor path is provided, contents must be non-null. The implementation must
assign a unique identifier for the location field. When the file is staged as input to CommandLineTool,
the value of contents must be written to a file.

If loadContents of inputBinding or outputBinding is true and location is valid, the implementation
must read up to the first 64 KiB of text from the file and place it in the "contents" field.

4.1.5.1 Directory
Represents a directory to present to a command line tool.

Fields

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_02
http://www.iana.org/assignments/idna-tables-6.3.0/idna-tables-6.3.0.xhtml
https://tools.ietf.org/html/rfc6452

field type required description

class Directory_class True Must be Directory to indicate this object describes a Directory.

location string False An IRI that identifies the directory resource. This may be a relative reference, in which case it must be
resolved using the base IRI of the document. The location may refer to a local or remote resource. If the
listing field is not set, the implementation must use the location IRI to retrieve directory listing. If an
implementation is unable to retrieve the directory listing stored at a remote resource (due to unsupported
protocol, access denied, or other issue) it must signal an error.

If the location field is not provided, the listing field must be provided. The implementation must assign a
unique identifier for the location field.

If the path field is provided but the location field is not, an implementation may assign the value of the
path field to location , then follow the rules above.

path string False The local path where the Directory is made available prior to executing a CommandLineTool. This must be set
by the implementation. This field must not be used in any other context. The command line tool being
executed must be able to to access the directory at path using the POSIX opendir(2) syscall.

If the path contains POSIX shell metacharacters
(http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_02) (| , & , ; , < , > ,
(,) , $, ` , \ , " , ' , <space> , <tab> , and <newline>) or characters not allowed
(http://www.iana.org/assignments/idna-tables-6.3.0/idna-tables-6.3.0.xhtml) for Internationalized Domain
Names for Applications (https://tools.ietf.org/html/rfc6452) then implementations may terminate the process
with a permanentFailure .

basename string False The base name of the directory, that is, the name of the file without any leading directory path. The base
name must not contain a slash / .

If not provided, the implementation must set this field based on the location field by taking the final path
component after parsing location as an IRI. If basename is provided, it is not required to match the value
from location .

When this file is made available to a CommandLineTool, it must be named with basename , i.e. the final
component of the path field must match basename .

listing array<File | Directory> False List of files or subdirectories contained in this directory. The name of each file or subdirectory is determined
by the basename field of each File or Directory object. It is an error if a File shares a basename with any
other entry in listing . If two or more Directory object share the same basename , this must be treated as
equivalent to a single subdirectory with the listings recursively merged.

4.1.6 OutputRecordSchema
Fields
field type required description

type Record_symbol True Must be record

fields array<OutputRecordField> False Defines the fields of the record.

label string False A short, human-readable label of this object.

4.1.7 OutputRecordField
Fields
field type required description

name string True The name of the
field

type CWLType | OutputRecordSchema | OutputEnumSchema | OutputArraySchema | string | array<CWLType |
OutputRecordSchema | OutputEnumSchema | OutputArraySchema | string>

True The field type

doc string False A
documentation
string for this
field

outputBinding CommandOutputBinding False

4.1.7.1 OutputEnumSchema
Fields

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_02
http://www.iana.org/assignments/idna-tables-6.3.0/idna-tables-6.3.0.xhtml
https://tools.ietf.org/html/rfc6452

field type required description

symbols array<string> True Defines the set of valid symbols.

type Enum_symbol True Must be enum

label string False A short, human-readable label of this object.

outputBinding CommandOutputBinding False

4.1.7.2 OutputArraySchema
Fields
field type required description

items CWLType | OutputRecordSchema | OutputEnumSchema | OutputArraySchema | string | array<CWLType |
OutputRecordSchema | OutputEnumSchema | OutputArraySchema | string>

True Defines the type of
the array elements.

type Array_symbol True Must be array

label string False A short, human-
readable label of
this object.

outputBinding CommandOutputBinding False

4.2 WorkflowStep
A workflow step is an executable element of a workflow. It specifies the underlying process implementation (such as CommandLineTool or another Workflow) in
the run field and connects the input and output parameters of the underlying process to workflow parameters.

