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Abstract

Recently, large-scale pretrained language mod-

els have demonstrated impressive performance

on several commonsense-reasoning bench-

mark datasets. However, building machines

with commonsense to compose realistically

plausible sentences remains challenging. In

this paper, we present a constrained text gen-

eration task, COMMONGEN associated with a

benchmark dataset, to explicitly test machines

for the ability of generative commonsense rea-

soning. Given a set of common concepts (e.g.,

{dog, frisbee, catch, throw}); the task is to gen-

erate a coherent sentence describing an every-

day scenario using these concepts (e.g., “a man

throws a frisbee and his dog catches it”).

The COMMONGEN task is challenging be-

cause it inherently requires 1) relational rea-

soning with background commonsense knowl-

edge, and 2) compositional generalization abil-

ity to work on unseen concept combinations.

Our dataset, constructed through a combina-

tion of crowdsourced and existing caption cor-

pora, consists of 77k commonsense descrip-

tions over 35k unique concept-sets. Exper-

iments show that there is a large gap be-

tween state-of-the-art text generation models

(e.g., T5) and human performance (31.6% v.s.

63.5% in SPICE metric). Furthermore, we

demonstrate that the learned generative com-

monsense reasoning capability can be trans-

ferred to improve downstream tasks such as

CommonsenseQA (76.9% to 78.4 in dev accu-

racy) by generating additional context.

1 Introduction

Commonsense reasoning, the ability to make ac-

ceptable and logical assumptions about ordinary

scenes in our daily life, has long been acknowl-

edged as a critical bottleneck of artificial intelli-

gence and natural language processing (Davis and

Marcus, 2015). Most recent commonsense rea-

soning challenges, such as CommonsenseQA (Tal-

dog, frisbee, catch, throw

- A dog leaps to catch a thrown frisbee.
- The dog catches the frisbee when the boy throws it.
- A man throws away his dog 's favorite frisbee expecting him 
to catch it in the air.

Expected Output: everyday scenarios covering all given concepts.

[Humans]

GPT2: A dog throws a frisbee at a football player.

UniLM: Two dogs are throwing frisbees at each other .

BART: A dog throws a frisbee and a dog catches it.

T5: dog catches a frisbee and throws it to a dog

[Machines]

Concept-Set: a collection of objects/actions.

Generative Commonsense Reasoning

Figure 1: An example of the dataset of COMMONGEN.
GPT-2, UniLM, BART and T5 are large pre-trained text gen-
eration models, fine-tuned on the proposed task.

mor et al., 2019), SocialIQA (Sap et al., 2019b),

WinoGrande (Sakaguchi et al., 2019) and Hel-

laSwag (Zellers et al., 2019b), have been framed

as discriminative tasks – i.e. AI systems are re-

quired to choose the correct option from a set of

choices based on a given context. While signifi-

cant progress has been made on these discrimina-

tive tasks, we argue that commonsense reasoning

in text generation poses a distinct complementary

challenge. In this paper, we advance machine com-

monsense towards generative reasoning ability.

Humans acquire the ability to compose sentences

by learning to understand and use common con-

cepts that they recognize in their surrounding envi-

ronment (Tincoff and Jusczyk, 1999). The acquisi-

tion of such an ability is regarded as a significant

milestone of human development (Moore, 2013).

Can machines acquire such generative common-

sense reasoning ability? To initiate the investiga-

tion, we present COMMONGEN
1

– a novel con-

strained generation task that requires machines to

generate a sentence describing a day-to-day scene

using concepts from a given concept-set. For ex-

1
http://inklab.usc.edu/CommonGen/.

http://inklab.usc.edu/CommonGen/
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{ exercise, rope, wall, tie, wave }

A woman in a gym exercises by waving ropes tied to a wall.

(exercise, HasSubEvent , releasing energy)
(rope, UsedFor, tying something)
(releasing energy, HasPrerequisite, motion)
(wave, IsA, motion) ; (rope, UsedFor, waving)

The motion costs more energy if ropes are tied to a wall.

Underlying Relational Commonsense Knowledge

Relational Reasoning for Generation

Training

Compositional Generalization

x1 = { apple, bag, put }

y1 = a girl puts an apple in her bag

x = { pear, basket, pick, put, tree }, y = ?

Reference: “a girl picks some pear from a

tree and put them in her basket.”

x2 = { apple, tree, pick }

y2 = a man picks some apples from a tree

x3 = { apple, basket, wash }

y3= a boy takes an apple from a basket and washes it.

Test

Figure 2: Two key challenges of COMMONGEN: relational reasoning with underlying commonsense knowledge about given
concepts (left), and compositional generalization for unseen combinations of concepts (right).

ample, in Figure 1, given a set of concepts: {dog,

frisbee, catch, throw}, machines are required to

generate a sentence such as “a man throws a frisbee

and his dog catches it in the air.”

To successfully solve the task, models need to

incorporate two key capabilities: a) relational rea-

soning, and b) compositional generalization. Gram-

matically sound sentences may not always be real-

istic as they might violate our commonsense (e.g.,

“a dog throws a frisbee ...”). In order to compose

a plausible sentence that describes an everyday

scenario, models need to construct a grammatical

sentence while adhering to and reasoning over the

commonsense relations between the given concepts.

Models additionally need compositional general-

ization ability to infer about unseen concept com-

pounds. This encourages models to reason about a

potentially infinite number of novel combinations

of familiar concepts – an ability believed to be a

limitation of current AI systems (Lake and Baroni,

2017; Keysers et al., 2020).

Therefore, in support of the COMMONGEN task,

we present a dataset consisting of 35,141 concept-

sets associated with 77,449 sentences. We explic-

itly design our dataset collection process to capture

the key challenges of relational reasoning and com-

positional generalization described above, through

an actively controlled crowd-sourcing process. We

establish comprehensive baseline performance for

state-of-the-art language generation models with

both extensive automatic evaluation and manual

comparisons. The best model, based on T5 (Raf-

fel et al., 2019), achieves 31.60% with significant

gap compared to human performance of 63.50% in

the SPICE metric – demonstrating the difficulty of

the task. Our analysis shows that state-of-the-art

models struggle at the task, generating implausible

sentences – e.g. “dog throws a frisbee ...” , “giving

massage to a table”, etc. Additionally, we show

that successful COMMONGEN models can bene-

fit downstream tasks (e.g., commonsense-centric

question answering) via generating useful context

as background scenarios. We believe these findings

point to interesting future research directions for

the community of commonsense reasoning.

