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Communicability Angle and the

Spatial Efficiency of Networks∗
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Abstract. We introduce the concept of communicability angle between a pair of nodes in a graph. We
provide strong analytical and empirical evidence that the average communicability angle
for a given network accounts for its spatial efficiency on the basis of the communications
among the nodes in a network. We determine characteristics of the spatial efficiency of more
than a hundred real-world networks that represent complex systems arising in a diverse
set of scenarios. In particular, we find that the communicability angle correlates very well
with the experimentally measured value of the relative packing efficiency of proteins that
are represented as residue networks. We finally show how we can modulate the spatial
efficiency of a network by tuning the weights of the edges of the networks. This allows us
to predict the effects of external stresses on the spatial efficiency of a network as well as
to design strategies to improve important parameters in real-world systems.
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1. Introduction. Networks are ubiquitous in many real-world scenarios, ranging
from the biomolecular to the social and infrastructural organization of modern soci-
ety [11, 32, 9]. In many of these networks, nodes and edges are used to represent
physically embedded objects [4], namely, spatial networks. Some examples of spatial
networks are urban street networks [25], brain and other anatomical networks [7],
protein residue networks [11], infrastructural networks [4], the networks of channels
in fractured rocks, the networks representing the corridors and galleries in animal
nests, and many more; for even more, see [11] and references therein.

A natural question that arises in the analysis of spatial networks is how efficiently
they use the available geometrical space in which they are embedded. The concept
of spatial efficiency accounts for many organizational principles of complex systems,
ranging from the folding of proteins into globular shapes in order to minimize the
volume occupied inside the cell [10], to the planarity of urban street networks [8] that
poses a serious challenge to their continuous growth in view of their threat to the
natural environment.

The concept of spatial efficiency is adapted here from economics, where it is
frequently used to describe how much time, effort, and cost a given arrangement
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produces for governments, businesses, and households when conducting their activities
as compared to alternative arrangements; see [35] and references therein. This concept
has a lot to do with the efficiency in communication among the parts of the system
under consideration, and as such it presents a well-posed problem for its analysis
beyond spatial networks. Indices for communication efficiency of networks have been
previously proposed in the literature [27, 28, 1, 21], and they revolve around the
idea of considering the sum of reciprocal shortest-path distances in graphs [27]. Here
we extend this concept beyond the shortest path by means of the communicability

function [15], which quantifies how much information can flow from one node to
another in a network; see also [16, 17].

In the present article we cover two very important areas of network theory, namely,
the relationship between network structure and communication efficiency as well as
the inference of spatial properties of networks based on their topological properties.
Our theoretical constructions are based on a remarkable mapping of each node of
a network to a point on the surface of a hypersphere. This embedding is obtained
using concepts from matrix functions, making a nice bridge between linear algebra,
geometry, and network theory. In fact, we prove here that the distance defined on the
basis of the communicability function is indeed the chord distance between the two
points on the hypersphere. We can thereby assign a Euclidean angle to each pair of
nodes which represents the communication efficiency between them. We show here
that this communicability angle accounts for the spatial efficiency of networks. This
connection between matrix functions and spatial properties of networks allows us to
bridge areas of network theory that have so far remained separate. For instance, we
show some remarkable connections between the communicability angle and the graph
planarity which may represent new avenues connecting algebraic and topological graph
theory. Last but not least, this paper develops a few applications from different areas
which should be of interest to applied mathematicians working in mathematical social
sciences, mathematical biology/ecology, and the growing arena of city data analytics.

2. Preliminaries. In this section we shall present some of the definitions, no-
tations, and properties associated with networks in order to make this work self-
contained. Here we consider networks represented by graphs Γ = (V,E) having n
nodes (vertices) and m edges (links). The reader is directed to [11] for the standard
notation used here. We designate by kp the degree of the node p. A walk of length ℓ
in Γ is a set of nodes p1, p2, . . . , pℓ, pℓ+1 such that for all 1 ≤ i ≤ ℓ, (pi, pi+1) ∈ E. A
closed walk is a walk for which p1 = pℓ+1. A path is a walk with no repeated nodes.
Throughout this work, we will always consider undirected, simple, and connected
networks. The following standard notation will be used through this paper: Pn rep-
resents the path graph; Kn represents the complete graph; and Kn1,n2

represents the
complete bipartite graph; in particular, K1,n−1 is known as the star graph. We recall
that a graph is planar if it can be drawn on a plane without any edge crossings [23].

We let A denote the adjacency matrix, which for undirected simple finite graphs
is a real symmetric matrix. We can decompose it into the form

A = UΛUT ,(2.1)

where Λ is a diagonal matrix containing the eigenvalues of A, which we label in
nonincreasing order λ1 ≥ λ2 ≥ · · · ≥ λn, and U = [�ψ1, . . . , �ψn] is an orthogonal

matrix, where �ψµ is an eigenvector associated with λµ. Because we consider connected
graphs, A is irreducible; the Perron–Frobenius theorem then dictates that λ1 > λ2

and that we can choose �ψ1 such that its components ψ1(p) are positive for all p ∈ V .
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694 ERNESTO ESTRADA AND NAOMICHI HATANO

An important quantity for studying communication processes in networks is the
communicability function [15, 17, 16], defined for each pair of nodes p and q as

Gpq =

∞
∑

k=0

(

Ak
)

pq

k!
=

(

eA
)

pq
=

n
∑

µ=1

eλµψµ(p)ψµ(q).(2.2)

The factor
(

Ak
)

pq
counts the number of walks of length k starting at the node p and

ending at the node q. The communicability function is the sum of the numbers of
walks of length k, each weighted by the factor 1/k! so that shorter walks may be
more influential than longer ones. In (2.2), the exponential of the matrix A is defined
by its Taylor expansion, which is the communicability function itself. The spectral
decomposition on the right-hand side is also derived from the spectral decomposition
of each term of the Taylor expansion: (Ak)pq =

∑

µ(λµ)
kψµ(p)ψµ(q).

The importance of the communicability function (2.2) lies in the fact that it takes
account of long walks as well as short ones; even two nodes connected by a very long
shortest path can have a strong communication if they are connected by many longer
walks. The diagonal term Gpp characterizes the degree of participation of the node
p in all subgraphs of the network. It is thus known as the subgraph centrality of the
corresponding node [18].

We can visualize the communicability function (2.2) in another way. Consider a

matrix-vector equation d�ψ/dt = A�ψ, which governs the time evolution of a vector �ψ(t).

If the vector �ψ(t) describes a random-walker distribution on the network in question
at time t, the above equation describes how the walkers move around on the network.
Its formal solution is given by �ψ(t) = eAt �ψ(0), and hence the exponential matrix
eA is the time evolution operator for the unit time. Therefore, the communicability
function (2.2) is the transition rate for the walkers on the site p (represented by a
vector �wp) to move to the site q (represented by another vector �wq) after unit time,
where �wp is a column vector with unity on the pth element and zero on the others.

Other quantities used in this work, such as the network efficiency E [27], the
resistance distance Ωpq [26], the Cheeger constant i (G), and the modularity index Q
are defined in the supplementary information accompanying this paper. In the next
section we will introduce another distance measure recently defined on the basis of the
communicability function. It is novel in the sense that walks longer than the shortest
path are taken into account.