Scatter/gather
To use scatter/gather, ScatterFeatureRequirement must be specified in the workflow or workflow step requirements.

A "scatter" operation specifies that the associated workflow step or subworkflow should execute separately over a list of input elements. Each job making up a
scatter operation is independent and may be executed concurrently.

The scatter field specifies one or more input parameters which will be scattered. An input parameter may be listed more than once. The declared type of each
input parameter is implicitly wrapped in an array for each time it appears in the scatter field. As a result, upstream parameters which are connected to
scattered parameters may be arrays.

All output parameter types are also implicitly wrapped in arrays. Each job in the scatter results in an entry in the output array.

If scatter declares more than one input parameter, scatterMethod describes how to decompose the input into a discrete set of jobs.

dotproduct specifies that each of the input arrays are aligned and one element taken from each array to construct each job. It is an error if all input arrays
are not the same length.

nested_crossproduct specifies the Cartesian product of the inputs, producing a job for every combination of the scattered inputs. The output must be
nested arrays for each level of scattering, in the order that the input arrays are listed in the scatter field.

flat_crossproduct specifies the Cartesian product of the inputs, producing a job for every combination of the scattered inputs. The output arrays must be
flattened to a single level, but otherwise listed in the order that the input arrays are listed in the scatter field.

Subworkflows
To specify a nested workflow as part of a workflow step, SubworkflowFeatureRequirement must be specified in the workflow or workflow step requirements.

Fields
field type required description

id string True The unique identifier for this workflow step.

in array<WorkflowStepInput> |
map<WorkflowStepInput.id, WorkflowStepInput.source> |
map<WorkflowStepInput.id, WorkflowStepInput>

True Defines the input parameters of the workflow
step. The process is ready to run when all
required input parameters are associated with
concrete values. Input parameters include a
schema for each parameter which is used to
validate the input object. It may also be used
build a user interface for constructing the
input object.

out array<string | WorkflowStepOutput> True Defines the parameters representing the
output of the process. May be used to
generate and/or validate the output object.

run string | CommandLineTool (CommandLineTool.html#CommandLineTool) |
ExpressionTool | Workflow

True Specifies the process to run.

requirements array<InlineJavascriptRequirement | SchemaDefRequirement |
DockerRequirement (CommandLineTool.html#DockerRequirement) |
SoftwareRequirement | InitialWorkDirRequirement | EnvVarRequirement
(CommandLineTool.html#EnvVarRequirement) | ShellCommandRequirement
(CommandLineTool.html#ShellCommandRequirement) | ResourceRequirement
(CommandLineTool.html#ResourceRequirement) |
SubworkflowFeatureRequirement | ScatterFeatureRequirement |
MultipleInputFeatureRequirement | StepInputExpressionRequirement>

False Declares requirements that apply to either the
runtime environment or the workflow engine
that must be met in order to execute this
workflow step. If an implementation cannot
satisfy all requirements, or a requirement is
listed which is not recognized by the
implementation, it is a fatal error and the
implementation must not attempt to run the
process, unless overridden at user option.

hints array<Any> False Declares hints applying to either the runtime
environment or the workflow engine that may
be helpful in executing this workflow step. It is
not an error if an implementation cannot
satisfy all hints, however the implementation
may report a warning.

label string False A short, human-readable label of this process
object.

doc string False A long, human-readable description of this
process object.

scatter string | array<string> False

scatterMethod ScatterMethod False Required if scatter is an array of more than
one element.

4.2.1 WorkflowStepInput
The input of a workflow step connects an upstream parameter (from the workflow inputs, or the outputs of other workflows steps) with the input parameters of
the underlying step.

Input object

A WorkflowStepInput object must contain an id field in the form #fieldname or #stepname.fieldname . When the id field contains a period . the field name
consists of the characters following the final period. This defines a field of the workflow step input object with the value of the source parameter(s).

Merging

To merge multiple inbound data links, MultipleInputFeatureRequirement must be specified in the workflow or workflow step requirements.

