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Abstract 

Climate model ensembles are widely heralded for their potential to quantify uncertainties and 

generate probabilistic climate projections. However, such technical improvements to modelling 

science will do little to deliver on their ultimate promise of improving climate policymaking and 

adaptation unless the insights they generate can be effectively communicated to decision-makers. 

While some of these communicative challenges are unique to climate ensembles, others are 

common to hydro-meteorological modelling more generally and to the tensions arising between the 

imperatives for saliency, robustness and richness in risk communication. The paper reviews 

emerging approaches to visualising and communicating climate ensembles and compares them to 

the more established and thoroughly evaluated communication methods used in the numerical 

weather prediction domains of day to day weather forecasting (in particular probabilities of 

precipitation), hurricane and flood warning, and seasonal forecasting. This comparative analysis 

informs recommendations on best practice for climate modellers, as well as some further thoughts 

on key research challenges to improving the future communication of climate change uncertainties.  

 

While there is now a high degree of confidence that the global climate is changing and will continue 

to do so over the next century and beyond if current development trajectories continue 
1
, projecting 

exactly what will change, when, where, and by how much is necessarily an uncertain business, which 

is a challenge for those charged with adapting to climate change. Robust climate policymaking 



depends on climate scientists not only on improving the precision of their projections, but also 

effectively characterizing and communicating the associated uncertainties (and other limitations, 

such as ignorance and ambiguity)
2
. To meet that need, climate modellers are increasingly adopting 

so-called ‘ensemble’ prediction (EP) techniques 
3-5.  Rather than generating a single, ‘best-guess’ 

prediction, EP methods produce a suite of predictions, designed to represent the uncertainties 

associated with their forecasts. The many technical difficulties of ensemble climate modelling are 

well recognized, and there is an extensive scientific literature on them (reviewed by Hargreaves
6
). 

However, much less attention has been given to the question we focus on in this paper: how 

effective is the communication of climate projections using EP techniques? Technical improvements 

in the science are of only limited value if the information and insights they generate cannot be 

communicated to inform decision-making. The huge volume and complexity of information now 

generated by climate models
7
 make the communication challenges particularly acute. With climate 

EP still a relatively new field, there are opportunities to learn from the experiences in numerical 

weather prediction (NWP) where there is both a longer track record of communicating EPs and an 

established tradition of research evaluating different methods for visualising and communicating 

forecast information. 

Accordingly, in this paper we compare the communication of ensemble climate predictions with 

approaches used to communicate EPs from NWP. The paper is organised as follows. After an initial 

background discussion of EP and challenges  of their communication, the paper reviews methods for 

visualising climate ensembles before turning to experiences of communicating such probabilistic 

information in four domains of NWP application: probabilities of precipitation (and day to day 

weather), hurricanes, floods, and seasonal forecasting. In the penultimate section we distil some 

lessons for ensemble climate prediction from the research on those NWP domains, before 

concluding with broader recommendations for future research and practice. 

2. Ensemble Predictions and the Challenges of Communication 

An ensemble is a group of model simulations designed to explore one (or more) of the four main 

sources of uncertainty associated with the output of a simulator. In climate and other kinds of 

hydrometeorological modelling, uncertainties arise from four main sources: boundary conditions, 

initial conditions, model structure, and model parameters (see Further Reading), and the last quarter 

century has seen steady growth in the development and use of ensembles to explore their relative 

influence in different hydro-meteorological domains
1
. Boundary condition uncertainty is important 

in climate prediction due to the long timescales
8
, whereas initial condition uncertainty is dominant in 

NWP due to chaos
9
. Systematic explorations of boundary conditions with emissions scenarios have 

been standard for at least a decade
10

. Initial condition ensembles (here called ICEs) have been used 

in NWP since 1992
10

 and, to a lesser extent, in climate prediction
1, 5

. Structural uncertainty has been 

explored with multi-model ensembles (MMEs) since the first global coupled climate model 

intercomparison project (CMIP) in the mid 1990s
7
, and parameter uncertainty has been explored 

with perturbed parameter ensembles (PPEs) for the last decade
3
. Nevertheless, there are still 

philosophical debates among frequentists and Bayesians about the interpretation of climate 

ensembles
11-16 

. These debates are beyond the scope of this paper, except where it affects choices 

about how to visualise and communicate their results. 



 

Figure 1: The three properties of communication 

We argue that efforts to visualise and communicate EPs can be understood as involving three 

distinct properties: richness (amount of information communicated), robustness (the fidelity of the 

EP and the degree to which this is communicated), and saliency (interpretability and usefulness of 

the communication to a particular user). These may be viewed as a 3-dimensional space (Figure 1) in 

which the location of any given communication method depends on both design choices made and 

the limitations of the underlying EP. Our focus here is on the qualities of EP visualisation and 

communication, rather than on those of the underlying EPs themselves. But it is important to 

recognize that EPs are themselves representations, and might also be evaluated in terms of their 

richness, saliency, and robustness.  

These three dimensions of communication are interlinked and often in tension. Some users may 

demand increases in informational richness (e.g. a full probability distribution rather than a range) 

that impact the ability of others to understand or use the information. Likewise concerns with 

robustness (e.g. limitations and ambiguities of the EP) might require reduced informational richness, 

given that highly contested or incomplete predictions should not be communicated with 

unwarranted precision. Such alterations in richness, in turn, also affect perceptions of saliency, 



potentially decreasing it for users who want access to particular predictions, or increasing it for 

those who prefer simple, unambiguous results. 

To manage these tensions, the IPCC has gone to great pains to ‘calibrate’ the language of its 
assessment reports. Guidance notes (most recently Mastrandrea et al.

17, 18
)  ascribe more precise 

definitions to expressions of qualitative ‘confidence’ (such as very high, for findings with high 
agreement and robust evidence) and quantitative ‘likelihood’ (such as very likely, for probability in 

the range 90-100%) that past research had found to be misleading or otherwise liable to multiple 

interpretation
19, 20

. Our imperative of communicating ‘robustness’ broadly corresponds to this 
‘confidence’, but incorporates the possibility of experts confidently communicating results that are 
not completely robust (discussed later). While such improvements in the clarity of the language of 

uncertainty are certainly welcome, these qualitative expressions are insufficient for communicating 

the wealth of quantitative information generated by climate ensembles. For this scientists have 

devised a number of visualisations, which balance the three imperatives in different ways. 

3. Challenges and methods of visualising ensemble climate projections 

The task of communicating ensemble climate projections involves a number of challenges that stem 

from what may be termed the ‘deep uncertainties’ (e.g. Kandlikar et al.,
21

) unique to this particular 

domain of numerical modelling. Unlike NWP, for example, future boundary conditions for climate 

projections are not simply uncertain, but fundamentally indeterminate insofar as they depend on 

future choices and behaviour. While the effects of different development pathways on future 

atmospheric greenhouse gas concentrations can be modelled using scenarios, those scenarios 

represent potential futures to which no relative probabilities can be assigned. In other words, future 

climate can only be projected (“what would happen if”) and not predicted (“what will happen”), as 
weather can be.  



 

Figure 2: C1, Multi-model global means (solid lines) and ±1 standard deviation range of individual model 

annual averages. (©IPCC
1
). By permission of Cambridge University Press. C2, Probability density of the 

strength of the Meridional Overturning Circulation. (Challenor et al.
22

, © Oxford University Press 2010). By 

permission of Oxford University Press. C3, Changes in 20 year-mean surface air temperature over the 

HadSM3 grid box corresponding to Wales, in March, in response to doubled CO2. (UKCP09, © UK Climate 

Projections, 2009). C4, Relative changes in precipitation (%) for the period 2090–2099, relative to 1980–1999 

(©IPCC
1
). By permission of Cambridge University Press. C5, New mapping technique illustrating change in 

precipitation (similarly to C4) with hues and percentage model agreement across the ensemble with 

saturation. (©Kaye et al.
23

). 

Furthermore the long temporal horizon of climate limits the number of ensemble members (due to 

computational expense) and, more importantly, does not allow ensemble predictions to be 

calibrated with repeated testing against observations (as is possible in NWP). These slow scientific 

progress in understanding of key climate processes such as the carbon cycle. The challenges of 

communicating these ‘deep’ scientific uncertainties in climate modelling are compounded by 
additional societal factors that complicate communication. First, climate science is heavily 

politicised. Special interest groups seek to advance their political cause by amplifying or dampening 

scientific uncertainties in line with their policy proclivities, and research has shown that those 

political biases also reinforce the way people seek out and credit new information about risk
24, 25

. 



Second, in the case of climate change it is not just scientific literacy that is a requirement; statistical 

understanding is also required to appreciate, for example, the effects of a two degree change in 

global mean temperature when diurnal and seasonal temperature variations are much greater. 

Third, the problems of long timescales and unknown future greenhouse gas concentrations increase 

the difficulty in communication not only to non-technical audiences
18

 but also experts from other 

fields in which model calibration and prediction are more straightforward
19

.  

To meet those challenges, it is important to strike the right balance between our three properties of 

representation. First, selecting the appropriate degree of richness with which to represent very high 

dimensional probabilistic information on a two dimensional surface involves choices about 

dimensional reduction (for the outputs of interest) and level of detail (for the uncertainties 

explored).  These choices must be made with an eye to their implications for both user saliency and 

the degree of robustness 
11, 17, 26

. Dimensional reduction and representation are relatively 

straightforward and involve the selection of variables and aggregation of spatio-temporal 

dimensions, although care must be taken not to disguise model inadequacy in the process: for 

example, plotting contours rather than ‘blocky’ maps could give the impression of the model 

resolution being greater than it is, and therefore suggests predictions are more precise. The choice 

of the level of detail is more complicated, as the four aspects of uncertainty (see Section 2) must also 

be summarised with robustness in mind. ICEs may be averaged, but emissions scenarios cannot 

because they represent distinct plausible futures with no relative probability assessment. Simple 

averaging of perturbed parameter and multi-model ensemble results is not straightforward, because 

it relies on good ensemble design in a well-defined space, which may not be the case for PPEs and is 

never the case for MMEs. The amount of information extracted from an EP can range from a full 

probability density function (pdf) to a histogram, an interval or percentile range, an order of 

magnitude estimate, a sign estimate, or a statement of complete ignorance
17, 21

. Inevitable tensions 

arise between the needs of non-technical users and the risks of over-simplification of results. An 

example of dimensional reduction is shown in Figure 2, C1, compared with the more complete 

representation of time-evolving uncertainty shown in Figure 2, C2. The UK Climate Projections show 

a full pdf but also the original histogram on which it is based (Figure 2, C3). 