3. Communicability Distance. The new distance function is defined as [12, 13]

ξpq
2 = Gpp +Gqq − 2Gpq,(3.1)

which we will refer to as the communicability distance between the nodes p and q
in Γ. The intuition behind it is that when two nodes p and q communicate with
each other, the quality of their communication depends on two factors: (i) how much
information departing from the node p (q) arrives at the node q (p), and (ii) how
much information departing from the node p (q) returns to that node p (q) without
arriving at its destination. That is, the communication efficiency increases with the
amount of information that departs from the originator and arrives at its destination,
but decreases with the amount of information that is frustrated due to the fact that
the information returns to its originator without being delivered to its target. We
can rephrase the information flow as random walkers according to the interpretation
that eA is a time-evolution operator for unit time. This intuition has lead to the
definition (3.1).
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It has indeed been proved that the function ξpq is a Euclidean distance between
the nodes p and q in Γ [12].

Theorem 3.1 (see [19]). The communicability distance ξpq induces an embedding

of the graph Γ of size n into a hypersphere of radius R2 = [c − (2− b)
2
/a]/4 in an

(n− 1)-dimensional space, where a = �1T e−A�1, b = �sT e−A�1, and c = �sT e−A�s with

�s = diag eA.

Let us now give a more intuitive and geometric view of the communicability
distance. For this purpose, we first prove the following theorem.

Theorem 3.2. Let �xp = eΛ/2�φp, where �φp =
(

ψ1(p) · · · ψµ(p) · · · ψn(p)
)T

.

Then we have

Gpq = �xp · �xq.(3.2)

(The proof is given in the supplementary information.)
This theorem transforms the communicability distance (3.1) into the form

ξpq
2 = �xp · �xp + �xq · �xq − 2�xp · �xq = |�xp − �xq|2 .(3.3)

In other words, the communicability distance is the Euclidean distance in the space
of {�xp}. In order to visualize this space, let us go back to the interpretation that
(eA)pq is the transition rate of the random walkers from the pth site to the qth site.
An initial state �wp is a basis vector in the original vector space, but its expression is

given by �φp above in the vector space with the eigenvectors �ψµ as its basis vectors,
namely, the eigenspace; see Figure 1 for an example for the path graph P3. In other
words, the initial vector represents the state in which all random walkers sit on the
pth site, but it is denoted by the vector �φp in the eigenspace. The vector �xp is a vector
in the eigenspace, representing the state in which random walkers from the pth site
move around for time 1/2.

Theorem 3.1 dictates that the vectors {�xp} fall onto the surface of a hypersphere
in the space; see Figure 2(a) for an illustration in the case n = 3. We can understand
this in the following way. We first fix the n-dimensional normal vector �x⊥ from n
pieces of conditions (�xp − �x⊥) · �x⊥ = 0 for 1 ≤ p ≤ n. This specifies the (n − 1)-
dimensional flat surface on which all vectors fall as (�x − �x⊥) · �x⊥ = 0. We next fix
the n-dimensional vector �x0 that specifies the center of the hypersphere as well as the
radius R from n + 1 pieces of conditions (�x0 − �x⊥) · �x⊥ = 0 and |�xp − �x0| = R for
1 ≤ p ≤ n.

We can therefore regard ξpq as the chord distance between the two points on the
hypersurface. Figure 2(b) shows the triangle spanned by the vectors �xp and �xq . This
leads to the definition in the next section of the angle between the two vectors.

4. Communicability Angle. Let p and q be nodes of a connected simple network
and let us define the following quantity:

γpq :=
Gpq

√

GppGqq

.(4.1)

We then prove the following result.
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Fig. 1 A demonstration plot of �φp (red dashed arrows) and �xp (blue solid arrows) for the path

graph P3. The eigenvectors �ψµ (green dotted arrows) define the axes of this eigenspace. The
communicability distance ξpq is the chord distance on the (blue) circle that goes through the
end points of the vectors �xp.

O

(a) O (b)

Fig. 2 (a) Three vectors �x1, �x2, and �x3 (solid black arrows) in a three-dimensional space spanned by
the three eigenvectors of a 3× 3 adjacency matrix A. The vectors fall on a two-dimensional
flat surface (broken black lines) to which the vector �x⊥ (red dot-dashed arrow) is normal.
We can draw a circle (solid blue curve) on the two-dimensional surface around a point �x0

(solid blue arrow) to contain all three points. (b) The triangle spanned by the vectors �xp and
�xq.

Theorem 4.1. The index γpq is the cosine of the Euclidean angle spanned by the

position vectors of p and q.

(The proof is given in the supplementary information.)
We then call θpq the communicability angle between the corresponding nodes

of the graph. Details on how to compute the communicability angle for networks
are given in the Supplementary Information accompanying the present paper. For
each pair of nodes in the graph, the communicability distance and angle are related
mathematically by the following expression:

ξpq
2 = Gpp +Gqq − 2

√

GppGqq cos θpq.(4.2)

Because Gpq ≥ 0 for any pair of nodes in Γ, the communicability angle is bounded by
0 ≤ cos θpq ≤ 1, that is, the communicability angle of simple graphs can take values
only in the range (0◦, 90◦). We will now describe some classes of graphs that show
how we attain the extremal values.
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Proposition 4.2. Let Pn be the path graph with n nodes labeled by 1, 2, . . . , n
sequentially. The communicability angle between any pair of nodes in Pn is given by

cos θpq (Pn) =
Ip−q(2)− Ip+q(2)

√

[

I0(2)− I2r(p)(2)
] [

I0(2)− I2r(q)(2)
]

(4.3)

in the limit n → ∞, where Iγ (z) is the Bessel function of the first kind and

r(p) =

{

p for p ≤ n/2 with even n or p ≤ (n+ 1) /2 with odd n,

n− p+ 1 for p > n/2 with even n or p > (n+ 1) /2 with odd n.
(4.4)

(The proof is given in the supplementary information.)
Notice that for the pair of nodes at the ends of the path we have

lim
n→∞

cos θn1 (Pn) = lim
n→∞

In−1(2)− In+1(2)

I0(2)− I2(2)
= 0,(4.5)

which attains the upper bound of the communicability angle.

Proposition 4.3. Let K1,n−1 be the star graph with n nodes. Let the node with

degree n− 1 be labeled as 1. The communicability angle between any pair of nodes in

K1,n−1 is given by

cos θ1q (K1,n−1) =
tanh2

(√
n− 1

)

(n− 2) sech
(√

n− 1
)

+ 1
for q �= 1,(4.6)

cos θpq (K1,n−1) =
cosh

(√
n− 1

)

− 1

(n− 2) cosh
(√

n− 1
)

+ n− 2
for p �= 1 and q �= 1.(4.7)

(The proof is given in the supplementary information.)
It is important to notice that

lim
n→∞

cos θ1q (K1,n−1) = 1 for q �= 1,(4.8)

lim
n→∞

cos θpq (K1,n−1) = 1 for p �= 1 and q �= 1,(4.9)

which attain the lower bound of the communicability angle.