2 Task Formulation and Key Challenges

We formulate the proposed COMMONGEN task

with mathematical notations and discuss its in-

herent challenges with concrete examples. The

input is an unordered set of k concepts x =

{c1, c2, . . . , ck} ∈ X (i.e. a concept-set), where

each concept ci ∈ C is a common object (noun) or

action (verb). We use X to denote the space of all

possible concept-sets and use C to denote the con-

cept vocabulary (a subset of ConceptNet’s unigram

concepts). The expected output is a simple, gram-

matical sentence y ∈ Y that describes a common

scenario in our daily life, using all given concepts

in x (morphological inflections are allowed). A

scenario can depict either a static situation or a

short series of actions. The COMMONGEN task

is to learn a function f ∶ X → Y , which maps

a concept-set x to a sentence y. The unique chal-

lenges of this task come from two aspects:

Relational Reasoning with Commonsense. Ex-

pected generative reasoners should prioritize the

most plausible scenarios over many other less re-

alistic ones. As shown in Figure 2, models need

to recall necessary relational commonsense facts

that are relevant to the given concepts, and then

reason an optimal composition of them for gener-
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ating a desired sentence. In order to complete a

scenario, generative commonsense reasoners also

need to reasonably associate additional concepts

(e.g., ‘woman’, ‘gym’) as agents or background

environments for completing a coherent scenario.

This not only requires understanding underlying

commonsense relations between concepts, but also

incrementally composing them towards a globally

optimal scenario. The underlying reasoning chains

are inherently based on a variety of background

knowledge such as spatial relations, object prop-

erties, physical rules, temporal event knowledge,

social conventions, etc. However, they may not be

recorded in any existing knowledge bases.

Compositional Generalization. Humans can

compose a sentence to describe a scenario about the

concepts they may never seen them co-occurring.

For example, in Figure 2, there is a testing concept-

set x̂ ={pear, basket, pick, put, tree}. The concept

‘pear’ never appear in the training data, and ‘pick’

never co-occurs with ‘basket’. We, humans, can

generalize from these seen scenarios in the training

data and infer that a plausible output: ŷ =“a girl

picks some pears from a tree and put them into her

basket.” This compositionally generalization abil-

ity via analogy, i.e., to make “infinite use of finite

means” (Chomsky, 1965), is challenging for ma-

chines. This analogical challenge not only requires

inference about similar concepts (e.g., ‘apple’ →

‘pear’) but also their latent associations.

3 Dataset Construction and Analysis

Figure 3 illustrates the overall workflow of our

data construction for the proposed COMMONGEN

task. We utilize several existing caption corpora

for sampling frequent concept-sets (Sec. 3.1) for

reflecting common scenarios. We employ AMT

crowd workers for collecting human-written sen-

tences (Sec. 3.2) for the development and test set,

while we carefully monitor the quality of crowd

workers and refine them dynamically. Finally, we

present the statistics of the COMMONGEN dataset,

and the analysis on the challenges (Sec. 3.4).

3.1 Collecting Concept-Sets from Captions

It can be unreasonable to present any arbitrary

set of concepts (e.g., x ={apple, fold, rope}) and

ask a reasoner to generate a commonsense sce-

nario, since such an arbitrary set of concepts can be

too unrelated. Therefore, our concept-sets are sup-

posed to reflect reasonable concept co-occurrences

Multiple Caption Corpora

(Concept-Set, Sents) Concept-Sets

diversity-based
sampling

Human
References

Actively
Monitored

Crowd-sourcing

dev/test train

Figure 3: Dataset construction workflow overview.

in everyday situations. As web images and video

clips capture diverse everyday scenarios, we use

their caption text as a natural resource for collect-

ing concept-sets and their corresponding descrip-

tions of commonsense scenarios. More specifically,

we collect visually-grounded sentences from sev-

eral existing caption datasets, including image cap-

tioning datasets, such as Flickr30k (Young et al.,

2014), MSCOCO (Lin et al., 2014), Conceptual

Captions (Sharma et al., 2018), as well as video

captioning datasets including LSMDC (Rohrbach

et al., 2017), ActivityNet (Krishna et al., 2017), and

VATEX (Wang et al., 2019b).

We first conduct part-of-speech tagging over all

sentences in the corpora such that words in sen-

tences can be matched to the concept vocabulary of

ConceptNet. Then, we compute the sentence fre-

quency of concept-sets consisting of 3∼5 concepts.

That is, for each combination of three/four/five

concepts in the vocabulary, we know how many

sentences are in the corpora covering all concepts.

Ideally, we want the selected concept-sets in our

dataset to reflect the natural distribution of concept-

sets in the real world. At first glance, a reasonable

solution may seem to sample from the distribution

of the concept-sets based on their frequencies in the

source datasets. However, we find that this method

leads to a rather unnaturally skewed collection of

concept-sets, due to the inherent data biases from

the source datasets. We therefore design a function

to score a concept-set x based on scene diversity

and inverse frequency penalty. We denote S(x) as

the set of unique sentences that contain all given

concepts {c1, c2, . . . , ck}, and then we have

score(x) = ∣S(x)∣
∣⋃si∈S(x)

{w∣w ∈ si}∣

∑si∈S(x)
len(si)

ρ(x),

where ρ(x) =
∣X ∣

maxci∈x
∣{x′ ∣ ci∈x

′ and x′
∈X }∣

. The

first term in score is the number of unique sen-
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Statistics Train Dev Test

# Concept-Sets 32,651 993 1,497
-Size = 3 25,020 493 -
-Size = 4 4,240 250 747
-Size = 5 3,391 250 750

# Sentences 67,389 4,018 6,042
per Concept-Set 2.06 4.04 4.04
Average Length 10.54 11.55 13.34

# Unique Concepts 4,697 766 1,248
# Unique Concept-Pairs 59,125 3,926 8,777
# Unique Concept-Triples 50,713 3,766 9,920

% Unseen Concepts - 6.53% 8.97%
% Unseen Concept-Pairs - 96.31% 100.00%
% Unseen Concept-Triples - 99.60% 100.00%

Table 1: The basic statistics of the COMMONGEN data.

We highlight the ratios of concept compositions that are

unseen in training data, which assures the challenge in

compositional generalization ability.

tences covering all given concepts in x, and the sec-

ond term is to represent the diversity of the scenes

described in these sentences. Th last term ρ(x)
is the penalty of inverse frequency. Specifically,

we find the concept in x that has the maximum

“set frequency” (i.e., the number of unique concept-

sets containing a particular concept), then we take

the inverse with the number of all concept-sets

for normalization. This penalty based on inverse

set-frequency effectively controls the bias towards

highly frequent concepts. With the distribution of

such scores of concept-sets, we sample our candi-

date examples for the next steps.