Second, ‘robustness’ involves communicating the degree to which the EP is judged to represent 
reality: this judgement is based on an assessment of the type, amount, quality and consistency of 

evidence (including observations, models and theory), and the degree of agreement among experts 

(i.e. consensus) about its interpretation (e.g. expert elicitation 
27, 28

). Communication of robustness is 

particularly important in climate science, because ensembles cannot be calibrated in the same way 

as they are in NWP. Weather forecast uncertainties can be stated in terms of the average frequency 

of error against observations, but climate projection uncertainties must be represented in terms of 

expert assessment of the degree to which the model represents reality
6
. We separate robustness 

from confidence not only for the reasons described earlier but also because the latter is often used 

for the degree of ensemble agreement. For example, Figure 2, C4 shows ensemble agreement by 

overlaying a MME mean precipitation field with stippling in the regions where more than 90% of the 

model predictions have the same sign. Alternatively, a finer scale of agreement can be shown by 

using colour saturation (Figure 2, C5). Notably, neither gives an indication of the degree to which the 

EP adequately samples uncertainties.However, satisfying this robustness requirement by adding 

information richness will impact upon the salience for some users. However, satisfying these 

robustness requirements by adding information richness may impact saliency for some users. 



Third, ensemble communications should also be tailored to different users for saliency, taking into 

account user understanding and their requirements, as research suggests that users have sometimes 

struggled to see the relevance of climate ensembles for their purposes 
29, 30

. An innovative 

visualisation designed for a non-expert audience is the ‘migrating state’31
, in which several 

northeastern US states ‘hop’ to more southern latitudes to demonstrate the potential future shift in 
local climate for two different emissions scenarios (Figure 3, C6), but the lack of information on 

robustness might frustrate an expert or sceptical audience. Another example that makes use of 

everyday experiences is a thermometer, with ranges of uncertainty for two different emissions 

scenarios (Figure 3, C7). The statistical nature of climate has prompted many attempts to 

communicate uncertainty in terms of betting odds: for example, interactive roulette wheels of 

future temperature change for two emissions scenarios (Figure 3, C8). Visualisations typically use 

colour to represent a dimension, but for general audiences care must be taken to consider colour 

vision impairment; useful guidance is given by Kaye et al.
32

. 

There has been little research on the effectiveness of these visualisations
33, 34

,
 
unlike in NWP to 

which we now turn for comparative insight. Given the similarities between two fields, it follows 

there may be something to learn from these experiences. 

 

Figure 3: C6, Moving state graphic; C7, Thermometers showing projected temperature increases, both from 

Frumhoff et al. 
31

 © 2007 Union of Concerned Scientists). By permission of Union of Concerned Scientists. 

C8, Roulette-style spinning wheels to depict estimated probability. Accessed 27th Feb 2012 from 

<http://globalchange.mit.edu/resources/gamble>. By permission of MIT Global Change Program. 

4. Communicating ensembles from Numerical Weather Prediction  



Despite the differences between NWP and climate ensembles there are obvious similarities in the 

communication challenges given there is considerable overlap in the underlying physical processes 

and the resulting uncertainties about their prediction, as well as many of the same societal pressures 

for greater accuracy and clarity. In this section we discuss some of the communication methods of 

NWP. 

4.1. Site-specific weather forecasts  

There is a long history in public weather forecasting of communicating probabilistic information. In 

the US, for example, quantitative Probability of Precipitation (PoP) forecasts have been provided by 

the National Weather Service since the 1960s
2
. Probabilities were initially calculated using statistical 

methods, but in the 1990s NWP ensemble techniques were adopted
11

, and ensembles are now in 

wide use internationally for operational weather forecasting.  

While ensemble models generate information about a host of multidimensional weather properties, 

the chance of (any) rain is the most widely available probabilistic NWP forecast product, with likely 

precipitation amounts and their spatio-temporal distributions much less common. This percentage 

chance of rain is typically presented in terms of the PoP for a given location and represented as a 

number (Figure 4, W1), sometimes accompanied by a graphic (Figure 4, W2 & W3). Bar charts of 

PoP, such as Figure 4, W4, should be avoided so that probability is not confused with forecasts of 

rainfall amount. Rarely is the amount of rainfall specified (Figure 4, W5). 

Because PoP is the most widely available probabilistic NWP forecast product, its communication and 

public understanding have been studied more than other forecast products. Much of this published 

literature has focussed on whether people have understood the reference class for PoP, that is, (in 

most cases) the probability of any rain falling somewhere in a given area over a particular period of 

time
35-38

. Misunderstandings arise where people confuse the probability with areal or temporal 

coverage, for example believing a 30% PoP to means that it will rain over 30% of a specified area, or 

for 30% of the time. Studies have documented wide variations in the proportion of survey 

respondents able to identify the technically correct definition of PoP, from less than from 20%
37

 to 

nearly 80%
36

. While some of this variation can be attributed to small sample sizes and differences in 

survey design
37

, Gigerenzer et al. 
35

 used a consistent method to compare understanding of PoP in 

five cities and found significant differences in understanding that could not be attributed to an 

individual’s length of prior exposure to probabilistic forecasts. However Morss et al. 
37

 question the 

significance of these artificial tests of people’s ability to provide a technically correct definition of 
PoP. They argue that what really matters is the ability to form interpretations of PoP that, while 

perhaps not technically correct, still help them to people better decisions.  Despite well documented 

problems with misinterpretation, particularly of the reference class, surveys consistently show that 

most Americans value PoP forecasts as salient for everyday decisions, like whether or not to bring an 

umbrella
37, 39

.  

The choice of format for presenting uncertainty information influences its understanding, and there 

is heated debate amongst risk communication experts about the merits of different approaches
40, 41, 

42
. In contrast to medical risk communication

43
, Joslyn and Nichols

44
 find that conditional probability 

(e.g. 10%) of PoP was easier for experimental subjects to understand than natural frequency (e.g. 1 

in 10), even when a reference class was specified (e.g. it will rain in 1 out of every 10 days like this). 

This finding is replicated by the survey research of Morss et al.
37

, who found a clear preference 



among survey respondents for a percentage or non-numerical text rather than the communication 

of PoP in terms of relative frequency as often recommended for the communication of medical 

risks
40, 41

 (although there is still some dispute, see Woloshin and Schwartz
45

). To build on the 

frequency versus probability debate in the communication of uncertainty, Joslyn et al. 
44

 used an 

experimental design to look at the effects of specifying the probability of no rain as well as visual 

representations of uncertainty (e.g. a pie icon, see Figure 4, W4) on the understanding of PoP. They 

found that inclusion of the chance of no rain significantly lowered the number of individuals making 

reference class errors. There was also some improvement when the pie icon was added to the 

probability, which they suggested subtly helps to represent the chance of no rain. Given the wide 

use of such icons in the media, Joslyn et al. called for more research on the communicative value of 

such icons and other visualisations of probability. With this in mind, the UK Met Office devised an 

online game to test ways of presenting PoP. Results suggest that decision making ability is no 

different between participants presented with only conditional probability, and those with 

conditional probability and a bar graphic (Figure 4,W2)
46

. 

Presentation of the temperature ensemble forecast (e.g. Figure 4, W5 & W6) has received much less 

attention, largely because it is less frequently provided by meteorological agencies. Laboratory 

studies of students in the US and UK
47-49 

show that people who are presented with temperature 

uncertainties are better able to make decisions on risk and reward than those without. In the study 

of Roulston et al.
48

, those information about the standard error performed significantly better than 

those without (similarly Roulston and Kaplan
49

). Joslyn and LeClerc 
47

 replicated these results and 

also found that participants provided with uncertainty information outperformed even those who 

were given categorical advice about the optimal course of action given the uncertainty. This 

experimental study provided the first empirical support for the claim often made about ensembles 

that people can make better decisions if given uncertainty information. It also suggested that 

increasing the richness of uncertainty information may increase trust as those presented with the 

uncertainty forecasts rated them as significantly more trustworthy than those presented with just 

the deterministic forecasts (although this result should be put into the context of the experimental 

laboratory setting). 

Research on the best methods for communicating uncertainty in NWP has focussed on site-specific 

forecasts, where only a single probability or uncertainty distribution, perhaps with some additional 

temporal resolution, is communicated. However, the information that most users are presented 

with, at least initially, is usually some kind of synoptic weather prediction across a geographic area 

(for example, on a television weather forecast), but there has not been much published research to 

date on how best to visualize the spatial distribution of PoP or other probabilistic weather products. 



 

Figure 4: W1, PoP with no graphic, from wunderground.com forecast for Des Moines, IA, US.  Accessed from: 

http://www.wunderground.com/q/zmw:50301.1.99999. W2: PoP with probability bar graphic for Sydney 

from the Bureau of Meteorology, Australia. Accessed from 

http://www.bom.gov.au/nsw/forecasts/sydney.shtml. W3: PoP with probability pie charts, University of 

Washington Probcast. Accessed from: http://probcast.washington.edu/. W4: PoP with probability bar, note 

how vertical bar and blue colour might cause confusion with the amount of rain. Accuweather, accessed 

from: http://www.accuweather.com/en/us/new-york-ny/10017/weather-accupop/3712pc. W5: Time series 

showing 50% and 80% probability range for temperature and precipitation amount, Norwegian 

Meteorological Institute. Accessed from: http://www.yr.no/place/Norway/Oslo/Oslo/Oslo/long.html. W6: 

Temperature range bar, showing 90% range for predicted maximum (and minimum in separate tab) 

temperatures. UK Met Office, accessed from: 

http://www.metoffice.gov.uk/public/beta/weather/forecast/?tab=fiveDay&dayIdx=0&locId=350610. 

4.2. Hurricane Forecasts 

Hurricane forecasting is perhaps the only area of EP where communication of spatial information has 

been carefully studied. The risk of hurricanes means that eye-catching graphics are widely adopted 

by the media: 57%-68% of survey respondents said the US National Hurricane Centre ‘Cone of 
Uncertainty’ (Figure 5, H1) was “very important” in their decision to evacuate

50
. However, this 

graphic has been revised since its inception in 2000 in response to important lessons learned about 

its effectiveness. In particular members of the public often focused on the forecast track line and 

failed to appreciate both the uncertainty about it or the statistical meaning of the wider ‘cone’ of 

uncertainty about its projected course. As a result people living in the forecast cone but not near the 

track incorrectly consider themselves safe from harm
50

. Another problem was that viewers often 

failed to understand that the hurricane would affect a much larger area than just the cone depicting 

the uncertainty about the track of the eye of the storm, whose sphere of influence was many times 

greater
51

.  

http://www.wunderground.com/q/zmw:50301.1.99999
http://www.bom.gov.au/nsw/forecasts/sydney.shtml
http://probcast.washington.edu/
http://www.accuweather.com/en/us/new-york-ny/10017/weather-accupop/3712pc
http://www.yr.no/place/Norway/Oslo/Oslo/Oslo/long.html
http://www.metoffice.gov.uk/public/beta/weather/forecast/?tab=fiveDay&dayIdx=0&locId=350610


Research into the Wind Speed Probabilities graphic has also raised questions about its interpretative 

flexibility and robustness. Some recipients interpret it as an indication of storm strength, storm 

extent, spatial hazard (rather than risk), or storm evolution over time, rather than the probability of 

a particular wind speed over a given time period 
51

. Further, following a survey of Hurricane Ike 

survivors, Morss and Hayden
52

 registered doubts about the effectiveness of the underlying Saffir-

Simpson storm scale metric since many people mistakenly believed it referred to storm risk and 

therefore did not evacuate when warned of a Category 2 storm with a large storm surge. There are 

clear indications that consideration should be paid to potential misinterpretation of the language 

used to describe hurricanes: for example, scientists use ‘growth’ to describe an increase in storm 
intensity, but this understandably leads to misinterpretations of storm size, and when storm size is 

presented as a radius it is often confused with diameter 
51

. 