Proposition 4.4. Let Kn be the complete graph with n nodes. The communica-

bility angle between any pair of nodes in Kn is given by

cos θpq =
en − 1

en + n− 1
.(4.10)

(The proof is given in the supplementary information.)
Notice that cos θpq → 1 as n → ∞ in Kn.
In the supplementary information we provide some analytic results that allow

us to understand the main differences between the communicability distance and
the communicability angle. Let us present the structural information provided by the
results there, which will be useful for further application of the communicability angle
in analyzing real-world networks. Let us define the average communicability angle for
a given graph as the average over the pairs of nodes:

〈θ〉 = 2

n (n− 1)

∑

p>q

θpq.(4.11)D
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Fig. 3 (a)–(d) Scatter plots of the average communicability angle against (a) the average commu-
nicability distance, (b) the average resistance distance, (c) the average path length, and (d)
the communication efficiency for all 11,117 connected graphs with 8 nodes. (e) The squared
Pearson correlation coefficients between the metrics for 8-node graphs with a fixed number
of edges.

We then have the following observations: (i) The average communicability angle for
the path graph Pn tends to 90◦ when the number of nodes tends to infinite. This is
a consequence of Propositions 4.2 and SI3.2 (the latter presented in the supplemen-
tary information). (ii) The average communicability angle for the star graph K1,n−1

tends to 0◦ when the number of nodes tends to infinite. This is a consequence of
Proposition 4.3. (iii) The average communicability angle for the complete graph Kn

tends to 0◦ when the number of nodes tends to infinite. This is a consequence of
Proposition 4.4.

5. Computational Analysis of the Communicability Angle. In this section we
computationally analyze the average communicability angle 〈θ〉 in (4.11) for connected
graphs. Specifically, we study a dataset of all 11,117 connected graphs with 8 nodes.
We divide this section into three subsections: we first analyze relationships (or lack
thereof) between the average communicability angle and other graph metrics, namely,
the average path length, the average resistance distance, and the average communica-
bility distance; we then study relationships between 〈θ〉 and the graph planarity; we
finally investigate the influence of graph modularity on the communicability angle.

5.1. Communicability Angle and Other Graph Metrics. We first compare the
average communicability angle 〈θ〉 with the average communicability distance 〈ξ〉, the
average resistance distance 〈Ω〉, the average path length 〈l〉, and the communication
efficiency E as metrics potentially related to 〈θ〉; each average was taken over all pairs
of nodes. We show in Figure 3 the scatter plots of these measures against the average
communicability angle.
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We can see that the communicability angle is neither directly nor trivially related
to the other metrics. It is particularly interesting to see the lack of correlation between
〈θ〉 and 〈ξ〉, which are highly uncorrelated although the two quantities are based on
the same concept of communicability. This lack of correlation is not unexpected if we
consider how the two measures and the communicability function are related to each
other via (4.2). The average communicability angle shows more similar trends to the
average path length 〈l〉, the average resistance distance 〈Ω〉, and the communication
efficiency E. The extreme values of these three measures coincide with those of 〈θ〉,
although there is a large dispersion inbetween. The general plots in Figure 3 really hide
the true lack of correlation that exists among these metrics and the communicability
angle. To reveal the lack of correlation more explicitly, we plot the squared Pearson
correlation coefficient between each metric and 〈θ〉 for groups of graphs having the
same number of edges. As can be seen in Figure 3(e), as soon as the number of edges
increases, the correlation between the pair of indices drops significantly. For instance,
let us consider the communication efficiency, for which the correlation with 〈θ〉 yields
a correlation coefficient r2 ≈ 0.94 for the 8-node trees. This correlation coefficient
drops to r2 ≈ 0.31 for graphs having 13 edges and to r2 ≈ 0.17 for graphs having
18 edges. It is virtually zero for graphs with more than 22 edges. The reason for
this decay in the correlation is very important. Trees have very large correlations
between the pairs of measures. This is due to the fact that in these graphs there are
only shortest paths to connect any pair of nodes because of the absence of any cycles.
As the number of edges increases, the number of potential routes between any pair
of nodes increases dramatically, making the measures based on shortest paths more
different from the communicability angle. There is also a complete lack of correlation
between the communicability angle and the average resistance distance for graphs
having 10 to 20 edges. The correlation coefficient increases for these two measures
when the number of edges is 23, but then decays. The reason for this increase is not
clear at all, but the peak height is only 0.4 anyway.

Among all the connected graphs with 8 nodes, the path graph P8 has the largest
average communicability angle and the complete graph K8 has the smallest. Among
all the trees with 8 nodes, the star graph K1,7 has the smallest average communica-
bility angle. This is also verified for all connected graphs with 5, 6, and 7 nodes. We
thereby have the following conjectures.

Conjecture 5.1. Among all connected graphs with n nodes, the average commu-

nicability angle is the largest for the path graph Pn and the smallest for the complete

graph Kn.

Conjecture 5.2. Among all trees with n nodes, the average communicability

angle is the largest for the path graph Pn and the smallest for the star graph K1,n−1.

These observations indicate that the average communicability angle describes
the efficiency of a graph in using the space in which it is embedded. The path
graph Pn, which intuitively occupies the largest portion of space, has the largest
average communicability angle, while the star and complete graphs, which intuitively
occupy the smallest, have the average communicability angle close to zero. In the
next section we explore more observations of this sort from a computational point of
view.

5.2. Communicability Angle and Graph Planarity. Here we investigate the re-
lationship between the graph planarity and the average communicability angle. We
first determine whether or not a graph is planar using the planarity test proposed
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Fig. 4 Frequency of planar and nonplanar graphs for different values of (a) the average communi-
cability angle, (b) the average resistance distance, (c) the average communicability distance,
(d) the average path length, and (e) the communication efficiency. The histogram for planar
graphs is shown as a solid line and that for nonplanar graphs as a broken line.

by Boyer and Myrvold [6]. We then construct the histogram of the frequency of
planar/nonplanar graphs with respect to the average communicability angle.

Let ηk be the number of planar graphs having k ≤ 〈θ〉 < (k + 10◦) for k =
0◦, 10◦, 20◦, . . . , 80◦. We plot in Figure 4(a) the histogram of the planar/nonplanar
graphs as a function of their values of 〈θ〉 for all connected graphs with 8 nodes. For
comparison, we also show similar plots in Figure 4(b)–(d) for the average resistance
distance 〈Ω〉, the communicability distance 〈ξ〉, and the average path length 〈l〉.

The first interesting observation is that the planar graphs yield significantly larger
values of 〈θ〉 than the nonplanar graphs. The peaks in the histogram Figure 4(a) for
the planar and nonplanar graphs are at 〈θ〉 ≈ 44.87◦ and 〈θ〉 ≈ 32.17◦, respectively.
There is a larger relative separation between the two peaks of the histogram for 〈θ〉
than for the rest of the measures. Let us put this in a quantitative context. Let us
define the percentage of variation between the maxima of the two peaks as v (%) =
100×(xh (planar)− xh (nonplanar)) / (xmax − xmin), where xh (· · · ) is the value of the
corresponding variable for the peak in the histogram, while and xmax and xmin are the
maximum and minimum values, respectively, of the variable x for the whole dataset
of 8-node graphs. For instance, for x = 〈θ〉, the values are xh (planar) = 44.87◦,
xh (nonplanar) = 32.17◦, xmax = 73.55◦, and xmin = 4.19◦. Then the percentages
of the variation between the maxima of the two peaks are 18.3% for 〈θ〉, 13.4% for
E, 9.7% for 〈Ω〉, and 7.7% for 〈l〉. As is obvious from Figure 4(c), this percentage
is zero for the communicability distance. We have repeated these experiments by
considering all the 261,080 connected graphs with 9 nodes, and the results are as
follows: 23.2% for 〈θ〉, 15.3% for E, 10.7% for 〈Ω〉, and 9.4% for 〈l〉. Thus, it is clear
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Fig. 5 Three maximal planar graphs with 8 nodes which have the smallest values of 〈θ〉. The graphs
are drawn as triangulations using Schnyder embedding [36]. Because the graphs are maximal
planar, adding any edge will make the resulting graph nonplanar.