If the sink parameter is an array, or named in a workflow scatter operation, there may be multiple inbound data links listed in the source field. The values from
the input links are merged depending on the method specified in the linkMerge field. If not specified, the default method is "merge_nested".

merge_nested

The input must be an array consisting of exactly one entry for each input link. If "merge_nested" is specified with a single link, the value from the link must
be wrapped in a single-item list.

merge_flattened

1. The source and sink parameters must be compatible types, or the source type must be compatible with single element from the "items" type of the
destination array parameter.

2. Source parameters which are arrays are concatenated. Source parameters which are single element types are appended as single elements.

Fields
field type required description

id string True A unique identifier for this workflow input parameter.

source string |
array<string>

False Specifies one or more workflow parameters that will provide input to the underlying step parameter.

linkMerge LinkMergeMethod False The method to use to merge multiple inbound links into a single array. If not specified, the default method is
"merge_nested".

default Any False The default value for this parameter if there is no source field.

http://www.commonwl.org/v1.0/CommandLineTool.html#CommandLineTool
http://www.commonwl.org/v1.0/CommandLineTool.html#DockerRequirement
http://www.commonwl.org/v1.0/CommandLineTool.html#EnvVarRequirement
http://www.commonwl.org/v1.0/CommandLineTool.html#ShellCommandRequirement
http://www.commonwl.org/v1.0/CommandLineTool.html#ResourceRequirement

valueFrom string |
Expression

False To use valueFrom, StepInputExpressionRequirement must be specified in the workflow or workflow step
requirements.

If valueFrom is a constant string value, use this as the value for this input parameter.

If valueFrom is a parameter reference or expression, it must be evaluated to yield the actual value to be assiged
to the input field.

The self value of in the parameter reference or expression must be the value of the parameter(s) specified in
the source field, or null if there is no source field.

The value of inputs in the parameter reference or expression must be the input object to the workflow step after
assigning the source values and then scattering. The order of evaluating valueFrom among step input
parameters is undefined and the result of evaluating valueFrom on a parameter must not be visible to evaluation
of valueFrom on other parameters.

4.2.1.1 Any
The Any type validates for any non-null value.

Symbols
symbol description

Any

4.2.2 WorkflowStepOutput
Associate an output parameter of the underlying process with a workflow parameter. The workflow parameter (given in the id field) be may be used as a
source to connect with input parameters of other workflow steps, or with an output parameter of the process.

Fields
field type required description

id string True A unique identifier for this workflow output parameter. This is the identifier to use in the source field of WorkflowStepInput to
connect the output value to downstream parameters.

4.2.3 ScatterMethod
The scatter method, as described in workflow step scatter.

Symbols
symbol description

dotproduct

nested_crossproduct

flat_crossproduct

4.2.4 InlineJavascriptRequirement
Indicates that the workflow platform must support inline Javascript expressions. If this requirement is not present, the workflow platform must not perform
expression interpolatation.

Fields
field type required description

class string True Always 'InlineJavascriptRequirement'

expressionLib array<string> False Additional code fragments that will also be inserted before executing the expression code. Allows for function
definitions that may be called from CWL expressions.

4.2.5 SchemaDefRequirement
This field consists of an array of type definitions which must be used when interpreting the inputs and outputs fields. When a type field contain a IRI, the
implementation must check if the type is defined in schemaDefs and use that definition. If the type is not found in schemaDefs , it is an error. The entries in
schemaDefs must be processed in the order listed such that later schema definitions may refer to earlier schema definitions.

Fields
field type required description

class string True Always 'SchemaDefRequirement'

types array<InputRecordSchema | InputEnumSchema | InputArraySchema> True The list of type definitions.

4.2.5.1 InputRecordSchema
Fields
field type required description

type Record_symbol True Must be record

fields array<InputRecordField> False Defines the fields of the record.

label string False A short, human-readable label of this object.

4.2.5.2 InputRecordField
Fields
field type required description

name string True The name of the field

type CWLType | InputRecordSchema | InputEnumSchema | InputArraySchema | string | array<CWLType |
InputRecordSchema | InputEnumSchema | InputArraySchema | string>

True The field type

doc string False A documentation string
for this field

inputBinding CommandLineBinding False

label string False A short, human-readable
label of this process
object.