Although roughly half of the participants in small ‘draw and tell’ focus groups said they would look at 
forecast graphics in the event of an approaching hurricane, Eosco 

53
 found that people presented 

with raw model forecast ‘spaghetti’ tracks (Figure 5, H2) were confused over ‘which one to believe’. 
Indeed, Broad et al. 

50
 note that the cone of uncertainty graphic was misinterpreted even in 

educational publications. It follows there is a need for rigorous pretesting of forecast graphics 
54

, as 

well as ongoing evaluation so problems can be identified and improvements made. 

 

Figure 5: Figure H1: Spaghetti plot showing hurricane tracks. ABC Weather, accessed from: 

http://www.wjla.com/blogs/weather/2011/08/hurricane-irene-path-projections-spaghetti-style-

12544.html. Figure H2: Hurricane Cone of Uncertainty, note that the estimated ‘best forecast track’ has now 
been removed to avoid confusion. National Hurricane Center (US), accessed from: 

http://newsfeed.time.com/2011/08/26/hurricane-irenes-path-how-do-forecasters-predict-the-cone-of-

uncertainty/ 

4.3.  Flooding 

Building on nearly two decades of operational use in NWP, there is now growing international 

interest in developing coupled hydro-meteorological ensemble prediction systems (HEPS) for 

operational flood forecasting and warning 
55

. Quite apart from the technical challenges involved 
56

, 

another reason uptake has not been faster is that operational agencies are uncertain about how to 

communicate and use the resulting ensembles in flood incident management
57, 58

. Several studies 

have documented divergent views among practicing hydrologists about the most important 

http://www.wjla.com/blogs/weather/2011/08/hurricane-irene-path-projections-spaghetti-style-12544.html
http://www.wjla.com/blogs/weather/2011/08/hurricane-irene-path-projections-spaghetti-style-12544.html
http://newsfeed.time.com/2011/08/26/hurricane-irenes-path-how-do-forecasters-predict-the-cone-of-uncertainty/
http://newsfeed.time.com/2011/08/26/hurricane-irenes-path-how-do-forecasters-predict-the-cone-of-uncertainty/


information to extract from HEPS (i.e. ensemble mean, max/min values, summary statistics, 

hydrographic time series, etc.) and the appetite and ability of non-forecasters to make sense of it 
59-

62
. Though it is much less remarked upon than the challenges of communicating to the lay public (but 

see Faulkner 
63

), communication of HEPS among hydrological experts and civil protection authorities 

is no less important, as intensive computational requirements mean that operational HEPS are likely 

to involve a central hub responsible for disseminating HEPS outputs to regional offices with 

responsibility for local forecasting and warning. In this context, nominally 'expert' hydrologists based 

in regional offices stand in the same relationship to HEPS as the lay public at large: dependent upon 

external information from a central HEPS that they are asked to take on trust without necessarily 

being able to interrogate it for themselves directly. 

The European Flood Alert System (EFAS) is one of the longest running operational HEPS 
64

, having 

issued alerts on an experimental basis since 2005. Driven by the 51 member ECMWF ensemble, the 

EFAS models water balance at a 5km grid scale, and issues alerts to cooperating national forecasting 

agencies for 3-10 days ahead when critical thresholds are exceeded. EFAS alerts combine textual 

description of the synoptic situation with threshold exceedance maps in which pixel colours 

represent the level of EFAS threshold exceedance for that location and tabular information 

summarizing the number of ensemble members exceeding different EFAS threshold levels (Figure 6,  

F1), while a password protected website provides registered users with access to additional 

information. Independent research found warm support among EFAS users for tabular presentation 

of EFAS ensembles in terms of natural frequencies, which were seen as clear and easy to 

understand, but users also wanted greater richness and in particular conventional hydrographs, 

which effectively show the temporal evolution of flows (observed and projected) at a point, showing 

EFAS streamflow forecasts in m
3
/s, so as to understand the temporal evolution of the EFAS forecast 

and to enable comparison with their own, locally determined forecasts 
59

. However hydrographs 

were not initially provided by EFAS, partly because difficulties securing consistent European-level 

data for error correction and calibration meant that the EFAS hydrographs were not robust when 

compared with observed values, but also because of the desire to reinforce the institutional 

distinction between the role of EFAS as an early warning system, for which the salient information is 

threshold exceedance rather than precise prediction is key, and that of national agencies responsible 

for issuing more detailed, local scale flood forecasts
65

. In response to user feedback, EFAS is now 

generating hydrographs for those locations where sufficient data is available 
66

, using a plume graph 

of the uncertainty in the error-corrected forecasts to supplement the tabular display of the number 

of threshold exceedances. 

This tabular format has since been adopted to visualize ensemble flood forecasts in Switzerland 
67

. 

An evaluation by Frick and Hegg 
68

 found that Swiss civil protection officials valued probabilistic 

information from HEPS and judged their own understanding of it to have been improved through 

cartographic and tabular visualizations. However, uncertainty information did not lead to observable 

or self-reported improvements in the quality of their decisions over the course of the five month 

study period. Similarly Demeritt et al. 
60

 found reluctance among hydrologists and civil protection 

authorities to act on probabilistic warnings from HEPS.  

One explanation for this hesitancy is that it stems from cognitive difficulties in interpreting the 

content of complex, information-rich HEPS forecasts. For instance, Priest et al. 
69

 found that in the 

UK emergency responders often could not understand the differences between various probabilistic 



forecast products, and struggled to interpret even the very simplified form in which the Met Office's 

Extreme Rainfall Alerts and Flood Guidance Statement was communicated using a traffic light-based 

framework (Figure 6, F2); similar traffic light-based ‘vigilance’ maps are used by SCHAPI and Meteo 

France (Figure 6, F3). Reflecting a more general predilection in the UK for various kinds of ‘risk-

based’ policymaking70, 71
, the UK is unique in trying to incorporate a measure of potential impact as 

well as probability of occurrence in its flood and severe weather warnings. Other European HEPS 

platforms stick strictly to communicating the probability of occurrence
67

. However, in a series of 

focus group exercises with European hydrologists about their preferences for HEPS warning formats, 

Pappenberger et al. 
62

 found some support for the idea that flood forecasts should ideally 

incorporate some measure of vulnerability and impacts, along with other information about current 

observations and past model performance, but found little consensus on the best way to visualize 

HEPS. There was support for hydrographs, but a range of views about the appropriateness for 

different audiences of providing a full 'spaghetti' style graph of all ensemble members  (e.g. Figure 6, 

F4) as opposed to reduced form visualisations such as the ensemble mean and the 10% and 90% 

confidence intervals provided in Austria on the publicly accessible website (Figure 6, F5). 

While training and improved visualization might overcome these cognitive obstacles to acting on 

HEPS, research has also identified a set of organizational and political obstacles to doing so 
65, 72

. 

Probabilistic forecasting not only communicates forecast uncertainty but the very provision of that 

information also serves to shift responsibility for managing that uncertainty from forecasters onto 

forecast recipients. While this shift is sometimes welcomed as empowering local decision makers, it 

can also challenge the existing structures and organizational cultures for emergency planning and 

response, which, particularly in Napoleonic code countries, like Germany
73, 74

, can involve highly 

legalistic standards for public safety and rigid response protocols based on binary distinctions 

between normal conditions and an exceptional state of emergency requiring extraordinary 

response. In this context civil protection authorities may well demand deterministic predictions 

issued at high degrees of certainty, and forecasters, in turn, see it as their professional duty to 

provide iron-clad deterministic predictions, rather than some probabilistic forecast of the likelihood 

of error
60

. 



 

Figure 6: F1, EFAS forecast for southern Poland. Courtesy of EFAS, Joint Research Centre, European 

Commission, Ispra, Italy. F2, Flood Guidance Statement, joint Met Office / Environment Agency Flood 

Forecasting Centre. F3, the Vigicrues flood risk used by the SCHAPI (Service Central d’Hydrométéorologie et 
d’Appui à la Prévision des Inondations/ Central Service for Hydrometeorology and Flood Prediction Support) 

in France. F4, spaghetti plot of forecasted precipitation, Austrian Fire Service & Civil Defence Early Warning 

Centre and F5, their publicly accessible simplification of the uncertainty. 

4.4. Seasonal Forecasts 

Seasonal forecasts sit somewhere between the standard NWP forecasts and climate projections; 

there is some degree of calibration but with a shorter observational record. Seasonal forecasts do 

not need to take into account emissions scenarios, but show less skill than weather prediction, and 

consequently can usually provide only information about broad trends compared to a background 

climatology.  

In the UK, the communication of seasonal forecasts has been the subject of much criticism following 

the infamous ‘barbecue summer’ forecast of 200975
. Although the words ‘likely’ and ‘chance’ were 

used by the forecaster, the phrase ‘barbecue summer’ in the press release suggested that weather 
would be hot and sunny (though the forecast itself only referred to temperatures). Both the 

uncertainty information and the reference class for the forecast were not communicated, with 

headlines declaring “Britain will have first decent ‘barbecue summer’”. When the UK suffered 
sustained and heavy precipitation during this period, the UK Met Office was heavily criticised

76
, and 

as a consequence no longer communicates these forecasts to the public. Taking a more cautious 



approach, the Met Office now provides a 1-month and 3-month outlook for Civil Contingency 

Planners on its website (Figure 7, S1) which, in presenting the separate ensemble members against 

past observations, is quite open about the uncertainty and the forecast capabilities. There is also 

detailed user guidance available on the website, which has been accompanied by briefings to 

individual customers.  

Recent research found that emergency responders in the UK did not find these new ways of 

presenting seasonal forecasts to be particularly compelling. As a result they were often ignored, 

partly because of concerns about the skill and robustness of the seasonal forecasts themselves, but 

also because the coarse spatio-temporal resolution (chosen to convey the lack of robustness) meant 

the forecasts did not provide information at scales salient for operational decision-making
72

. 