3.2 Crowd-Sourcing References via AMT

In order to ensure the best quality, the references

of the evaluation examples are crowdsourced from

crowd workers on Amazon Mechanical Turk, which

amounts to 10,060 references over 2.5k distinct

concept-sets. Note that these newly collected ref-

erences for dev and test examples can ensure that

we can do a fair comparisons targeting generaliza-

tion, considering potential data-leak (i.e., recent

pre-trained language models might have seen the

caption datasets). Each concept-set was assigned

to at least 3 workers. In addition to references

about given concept-sets, we also ask the workers

to provide rationale sentences to explain what com-

monsense facts they have used, for ensuring that

the described scenarios are common in daily life

(example rationales are shown in Fig 9).

We control the quality by actively filtering work-

ers who produced low-quality references, then re-

moving their annotations, and finally re-opening

Figure 4: Connectivity analysis in 5-size concept-sets in
the test set, each of which consists of 10 concept pairs. For
example, 12.0 in blue means: there are 12% concept-sets that
have 3 concept pairs with one-hop connections on ConceptNet.

the slots only for quality workers. There were

1,492 accepted workers in total and 171 disqual-

ified workers in the end after the active filtering.

There are three criteria for efficiently narrowing

down candidates for us to further manually remove

out low-quality workers: 1) coverage via part-of-

speech tagging, 2) especially high perplexity via

GPT-2, and 3) length of the rationales. Meanwhile,

we also dynamically replaced the concept-sets that

majority of the references do not make sense to

ensure the final quality.

3.3 Down-Sampling Training Examples

In order to evaluate the compositional generaliza-

tion ability, we down-sample the remaining can-

didate concept-sets to construct a distantly super-

vised training dataset (i.e., using caption sentences

as the human references). We explicitly control

the overlap of the concept-sets between training

examples and dev and test examples. The basic

statistics of the final dataset is shown in Table 1.

There are on average four sentences for each exam-

ple in dev and test sets, which provide a richer and

more diverse test-bed for automatic and manual

evaluation. Table 1 also shows the ratio of unseen

concept compositions (i.e., concept, concept-pair,

and concept-triple) in the dev and test. Notably,

all pairs of concepts in every test concept-set are

unseen in training data and thus pose a challenge

for compositional generalization.

3.4 Analysis of Underlying Common Sense

We here introduce deeper analysis of the dataset

by utilizing the largest commonsense knowledge

graph (KG), ConceptNet (Speer et al., 2017), as an

tool to study connectivity and relation types.

Connectivity Distribution. If the concepts in-

side a given concept-set is more densely connected
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Category Relations 1-hop 2-hop

Spatial 
knowledge

AtLocation, LocatedNear 9.40% 39.31%

Object 
properties

UsedFor,CapableOf,PartOf, 
ReceivesAction,MadeOf,

FormOf, HasProperty,HasA
9.60% 44.04%

Human 
behaviors

CausesDesire,MotivatedBy,
Desires,NotDesires,Manner

4.60% 19.59%

Temporal 
knowledge

Subevent, Prerequisite,
First/Last-Subevent

1.50% 24.03%

General
RelatedTo, Synonym,
DistinctFrom, IsA,

HasContext,SimilarTo
74.89% 69.65%

Table 2: The distributions of the relation categories

on one/two-hop connections.

with each other on the KG, then it is likely to be

easier to write a scenario about them. In each 5-

size concept-set (i.e. a concept-set consists of five

concepts), there are 10 unique pairs of concepts,

the connections of which we are interested in. As

shown in Figure 4, if we look at the one-hop links

on the KG, about 60% of the 5-size concept-set

have less than one link among all concept-pairs.

On the other hand, if we consider two-hop links,

then nearly 50% of them are almost fully connected

(i.e. each pair of concepts has connections). These

two observations together suggest that the COM-

MONGEN has a reasonable difficulty: the concepts

are not too distant or too close, and thus the inputs

are neither too difficult nor too trivial.

Relation Distribution. Furthermore, the relation

types of such connections can also tell us what

kinds of commonsense knowledge are potentially

useful for relational reasoning towards generation.

We report the frequency of different relation types
2

of the one/two-hop connections among concept-

pairs in the dev and test examples in Fig. 8. To bet-

ter summarize the distributions, we categorize these

relations into five major types and present their dis-

tribution in Table 2, respectively for one/two-hop

connections between concept pairs.

4 Methods

We briefly introduce the baseline methods that are

tested on the COMMONGEN task.

Encoder-Decoder Models. Bidirectional RNNs

and Transformers (Vaswani et al., 2017) are two

most popular architectures for seq2seq learning.

We use them with the addition of attention mecha-

2
Relation definitions are at https://github.com/

commonsense/conceptnet5/wiki/Relations.

nism (Luong et al., 2015) with copying ability (Gu

et al., 2016), which are based on an open-source

framework OpenNMT-py (Klein et al., 2017). We

use bRNN-CopyNet and Trans-CopyNet de-

note them respectively. To alleviate the influence

from the concept ordering in such sequential learn-

ing methods, we randomly permute them multi-

ple times for training and decoding and then get

their average performance. To explicitly eliminate

the order-sensitivity of inputs, we replace the en-

coder with a mean pooling-based MLP network

(MeanPooling-CopyNet).

Non-autoregressive generation. Recent ad-

vances (Lee et al., 2018; Stern et al., 2019) in

conditional sentence generation have an emerging

interest on (edit-based) non-autoregressive gener-

ation models, which iteratively refine generated

sequences. We assume that these models poten-

tially would have better performance because of

their explicit modeling on iterative refinements,

and thus study the most recent such model Lev-

enshtein Transformer (LevenTrans) by Gu et al.

(2019). We also include a recent enhanced ver-

sion, ConstLeven (Susanto et al., 2020), which

incorporates lexical constraints in LevenTrans.

Pre-trained Language Generation Models. We

also employ various pre-trained language gen-

eration models, including GPT-2 (Radford

et al., 2019), UniLM (Dong et al., 2019),

UniLM-v2 (Bao et al., 2020), BERT-Gen (Bao

et al., 2020), BART (Lewis et al., 2019), and

T5 (Raffel et al., 2019), to tackle this task and

test their generative commonsense reasoning abil-

ity. We fine-tuned all the above models on our

training data with a seq2seq format.

Specifically, to use GPT-2 for this sequence-to-

sequence task, we condition the language model on

the format “c1 c2 . . . ck = y” during fine-tuning,

where ci is a concept in the given concept-set and

connects with other concepts with a blank; y is a

target sentence. For inference, we sample from

the fine-tuned GPT-2 model after a prompt of

“c1 c2 . . . ck =” with beam search and use the

first generated sentence as the output sentence. For

BERT-Gen, we use the s2s-ft package
3

to fine-

tune them in a sequence-to-sequence fashion that is

similar to the LM objective employed by UniLM.