4.2.5.2.1 InputEnumSchema
Fields
field type required description

symbols array<string> True Defines the set of valid symbols.

type Enum_symbol True Must be enum

label string False A short, human-readable label of this object.

inputBinding CommandLineBinding False

4.2.5.2.2 CommandLineBinding
When listed under inputBinding in the input schema, the term "value" refers to the the corresponding value in the input object. For binding objects listed in
CommandLineTool.arguments , the term "value" refers to the effective value after evaluating valueFrom .

The binding behavior when building the command line depends on the data type of the value. If there is a mismatch between the type described by the input
schema and the effective value, such as resulting from an expression evaluation, an implementation must use the data type of the effective value.

string: Add prefix and the string to the command line.

number: Add prefix and decimal representation to command line.

boolean: If true, add prefix to the command line. If false, add nothing.

File: Add prefix and the value of File.path to the command line.

array: If itemSeparator is specified, add prefix and the join the array into a single string with itemSeparator separating the items. Otherwise first add
prefix , then recursively process individual elements.

object: Add prefix only, and recursively add object fields for which inputBinding is specified.

null: Add nothing.

Fields
field type required description

loadContents boolean False Only valid when type: File or is an array of items: File .

Read up to the first 64 KiB of text from the file and place it in the "contents" field of the file object for use by
expressions.

position int False The sorting key. Default position is 0.

prefix string False Command line prefix to add before the value.

separate boolean False If true (default), then the prefix and value must be added as separate command line arguments; if false, prefix and
value must be concatenated into a single command line argument.

itemSeparator string False Join the array elements into a single string with the elements separated by by itemSeparator .

valueFrom string |
Expression

False If valueFrom is a constant string value, use this as the value and apply the binding rules above.

If valueFrom is an expression, evaluate the expression to yield the actual value to use to build the command line
and apply the binding rules above. If the inputBinding is associated with an input parameter, the value of self in
the expression will be the value of the input parameter.

When a binding is part of the CommandLineTool.arguments field, the valueFrom field is required.

shellQuote boolean False If ShellCommandRequirement is in the requirements for the current command, this controls whether the value is
quoted on the command line (default is true). Use shellQuote: false to inject metacharacters for operations such
as pipes.

4.2.5.2.3 InputArraySchema
Fields
field type required description

items CWLType | InputRecordSchema | InputEnumSchema | InputArraySchema | string | array<CWLType |
InputRecordSchema | InputEnumSchema | InputArraySchema | string>

True Defines the type of
the array elements.

type Array_symbol True Must be array

label string False A short, human-
readable label of this
object.

inputBinding CommandLineBinding False

4.2.6 SoftwareRequirement
A list of software packages that should be configured in the environment of the defined process.

Fields
field type required description

class string True Always
'SoftwareRequirement'

packages array<SoftwarePackage> | map<SoftwarePackage.package, SoftwarePackage.specs> |
map<SoftwarePackage.package, SoftwarePackage>

True The list of software to be
configured.

4.2.7 SoftwarePackage
Fields
field type required description

package string True The common name of the software to be configured.

version array<string> False The (optional) version of the software to configured.

specs array<string> False Must be one or more IRIs identifying resources for installing or enabling the software. Implementations may provide
resolvers which map well-known software spec IRIs to some configuration action.

For example, an IRI https://packages.debian.org/jessie/bowtie could be resolved with apt-get install bowtie . An
IRI https://anaconda.org/bioconda/bowtie could be resolved with conda install -c bioconda bowtie .

Tools may also provide IRIs to index entries such as RRID (http://www.identifiers.org/rrid/), such as
http://identifiers.org/rrid/RRID:SCR_005476

4.2.8 InitialWorkDirRequirement

http://www.identifiers.org/rrid/

4.2.8 InitialWorkDirRequirement
Define a list of files and subdirectories that must be created by the workflow platform in the designated output directory prior to executing the command line
tool.

Fields
field type required description

class string True InitialWorkDirRequirement

listing array<File | Directory | Dirent | string |
Expression> | string | Expression

True The list of files or subdirectories that must be placed in the designated output
directory prior to executing the command line tool.