In the USA the National Weather Service (NWS) has adopted a slightly different approach for 

presenting seasonal EPs of temperature, precipitation and hurricane activity. Perhaps reflecting the 

NWS’s larger forecast area, isoline maps are used to present a seasonal outlook (Figure 7, S2) for the 

probability of the next three months being above or below the climatological average, with more 

detailed information for specific states and a detailed guide for non-technical users also provided. 

Hartmann et al. 
77

 and Power et al. 
78

 describe some considerations of communication of seasonal 

forecasts in more detail. The approaches adopted by the NWS and Met Office, the former 

categorising the predicted trend, and the latter presenting the full distribution, reflect lessons learnt 

from oversimplification of the forecast, and the need to ensure uncertainties are not ignored in the 

communication process. It will be interesting for both the NWP and climate communities to monitor 

the success of these communications, particularly in the backdrop of the UK Parliament demanding 

better communication of uncertainties
79

. 

 

Figure 7: Figure S1: 1-month and 3-month UK outlook for temperature in the context of the observed 

climatology. UK Met Office Seasonal Outlook, http://www.metoffice.gov.uk/publicsector/contingency-

planners 



Figure S2: National Weather Service, monthly to seasonal outlooks, 

http://www.cpc.ncep.noaa.gov/products/predictions/long_range/lead01/off01_temp.gif 

5. Discussion 

While the challenges of communicating climate EPs are not identical to those of NWP, lessons can be 

learned from their comparison. Both domains face fundamental challenges in balancing user 

requirements for saliency with the need for information richness to represent the multidimensional 

array of uncertain information, and for robustness in the communication of the limitations of the EP. 

Tensions are inevitable between the needs of users and the limitations of ensembles. One clear 

lesson from the NWP experience is the importance of multiple formats for representing EPs: there is 

no ‘one size fits all’42
. Whereas an expert user of climate predictions may demand an information-

rich display such as a time-varying probability distribution, some might argue that the climate 

ensemble cannot provide information of this saliency if the ‘uncertain uncertainty’ is taken into 
account. This is where climate ensembles diverge from their weather counterparts; given the short 

timescale of weather, it is possible to calibrate an NWP ensemble and thus assess whether the full 

range of uncertainty has been accounted for. Although calibration for extreme events remains 

challenging (e.g. Stephenson et al.
80

), in general a calibrated weather ensemble can be relied upon 

to provide a robust probability distribution. 

By contrast, climate EPs are marked by deep uncertainties and so the need for communication of 

robustness is greater to adequately convey how much or little confidence can be placed in the EP. 

This leaves a massive communication challenge. Should a narrow ensemble spread be 

communicated as a small uncertainty? How does one communicate ignorance and the possibility for 

rare or unforeseen surprises 
13, 21, 42, 81

? Such aspects are not only unsampled by the ensemble, but 

not even imagined or at least not representable. These problems lead Stainforth et al. 
82

 to 

recommend that a climate EP be presented only as a “lower bound of maximum uncertainty”. 
Similar challenges arise in flood forecasting where robustness of the ensemble in representing the 

true range of uncertainty is also controversial
60

, and the Stainforth et al. description of the ensemble 

as a lower bound of maximum uncertainty might equally apply. In their concern with communicating 

ignorance and the possibility for surprise, the climate ensemble community might have some lessons 

to offer their counterparts in NWP. 

In general, the key challenge in communicating EP for NWP purposes is the balance between 

richness and saliency; presenting the probability distribution in a way that is meaningful for the user, 

whereas in climate science the tensions between robustness and saliency are more acute. 

Particularly for variables where there is little agreement amongst ensemble members, or where the 

degree of independence between ensemble members is not known, it may be preferable to present 

each climate model’s result individually rather than obscure the message about the lack of 
robustness by averaging over the ensemble. However, preliminary research

30
 on the understanding 

and use of climate EPs for adaptation planning suggests that these increases in richness, required to 

convey the lack of robustness, may confuse users and reduce the perceived saliency of EPs. One 

approach to displaying agreement is the tabular presentation used by several flood forecasting 

agencies (e.g. Figure 6, F1) to show the number of ensembles or ensemble members above a given 

threshold value. A balance must be struck between communicating robustness, which requires more 



'bandwidth' to represent the nuances of the science, and user requirements for saliency, which tend 

to involve dimensional reduction and less detail. 

Rather than relying on intuition about best practice, the NWP community has benefited from an 

evidence-based approach to assessing how best to present ensemble information. While EPs in NWP 

are presented both in relatively raw forms such as spaghetti plots (Figure 6, F4 and Figure 5, H2), and 

also smoothed information such as fan charts (Figure 4, W5) and the cone of uncertainty (Figure 5, 

H1), research exploring the experiences of flood forecasting (with PPEs) and hurricane forecasters 

(often MMEs) provide evidence that many users find such raw data representations difficult to 

understand 
53

 and that saliency can be improved with less information-rich displays of key summary 

statistics
60, 83

. As yet there has been comparatively little research on the communicative 

effectiveness of different ways of presenting climate ensembles. For instance, more research is 

required to determine whether the perceived saliency of statistical information can be increased by 

translating it into experiential and emotional information that draw on personal experiences, 

consider cultural context, and affect emotions (though one must be aware of the cognitive and 

cultural biases that can influence interpretation
17, 28, 84, 85

.) Some examples for climate could include 

analogies using past events such as the changing frequency of a historical climatic extreme
86

, and 

familiar representations such as the migrating state map, thermometer range and roulette wheel 

(Figure 3). However, these simple examples are limited in their capacity to represent a wide range of 

uncertainties, so care must be taken to effectively communicate robustness to ensure that the 

content remains a faithful representation of the science. 

Another lesson from the NWP literature is the importance of interactivity and user engagement to 

improve the communication (and therefore use) of ensemble information
46, 87

. The communication 

and understanding of climate ensembles could be addressed in the same way
88

. Indeed, the 

‘ClimatePrediction.net’ distributed computing project5
, C-ROADS simulator 

(http://climateinteractive.org) and UK Climate Projections 2009 interactive website
89

 all offer 

interactive experiences that provide an opportunity to engage users and improve interpretation. The 

workshop-style end-user engagement seen in the HEPS literature
62

 is a good step towards improving 

understanding. In fact, Nobert et al.
83

 argue that one of the reasons that Sweden has enjoyed such 

success with its HEPS is the commitment to engaging with its users and seeking their advice both on 

the best ways of visualising HEPS but also on the information they need from HEPS to inform 

operational decisions.  

It is also important to recognize how words and phrases used by scientists to represent the state of 

their knowledge can be liable to ambiguity and misinterpretation, as Drake et al.
51

 have shown for 

hurricane forecasts. Perhaps these difficulties should not be surprising, since scientists themselves 

have often used ambiguous and contradictory translations of IPCC guidelines on calibrated 

language
26

. Understanding climate EPs requires both scientific and statistical literacy; it has been 

estimated that the most recent IPCC Working Group I Summary for Policy Makers
1
 requires 17 years 

of education to be understood
88

. But  while literacy is clearly important, a key lesson from the NWP 

literature is that small technical misunderstandings of EPs do not necessarily affect the decision-

making ability of recipients 
37

. Perhaps what matters more is for end-users to be able to use what 

they garner from EPs to inform their deliberations, rather than for them to be able to reiterate 

scientific technicalities. 



Conclusion 

The NWP literature has demonstrated that conclusions from research in other fields (such as health) 

are not necessarily transferrable (e.g whether to use frequencies or relative probabilities). 

Conversely, despite its unique characteristics, the process of addressing communication challenges 

in climate science has focused mainly on the wider social and decision science literature rather than 

collecting empirical evidence specific to communicating climate predictions
33, 34

. There is therefore a 

clear research gap for climate focussed studies that follow similar lines to that carried out for PoP, 

hurricanes and floods; using behavioural economics experiments and workshop-style end-user 

engagement to improve communication of EPs. However, there will need to be differences in how 

such empirical studies are conducted due to the effect of the heavily politicised nature of climate 

change and the fact that, compared to climate projections, people have their own experiences of 

multiple outcomes of weather forecasts that will influence communication and understanding. 

Studies should also be undertaken to look at the ability of experience-based activities and user 

engagement to improve the understanding, interpretation and communication of EPs.  

Achieving the right balance between the three communication imperatives (Figure. 1) of saliency for 

different user groups, information richness, and adequate representation of robustness should be 

seen as one of the key challenges for the communication of climate EPs. There is plenty of scope for 

research to improve understanding of the requirements for their salient communication. The most 

recent IPCC guidance note
17

 is a first step towards an improved use of language, and future studies 

could replicate NWP (and health sector) research to determine whether conditional probabilities or 

frequencies should be used for informing decision making under climate change. Additional 

consideration would also need to be given to the communication of deep uncertainties. In 

considering the balance between the three communication imperatives, an obvious area for study is 

the difference in the perception of robustness, interpretation and use of different levels of 

information richness, e.g. raw ensemble output (e.g. spaghetti plots) and smoothed versions of the 

same data (e.g. fan charts). Addressing whether smoothing leads to overconfidence in the 

robustness of predictions and whether raw model output is used as intended will help define 

requirements for salient communication.  Best practice for uncertainty quantification of climate EPs 

are outside the scope of this paper (e.g. Hargreaves
6
), but the challenges arising from the long 

timescales of climate change do propagate into their communication. Accordingly, there needs to be 

dialogue between all stakeholders in the production and dissemination of climate science to reach a 

consensus on how to achieve salient communication in the face of controversy over the extent to 

which the ensemble can be said to represent reality.  

Acknowledgements 

Elisabeth Stephens and David Demeritt are both supported by the EU FP7 KULTURisk project 

(www.kulturisk.eu) via grant FP7-ENV-2010-265280. David Demeritt is also supported by the ESRC 

(RES-189-25-0286). Thanks also to comments from two anonymous reviewers that have greatly 

helped in revising the paper. 

References 

1. Solomon SDQMMZCMMKBAMTaHLM. Climate Change 2007: The Physical Science Basis. 

Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel 

http://www.kulturisk.eu/


on Climate Change. 2007. Available at: 

http://www.ipcc.ch/publications_and_data/ar4/wg1/en/contents.html. 

2. NRC NRC. Completing the Forecast: Characterizing and Communicating Uncertainty for 

Better Decisions Using Weather and Climate Forecasts. 2006. 

3. Andronova NG, Schlesinger ME. Objective estimation of the probability density function for 

climate sensitivity. Journal of Geophysical Research 2001, 106:PP. 22,605-622,611-PP. 622,605-

622,611. 

4. Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA. 

Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 

2004, 430:768-772. 

5. Stainforth DA, Aina T, Christensen C, Collins M, Faull N, Frame DJ, Kettleborough JA, Knight S, 

Martin A, Murphy JM, et al. Uncertainty in predictions of the climate response to rising levels of 

greenhouse gases. Nature 2005, 433:403-406. 

6. Hargreaves JC. Skill and uncertainty in climate models. Wiley Interdisciplinary Reviews: 

Climate Change 2010, 1:556-564. 

7. Meehl GA, Covey C, Taylor KE, Delworth T, Stouffer RJ, Latif M, McAvaney B, Mitchell JFB. 

THE WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research. Bulletin of the 

American Meteorological Society 2007, 88:1383-1394. 

8. Hawkins E, Sutton R. The Potential to Narrow Uncertainty in Regional Climate Predictions. 

Bulletin of the American Meteorological Society 2009, 90:1095-1107. 

9. Lorenz EN. Climatic Predictability. The physical basis of climate and climate modeling. GARP 

Publication Series, Geneva: World Meteorological Organization, 16:132-136. 

10. Nakicenovic NJ, Alcamo G, Davis B, de Vries J, Fenhann S, Gaffin K, Gregory A, Gruebler ea. 

Special Report on Emissions Scenarios, Working Group III of the Intergovernmental Panel on Climate 

Change. 2000, Page 595. 

11. Parker WS. Predicting weather and climate: Uncertainty, ensembles and probability. Studies 

In History and Philosophy of Science Part B: Studies In History and Philosophy of Modern Physics 

2010, 41:263-272. 

12. Smith LA. What Might We Learn from Climate Forecasts? Proceedings of the National 

Academy of Sciences of the United States of America 2002, 99:2487-2492. 

13. Stainforth DA, Allen MR, Tredger ER, Smith LA. Confidence, Uncertainty and Decision-

Support Relevance in Climate Predictions. Philosophical Transactions of the Royal Society A: 

Mathematical, Physical and Engineering Sciences 2007, 365:2145-2161. 

14. Rougier J. Probabilistic Inference for Future Climate Using an Ensemble of Climate Model 

Evaluations. Climatic Change 2007, 81:247-264. 



15. Sexton DMH, Murphy JM. Multivariate probabilistic projections using imperfect climate 

models. Part II: robustness of methodological choices and consequences for climate sensitivity. 

Climate Dynamics 2011, 38:2543-2558. 

16. Sexton DMH, Murphy JM, Collins M, Webb MJ. Multivariate probabilistic projections using 

imperfect climate models part I: outline of methodology. Climate Dynamics 2012, 38:2513-2542. 

17. Mastrandrea MDCB, F. FT, O. S, L. EK, J. ED, H. F, E. H, J. KK, R. MP, G. M, et al. Guidance Note 

for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of UncertaintiesIPCC 

WGII - Cross-Working Group Consultations. 2010. Vol. AR5 Guidance Note Annex, Pages 4-4. 

Available at: http://www.ipcc-wg2.gov/meetings/CGCs/index.html. 

18. Mastrandrea MDCBFTFSOEKLEDJFHHEKKJM. Guidance Note for Lead Authors of the IPCC 

Fifth Assessment Report on Consistent Treatment of UncertaintiesIPCC WGII - Cross-Working Group 

Consultations. Vol. AR5 Guidance Note Annex, Pages 4-4. Available at: http://www.ipcc-

wg2.gov/meetings/CGCs/index.html. 

19. Wallsten TS, Budescu DV, Rapoport A, Zwick R, Forsyth B. Measuring the vague meanings of 

probability terms. Journal of Experimental Psychology-General 1986, 115:348-365. 

20. Moxey LM, Sanford AJ. Communicating quantities: A review of psycholinguistic evidence of 

how expressions determine perspectives. Applied Cognitive Psychology 2000, 14:237-255. 

21. Kandlikar, Risbey J, Dessai S. Representing and communicating deep uncertainty in climate-

change assessments. Comptes Rendus Geosciences 2005, 337:443-455. 

22. Challenor P, McNeall D, Gattiker J. Assessing the probability of rare climate events. In: 

O'Hagan A, West M, eds. The Oxford Handbook of Applied Bayesian Analysis. Oxford: Oxford 

University Press; 2010, 403-430. 

23. Kaye N. An assessment of mapping techniques to visualise uncertainty in climate data. 2010. 

Vol. 81. 

24. Demeritt D. Science studies, climate change and the prospects for constructivist critique. 

Economy and Society 2006, 35:453-479. 

25. Kahan DM, Jenkins‐Smith H, Braman D. Cultural cognition of scientific consensus. Journal of 
Risk Research 2010, 14:147-174. 

26. Mastrandrea M, Mach K. Treatment of uncertainties in IPCC Assessment Reports: past 

approaches and considerations for the Fifth Assessment Report. Climatic Change 2011, 108:659-673. 

27. Hall J, Twyman C, Kay A. Influence Diagrams for Representing Uncertainty in Climate-Related 

Propositions. Climatic Change 2005, 69:343-365. 

28. Morgan MG, Mellon C. Certainty, uncertainty, and climate change. Climatic Change 2011, 

108:707-721. 

29. Demeritt D, Langdon D. The UK Climate Change Programme and communication with local 

authorities. Global Environmental Change 2004, 14:325-336. 



30. Tang S, Dessai S. Usable science? The UK Climate Projections 2009 and decision support for 

adaptation planning. Environmental Science and Policy In Review. 

31. Frumhoff PC, McCarthy JJ, Melillo JM, Moser SC, Wuebbles DJ. Confronting Climate Change 

in the U.S. Northeast: Science, Impacts, and Solutions. A report of the Northeast Climate Impacts 

Assessment. 

32. Kaye NR, Hartley A, Hemming D. Mapping the climate: guidance on appropriate techniques 

to map climate variables and their uncertainty. Geoscientific Model Development Discussions 2011, 

4:1875-1906. 

33. Fischhoff B. Applying the science of communication to the communication of science. 

Climatic Change 2011, 108:701-705. 

34. Pidgeon N, Fischhoff B. The role of social and decision sciences in communicating uncertain 

climate risks. Nature Climate Change 2011, 1:35-41. 

35. Gigerenzer G, Hertwig R, van den Broek E, Fasolo B, Katsikopoulos KV. "A 30% chance of rain 

tomorrow": How does the public understand probabilistic weather forecasts? Risk Analysis 2005, 

25:623-629. 

36. Handmer J, Proudley B. Communicating uncertainty via probabilities: The case of weather 

forecasts. Environmental Hazards 2007, 7:79-87. 

37. Morss RE, Demuth JL, Lazo JK. Communicating Uncertainty in Weather Forecasts: A Survey of 

the US Public. Weather and Forecasting 2008, 23:974-991. 

38. Murphy AH, Lichtenstein S, Fischhoff B, Winkler RL. Misinterpretations of Precipitation 

Probability Forecasts. Bulletin of the American Meteorological Society 1980, 61:695-701. 

39. Lazo JK, Morss RE, Demuth JL. 300 Billion Served. Sources, Perceptions, Uses, and Values of 

Weather Forecasts. Bulletin of the American Meteorological Society 2009, 90:785-+. 

40. Gigerenzer G. Reckoning with Risk: Learning to Live with Uncertainty. London: Penguin; 

2003. 

41. Lipkus IM. Numeric, verbal, and visual formats of conveying health risk: Suggested best 

practices and future recommendations. Medical Decision Making 2007, 27:696-713. 

42. Spiegelhalter D, Pearson M, Short I. Visualizing Uncertainty About the Future. Science 2011, 

333:1393-1400. 

43. Krämer W, Gigerenzer G. How to Confuse with Statistics or: The Use and Misuse of 

Conditional Probabilities. Statistical Science 2005, 20:223-230. 

44. Joslyn SL, Nichols RM. Probability or frequency? Expressing forecast uncertainty in public 

weather forecasts. Meteorological Applications 2009, 16:309-314. 

45. Woloshin S, Schwartz LM. Communicating Data About the Benefits and Harms of Treatment 

A Randomized Trial. Annals of Internal Medicine 2011, 155:87-U70. 



46. Stephens E, Spiegelhalter D, Mylne K, Harrison M. Impact of presentation method and socio-

demographics on decision-making using a Probability of Precipitation forecast. Bulletin of the 

American Meteorological Society In Review. 

47. Joslyn SL, LeClerc JE. Uncertainty Forecasts Improve Weather-Related Decisions and 

Attenuate the Effects of Forecast Error. Journal of Experimental Psychology: Applied 2011, Advance 

Online Publication. 

48. Roulston MS, Bolton GE, Kleit AN, Sears-Collins AL. A laboratory study of the benefits of 

including uncertainty information in weather forecasts. Weather and Forecasting 2006, 21:116-122. 

49. Roulston MS, Kaplan TR. A laboratory-based study of understanding of uncertainty in 5-day 

site-specific temperature forecasts. Meteorological Applications 2009, 16:237-244. 

50. Broad K, Leiserowitz A, Weinkle J, Steketee M. Misinterpretations of the "Cone of 

Uncertainty" in Florida during the 2004 Hurricane Season. Bulletin of the American Meteorological 

Society 2007, 88:651-+. 

51. Drake L. Hurricane forecast and end-users: bridging the communication gap. 2010 National 

Hurricane Conference 2010. 

52. Morss RE, Hayden MH. Storm Surge and "Certain Death": Interviews with Texas Coastal 

Residents following Hurricane Ike. Weather, Climate and Society 2010, 2:174-189. 

53. Eosco G. Pictures may tell it all: The use of draw-and-tell methodology to  understand the 

role of uncertainty in individuals' hurricane information  seeking processes. Fifth Symposium on 

Policy and Socio-economic Research. Second AMS Conference on International Cooperation in the 

Earth System Sciences and Services 2010. 

54. Orlove BS, Broad K, Meyer R. Assessing the Effectiveness of the Cone of Probability as a 

Visual Means of Communicating Scientific Forecasts. AGU Fall Meeting Abstracts 2010, -1:0658-

0658. 

55. Cloke H, Thielen J, Pappenberger F, Nobert S, Bálint G, Edlund C, Koistinen A, de Saint-Aubin 

C, Sprokkereef E, Viel C, et al. Progress in the implementation of Hydrological Ensemble Prediction 

Systems (HEPS) in Europe for operational flood forecasting. ECMWF Newsletters 2009, Pages 20-24. 

Available at: http://www.ecmwf.int/publications/newsletters/pdf/121.pdf. 

56. Cloke HL, Pappenberger F. Ensemble flood forecasting: A review. Journal of Hydrology 2009, 

375:613-626. 