As for T5, the state-of-the-art text-to-text pre-

trained model which is pre-trained with a multi-

task objective by prepending a task description

3
https://github.com/microsoft/unilm

https://github.com/commonsense/conceptnet5/wiki/Relations
https://github.com/commonsense/conceptnet5/wiki/Relations
https://github.com/microsoft/unilm
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Model \ Metrics ROUGE-2/L BLEU-3/4 METEOR CIDEr SPICE Coverage

bRNN-CopyNet (Gu et al., 2016) 7.61 27.79 10.70 5.70 15.80 4.79 15.00 51.15

Trans-CopyNet 8.78 28.08 11.90 7.10 15.50 4.61 14.60 49.06

MeanPooling-CopyNet 9.66 31.14 10.70 6.10 16.40 5.06 17.20 55.70

LevenTrans. (Gu et al., 2019) 10.58 32.23 19.70 11.60 20.10 7.54 19.00 63.81

ConstLeven. (Susanto et al., 2020) 11.82 33.04 18.90 10.10 24.20 10.51 22.20 94.51

GPT-2 (Radford et al., 2019) 17.18 39.28 30.70 21.10 26.20 12.15 25.90 79.09

BERT-Gen (Bao et al., 2020) 18.05 40.49 30.40 21.10 27.30 12.49 27.30 86.06

UniLM (Dong et al., 2019) 21.48 43.87 38.30 27.70 29.70 14.85 30.20 89.19

UniLM-v2 (Bao et al., 2020) 18.24 40.62 31.30 22.10 28.10 13.10 28.10 89.13

BART (Lewis et al., 2019) 22.23 41.98 36.30 26.30 30.90 13.92 30.60 97.35

T5-Base (Raffel et al., 2019) 14.57 34.55 26.00 16.40 23.00 9.16 22.00 76.67

T5-Large (Raffel et al., 2019) 22.01 42.97 39.00 28.60 30.10 14.96 31.60 95.29

Human Performance (Upper Bound) 48.88 63.79 48.20 44.90 36.20 43.53 63.50 99.31

Table 3: Experimental results of different baseline methods on the COMMONGEN test set. The first group of

models are non-pretrained models, while the second group is large pretrained models that we have fine-tuned. The

best models are bold and second best ones are underlined within each metric. We highlight the metrics that we

used in our official leaderboard. (Results on dev set are at Table. 7.)

before the input text, we prepend the input con-

cept set with a simple prompt: “generate a

sentence with:” and fine-tune the model

with the source sentence on the format “generate a

sentence with c1 c2 . . . ck.” For decoding, we em-

ploy the standard beam search with a beam size of

5 for all compared models. We also report their re-

sults with a lexically-constrained decoding method,

dynamic beam allocation (DBA) (Post and Vilar,

2018), which do not show improvement over con-

ventional beam searching.
4

5 Evaluation

We first introduce the automatic evaluation metrics,

then present main experimental results with manual

analysis, and finally introduce the potential appli-

cation in transferring CommonGen-trained models

for other downstream tasks.

5.1 Metrics

Following other conventional generation tasks,

we use several widely-used automatic metrics

to automatically assess the performance, such

as BLEU (Papineni et al., 2002), ROUGE (Lin,

2004), METEOR (Banerjee and Lavie, 2005), which

mainly focus on measuring surface similarities. We

report the concept Coverage, which is the aver-

age percentage of input concepts that are present in

lemmatizatized outputs.

In addition, we argue that it is more suitable to

use evaluation metrics specially design for caption-

4
The used hyper-parameters are reported in the appendix.

ing task, such as CIDEr (Vedantam et al., 2015)

and SPICE (Anderson et al., 2016). They usually

assume system generations and human references

use similar concepts, and thus focus on evaluate the

associations between mentioned concepts instead

of n-gram overlap. For example, the SPICE met-

ric uses dependency parse trees as proxy of scene

graphs to measure the similarity of scenarios.
5

To estimate human performance within each

metric, we treat each reference sentence in dev/test

data as a “system prediction” to be compared with

all other references, which is equivalent to com-

pute inter-annotator agreement within each metric.

Thus, systems that have better generative ability

than average crowd-workers should exceed this.

5.2 Experimental Results

Automatic Evaluation. Table 3 presents the ex-

perimental results in a variety of metrics. We can

see that all fine-tuned pre-trained models (the lower

group) outperform non-pretrained models (the up-

per group) with a significant margin. This is not

surprising because their pretraining objectives, in-

cluding masked language modeling, word ordering,

and text infilling which predicts missing words or

text spans, are relevant to our task. On the other

hand, we find that the key disadvantage of non-

pretrained models with CopyNet still falls in the

5
We also tried recent metrics such as BERTScore (Zhang

et al., 2020b), but we find that they overly focus on lexical se-
mantics instead of dependencies between words, thus resulting
low correlation with the manual evaluation results.
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C.Leven GPT BERT-G. UniLM BART T5

Hit@1 3.2 21.5 22.3 21.0 26.3 26.8
Hit@3 18.2 63.0 59.5 69.0 69.0 70.3
Hit@5 51.4 95.5 95.3 96.8 96.3 97.8

Table 4: Manual Evaluation via Pair-wise Comparisons
for Ranking. Numbers are hit rates (%) at top 1/3/5.

[bRNN-CopyNet]: a hand works in the sink .

[MeanPooling-CopyNet]: the hand of a sink being washed up

[ConstLeven]: a hand strikes a sink to wash from his soap.

[GPT-2]: hands washing soap on the sink.

[BERT-Gen]: a woman washes her hands with a sink of soaps.

[UniLM]: hands washing soap in the sink

[BART]: a man is washing his hands in a sink with soap and 

washing them with hand soap.

[T5]: hand washed with soap in a sink.

1. A girl is washing her hands with soap in the bathroom sink.

2. I will wash each hand thoroughly with soap while at the sink. 

3. The child washed his hands in the sink with soap.

4. A woman washes her hands with hand soap in a sink.

5. The girl uses soap to wash her hands at the sink. 

Concept-Set: { hand, sink, wash, soap }

Figure 5: A case study with a concept-set {hand, sink,

wash, soap} for qualitative analysis of machine gener-

ations. Human references are collected from AMT.

failure of using all given concepts (i.e., low cover-

age), which results in worse results.

Among them, UniLM, BART, and T5 performs

the best, which may be due to its inherent sequence-

to-sequence pre-training framework. We found that

BART has the best concept coverage, which is prob-

ably due to its comprehensive pre-training tasks

that aim to recover text with noise. The results sug-

gest that further modifying pre-trained models is a

promising direction for generative commonsense.