Fig. 6 Three minimal nonplanar graphs with 8 nodes which have the largest values of 〈θ〉. The
graphs are drawn using the Schnyder embedding [36] and allowing the superposition of one
edge (marked in red thick line) whose removal will transform the graph into a planar one.

that the communicability angle not only shows the best separation between planar and
nonplanar graphs, but also has the largest increase in this separation when increasing
the number of nodes.

We can elaborate more on the relationship between planarity and the communi-
cability angle from the analysis of the connected graphs with 8 nodes: (i) No planar
graph has 〈θ〉 < 21.4◦. (ii) The planar graphs with the smallest value of 〈θ〉 corre-
spond to the maximal planar graphs. A graph is maximal planar, also known as a
triangulation, if the addition of any edge to it results in a nonplanar graph. Obviously,
these are the “least planar” of all planar graphs. Examples are given in Figure 5. (iii)
There is no nonplanar graph with 〈θ〉 > 55.065◦. (iv) The nonplanar graphs with the
largest values of 〈θ〉 are minimal nonplanar graphs. A minimal nonplanar graph is a
nonplanar graph for which every proper subgraph is planar, i.e., removing any node
or edge makes the graph planar. Again, these are the “least nonplanar” of all the
nonplanar graphs. Examples are given in Figure 6.

The previous results do not necessarily mean that the average communicability
angle characterizes the graph planarity, or vice versa, but instead that the planarity
is indeed an important ingredient of the spatial efficiency as measured by the com-
municability angle.

5.3. Communicability Angle and Graph Modularity. Modularity is a very im-
portant concept for the study of real-world networks. It refers to the property of
graphs with clusters of highly interconnected nodes but with poor intercluster con-
nectivity. Such clusters are usually referred to as communities in network theory and
are expected to play fundamental organizational roles in real-world networks, e.g.,
groups of proteins with similar actions and groups of people with common interests.

As a first example we construct random modular graphs in the following manner.
We generate random modular graphs with 1000 nodes and 50 modules. Then with
a fixed total edge density we systematically increase the proportion of edges within
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Fig. 7 Relationship between the Newman modularity index [33] and the average communicability
angle for random modular graphs with 1000 nodes and 50 modules. The total edge density is
0.01 and the proportion of intra- to intermodular edges varies from 0.1 to 0.95. The points
in the plot indicate the average of 100 random realizations. The line is to guide the eye.

modules compared to edges across modules. As this proportion of intramodular edges
to intermodular edges increases, the graphs become more modular in the sense previ-
ously explained. In order to capture the degree of modularity of these graphs we use
the Newman modularity index [33], which is defined as

(5.1) Q =

nC
∑

k=1

⎡

⎢

⎣

Ek

m
− 1

4m2

⎛

⎝

∑

j∈Vk

kj

⎞

⎠

2
⎤

⎥

⎦
,

where Ek is the number of edges in the kth module, nC is the total number of modules,
m the total number of edges, and kj the node degree.

In Figure 7 we illustrate the results of plotting the modularity of the random
modular graphs and the average communicability angle. As can be seen, as the
modularity tends to its maximum, the average communicability angle tends to 90◦,
indicating the decrease in the spatial efficiency of these graphs.

A network with such clusters has structural bottlenecks; that is, if small groups
of nodes/edges are removed, the network is disconnected into two or more relatively
large connected components. An extreme case is that of the dumbbell graphs Kn-Kn,
that is, two cliques of n nodes connected by only one edge; the removal of the edge
separates the network into two connected components of n/2 nodes each.

On the other hand, a superhomogeneous graph, which is usually referred to as
a good expansion graph, is characterized by the fact that every subset S with more
than n/2 nodes has a large boundary, which is the number of edges with one node
inside the set S and the other in S [34]. Expander graphs are characterized by having
a large spectral gap λ1 − λ2 of the adjacency matrix [2]; see [24, 29] for details.

What is important for the present subsection is that expanders are characterized
by their lack of modularity, i.e., the lack of tightly connected clusters which are poorly
interconnected by structural bottlenecks. In networks where λ1 ≫ λ2, we have the
following expression for the communicability angle:

cos θpq =
Gpq

√

GppGqq

≃ ψ1 (p)ψ1 (q) e
λ1

√

ψ1 (p)
2 eλ1ψ1 (q)

2 eλ1

= cos 0◦.(5.2)D
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(a) (b) (c) (d)

Fig. 8 The graphs with 6 nodes and 7 edges with (a) the largest and (b) the smallest average com-
municability angles. The same holds for the graphs with 8 nodes and 13 edges in (c) and
(d).

That is, the networks lacking any modularity are characterized by a very small value
of the communicability angle. On the other hand, in a network where λ1 is not
significantly larger than λ2, we make use of the expansions

GppGqq = ψ1(p)
2ψ1(q)

2e2λ1 +
(

ψ1(p)
2ψ2(q)

2 + ψ2(p)
2ψ1(q)

2
)

eλ1+λ2

+ ψ2(p)
2ψ2(q)

2e2λ2 + h.o.,(5.3)

Gpq
2 ≃ ψ1(p)

2ψ1(q)
2e2λ1 + 2ψ1(p)ψ1(q)ψ2(p)ψ2(q)e

λ1+λ2

+ ψ2(p)
2ψ2(q)

2e2λ2 + h.o.,(5.4)

where h.o. denotes the higher-order terms. The communicability angle is thereby
transformed into the form

cos θpq =
Gpq

√

Gpq
2 + (ψ1(p)ψ2(q)− ψ2(p)ψ1(q))

2
eλ1+λ2 + h.o.

.(5.5)

The second term in the denominator depends on the size of the spectral gap; the
closer λ2 is to λ1, i.e., the smaller the spectral gap, the larger the denominator is,
and consequently, the smaller (5.5) is. Therefore, the angle θpq becomes larger as the
spectral gap grows smaller. We should remark here that θpq does not depend only
on the spectral gap because the higher-order terms in (5.5) can make an important
contribution.

Let us give some examples that illustrate the above important relationship be-
tween the communicability angle and the graph modularity. Here we again focus on
〈θ〉. We first consider the dumbbell graph K3-K3 shown in Figure 8(a). It consists of
two cliques of 3 nodes each which are connected by a link, thus having 7 edges in total.
The average communicability angle for this graph is 〈θ〉 ≈ 57.105 and its spectral gap
is ∆ ≈ 0.682. Among the 19 graphs with 6 nodes and 7 edges, the dumbbell K3-K3

has the largest value of 〈θ〉. The smallest value of the average communicability angle
is obtained for the graph in Figure 8(b), having 〈θ〉 ≈ 47.935 and ∆ ≈ 2.284.