57. Australia Co. Flood Warning. 2009. Vol. Manual 21. Available at: 

http://www.em.gov.au/Documents/Manual%2021-Flood%20Warning(2).PDF. 

58. Dale M, Ji Y, Wicks J, Mylne K, Pappenberger F, Cloke H. Applying probabilistic flood 

forecasting in Flood Incident Management. 2012. Vol. SC0900032. Available at: 

http://evidence.environment-

agency.gov.uk/FCERM/en/Default/HomeAndLeisure/Floods/WhatWereDoing/IntoTheFuture/Scienc



eProgramme/ResearchAndDevelopment/FCRM/Project.aspx?ProjectID=c0899b01-6fcd-4775-9aeb-

a2dcc8ec4d39&PageID=7ef5c014-c33b-4eb4-af59-ec6f0a09d80f. 

59. Demeritt D, Nobert S, Cloke HL, Pappenberger F. The European Flood Alert System (EFAS) 

and the communication, perception and use of ensemble predictions for operational flood risk 

management. Hydrological Processes 2012:n/a–n/a-n/a–n/a. 

60. Demeritt D, Nobert S, Cloke H, Pappenberger F. Challenges in communicating and using 

ensembles in operational flood forecasting. Meteorological Applications 2010, 17:209-222. 

61. Ramos M-H, Mathevet T, Thielen J, Pappenberger F. Communicating uncertainty in hydro-

meteorological forecasts: mission impossible? Meteorological Applications 2010, 17:223-235. 

62. Pappenberger F, Stephens E, Thielen J, Salamon P, Demeritt D, van Andel SJ, Wetterhall F, 

Alfieri L. Visualizing probabilistic flood forecast information: expert preferences and perceptions of 

best practice in uncertainty communication. Hydrological Processes 2012:n/a–n/a-n/a–n/a. 

63. Faulkner H, Parker D, Green C, Beven K. Developing a translational discourse to 

communicate uncertainty in flood risk between science and the practitioner. Ambio 2007, 36:692-

703. 

64. Roo AD, Thielen J, Salamon P, Bogner K, Nobert S, Cloke H, Demeritt D, Younis J, Kalas M, 

Bódis K, et al. Quality control, validation and user feedback of the European Flood Alert System 

(EFAS). International Journal of Digital Earth 2011, 4:77-90. 

65. Demeritt D, Nobert S. Responding to early flood warning in the European Union. In: Meyer 

CO, De Franco C, eds. Forecasting, Warning and Responding to Transnational Risks. London: Palgrave 

Macmillan; 2011. 

66. Bogner K, Pappenberger F. Multiscale error analysis, correction, and predictive uncertainty 

estimation in a flood forecasting system. Water Resources Research 2011, 47:24 PP.-24 PP. 

67. Bruen M, Krahe P, Zappa M, Olsson J, Vehvilainen B, Kok K, Daamen K. Visualizing flood 

forecasting uncertainty: some current European EPS platforms—COST731 working group 3. 

Atmospheric Science Letters 2010, 11:92-99. 

68. Frick J, Hegg C. Can end-users' flood management decision making be improved by 

information about forecast uncertainty? Atmospheric Research 2011, 100:296-303. 

69. Priest S, Parker D, Hurford A, Pardoe A, McCarthy S, Tapsell S. Surface Water Flood Warning 

Scoping Project—Final Report. 2011. Vol. SCSC080034/R1. 

70. Rothstein H, Borraz O, Huber M. From the ‘neurotic’ to the ‘rationalising’ state: risk and the 
limits of governanceResponding to early flood warning in the European Union. In: De Franco C, 

Meyer CO, eds. Forecasting, Warning and Responding to Transnational Risks. London: Palgrave 

Macmillan; 2011. 

71. Rothstein H, Downer J. ‘RENEWING DEFRA’: EXPLORING THE EMERGENCE OF RISK-BASED 

POLICYMAKING IN UK CENTRAL GOVERNMENT. Public Administration 2012:no–no-no–no. 



72. Demeritt D. The perception and use of public weather services by emergency and resiliency 

professionals in the UK. 2012, Pages 36-36. 

73. Lange H, Garrelts H. Risk Management at the Science–Policy Interface: Two Contrasting 

Cases in the Field of Flood Protection in Germany. Journal of Environmental Policy & Planning 2007, 

9:263-279. 

74. Krieger K. Putting Varieties of Risk-Based Governance into Institutional Context: The Case of 

Flood Management Regimes in Germany and England in the 1990s and 2000s. PhD Thesis. King's 

College London. 2011. 

75. Alleyne R. Britain will have first decent 'barbecue summer' in three years with temperatures 

regularly above 80 F. The Daily Telegraph 2009. Available at: 

http://www.telegraph.co.uk/topics/weather/5250745/Britain-will-have-first-decent-barbecue-

summer-in-three-years-with-temperatures-regularly-above-80-F.html. 

76. Eden P. So much for our barbecue summer. The Daily Telegraph 2009. Available at: 

http://www.telegraph.co.uk/comment/personal-view/5934444/So-much-for-our-barbecue-

summer.html. 

77. Hartmann HC, Pagano TC, Sorooshian S, Bales R. Confidence Builders: Evaluating Seasonal 

Climate Forecasts from User Perspectives. Bulletin of the American Meteorological Society 2002, 

83:683-698. 

78. Power SB, Plummer N, Alford P. Making climate model forecasts more useful. Aust. J. Agric. 

Res. 2007, 58:945-951. 

79. Committee SaTS. Science in the Met Office Report. 2012. Available at: 

http://www.parliament.uk/business/committees/committees-a-z/commons-select/science-and-

technology-committee/news/120221-met-office-rpt-published/. 

80. Stephenson DB, Casati B, Ferro CAT, Wilson CA. The extreme dependency score: a non-

vanishing measure for forecasts of rare events. Meteorological Applications 2008, 15:41-50. 

81. Curry J. Reasoning about climate uncertainty. Climatic Change 2011, 108:723-732. 

82. Stainforth DA, Downing TE, Washington R, Lopez A, New M. Issues in the interpretation of 

climate model ensembles to inform decisions. Philosophical transactions. Series A, Mathematical, 

physical, and engineering sciences 2007, 365:2163-2177. 

83. Nobert S, Demeritt D, Cloke H. Informing operational flood management with ensemble 

predictions: lessons from Sweden. Journal of Flood Risk Management 2010, 3:72-79. 

84. Patt AG, Schrag DP. Using specific language to describe risk and probability. Climatic Change 

2003, 61:17-30. 

85. Marx SM, Weber EU, Orlove BS, Leiserowitz AA, Krantz D, Roncoli C, Phillips J. 

Communication and Mental Processes: Experimental and Analytic Processing of Uncertain Climate 

Information. SSRN eLibrary 2007. 



86. Stott PA, Stone DA, Allen MR. Human contribution to the European heatwave of 2003. 

Nature 2004, 432:610-614. 

87. Pappenberger F, Stephens E, Thielen J, Salamon P, Demeritt D, van Andel SJ, Wetterhall F, 

Alfieri L. Visualizing probabilistic flood forecast information: expert preferences and perceptions of 

best practice in uncertainty communication. Hydrological Processes 2012:n/a-n/a. 

88. Sterman J. Communicating climate change risks in a skeptical world. Climatic Change 2011, 

108:811-826. 

89. Murphy JMea. Climate change projections. In UK Climate Projections. UKCP09: 

http://ukclimateprojections.defra.gov.uk. 2009, Pages 1-194. 

Figure captions 

Figure 1: The three imperatives for visualisation 

Figure 2: C1, Multi-model global means (solid lines) and ±1 standard deviation range of individual 

model annual averages. (©IPCC1). By permission of Cambridge University Press. C2, Probability 

density of the strength of the Meridional Overturning Circulation. (Challenor et al.22, © Oxford 

University Press 2010). By permission of Oxford University Press. C3, Changes in 20 year-mean 

surface air temperature over the HadSM3 grid box corresponding to Wales, in March, in response to 

doubled CO2. (UKCP09, © UK Climate Projections, 2009). C4, Relative changes in precipitation (%) 

for the period 2090–2099, relative to 1980–1999 (©IPCC1). By permission of Cambridge University 

Press. C5, New mapping technique illustrating change in precipitation (similarly to C4) with hues and 

percentage model agreement across the ensemble with saturation. (©Kaye et al.23). 

Figure 3: C6, Moving state graphic; C7, Thermometers showing projected temperature increases, 

both from Frumhoff et al. 31 © 2007 Union of Concerned Scientists). By permission of Union of 

Concerned Scientists. C8, Roulette-style spinning wheels to depict estimated probability. Accessed 

27th Feb 2012 from <http://globalchange.mit.edu/resources/gamble>. By permission of MIT Global 

Change Program. 

Figure 4: W1, PoP with no graphic, from wunderground.com forecast for Des Moines, IA, US.  

Accessed from: http://www.wunderground.com/q/zmw:50301.1.99999. W2: PoP with probability 

bar graphic for Sydney from the Bureau of Meteorology, Australia. Accessed from 

http://www.bom.gov.au/nsw/forecasts/sydney.shtml. W3: PoP with probability pie charts, 

University of Washington Probcast. Accessed from: http://probcast.washington.edu/. W4: PoP with 

probability bar, note how vertical bar and blue colour might cause confusion with the amount of 

rain. Accuweather, accessed from: http://www.accuweather.com/en/us/new-york-

ny/10017/weather-accupop/3712pc. W5: Time series showing 50% and 80% probability range for 

temperature and precipitation amount, Norwegian Meteorological Institute. Accessed from: 

http://www.yr.no/place/Norway/Oslo/Oslo/Oslo/long.html. W6: Temperature range bar, showing 

90% range for predicted maximum (and minimum in separate tab) temperatures. UK Met Office, 

accessed from: 

http://www.metoffice.gov.uk/public/beta/weather/forecast/?tab=fiveDay&dayIdx=0&locId=350610

. 



Figure 5: Figure H1: Spaghetti plot showing hurricane tracks. ABC Weather, accessed from: 

http://www.wjla.com/blogs/weather/2011/08/hurricane-irene-path-projections-spaghetti-style-

12544.html. Figure H2: Hurricane Cone of Uncertainty, note that the estimated ‘best forecast track’ 
has now been removed to avoid confusion. National Hurricane Center (US), accessed from: 

http://newsfeed.time.com/2011/08/26/hurricane-irenes-path-how-do-forecasters-predict-the-cone-

of-uncertainty/ 

Figure 6: F1, EFAS forecast for southern Poland. Courtesy of EFAS, Joint Research Centre, European 

Commission, Ispra, Italy. F2, Flood Guidance Statement, joint Met Office / Environment Agency 

Flood Forecasting Centre. F3, the Vigicrues flood risk used by the SCHAPI (Service Central 

d’Hydrométéorologie et d’Appui à la Prévision des Inondations/ Central Service for 

Hydrometeorology and Flood Prediction Support) in France. F4, spaghetti plot of forecasted 

precipitation, Austrian Fire Service & Civil Defence Early Warning Centre and F5, their publicly 

accessible simplification of the uncertainty. 