Manual Evaluation. We conduct manual evalu-

ation with a focus on commonsense plausibility

for comparing the 6 best-performing models in Ta-

ble 4. We ask five graduate students to compare

1,500 pairs of model-generated sentences respec-

tively, for ranking the models within 100 concept-

sets that are covered by all the models. The final

average ranked results are shown in Table 4 and

their inter-annotator agreement is 0.85 in Kendall’s

rank correlation coefficient.

Note that the coverage-weighted hit@1 rate cor-

relates with the SPICE metric the most, i.e., 0.94

in Spearman’s ρ for model ranks, while METEOR

and ROUGE-2 are both 0.88 and BLEU-4 is 0.78.

Case study. Fig. 5 shows the top generations of dif-

Training Steps

A
cc
u
ra
c
y

Figure 6: Learning curve for the transferring study.

We use several trained COMMONGEN (GG) models

to generate choice-specific context for the CSQA task.

Detailed numbers are shown in Tab. 8 in the appendix.

ferent models and human references about an input

concept-set: {hand, sink, soup, wash} (more cases

are shown in Fig. 9 in the appendix). We find that

non-pretrained seq2seq models (e.g., bRNN, Mean-

Pooling, ConstLeven) can successfully use part of

given concepts, while the generated sentences are

less meaningful and coherent. On the contrary, the

outputs of fine-tuned pre-trained language models

are significantly more commonsensical. Most of

them use all given concepts in their outputs. Con-

stLeven tends to make use of frequent patterns to

compose a non-sense sentence but uses all concepts.

GPT-2 and UniLM incorrectly compose the depen-

dency among hand, wash, and soap. The phrase ‘a

sink of soaps’ in BERT-gen’s output makes itself

less common. BART and T5 generate relatively

reasonable scenarios, but both are not as natural

as human references; BART’s contains repetitive

content while T5’s lacks a human agent.

Influence of Dynamic Beam Allocation. Con-

sidering that all tested models decode sentences

with beam searching, one may wonder what if we

use a decoding method specially designed for con-

strained decoding. Thus, we employed dynamic

beam allocation (DBA) (Post and Vilar, 2018). The

results are shown in Table 5. Note that the models

are the same as in Table 3 while only the decod-

ing method is changed to DBA. We can see that

all methods are negatively impacted by the decod-

ing method. This suggests that for the COMMON-

GEN task and pre-trained language models, we

may need to focus on knowledge-based decoding
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Model \ Metrics ROUGE-2/L BLEU-3/4 METEOR CIDEr SPICE Coverage

T5-large+DBA 16.8 36.71 27.3 18.7 25.3 8.62 24.3 83.98

T5-base+DBA 15.07 34.82 24.8 16 23.5 9.31 21.3 76.81

GPT-2+DBA 17.56 39.45 29.4 20.6 24.9 10.85 26.8 79.51

BART+DBA 18.15 37.02 28.3 19.1 25.5 9.82 25.1 84.78

Table 5: Experimental results of models with DBA decoding method on the test set.

or re-ranking as future directions.

5.3 Transferring CommonGen Models

One may wonder how fine-tuned COMMONGEN

models can benefit commonsense-centric down-

stream tasks such as Commonsense Question An-

swering (Talmor et al., 2019) (CSQA) with their

generative commonsense reasoning ability. To this

end, we use the models trained with the COMMON-

GEN dataset for generating useful context.

We extract the nouns and verbs in questions and

all choices respectively, and combine the concepts

of the question q and each choice ci to build five

concept-sets. Then, we use these concept-sets as

inputs to a trained COMMONGEN model (e.g., T5)

for generating scenario a sentence gi for each as

choice-specific contexts. Finally, we prepend the

outputs in front of the questions, i.e., “<s>G: gi
∣ Q: q </s> C: ci </s>”. Note that the state-of-

the-art RoBERTa-based models for CSQA uses the

same form without “G: gi∣” in fine-tuning.

We show the learning-efficiency curve in Fig. 6,

where y is the accuracy on the official dev set and

x is the number of training steps. The details of the

experiments are shown in the appendix.

We highlight the performance of original

RoBERTa-Large as the baseline. We find that some

CommonGen models further improves the perfor-

mance by a large margin, e.g., 76.9
UniLM
−−−−→ 78.4

and they converge at better accuracy in the end.

Note that BERT-gen and ConstLeven cause neg-

ative transfer due to the low quality of generated

context. Particularly, we find that the context gener-

ated by the T5-based CommonGen model (CG-T5)

helps speed up training about 2 times, if we look at

550th steps of CG-T5 (74.85%) and 1,250th steps

of original RoBERTa (74.77%).

Through manual analysis, we find that the suc-

cessful COMMONGEN models can generate more

reasonable and natural sentence for correct choices

while noisy sentences for wrong choices. For ex-

ample with CG (T5), q=“What do people aim to do

at work?”, ci=‘complete job’ (✓) with gi=“people

work to complete a job aimed at achieving a cer-

tain goal.”; cj=‘wear hats’ (✗) gj=“people wearing

hats aim their guns at each other while working on

a construction site.” The used question concepts

and choice concepts are underlined.

6 Related Work

Commonsense benchmark datasets. There are

many emerging datasets for testing machine com-

monsense from different angles, such as com-

monsense extraction (Xu et al., 2018; Li et al.,

2016), next situation prediction (SWAG (Zellers

et al., 2018), CODAH (Chen et al., 2019), Hel-

laSWAG (Zellers et al., 2019b)), cultural and social

understanding (Lin et al., 2018; Sap et al., 2019a,b),

visual scene comprehension (Zellers et al., 2019a),

and general commonsense question answering (Tal-

mor et al., 2019; Huang et al., 2019; Wang et al.,

2019a, 2020). However, the success of fine-tuning

pre-trained language models for these tasks does

not necessarily mean machines can produce novel

assumptions in a more open, realistic, generative

setting. We see COMMONGEN as a novel, comple-

mentary commonsense reasoning benchmark task

for advancing machine commonsense in NLG.

Constrained Text Generation. Constrained text

generation aims to decode sentences with expected

attributes such as sentiment (Luo et al., 2019a; Hu

et al., 2017), tense (Hu et al., 2017), template (Zhu

et al., 2019; J Kurisinkel and Chen, 2019), style (Fu

et al., 2018; Luo et al., 2019b; Li et al., 2018), top-

ics (Feng et al., 2018), etc. Two related scenar-

ios with our task is lexically constrained decoding

and word ordering (Zhang and Clark, 2015; Hasler

et al., 2018; Dinu et al., 2019; Hokamp and Liu,

2017; Puduppully et al., 2017; Miao et al., 2019).

However, they are not easily adopted by the recent

pre-trained language models and thus not directly

useful for our task. Topical story generation (Fan

et al., 2018; Yao et al., 2019) is also a related di-

rection, while it targets generating longer, creative

stories around the given topics, making it hard to

directly adopt them to our task. Additionally, the
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COMMONGEN task brings some more challenges

mentioned in Section 2. Prior constrained genera-

tion methods cannot address these issues together

in a unified model.