The situation is very similar for the 1,454 graphs with 8 nodes and 13 edges,
among which the dumbbell graph K4-K4 in Figure 8(c) has the largest average com-
municability angle 〈θ〉 ≈ 53.876 with the spectral gap ∆ ≈ 0.511. The graph with
the smallest value of 〈θ〉 is the so-called agave graph shown in Figure 8(d); it consists
of 2 connected nodes, each of which is also connected to the other n − 2 nodes that
are not connected among themselves. It has ∆ = 4.00 and 〈θ〉 ≈ 31.782. The graphs
with the second and third smallest average communicability angles, 〈θ〉 ≈ 35.123 and
〈θ〉 ≈ 35.606 with ∆ ≈ 2.988 and ∆ ≈ 3.337, respectively, have structures similar to
the agave graph. Notice that the agave graph can be disconnected by removing two
edges, but the remaining principal connected component has n − 1 nodes, while the
removal of 50% of the edges in this graph creates a principal connected component
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(a) (b) (c) (d)

Fig. 9 (a)–(b) Planar embeddings of the graphs in Figure 8(a)–(b), respectively, onto triangular
lattices. (c)–(d) Three-dimensional embeddings of the graphs in Figure 8(c)–(d), respectively,
onto close-packed lattices.

still containing 62.5% of the nodes. This shows the robustness of this graph to edge
removal, a characteristic of good expander graphs due to the lack of any structural
bottleneck.

Figure 9(a)–(b) shows planar embeddings of the graphs in Figure 8(a)–(b), re-
spectively, onto triangular lattices. The shadowed areas indicate the triangles covered
by the graphs in these embeddings. Although both cover the four triangles, the latter
graph, the one with the smallest average communicability angle, covers the most effi-
cient packing in two-dimensional space, which is the area with a node surrounded by
six others forming a hexagon. This is known as the penny-packing problem; see [22]
for further information. The embedding of the graph with higher modularity and the
largest average communicability angle is far from this optimal configuration.

A similar situation occurs with the graphs in Figure 8(c)–(d), the ones with the
largest and smallest 〈θ〉 among those with 8 nodes and 13 edges; Figure 9(c)–(d) show
their embeddings onto close-packed lattices. We can conclude from these observations
that a large average communicability angle indicates a poor spatial efficiency of the
graph, while a small value of 〈θ〉 is associated with the efficient use of space.

5.4. Communicability Angle and Graph Holes. Another characteristic of spa-
tial efficiency that is desirable to be captured by the average communicability angle
is the existence of holes. The presence of large holes in a graph obviously makes its
spatial efficiency very poor. For instance, let us consider a city in which all the streets
form an annulus such that the whole center of the city is empty. The density of streets
in that city is very small in comparison to what it is expected from the area occupied
by the whole city.

Here we propose to consider the Sierpinski graphs as a model of simple graphs
embedded in a Euclidean space such that the density of the graph decays with the
size. By the density we mean here the number of nodes divided by the area occupied
by the corresponding external triangle. Let us denote by

(5.6) �e1 = (1, 0, 0) , �e2 = (0, 1, 0) , �e3 = (0, 0, 1)

the canonical basis vectors of R3. The Sierpinski graphs are generated iteratively from
G0 = (V0, E0), where V0 = {�e1, �e2, �e3} and E0 = {(�e1, �e2) , (�e2, �e3) , (�e3, �e1)}. Then,
for Gk = (Vk, Ek) we have [37]

Vk>0 =
(

2k−1�e1 + Vk−1

)

∪
(

2k−1�e2 + Vk−1

)

∪
(

2k−1�e3 + Vk−1

)

,(5.7)

Ek>0 =
(

2k−1�e1 + Ek−1

)

⊎
(

2k−1�e2 + Ek−1

)

⊎
(

2k−1�e3 + Ek−1

)

,(5.8)

where ⊎ represents the disjoint union of sets. We illustrate in Figure 10 the Sierpinski
graphs G1, G2, and G3. The total area occupied by the graph is the area of the
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Fig. 10 The Sierpinski graphs G1,G2, and G3 (from left to right).
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Fig. 11 Plots of (a) the variation of the average communicability angle and (b) the spectral gap of
the adjacency matrix with the reciprocal of the density of the Sierpinski graphs. The lines
here are to guide the eye.

external triangle which has coordinates (2k, 0, 0) , (0, 2k, 0) , (0, 0, 2k). Notice that the
Sierpinski graphs G0 and G1 do not have any holes, G2 has a central hole of length
6, and G3 has a central hole of length 12 plus three holes of length 6. As the graph
grows, Gk has a central hole of length 2k−1 × 3 with more holes of smaller sizes, and
hence becomes more “spongy.”

We have created the Sierpinski graphs for k = 1, . . . , 7 and calculated their den-
sities, defined as the number of nodes divided by the area of the external triangle.
We illustrate in Figure 11(a) the relationship between the reciprocal of the density of
the Sierpinski graphs and the average communicability angle. For G1, which contains
no hole, the communicability angle is 〈θ〉 ≈ 37.96◦ although the graph is planar. As
the size of the graphs increases the average communicability angle quickly goes to
its maximum for simple graphs, e.g., 〈θ〉 ≈ 90◦ for G7, which has 3,282 nodes. The
results illustrated in Figure 11(a) agree with our intuition that the communicability
angle accounts for the spatial efficiency of graphs. A Sierpinski graph with a large
number of nodes containing very large holes (e.g., the graph G7 has a central hole
of length 192, as well as many other holes of smaller sizes) lacks spatial efficiency in
the sense of not using appropriately all the available space covered by the external
triangles. In order to understand mathematically this relationship we need to use the
concept of isoperimetric number (SI-2). We recall that a graph with a small isoperi-
metric number contains structural holes and/or bottlenecks, which are indications of
poor spatial efficiency. Thus, we should expect that a large Sierpinski graph has a
very small isoperimetric constant. Mohar [30] has found the following spectral bounds
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for the isoperimetric number of a graph:

(5.9)
1

2
(δ − λ2) ≤ i (G) ≤

√

∆2 − λ2
1,

where δ and ∆ are the minimum and maximum degrees of the graph, respectively,
and λj are the eigenvalues of the adjacency matrix in a nonincreasing order as before.
Consequently, for graphs with bounded maximum and minimum degree—such as the
Sierpinski graphs, where δ = 2 and ∆ = 4—the isoperimetric number is determined by
the spectral gap λ1−λ2. A large spectral gap indicates a large isoperimetric number,
while a small spectral gap indicates a small isoperimetric number. We illustrate in
Figure 11(b) the plot of the reciprocal of the density of the Sierpinski graphs against
the spectral gap of their adjacency matrices. As can be seen, the Sierpinski graphs
with small density, i.e., those with large number of nodes, have very small spectral
gaps, and consequently small isoperimetric numbers.

On the contrary, if a graph has a large spectral gap, i.e., (λ1 − λ2) → ∞, the
communicability function is given by

(5.10) Gpq → ψ1,pψ1,q exp (λ1) ,

which implies that

(5.11) θpq → 0◦ ∀p, q ∈ V.

That is, a large isoperimetric number indicates that the graphs have a large spectral
gap. At the same time, a large spectral graph indicates that the communicability
angle is very small for every pair of nodes in the graph. As we have seen a small
spectral gap, and consequently a small isoperimetric number, gives rise to a large
communicability angle as in the case of large Sierpinski graphs. This conclusion again
supports our idea that the communicability angle is a good indicator of the spatial
efficiency of a given network.