Figure 7: Figure S1: 1-month and 3-month UK outlook for temperature in the context of the 

observed climatology. UK Met Office Seasonal Outlook, 

http://www.metoffice.gov.uk/publicsector/contingency-planners, Figure S2: National Weather 

Service, monthly to seasonal outlooks, 

http://www.cpc.ncep.noaa.gov/products/predictions/long_range/lead01/off01_temp.gif 

Further Reading/Resources 

1) Glossary of terms 

Boundary conditions – model inputs that determine the evolution of the system; e.g. emissions 

scenarios 

Boundary condition ensemble – ensemble in which different boundary conditions are used for 

each simulation 

Ensemble – group of models, or group of simulations generated with different models or model 

inputs 

Emissions scenario – plausible future trajectory of factors that influence climate, including 

emissions of greenhouse gases and air pollutants, and changes in land-use 

EP – ensemble prediction 

Hydrograph – graph showing rate of flow versus time for a given location 

ICE – initial condition ensemble 

Initial conditions – model inputs that determine the starting state of the system, such as three-

dimensional fields of atmospheric and ocean temperatures 

Initial condition ensemble – ensemble in which different initial conditions are used for each 

simulation 

http://newsfeed.time.com/2011/08/26/hurricane-irenes-path-how-do-forecasters-predict-the-cone-of-uncertainty/
http://newsfeed.time.com/2011/08/26/hurricane-irenes-path-how-do-forecasters-predict-the-cone-of-uncertainty/
http://www.metoffice.gov.uk/publicsector/contingency-planners


Initial condition uncertainty – uncertainty due to imperfectly known initial conditions, in 

particular due to uncertainty in observing the present state of the atmosphere and ocean 

MME – multi-model ensemble 

Multi-model ensemble – ensemble of models of different structures, usually a group of the 

models developed by research and meteorological institutes around the world 

Parameters – tunable ‘control dials’ of the model, typically there to represent processes that are 
not included explicitly due to finite resolution or imperfect knowledge; e.g. threshold of relative 

humidity for cloud formation 

Parameter uncertainty – uncertainty due to model parameters for which the best settings are 

not known 

Perturbed parameter ensemble – ensemble in which different values of the model control 

parameters are used for each simulation 

PPE – perturbed parameter ensemble 

Structural uncertainty – uncertainty about the adequacy of a model in describing reality, due to 

its finite spatial and temporal resolution and the physical, chemical or biological processes that 

are missing or imperfectly represented 

2) Summary tables of visualisation types 

Table 1: Climate ensemble visualisations 

 Variables / 

data 

dimensionali

ty 

Information 

richness 

Target 

Audience 

URL of Visualisations 

Uncertain 

timeseries 

Various; 

timeseries 

Time evolution 

of percentiles 

or density of 

probability 

distribution 

Policymakers Figure 2, C1 

 

Figure 2, C2 

Climatic 

envelope 

Two 

variables 

(various); 2D 

contour plot 

Percentiles of 

joint 

probability 

distribution 

Policymakers, 

public 

http://ukclimateprojecti

ons.defra.gov.uk/22625 

Stippled 

map  

Various; 2D 

(lat-lon) map 

Mean and 

three 

categories of % 

sign agreement 

(0-60%; 61-

Policymakers Figure 2, C4 



89%; 90-100%) 

Colour 

saturated 

map 

Various; 2D 

(lat-lon) map 

Mean and % 

sign agreement 

or signal-to-

noise ratio 

Various Figure 2, C5 

Histogram/

PDF 

Various; 

frequency or 

probability  

Marginal 

frequency 

distribution / 

probability 

distribution 

function   

Policymakers, 

public 

Figure 2, C3 

Percentiles Various Percentiles of 

probability 

distribution 

Various IPCC
1
 

http://www.ipcc.ch/pub

lications_and_data/ar4/

wg1/en/ch10s10-

5.html#10-5-1 (Box 10.2, 

Fig. 1, top right) 

http://ukclimateprojecti

ons.org.uk/content/view

/1931/500/ 

Migrating 

states 

Regional 

temperature 

Mean Policymakers, 

public 

Figure 3, C6 

Thermome

ter 

Temperature Mean and/or 

range 

Policymakers, 

public 

Figure 3, C7 

 

Roulette 

wheel 

Global mean 

temperature 

Frequency Public Figure 3, C8 

 

Table 2: Visualisation of site-specific weather forecasts 

 Variables / 

data 

dimensionality 

Informatio

n richness 

Target 

Audience 

URL of Visualisations 

Probability of 

Precipitation 

(PoP) or 

Varies, usually 

for a specific 

time period 

Probability 

of 

threshold 

Public 

etc 

Fig.W1 

http://www.weather.com/

weather/hourbyhour/graph

http://www.weather.com/weather/hourbyhour/graph/USNY0996
http://www.weather.com/weather/hourbyhour/graph/USNY0996


Chance of 

Precipitation 

(any rain) 

Precision or 

Probability 

varies 

/USNY0996 

Fig.W2 

http://www.wunderground.

com/q/zmw:10001.2.99999 

PoP with 

graphic 

Varies, usually 

for a specific 

time period 

  Fig.W3 

http://www.bom.gov.au/ns

w/forecasts/sydney.shtml 

Fig.W4 

http://www.accuweather.c

om/us/ny/new-

york/10017/forecast-

accupop.asp?fday=1 

Fig.W5 

http://probcast.washington

.edu/ 

Rainfall 

distributions 

Time series Percentiles 

(middle 

50% & 

80%) 

Public Fig.W6 

http://www.yr.no/place/No

rway/Oslo/Oslo/Oslo/long.h

tml 

Temperature 

fancharts 

Time series Percentiles 

(middle 

50% & 

80%) 

Public Fig.W6 

http://www.yr.no/place/No

rway/Oslo/Oslo/Oslo/long.h

tml 

Temperature 

Range Plot 

Time series Median 

and 90% 

range 

Public Fig.W6 

http://www.metoffice.gov.

uk/public/beta/weather/for

ecast/?tab=fiveDay&dayIdx

=0&locId=350610 

 

Table 3: Visualisation of hurricane forecasts 

 Variables / 

data 

dimensiona

lity 

Informa

tion 

richness 

Target Audience URL of Visualisations 

Spaghett

i plots 

Time and 

space 

Paths 

from 

individu

al 

models 

Public Fig.W8 

http://www.wjla.com/blo

gs/weather/2011/08/hurri

cane-irene-path-

projections-spaghetti-

style-12544.html 

Cone of 

uncertai

nty 

Time and 

space 

Derived 

fan from 

individu

al paths 

Public Fig.W9 

http://newsfeed.time.com

/2011/08/26/hurricane-

irenes-path-how-do-

forecasters-predict-the-

cone-of-uncertainty/ 

 

http://www.weather.com/weather/hourbyhour/graph/USNY0996
http://www.wunderground.com/q/zmw:10001.2.99999
http://www.wunderground.com/q/zmw:10001.2.99999
http://www.bom.gov.au/nsw/forecasts/sydney.shtml
http://www.bom.gov.au/nsw/forecasts/sydney.shtml
http://www.accuweather.com/us/ny/new-york/10017/forecast-accupop.asp?fday=1
http://www.accuweather.com/us/ny/new-york/10017/forecast-accupop.asp?fday=1
http://www.accuweather.com/us/ny/new-york/10017/forecast-accupop.asp?fday=1
http://www.accuweather.com/us/ny/new-york/10017/forecast-accupop.asp?fday=1
http://probcast.washington.edu/
http://probcast.washington.edu/
http://www.yr.no/place/Norway/Oslo/Oslo/Oslo/long.html
http://www.yr.no/place/Norway/Oslo/Oslo/Oslo/long.html
http://www.yr.no/place/Norway/Oslo/Oslo/Oslo/long.html
http://www.yr.no/place/Norway/Oslo/Oslo/Oslo/long.html
http://www.yr.no/place/Norway/Oslo/Oslo/Oslo/long.html
http://www.yr.no/place/Norway/Oslo/Oslo/Oslo/long.html
http://www.metoffice.gov.uk/public/beta/weather/forecast/?tab=fiveDay&dayIdx=0&locId=350610
http://www.metoffice.gov.uk/public/beta/weather/forecast/?tab=fiveDay&dayIdx=0&locId=350610
http://www.metoffice.gov.uk/public/beta/weather/forecast/?tab=fiveDay&dayIdx=0&locId=350610
http://www.metoffice.gov.uk/public/beta/weather/forecast/?tab=fiveDay&dayIdx=0&locId=350610
http://www.wjla.com/blogs/weather/2011/08/hurricane-irene-path-projections-spaghetti-style-12544.html
http://www.wjla.com/blogs/weather/2011/08/hurricane-irene-path-projections-spaghetti-style-12544.html
http://www.wjla.com/blogs/weather/2011/08/hurricane-irene-path-projections-spaghetti-style-12544.html
http://www.wjla.com/blogs/weather/2011/08/hurricane-irene-path-projections-spaghetti-style-12544.html
http://www.wjla.com/blogs/weather/2011/08/hurricane-irene-path-projections-spaghetti-style-12544.html
http://newsfeed.time.com/2011/08/26/hurricane-irenes-path-how-do-forecasters-predict-the-cone-of-uncertainty/
http://newsfeed.time.com/2011/08/26/hurricane-irenes-path-how-do-forecasters-predict-the-cone-of-uncertainty/
http://newsfeed.time.com/2011/08/26/hurricane-irenes-path-how-do-forecasters-predict-the-cone-of-uncertainty/
http://newsfeed.time.com/2011/08/26/hurricane-irenes-path-how-do-forecasters-predict-the-cone-of-uncertainty/
http://newsfeed.time.com/2011/08/26/hurricane-irenes-path-how-do-forecasters-predict-the-cone-of-uncertainty/


Table 4: Visualisation of probabilistic flood forecasts 

 Variables / 

data 

dimensiona

lity 

Information 

richness 

Target 

Audience 

URL of Visualisations 

Spaghetti 

hydrograp

h 

Flow in 

m3/sec 

over time 

Time evolution 

of percentiles or 

density of 

probability 

distribution 

expert users,  Fig.W10 

http://www.nwrfc.noaa.

gov/espadp/espadp.cgi 

Simplified 

spaghetti 

hydrograp

h 

flow sin 

m3/sec 

over time 

Mean, median, 

5-95% 

confidence 

intervals  

Emergency 

responders, 

general public 

Fig.W11 

http://wwwi2.ymparisto.