Incorporating Commonsense for NLG. There

are a few recent works that incorporate common-

sense knowledge in language generation tasks such

as essay generation (Guan et al., 2019; Yang et al.,

2019a), image captioning (Lu et al., 2018), video

storytelling (Yang et al., 2019b), and conversational

systems (Zhang et al., 2020a). These works sug-

gest that generative commonsense reasoning has a

great potential to benefit downstream applications.

Our proposed COMMONGEN, to the best of our

knowledge, is the very first constrained sentence

generation dataset for assessing and conferring gen-

erative machine commonsense and we hope it can

benefit such applications. Our transferring study

in Sec. 5.3 also shows the potential benefits of

CommonGen-generated contexts.

7 Conclusion

Our major contribution in this paper are threefold:

• we present COMMONGEN, a novel con-

strained text generation task for generative

commonsense reasoning, with a large dataset;

• we carefully analyze the inherent challenges

of the proposed task, i.e., a) relational reason-

ing with latent commonsense knowledge, and

b) compositional generalization.

• our extensive experiments systematically ex-

amine recent pre-trained language generation

models (e.g., UniLM, BART, T5) on the task ,

and find that their performance is still far from

humans, generating grammatically sound yet

realistically implausible sentences.

Our study points to interesting future research di-

rections on modeling commonsense knowledge in

language generation process, towards conferring

machines with generative commonsense reasoning

ability. We hope COMMONGEN would also benefit

downstream NLG applications such as conversa-

tional systems and storytelling models.
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A Supplementary Figures and Tables

We include additional figures and tables that we

mentioned in the main content here.

• Figure 8 shows the detailed distribution of

the commonsense relations between given

concepts, the summary of which was shown

in Table 2 of the main content.

• Figure 9 presents 4 more case studies with

human rationales which we asked our crowd

workers to provide.

• Figure 7 shows instructions and AMT inter-

face for crowd-sourcing human references.

• Table 7 shows the model performances on the

dev set of COMMONGEN, as a reference for

future development.

• Table 8 is the full results of the learning curve

in Figure 5. We highlight the highest check-

points and the speed-up by the CG-T5, which

are discussed in Section 5.3.

B Experimental Details

Main experiments. We present some implemen-

tation details in training and testing the baseline

models in Table 6. The detailed instructions for

installing dependencies and all necessary train-

ing command-lines are shown in the instruction

‘readme.md’ files. The number of trainable model

parameters are directly induced from either output

of the frameworks or the original papers. We show

some key hyper-parameters that we manually tuned

on top of the development set.

All key hyper-parameters were initialized by

the default values as suggested by the original

authors of the frameworks. The bound of our

manual tuning is done by iterating the magni-

tudes or the neighboring choices, for example, the

learning rates (‘lr’) of the last seven models are

selected from {1e − 3, . . . , 1e − 4, . . . , 1e − 5}.

Then, similarly, the batch size (bsz) is first max-

imized by making full use of the GPU mem-

ory. Note that the first three models are im-

plemented with the OpenNMT-py framework
6
.

The LevenTrans
7
, ConstLeven

8
, and BART

9

are adopted by the official authors’ release. The

6
https://github.com/OpenNMT/OpenNMT-py

7
https://github.com/pytorch/fairseq/

blob/master/examples/nonautoregressive_

translation/README.md
8
https://github.com/raymondhs/

constrained-levt
9
https://github.com/pytorch/fairseq/

tree/master/examples/bart

Models Instruction Files #Para Key HPs

bRNN-

CopyNet
opennmt_based/README.md 8.12 M

lr=0.2, bsz=128, layers=2,

rnn_size=128, dropout=0,

Trans-

CopyNet
opennmt_based/README.md 6.25 M

lr=0.2, bsz=128, layers=1,

hidden_size=128, dropout=0.1,

MeanPooling

-CopyNet
opennmt_based/README.md 7.76 M

global_attention=mlp, lr=0.15,

rnn_size=128, bsz=128

LevenTrans. fairseq_based/README.md 55.4 M
lr=5e-4, warmup-init-lr=1e-7,

dropout=0.3, warmup=10k

ConstLeven const-levt/readme.md 55.4 M
lr=5e-4, warmup-init-lr=1e-7,

dropout=0.3, warmup=10k

GPT-2 GPT-2/readme.md 345 M lr=5e-5, bsz=32*4

BERT-Gen BERT-based/readme.md 110 M lr=3e-5, bsz = 32,

UniLM unilm_based/README.md 340 M lr=1e-5, bsz = 32

UniLMv2 UniLM_v2/readme.md 110 M lr=3e-5, bsz = 32

BART BART/readme.md 400 M lr=3e-5, warmup= 500, bsz=32

T5-Base T5/readme.md 220 M lr=5e-5, bsz = 192

T5-Large T5/readme.md 770 M
lr=2e-5, bsz = 2*32,

warmup_steps=400

Table 6: The paths to the instruction files in our sub-

mitted code zip file (under the ‘methods/ ’ folder), and

their numbers of parameters and key hyper-parameters.

BERT-gen, UniLM, UniLMv2 are all based on

their official source code
10

. The GPT-2 and T5

are both adopted by the huggingface transform-

ers
11

framework (Wolf et al., 2019). All models

use beam searching as their decoding algorithms

and beam-size are mostly 5, which is selected from

{5, 10, 20}. All our models were trained on Quadro

RTX 6000 GPUs. The training time of X-CopyNet

and LevenTrans models are less than 12 hours with

a single GPU. The second group of models are

trained between 12 and 24 hours, expect for T5-

large, which we used 3 GPUs and fine-tuned about

48 hours. Note that all the above methods are

self-contained in our submitted code as long as

users follow the associated readme instructions.