5.5. Conclusions of the Computational Analysis of Simple Graphs. The main
conclusion of section 5 is that the average communicability angle describes very well a
graph characteristic which represents their spatial efficiency. This is drawn from the
following observations. First, planar graphs are not spatially efficient graphs, they
have large average communicability angles. On the contrary, highly nonplanar graphs
more efficiently use the available space, but they have smaller values of 〈θ〉. Second, a
high modularity graph uses the available space less effectively than a low modularity
one, but high modularity graphs have relatively large values of the average commu-
nicability angle. Third, graphs containing structural holes, which are not spatially
efficient, display large communicability angles, while those having large isoperimetric
numbers and consequently good spatial efficiency have communicability angles close
to zero.

We should, however, be careful in analyzing more complex situations in which
combinations of properties, such as nonplanarity and modularity, or nonplanarity
and structural holes, are present. In general, we consider that graphs with relatively
small values of the average communicability angle exhibit higher spatial efficiency
than those with relatively larger values.

6. Communicability Angle in Real-World Networks. We start this section by
considering the average communicability angle of a series of 120 networks arising from
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Fig. 12 Histograms of the average communicability angle in 120 real-world networks with a bin size
of 9◦.

various scenarios. The networks are briefly described in the supplementary informa-
tion accompanying this paper, where references to the original datasets are provided.
The series includes networks in which the nodes and links are clearly embedded into
geometrical spaces, such as urban street networks, networks formed by animal nests,
brain and neural networks, and protein-residue networks as well as electronic circuits
and the Internet. It also includes networks in which the nodes and links can barely
be allocated to geographic positions, such as food webs, social networks, and software
networks. The biomolecular networks including protein-protein interaction and gene
transcription networks are also nongeographically embedded.

6.1. Global Properties of the Communicability Angle. The 120 real-world net-
works studied here cover the whole spectrum of values of the average communicability
angle from 〈θ〉 ≈ 10−5◦ for the food web of Shelf to 〈θ〉 ≈ 89.9◦ for the Power Grid
network of the western United States.

The average communicability angle of these real-world networks is not correlated
to the average path length, the communication efficiency, or the resistance distance
(see the supplementary information accompanying this paper). To mention an ex-
ample, let us consider the network of galleries created by ants and the collaboration
network associated with the Linux open-source software system (see the supplemen-
tary information for details). The first network is planar due to the fact that ants are
obliged to create their corridors and galleries in a very thin layer of sand. The sec-
ond is a highly nonplanar network. Both networks have the communication efficiency
E ≈ 0.24; according to this index the two graphs are equally efficient in transmitting
information, something hard to believe taking into account their different topologies
and functionalities. The average communicability angle, on the other hand, clearly
indicates the fact that the software network has a high spatial efficiency, as is indi-
cated by 〈θ〉 ≈ 3.47◦, while the ant network has a very low efficiency, as is indicated
by 〈θ〉 ≈ 85.51◦.

The histogram in Figure 12 shows two prominent peaks at 0◦ ≤ 〈θ〉 ≤ 9◦ and
81◦ ≤ 〈θ〉 ≤ 90◦. A more detailed view (not shown) indicates that the highest
frequency occurs at 0◦ ≤ 〈θ〉 ≤ 1◦, followed by one at 89◦ ≤ 〈θ〉 ≤ 90◦. That is, the
real-world networks are very polarized into the two extremes; either they have very
small values of the communicability angle, or very large ones.

Certain classes of networks have a large homogeneity in the values of the average
communicability angle. The 1997 and 1998 versions of the Internet at Autonomous
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System (AS) have average communicability angles of 0.78◦ and 0.42◦, respectively.
There is also a large homogeneity among the brain/neural networks, namely, the
visual-cortex networks of cat and macaque as well as the neural network of C. elegans,
which have 〈〈θ〉〉 = 1.77◦ ± 1.66◦, where the double brackets 〈〈· · · 〉〉 denote the average
value of the average communicability angles for a series of networks. In addition, the
classes of urban street networks formed by 14 networks and of protein-residue networks
formed by 40 networks also show remarkable homogeneity. For instance, the urban
street networks have 〈〈θ〉〉 = 86.07◦ ± 5.07◦ and the protein-residue networks have
〈〈θ〉〉 = 78.83◦ ± 7.28◦. The ranking of the 14 cities in the former is Barcelona < Rio
Grande < Yuliang < Chegkan < Atlanta < Berlin < Rotterdam < Hong Kong <
Mecca < Cambridge < Oxford < Ahmedabad < Milton Keynes. This means that in
terms of the effective communication among the different regions of the city, Barcelona
is the most effective, while Milton Keynes is the worst.

The homogeneity among the protein-residue networks is more unexpected than
that among the urban street networks because they represent three-dimensional (3D)
objects. Proteins are folded into 3D structures forming topologies consisting of a
mix of α-helices and β-sheets. They also have different shapes and sphericities. It is
therefore surprising that the protein-residue networks are characterized by very large
values of the communicability angle, which are more characteristic of planar or almost
planar networks, as demonstrated for the urban street networks.

Although we will return below to the relationship between the communicability
angle and the structure of proteins, let us make a comment here. The fact that pro-
teins are embedded into 3D physical space does not necessarily mean that their residue
networks are nonplanar. The same applies to other naturally evolving networks, such
as the networks of galleries and corridors formed by termite mounds, which are also
characterized by very large average communicability angles with 〈〈θ〉〉 = 88.33◦±1.01◦.
Although the mounds are constructed in 3D space, they are remarkably close to pla-
nar graphs; we have indeed found that by removing only 6% of the edges of these
networks the graphs representing them become planar. Both the termite mounds and
the protein-residue networks have certainly evolved in 3D space, but the networks
must be close to planar graphs for different ecological or biological reasons. In the
termite mounds a large volume of the 3D space must be used to produce the venti-
lation system necessary to discharge the carbon dioxide produced in its interior. For
proteins, structures close to planar ones are needed to avoid the high compactness that
destroys the internal cavities of the proteins needed for developing their functions; see
section 6.2 below.

On the other hand, the values of 〈θ〉 obtained for the software networks [31] are
unexpectedly heterogeneous. These networks yield 〈〈θ〉〉 = 57.6◦ ± 30.7◦ with values
ranging from 〈θ〉 ≈ 3.465◦ for Linux to 〈θ〉 ≈ 84.323◦ for XMMS. The ranking of
these networks in terms of the average communicability angle is Linux < MySQL <
VTK < Abi Word < Digital Material < XMMS. The classes of social and biological
networks consisting of 14 and 11 networks, respectively, also show relatively large
variability in their values of the communicability angle: 〈〈θ〉〉 = 55.8◦ ± 21.3◦ and
〈〈θ〉〉 = 63.3◦ ± 17.0◦, respectively. This is not surprising; we can easily associate it
with the diversity of networks in these classes.

What is really surprising is that the food webs, which form a very homogeneous
class of networks in terms of the relationships accounted for them, yield a relatively
large standard deviation in the values of the communicability angle: 〈〈θ〉〉 = 7.1◦±16.1◦

with values ranging from 〈θ〉 ≈ 10−5◦ for the marine system of Shelf to 〈θ〉 ≈ 78.356◦

for the web of the English grassland. The ranking of these food webs in terms of
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the average communicability angle is Shelf < Elverde < Skipwith < ReefSmall <
LittleRock < Stony < Coachella < Canton < Benguela < BridgeBrook < Ythan2 <
Ythan1 < StMartins < StMarks < ScotchBroom < Chesapeake < Grassland.