May be an expression. If so, the expression return value must validate as {type:
array, items: [File, Directory]} .

4.2.8.1 Dirent
Define a file or subdirectory that must be placed in the designated output directory prior to executing the command line tool. May be the result of executing an
expression, such as building a configuration file from a template.

Fields
field type required description

entry string |
Expression

True If the value is a string literal or an expression which evaluates to a string, a new file must be created with the string as
the file contents.

If the value is an expression that evaluates to a File object, this indicates the referenced file should be added to the
designated output directory prior to executing the tool.

If the value is an expression that evaluates to a Dirent object, this indicates that the File or Directory in entry should
be added to the designated output directory with the name in entryname .

If writable is false, the file may be made available using a bind mount or file system link to avoid unnecessary copying
of the input file.

entryname string |
Expression

False The name of the file or subdirectory to create in the output directory. If entry is a File or Directory, this overrides
basename . Optional.

writable boolean False If true, the file or directory must be writable by the tool. Changes to the file or directory must be isolated and not visible
by any other CommandLineTool process. This may be implemented by making a copy of the original file or directory.
Default false (files and directories read-only by default).

4.2.9 SubworkflowFeatureRequirement
Indicates that the workflow platform must support nested workflows in the run field of WorkflowStep.

Fields
field type required description

class string True Always 'SubworkflowFeatureRequirement'

4.2.10 ScatterFeatureRequirement
Indicates that the workflow platform must support the scatter and scatterMethod fields of WorkflowStep.

Fields
field type required description

class string True Always 'ScatterFeatureRequirement'

4.2.11 MultipleInputFeatureRequirement
Indicates that the workflow platform must support multiple inbound data links listed in the source field of WorkflowStepInput.

Fields
field type required description

class string True Always 'MultipleInputFeatureRequirement'

4.2.12 StepInputExpressionRequirement

Indicate that the workflow platform must support the valueFrom field of WorkflowStepInput.

Fields
field type required description

class string True Always 'StepInputExpressionRequirement'

4.2.13 ExpressionTool
Execute an expression as a Workflow step.

Fields
field type required description

inputs array<InputParameter> | map<InputParameter.id, InputParameter.type> |
map<InputParameter.id, InputParameter>

True Defines the input parameters of the process.
The process is ready to run when all required
input parameters are associated with concrete
values. Input parameters include a schema for
each parameter which is used to validate the
input object. It may also be used to build a
user interface for constructing the input
object.

outputs array<ExpressionToolOutputParameter> |
map<ExpressionToolOutputParameter.id, ExpressionToolOutputParameter.type> |
map<ExpressionToolOutputParameter.id, ExpressionToolOutputParameter>

True Defines the parameters representing the
output of the process. May be used to
generate and/or validate the output object.

class string True

expression string | Expression True The expression to execute. The expression
must return a JSON object which matches the
output parameters of the ExpressionTool.

id string False The unique identifier for this process object.

requirements array<InlineJavascriptRequirement | SchemaDefRequirement |
DockerRequirement (CommandLineTool.html#DockerRequirement) |
SoftwareRequirement | InitialWorkDirRequirement | EnvVarRequirement
(CommandLineTool.html#EnvVarRequirement) | ShellCommandRequirement
(CommandLineTool.html#ShellCommandRequirement) | ResourceRequirement
(CommandLineTool.html#ResourceRequirement) |
SubworkflowFeatureRequirement | ScatterFeatureRequirement |
MultipleInputFeatureRequirement | StepInputExpressionRequirement>

False Declares requirements that apply to either the
runtime environment or the workflow engine
that must be met in order to execute this
process. If an implementation cannot satisfy
all requirements, or a requirement is listed
which is not recognized by the
implementation, it is a fatal error and the
implementation must not attempt to run the
process, unless overridden at user option.

hints array<Any> False Declares hints applying to either the runtime
environment or the workflow engine that may
be helpful in executing this process. It is not
an error if an implementation cannot satisfy all
hints, however the implementation may report
a warning.

label string False A short, human-readable label of this process
object.

doc string False A long, human-readable description of this
process object.

cwlVersion CWLVersion False CWL document version. Always required at the
document root. Not required for a Process
embedded inside another Process.