Transferring study experiments. We use the

same hyper-parameters which are searched over the

baseline RoBERTa-Large model for these experi-

ments. The best hyper-parameter
12

of RoBERTa-

Large for CommonsenseQA
13

:

• batch size = 16, learning rate = 1e-5,

• maximum updates = 3,000 (∼5 epochs)

• warmup steps=150, dropout rate=0.1

• weight decay = 0.01, adam epsilon = 1e-6

We tried 10 random seeds and use the best

one (42). Then, we follow the steps described in

Sec. 5.3 to run other CG-enhanced models with the

10
https://github.com/microsoft/unilm

11
https://github.com/huggingface/

transformers
12

We follow the hps selected by 100 trials of tuning in
https://github.com/pytorch/fairseq/tree/

master/examples/roberta/commonsense_qa.
13
https://www.tau-nlp.org/commonsenseqa

https://github.com/OpenNMT/OpenNMT-py
https://github.com/pytorch/fairseq/blob/master/examples/nonautoregressive_translation/README.md
https://github.com/pytorch/fairseq/blob/master/examples/nonautoregressive_translation/README.md
https://github.com/pytorch/fairseq/blob/master/examples/nonautoregressive_translation/README.md
https://github.com/raymondhs/constrained-levt
https://github.com/raymondhs/constrained-levt
https://github.com/pytorch/fairseq/tree/master/examples/bart
https://github.com/pytorch/fairseq/tree/master/examples/bart
https://github.com/microsoft/unilm
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/pytorch/fairseq/tree/master/examples/roberta/commonsense_qa
https://github.com/pytorch/fairseq/tree/master/examples/roberta/commonsense_qa
https://www.tau-nlp.org/commonsenseqa
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Model \ Metrics ROUGE-2/L BLEU-3/4 METEOR CIDEr SPICE Coverage

bRNN-CopyNet (Gu et al., 2016) 9.23 30.57 13.60 7.80 17.40 6.04 16.90 58.95

Trans-CopyNet 11.08 32.57 17.20 10.60 18.80 7.02 18.00 62.16

MeanPooling-CopyNet 11.36 34.63 14.80 8.90 19.20 7.17 20.20 68.32

LevenTrans. (Gu et al., 2019) 12.22 35.42 23.10 15.00 22.10 8.94 21.40 71.83

ConstLeven. (Susanto et al., 2020) 13.47 35.19 21.30 12.30 25.00 11.06 23.20 96.87

GPT-2 (Radford et al., 2019) 17.74 41.24 32.70 23.30 27.50 13.26 27.60 85.46

BERT-Gen (Bao et al., 2020) 18.73 42.36 33.00 23.70 29.10 13.34 28.70 91.71

UniLM (Dong et al., 2019) 21.68 45.66 40.40 30.40 31.00 15.72 31.40 92.41

UniLM-v2 (Bao et al., 2020) 19.24 43.01 33.40 24.20 29.20 13.65 29.30 93.57

BART (Lewis et al., 2019) 22.13 43.02 37.00 27.50 31.00 14.12 30.00 97.56

T5-Base (Raffel et al., 2019) 15.33 36.20 28.10 18.00 24.60 9.73 23.40 83.77

T5-Large (Raffel et al., 2019) 21.98 44.41 40.80 30.60 31.00 15.84 31.80 97.04

Human Performance 48.88 63.79 48.20 44.90 36.20 43.53 63.50 99.31

Table 7: Experimental results of different baseline methods on the COMMONGEN dev set. The first group of

models are non-pretrained models, while the second group is large pretrained models that we have fine-tuned. The

best models are bold and second best ones are underlined within each metric.

same hps. This suggests that further searching for

them may have even better performance.
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Figure 7: Our annotation interface on the AMT platform. The upper part is the instruction for the annotators and

we provide an example for them. Note that we give the part-of-speech hints (from the captain corpora) to boost the

speed of annotation, but we do not remove sentences with wrong part-of-speech as long as they also make sense.

(1) One-hop Relation Distribution

(2) Two-hop Relation Distribution

Figure 8: One/two-hop relation frequency in the COMMONGEN dev.&test sets on ConceptNet.
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[bRNN-CpNet]: Someone lowers his horse from the wall and lasso glass by cows. 

[Trans-CpNet]: A horse having lasso in the bridal cows. 

[MP-CpNet]: Cow in a lasso getting the ride. 

[LevenTrans]: A cow rides through a horse. 

[GPT-2]: A horse rides on a lasso.

[BERT-Gen]: A cow rides a lasso on a horse. 

[UniLM]: A man rides a horse with a lasso at cows. 

[UniLM-v2]: A horse rides a cow with a lasso on it. 

[BART]: A man rides a horse and a cow on a bridle with a lasso. 

[T5]: Lasso to ride a cow on a horse.

[Machine generations]

1. When those men ride a horse for the first time and lasso those cows.

[Rationale]: cowboys ride horses and lasso cows for a living

2. A cowboy can use a lasso to control a horse or cow in order to ride them.

[Rationale]: I understand the words and I can read and write 

English.

3. The cowboy will lasso the cow while riding on the horse.

[Rationale]: Have seen it.

[Human references from AMT]

2) [Input concept-set]: { cow, horse, lasso, ride }

[bRNN-CpNet]: Process of holds at hands under walk on hours.

[Trans-CpNet]: Hands with a walk in the water. 

[MP-CpNet]: Walk across the hold to water. 

[LevenTrans]: Hand moored at the water.

[GPT-2]: A woman holds a water walker and holds a hand. 

[BERT-Gen]: A man walking and holding a hand in water while walking. 

[UniLM]: A man holds hands to walk across the water. 

[UniLM-v2]: A man is walking and holding a hand in the water. 

[BART]: A man walks with a woman holding her hand as they walk through water. 

[T5]: Man holds a bottle of water in his hand as he walks along a river.

[Machine generations]

1. The couple holds hands as they walk by the water.

[Rationale]: 

Couples hold hands when taking walk even by a body of water.

2. The girl is walking holding in her hand a bottle of water.

[Rationale]: I see this reading the words

3. The couple hold hands while they walk by the water.

[Rationale]: People sometimes hold hands. People Like to walk 

near water.

[Human references from AMT]

3) [Input concept-set]: { hand, hold, walk, water }

[bRNN-CpNet]: The window stands out a ladder but clean the sun to being squeegee.

[Trans-CpNet]: A brown leather ladder with green eyes.

[MP-CpNet]: Window of the zebra are on a tablecloth.

[LevenTrans]: A man on a a on on the kitchen.

[GPT-2]: Someone grabs a ladder from a window and squeezes it open.

[BERT-Gen]: A woman is cleaning a window with a ladder and a squeegee.

[UniLM]: Someone stands next to a window and stands on a ladder to clean the squeegee.

[UniLM-v2]: A man is standing on a ladder and using a ladder to clean the window.

[BART]: A man with a squeegee and a ladder standing on the ledge of a window is cleaning the window.

[T5]: Squeegee and ladder on a wooden stand to clean windows and windows.

[Machine generations]
1. The window cleaner stands on the ladder to clean the 

window with a squeegee.

[Rationale]: A squeegee is a tool to clean windows. A 

ladder is something that people use to reach high places.

2. The man clean the window on the ladder stand by using 

squeegee.

[Rationale]: man need to clean the window by using 

squeegee on the ladder stand 

3. The man stood beside the ladder and cleaned the window

with a squeegee.

[Rationale]: people can stand next to ladders. People 

clean windows. Squeegees are used to clean windows.