In terms of the individual values of 〈θ〉, the results obtained for these 120 networks
agree with our findings in the previous section. The largest average communicability
angles are observed for the Power Grid of the western United States and urban street
networks, which are planar or almost planar with both nodes and edges embedded
into a plane. On the other extreme of the smallest average communicability angles,
there are networks which are highly nonplanar, such as the U.S. air transportation
network, a world trade network, the Internet at AS, and brain/neural networks. All
these networks have nodes embedded into 2D or 3D spaces, such as cities, countries,
or organs, but the edges connecting them very efficiently use the available space. We
remark here that the small values of 〈θ〉 observed in some classes of networks do not
necessarily mean a high interconnection density. For instance, the U.S. airport trans-
portation network and the two versions of the Internet studied here have relatively
small edge densities, 0.039 and 0.0011, respectively.

6.2. Communicability Angle and Spatial Efficiency of Proteins. We have ac-
cumulated several pieces of empirical evidence that support the idea that the average
communicability angle accounts for the spatial efficiency of graphs. It is, however,
generally difficult to find quantitative measures of the spatial efficiency in real-world
networks to compare with the communicability angle.

An exception to this is provided by proteins, which are 3D objects characterized
by different degrees of packing or spatial efficiency. In this section we study the
relationship between the average communicability angle and the spatial efficiency of
the protein-residue networks for a group of 40 proteins whose 3D structures have been
resolved by X-ray crystallography and deposited in the protein databank (PDB) [5].
Here each node represents an amino acid in the protein and two nodes are connected
if the corresponding amino acids are separated by a distance of no more than 7Å in
the 3D structure of the protein, as determined experimentally [3].

A protein is a linear sequence of amino acids connected by peptide bonds. The
chain is folded into a 3D shape unique to each protein. While the amino-acid se-
quence forms the so-called primary structure of the protein, the 3D folding defines its
secondary and tertiary structures. The secondary structure is characterized by the
presence of α-helices and β-sheets, while the tertiary structure is formed by global
positioning of the secondary structure into a 3D shape that gives the protein its
globular-like structure [10]. The folding of the proteins is the consequence, grosso
modo, of two main necessities that the protein has: (i) protecting the hydrophobic
amino acids from their contact with water; and (ii) occupying a minimum space inside
the limited volume of the cell. Thus, the packing of a protein is related to its spatial
efficiency [20], which is responsible for many of its physico-chemical and biological
properties.

There are many ways of quantifying the packing of a protein, but here we consider
the following one. Let Ve be the volume of a protein which is expected from its
ideal 3D structure and let Vo be the volume which is actually observed in its X-ray
crystallography. We then define the relative deviation from its ideal volume as

P =
Ve − Vo

Ve
.(6.1)

Hereafter, we call P the relative packing efficiency of the protein. A positive value of
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Fig. 13 Linear correlation between the average communicability angle of proteins represented by
residue networks and the relative packing efficiency.

P means that the protein is more packed than is expected from its ideal 3D structure,
that it is highly efficient in using the 3D space, at least relative to the ideal structure.
A negative value of P , on the other hand, means that it is less packed than expected,
that it is not spatially efficient. We should mention here that values that deviate
strongly from the expected or ideal values can indicate possible problems with the
structure and as such should be discarded from the analysis.

Using computational techniques and VADAR software described in [38], we have
calculated the expected and observed volumes of the 40 proteins. We show in Figure 13
the relationship between the relative packing efficiency P and the average communi-
cability angle of the 40 proteins. The Pearson correlation coefficient is R = −0.837,
indicating a significant correlation between the two variables. We can summarize the
results as follows: (i) proteins with poor spatial efficiency, P < 0, have 〈θ〉 > 81◦;
(ii) those with high spatial efficiency, P > 0, have 〈θ〉 < 80◦. In other words, small
average communicability angles are related to high spatial efficiency of proteins, while
large average communicability angles indicate a poor use of space. We note in passing
that there are no proteins with 〈θ〉 < 60◦, which can be explained by the fact that
too much packing would make the internal cavities of the protein disappear [20]. The
internal cavities are responsible for the interaction of proteins with other biological
molecules and usually play a fundamental role in their functionality. In general, we
can conclude that proteins are spongy in a similar way to the Sierpinski graphs.

Possibilities which the communicability angle brings to the analysis of the struc-
ture of spatially embedded networks obviously go beyond the use of 〈θ〉. For instance,
the contour plot of the communicability angle for every pair of residues in a protein
can reveal important properties of its 3D structure. Figure 14 shows an example of
the protein with PDB code 1amm, which corresponds to the GammaB crystalline,
whose crystallographic analysis was carried out at 150K. This protein consists of two
α, β-domains, the first of which is formed by amino acids 1–83 and the second by
amino acids 84–174. The two domains are very well reflected in the contour plot
Figure 14(a) as two main diagonal blocks of relatively small communicability angles,
which indicates good internal communication in each domain.

6.3. Spatial Efficiency in Networks under External Stress. The communicabil-
ity function has been previously generalized to consider an external stress to which the
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Fig. 14 (a) Contour plot of the communicability angle between every pair of residues in the GammaB
crystalline protein with PDB code 1amm. (b) A cartoon representation of the protein with
PDB code 1amm in which the β-sheets are represented as arrows in yellow and the helices
as ribbons in magenta. This shows the existence of two domains.

network is submitted. This external stress is accounted for by means of the so-called
inverse temperature β ≡ (kBT )

−1
, where kB is a constant and T is the tempera-

ture [14]. This analogy results from supposing that the whole network is submerged
in a thermal bath of the inverse temperature β; see [16, 11] for details. After equi-
libration in the bath, all edges of the network acquire a weight equal to β. In other
words, we use the weighted matrix βA, where all edges have the weight β, instead of
the adjacency matrix, where the edge weights are ignored.

It is clear that when β → 0, i.e., as the temperature tends to infinity, the net-
work becomes disconnected and there is no communication between any pair of nodes.
This resembles a gas in which every node is an independent particle. On the other
hand, when β → ∞, i.e., the temperature tends to zero, the weights of every edge be-
come extremely large, which definitively increases the communication capacity among
the pairs of connected nodes. The temperature thus plays the role of an empirical
parameter which is useful in simulating effects of external stresses to which the net-
work is submitted, such as different levels of social agitation, economical situations,
environmental stress, variable physiological conditions, etc. Under this analogy, we
generalized the communicability function (2.2) into the form [14]

Gpq (β) =
(

eβA
)

pq
.(6.2)

It is straightforward to realize that the communicability angle between a given pair
of nodes is generalized to

cos θpq (β) =
Gpq (β)

√

Gpp (β)Gqq (β)
.(6.3)

Let us conduct a simple experiment to explore the possibilities which this em-
pirical parameter brings to the analysis of real-world scenarios. We use two urban
street networks representing the city landscapes of Rio Grande in Brazil and Yuliang
in China. Both cities have large values of the average communicability angle, i.e.,
low spatial efficiency, with 〈θ〉 ≈ 79.7◦ and 〈θ〉 ≈ 85.8◦, respectively. We then lower
the temperature and see if it increases the spatial efficiency of both cities, i.e., if it
decreases the values of 〈θ〉. In other words, we systematically increase β and compute
the average communicability angle 〈θ(β)〉. The increase in β here can be associated
with the average increment in the number of lanes per street in the city.
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Fig. 15 (a) Effects of the inverse temperature β on the average communicability angle in two urban
street networks, Rio Grande, Brazil (squares) and Yuliang, China (circles). (b) The same
for two visual-cortex networks: cat (circles) and macaque (squares).