4.2.13.1 InputParameter
Fields
field type required description

id string True The unique identifier for this parameter object.

label string False A short, human-readable label of this object.

http://www.commonwl.org/v1.0/CommandLineTool.html#DockerRequirement
http://www.commonwl.org/v1.0/CommandLineTool.html#EnvVarRequirement
http://www.commonwl.org/v1.0/CommandLineTool.html#ShellCommandRequirement
http://www.commonwl.org/v1.0/CommandLineTool.html#ResourceRequirement

secondaryFiles string | Expression | array<string | Expression> False Only valid when type: File or is an array of items: File .

Describes files that must be included alongside the primary file(s).

If the value is an expression, the value of self in the expression must
be the primary input or output File to which this binding applies.

If the value is a string, it specifies that the following pattern should be
applied to the primary file:

1. If string begins with one or more caret ^ characters, for each
caret, remove the last file extension from the path (the last period
. and all following characters). If there are no file extensions, the
path is unchanged.

2. Append the remainder of the string to the end of the file path.

format string | array<string> | Expression False Only valid when type: File or is an array of items: File .

For input parameters, this must be one or more IRIs of concept nodes
that represents file formats which are allowed as input to this
parameter, preferrably defined within an ontology. If no ontology is
available, file formats may be tested by exact match.

For output parameters, this is the file format that will be assigned to the
output parameter.

streamable boolean False Only valid when type: File or is an array of items: File .

A value of true indicates that the file is read or written sequentially
without seeking. An implementation may use this flag to indicate
whether it is valid to stream file contents using a named pipe. Default:
false .

doc string | array<string> False A documentation string for this type, or an array of strings which should
be concatenated.

inputBinding CommandLineBinding False Describes how to handle the inputs of a process and convert them into a
concrete form for execution, such as command line parameters.

default Any False The default value for this parameter if not provided in the input object.

type CWLType | InputRecordSchema | InputEnumSchema |
InputArraySchema | string | array<CWLType |
InputRecordSchema | InputEnumSchema |
InputArraySchema | string>

False Specify valid types of data that may be assigned to this parameter.

4.2.13.2 ExpressionToolOutputParameter
Fields
field type required description

id string True The unique identifier for this parameter object.

label string False A short, human-readable label of this object.

secondaryFiles string | Expression | array<string | Expression> False Only valid when type: File or is an array of items: File .

Describes files that must be included alongside the primary file(s).

If the value is an expression, the value of self in the expression must
be the primary input or output File to which this binding applies.

If the value is a string, it specifies that the following pattern should be
applied to the primary file:

1. If string begins with one or more caret ^ characters, for each
caret, remove the last file extension from the path (the last
period . and all following characters). If there are no file
extensions, the path is unchanged.

2. Append the remainder of the string to the end of the file path.

format string | array<string> | Expression False Only valid when type: File or is an array of items: File .

For input parameters, this must be one or more IRIs of concept nodes
that represents file formats which are allowed as input to this
parameter, preferrably defined within an ontology. If no ontology is
available, file formats may be tested by exact match.

For output parameters, this is the file format that will be assigned to
the output parameter.

streamable boolean False Only valid when type: File or is an array of items: File .

A value of true indicates that the file is read or written sequentially
without seeking. An implementation may use this flag to indicate
whether it is valid to stream file contents using a named pipe. Default:
false .

doc string | array<string> False A documentation string for this type, or an array of strings which
should be concatenated.

outputBinding CommandOutputBinding False Describes how to handle the outputs of a process.

type CWLType | OutputRecordSchema | OutputEnumSchema
| OutputArraySchema | string | array<CWLType |
OutputRecordSchema | OutputEnumSchema |
OutputArraySchema | string>

False Specify valid types of data that may be assigned to this parameter.

4.2.13.3 CWLVersion
Version symbols for published CWL document versions.

Symbols
symbol description

draft-2

draft-3.dev1

draft-3.dev2

draft-3.dev3

draft-3.dev4

draft-3.dev5

draft-3

draft-4.dev1

draft-4.dev2

draft-4.dev3

v1.0.dev4

v1.0