[Human references from AMT]
4) [Input concept-set]: { clean, ladder, squeegee, stand, window }

[bRNN-CpNet]: Lays massage someone table vertical gives on and the water.

[Trans-CpNet]: Massage lays on the kitchen.

[MP-CpNet]: A massage table being calling with an improvisation lay free speaker.

[LevenTrans]: A man chatting at the table.

[GPT-2]: A man gives a massage to a table.

[BERT-Gen]: A woman lays down on a table and gives a massage to a man.

[UniLM]: A woman lays down a massage on a table and gives a massage.

[UniLM-v2]: A woman is laying down and giving a massage on a table.

[BART]: A man lays on a table and gives a massage to a woman laying on the table.

[T5]: Woman lay on a table and gives a massage.  

[Machine generations]

1. The man lays down on the massage table and the therapist gives him a massage.

[Rationale]: The man must lay down to receive a massage. The therapist is 

the giver of massages. The table is a massage table.

2. Lay down on the table and the masseuse will give you a neck massage.

[Rationale]: A masseuse is a woman who gives massages professionally. 

Massages are usually done on tables.

3. The woman gives the man who lays on the table a massage.

[Rationale]: Some massages are done laying down; people like to get massages;

tables are used for people to get massages; people lay on tables to get 

massages.

[Human references from AMT]

1) [Input concept-set]: { give, lay, massage, table }

Figure 9: Four cases for qualitative analysis of machine generations. References are collected from AMT crowd-

workers and they are required to provide rationales. Note that the third one is a positive case showing that some

models can successfully generate reasonable scenarios. However, most models perform poorly on the other cases.
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Training Steps RoBERTa-Large w/CG(BART) w/CG(T5) w/CG(UniLM) w/CG(BERT-Gen) w/CG(ConstLeven)

50 0.2252 0.1884 0.2506 0.2244 0.2007 0.2162

100 0.3088 0.2703 0.3587 0.3153 0.2924 0.2809

150 0.5053 0.2973 0.5643 0.1851 0.3391 0.3653

200 0.5717 0.4439 0.6650 0.3833 0.5274 0.5324

250 0.6020 0.5242 0.6937 0.5348 0.5839 0.6396

300 0.6388 0.6601 0.7117 0.6323 0.6274 0.6634

350 0.6675 0.6814 0.7150 0.6503 0.6626 0.6740

400 0.6830 0.6830 0.7215 0.6847 0.6781 0.6773

450 0.7027 0.7068 0.7338 0.6921 0.7068 0.6962

500 0.7019 0.7076 0.7428 0.7011 0.6929 0.7052

550 0.6978 0.7248 0.7486 0.7256 0.7068 0.6904

600 0.6790 0.7232 0.7494 0.7338 0.7248 0.7068

650 0.7150 0.7289 0.7428 0.7469 0.7101 0.7117

700 0.7142 0.7453 0.7477 0.7387 0.7305 0.7183

750 0.7027 0.7453 0.7314 0.7527 0.7166 0.7183

800 0.7158 0.7355 0.7437 0.7371 0.7281 0.7240

850 0.7174 0.7445 0.7625 0.7420 0.7379 0.7322

900 0.7191 0.7543 0.7559 0.7502 0.7477 0.7338

950 0.7355 0.7486 0.7477 0.7387 0.7428 0.7404

1000 0.7477 0.7510 0.7461 0.7486 0.7428 0.7363

1050 0.7346 0.7502 0.7568 0.7469 0.7412 0.7297

1100 0.7428 0.7527 0.7551 0.7494 0.7363 0.7420

1150 0.7379 0.7609 0.7576 0.7641 0.7453 0.7437

1200 0.7469 0.7477 0.7502 0.7461 0.7420 0.7477

1250 0.7477 0.7412 0.7592 0.7518 0.7273 0.7371

1300 0.7502 0.7518 0.7617 0.7666 0.7518 0.7412

1350 0.7469 0.7502 0.7551 0.7568 0.7437 0.7404

1400 0.7420 0.7494 0.7641 0.7559 0.7494 0.7428

1450 0.7510 0.7584 0.7625 0.7461 0.7461 0.7461

1500 0.7535 0.7674 0.7690 0.7551 0.7412 0.7428

1550 0.7461 0.7559 0.7674 0.7510 0.7445 0.7412

1600 0.7437 0.7584 0.7584 0.7543 0.7445 0.7420

1650 0.7568 0.7609 0.7633 0.7543 0.7494 0.7428

1700 0.7551 0.7584 0.7633 0.7625 0.7535 0.7396

1750 0.7600 0.7568 0.7699 0.7740 0.7551 0.7518

1800 0.7617 0.7559 0.7731 0.7740 0.7527 0.7486

1850 0.7690 0.7584 0.7772 0.7707 0.7617 0.7461

1900 0.7658 0.7592 0.7805 0.7838 0.7486 0.7445

1950 0.7584 0.7617 0.7715 0.7715 0.7510 0.7396

2000 0.7510 0.7617 0.7690 0.7715 0.7445 0.7355

2050 0.7551 0.7641 0.7731 0.7649 0.7559 0.7477

2100 0.7641 0.7617 0.7641 0.7625 0.7559 0.7412

2150 0.7584 0.7543 0.7658 0.7641 0.7527 0.7461

2200 0.7584 0.7477 0.7649 0.7633 0.7453 0.7371

2250 0.7551 0.7559 0.7641 0.7609 0.7461 0.7363

2300 0.7535 0.7600 0.7699 0.7674 0.7412 0.7420

2350 0.7551 0.7617 0.7682 0.7625 0.7502 0.7412

2400 0.7559 0.7649 0.7699 0.7625 0.7559 0.7387

2450 0.7584 0.7674 0.7707 0.7658 0.7477 0.7387

2500 0.7551 0.7649 0.7600 0.7633 0.7502 0.7363

2550 0.7592 0.7658 0.7731 0.7658 0.7518 0.7387

2600 0.7559 0.7658 0.7715 0.7600 0.7420 0.7371

2650 0.7576 0.7674 0.7690 0.7600 0.7494 0.7420

2700 0.7568 0.7707 0.7690 0.7600 0.7461 0.7379

2750 0.7568 0.7699 0.7674 0.7649 0.7445 0.7437

2800 0.7592 0.7682 0.7690 0.7617 0.7445 0.7453

2850 0.7592 0.7641 0.7707 0.7649 0.7461 0.7445

2900 0.7609 0.7649 0.7740 0.7658 0.7477 0.7437

2950 0.7617 0.7649 0.7740 0.7658 0.7469 0.7437

3000 0.7600 0.7658 0.7731 0.7658 0.7437 0.7420

Table 8: Experimental results of the transferring study on CommonsenseQA dev set.