Figure 15(a) shows the results. The city of Rio Grande dramatically improves its
spatial efficiency by increasing the average number of lanes of its streets. Although
the improvement for Yuliang is not so dramatic, there is still a decrease in the average
communicability angle of 20◦. The causes for the difference in the variation of 〈θ〉
with the temperature for different networks are not trivial, as there are likely to be
many structural factors involved. We do not investigate those causes here.

Here we should point out a metaphor that can help us to understand how the
change in the parameter β can change the spatial efficiency of a network. Suppose
that we analyze an urban street network formed only by streets of just one lane each.
The spatial efficiency of that urban street network can be dramatically improved if
we now change all the streets to have k > 1 lanes. This is exactly what the parameter
β is doing to the network and the result is the intuitive increase in spatial efficiency
of the whole system.

We next carry out the opposite experiment using two brain networks represent-
ing the cat and macaque visual cortices. The average communicability angle shows
that both networks have a great spatial efficiency, 〈θ〉 ≈ 0.22◦ and 〈θ〉 ≈ 3.52◦, re-
spectively. We now raise the temperature, i.e., decrease β, and see if it deteriorates
the connections in the visual cortices in terms of the average communicability angle
〈θ(β)〉. The decrease of β can be regarded as malfunctioning or disease.

Figure 15(b) shows the results. Both networks dramatically decrease their spatial
efficiency as β → 0; obviously, θpq (β = 0) = 90◦. We notice, however, that the cat
visual cortex is more resistant to the stress than that of the macaque. For β = 0.6, for
example, the former has 〈θ〉 ≈ 3.15◦, while the latter has jumped up to 〈θ〉 ≈ 29.9◦.

The influence of the inverse temperature can be summarized as follows. In the
limit β → ∞, we have Gpq → ψ1,pψ1,q exp (βλ1). This corresponds to the increase of
the good expansion properties of the network. We recall from previous sections that
for expanders the spectral gap λ1 − λ2 is very large, and consequently we have the
convergence above. This is exactly the effect that we see; when we increase β, the
networks become more spatially efficient, i.e., 〈θ〉 → 0◦. In the limit β → 0, on the
other hand, we have Gpq → 1, which implies that 〈θ〉 → 90◦. This is equivalent to
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dramatically reducing the capacity of each edge of transmitting information in the
network, which clearly decreases its communication and spatial efficiencies.

In closing, the use of the empirical parameter β allows us to simulate the effects
of external factors which can modify the spatial efficiency of a network. This brings
a modeling scenario to the assaying of strategies to improve the spatial efficiency of
networks or to analyses of their resilience to external stresses.

7. Conclusions. In the present paper, we introduced a new measure called the
communicability angle for networks. We have showed that this captures the spatial
efficiency of networks. In a network, the more abstract spatial efficiency refers to the
average quality of communication among the nodes. Such communication goodness
is quantified as the ratio of the amount of information successfully delivered to its
destination to the information which is frustrated in its delivery and returned to its
originators. This new paradigm is then mathematically formulated in terms of the
communicability angle between a pair of nodes. We have provided analytical and
empirical pieces of evidence which reaffirm the idea that the communicability angle
accounts for the spatial efficiency of networks.

The richness of this approach goes beyond the results presented here; there are a
few immediate directions of research in this area which can open new opportunities
for the analysis of networks. The use of the communicability angle for a pair of con-
nected nodes can be seen as an edge centrality measure which may reveal important
characteristics of individual edges in networks. The communicability angle averaged
over the edges incident to a given node can also represent a node centrality index
which indicates the contribution of the node to the global spatial efficiency of a net-
work. The study of the effects of the inverse temperature on the spatial efficiency
and the determination of the most important structural factors that influence it is of
tremendous practical importance. These studies will allow us not only to predict the
effects of external stresses over the spatial efficiency of a network, but also to assay
theoretical scenarios of improving this efficiency in certain classes of networks. Last
but not least, the new concept of communicability angle can bring new possibilities to
the mathematical analysis of specific types of graphs and properties, such as planarity
and graph thickness, among others.
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[4] M. Barthélemy, Spatial networks, Phys. Rep., 499 (2011), pp. 1–101. (Cited on p. 692)
[5] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N.

Shindyalov, and P. E. Bourne, The protein data bank, Nucleic Acids Res., 28 (2000),
pp. 235–242. (Cited on p. 709)

[6] J. M. Boyer and W. J. Myrvold, On the cutting edge: Simplified O (n) planarity by edge
addition, J. Graph Algorith. Appl., 8 (2004), pp. 241–273. (Cited on p. 700)

[7] E. Bullmore and O. Sporns, Complex brain networks: Graph theoretical analysis of structural
and functional systems, Nature Rev. Neurosci., 10 (2009), pp. 186–198. (Cited on p. 692)

D
o

w
n
lo

ad
ed

 1
2
/2

2
/1

6
 t

o
 1

3
0
.1

5
9
.8

2
.1

7
7
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

714 ERNESTO ESTRADA AND NAOMICHI HATANO

[8] A. Cardillo, S. Scellato, V. Latora, and S. Porta, Structural properties of planar graphs
of urban street patterns, Phys. Rev. E, 73 (2006), 066107. (Cited on p. 692)

[9] L. F. Costa, O. N. Oliveira, Jr., G. Travieso, F. A. Rodrigues, P. R. Villas Boas, L.

Antiqueira, M. P. Viana, and L. E. Correa Rocha, Analyzing and modeling real-world
phenomena with complex networks: A survey of applications, Adv. Phys., 60 (2011), pp.
329–412. (Cited on p. 692)

[10] E. Estrada, Characterization of the folding degree of proteins, Bioinformatics, 18 (2002), pp.
697–704. (Cited on pp. 692, 709)

[11] E. Estrada, The Structure of Complex Networks. Theory and Applications, Oxford University
Press, Oxford, UK, 2011. (Cited on pp. 692, 693, 711)

[12] E. Estrada, The communicability distance in graphs, Linear Algebra Appl., 436 (2012), pp.
4317–4328. (Cited on pp. 694, 695)

[13] E. Estrada, Complex networks in the Euclidean space of communicability distances, Phys.
Rev. E, 85 (2012), 066122. (Cited on p. 694)

[14] E. Estrada and N. Hatano, Statistical-mechanical approach to subgraph centrality in complex
networks, Chem. Phys. Lett., 439 (2007), pp. 247–251. (Cited on p. 711)

[15] E. Estrada and N. Hatano, Communicability in complex networks, Phys. Rev. E, 77 (2008),
036111. (Cited on pp. 693, 694)

[16] E. Estrada, N. Hatano, and M. Benzi, The physics of communicability in complex networks,
Phys. Rep., 514 (2012), pp. 89–119. (Cited on pp. 693, 694, 711)

[17] E. Estrada and D. J. Higham, Network properties revealed through matrix functions, SIAM
Rev., 52 (2010), pp. 696–714, doi:10.1137/090761070. (Cited on pp. 693, 694)
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