fi/i2/04/l049411001y/w

qen.html;  

http://swissrivers.ch/ 

Threshold 

exceedanc

e maps 

Pixels 

where EFAS 

thresholds 

exceeded 

over next 

3-10 days 

Spatial 

distribution of 

categorical 

levels of 

threshold 

exceedance, but 

neither the 

values, nor 

distribution of 

ensemble 

members across 

different 

threshold levels 

is shown 

Hydrologists,  http://floods.jrc.ec.euro

pa.eu/efas-flood-

forecasts 

Tables of 

ensemble 

members 

exceeding 

a given 

threshold 

over time 

at a given 

point 

Number of 

threshold 

members 

exceeding 

various 

threshold 

levels 

No spatial 

distribution or 

values, but 

shows the 

temporal 

evolution of the 

signal  

Emergency 

responders 

Fig.W12 

Fig.W13 

Traffic light 

based 

flooding 

hazard 

map 

Spatial 

distribution 

of 

likelihood 

of fluvial 

flooding in 

next 24 

hours  

Color coded 

probability 

categories 

(green, yellow, 

amber red) of 

the liklihood of 

flooding 

General 

public, 

emergency 

responders 

Fig.W14 

http://www.vigicrues.go

uv.fr/ 

 

Flood 

Guidance 

Statement 

Spatial 

distribution 

of risk of 

flooding 

im Emergency 

planners 

Fig.W15 http://www.ffc-

environment-

agency.metoffice.gov.uk

/services/FGS_User_Gui

http://www.nwrfc.noaa.gov/espadp/espadp.cgi
http://www.nwrfc.noaa.gov/espadp/espadp.cgi
http://wwwi2.ymparisto.fi/i2/04/l049411001y/wqen.html
http://wwwi2.ymparisto.fi/i2/04/l049411001y/wqen.html
http://wwwi2.ymparisto.fi/i2/04/l049411001y/wqen.html
http://swissrivers.ch/
http://floods.jrc.ec.europa.eu/efas-flood-forecasts
http://floods.jrc.ec.europa.eu/efas-flood-forecasts
http://floods.jrc.ec.europa.eu/efas-flood-forecasts
http://www.vigicrues.gouv.fr/
http://www.vigicrues.gouv.fr/
http://www.ffc-environment-agency.metoffice.gov.uk/services/FGS_User_Guide.pdf
http://www.ffc-environment-agency.metoffice.gov.uk/services/FGS_User_Guide.pdf
http://www.ffc-environment-agency.metoffice.gov.uk/services/FGS_User_Guide.pdf
http://www.ffc-environment-agency.metoffice.gov.uk/services/FGS_User_Guide.pdf


over next 5 

days 

de.pdf 

 

 

Table 5: Visualisation of seasonal forecasts 

 Variables / 

data 

dimensiona

lity 

Informa

tion 

richness 

Target Audience URL of Visualisations 

1-month 

/ 3-

month 

outlook 

Seasonal 

for UK 

Predicte

d 

distribut

ions for 

tempera

ture and 

precipit

ation 

Expert (Contingency 

planners) 

Fig.W16 

http://www.metoffice.gov

.uk/publicsector/continge

ncy-planners 

Monthly 

to 

seasonal 

outlooks 

Seasonal 

for USA 

Temper

ature 

and 

Precipit

ation, 

normal, 

above 

normal, 

below 

normal 

Includes summary 

for non-technical 

users 

Fig.W17 

http://www.cpc.ncep.noa

a.gov/products/prediction

s/long_range/lead01/off0

1_temp.gif 

Fig.W18 

http://www.cpc.ncep.noa

a.gov/products/prediction

s/long_range/lead01/off0

1_temp.gif 

Hurrican

e 

Outlook 

(text-

based 

forecast) 

Seasonal 

for a 

particular 

area 

Probabil

ity of 

above 

normal / 

normal / 

below 

normal 

 http://www.cpc.ncep.noa

a.gov/products/outlooks/

hurricane.shtml 

 

1) Expanded figure captions 

Figure C1: Multi-model global means (solid lines) and ±1 standard deviation range of individual 

model annual averages (shading) of surface warming for the 20th century and SRES scenarios A2, 

A1B and B1. The grey bars at right indicate the best estimate (solid line within each bar) and the 

likely range assessed for six SRES scenarios. (IPCC, 2007, © Intergovernmental Panel on Climate 

Change 2007). By permission of Cambridge University Press. 

Figure C2: Probability density of the strength of the Meridional Overturning Circulation through the 

21st century. (Challenor et al.
22

 © Oxford University Press 2010). By permission of Oxford University 

Press. 

http://www.ffc-environment-agency.metoffice.gov.uk/services/FGS_User_Guide.pdf
http://www.metoffice.gov.uk/publicsector/contingency-planners
http://www.metoffice.gov.uk/publicsector/contingency-planners
http://www.metoffice.gov.uk/publicsector/contingency-planners
http://www.cpc.ncep.noaa.gov/products/predictions/long_range/lead01/off01_temp.gif
http://www.cpc.ncep.noaa.gov/products/predictions/long_range/lead01/off01_temp.gif
http://www.cpc.ncep.noaa.gov/products/predictions/long_range/lead01/off01_temp.gif
http://www.cpc.ncep.noaa.gov/products/predictions/long_range/lead01/off01_temp.gif
http://www.cpc.ncep.noaa.gov/products/predictions/long_range/lead01/off01_temp.gif
http://www.cpc.ncep.noaa.gov/products/predictions/long_range/lead01/off01_temp.gif
http://www.cpc.ncep.noaa.gov/products/predictions/long_range/lead01/off01_temp.gif
http://www.cpc.ncep.noaa.gov/products/predictions/long_range/lead01/off01_temp.gif
http://www.cpc.ncep.noaa.gov/products/outlooks/hurricane.shtml
http://www.cpc.ncep.noaa.gov/products/outlooks/hurricane.shtml
http://www.cpc.ncep.noaa.gov/products/outlooks/hurricane.shtml


Figure C3: Changes in 20 year-mean surface air temperature over the HadSM3 grid box 

corresponding to Wales, in March, in response to doubled CO2. Green histogram shows 280 

perturbed physics simulations of HadSM3. Black ticks show corresponding changes simulated by 12 

multi-model ensemble members. Red curve shows the distribution obtained by emulating responses 

across the full parameter space of surface and atmospheric processes in HadSM3. The red curve also 

includes the broadening effect of adding the variance (but not the mean) of discrepancy. Blue curve 

shows the effects of weighting the emulated responses according to observational constraints see 

(Section 3.2.9). Black curve shows the posterior distribution, which includes the shift arising from 

adding in the mean effect of discrepancy. (©UKCP09). 

Figure C4: Relative changes in precipitation (%) for the period 2090–2099, relative to 1980–1999. 

Values are multi-model averages based on the SRES A1B scenario for December to February. White 

areas are where less than 66% of the models agree in the sign of the change and stippled areas are 

where more than 90% of the models agree in the sign of the change. (©IPCC
1
). By permission of 

Cambridge University Press. 

Figure C5: New mapping technique illustrating change in precipitation (similarly to C4) with hues and 

percentage model agreement across the ensemble with saturation. (©Kaye et al.
32

) 

Figure C6: Red arrows track what summers could feel like in the NYC Tri-State region over the course 

of the century under the higher-emissions scenario. Yellow arrows track what summers in these 

states would feel like under a lower-emissions scenario. (Frumhoff et al.
31

, © 2007 Union of 

Concerned Scientists). By permission of Union of Concerned Scientists. 

Figure C7: These “thermometers” show projected increases in regional average summer 
temperatures for three time periods: early-, mid-, and late- century. (Frumhoff et al.

31
, © 2007 

Union of Concerned Scientists). By permission of Union of Concerned Scientists. 

Figure C8a&b: The roulette-style spinning wheels depict the estimated probability, or likelihood, of 

potential temperature change (global average surface temperature) over the next 100 years. The 

face of each wheel is divided into coloured slices, with the size of each slice representing the 

estimated probability of the temperature change in the year 2100 falling within that range. The 

Greenhouse Gamble wheel on the left is the "no policy" or reference case, in which it is assumed no 

action is taken to try to curb the global emissions of greenhouse gases. The Greenhouse Gamble 

wheel on the right is the "with policy" case, which assumes that policies are enacted to limit 

cumulative emissions of greenhouse gases over the century to 4.2 trillion metric tons, measured in 

CO2-equivalent. Accessed 27th Feb 2012 from <http://globalchange.mit.edu/resources/gamble>. By 

permission of MIT Global Change Program. 

Figure W1: PoP with no graphic, from wunderground.com forecast for Des Moines, IA, US.  Accessed 

from: http://www.wunderground.com/q/zmw:50301.1.99999. 

Figure W2: PoP with probability bar graphic for Sydney from the Bureau of Meteorology, Australia. 

Accessed from http://www.bom.gov.au/nsw/forecasts/sydney.shtml. 

Figure W3: PoP with probability pie charts, University of Washington Probcast. Accessed from: 

http://probcast.washington.edu/ 

http://www.wunderground.com/q/zmw:50301.1.99999


Figure W4: PoP with probability bar, note how vertical bar and blue colour might cause confusion 

with the amount of rain. Accuweather, accessed from: http://www.accuweather.com/en/us/new-

york-ny/10017/weather-accupop/3712_pc. 

Figure W5: Time series showing 50% and 80% probability range for temperature and precipitation 

amount, Norwegian Meteorological Institute. Accessed from: 

http://www.yr.no/place/Norway/Oslo/Oslo/Oslo/long.html 

Figure W6: Temperature range bar, showing 90% range for predicted maximum (and minimum in 

separate tab) temperatures. UK Met Office, accessed from: 

http://www.metoffice.gov.uk/public/beta/weather/forecast/?tab=fiveDay&dayIdx=0&locId=350610 

Figure H1: Spaghetti plot showing hurricane tracks. ABC Weather, accessed from: 

http://www.wjla.com/blogs/weather/2011/08/hurricane-irene-path-projections-spaghetti-style-

12544.html 

Figure H2: Hurricane Cone of Uncertainty, note that the estimated ‘best forecast track’ has now 
been removed to avoid confusion. National Hurricane Center (US), accessed from: 

http://newsfeed.time.com/2011/08/26/hurricane-irenes-path-how-do-forecasters-predict-the-cone-

of-uncertainty/ 

Figure F1: Further tabular detail for a selected point in southern Poland from the EFAS forecast for 

12:00h UTC on 17 May 2010 when severe flooding resulted in 2.5 billion euros in damages. The first 

two rows classify the various EFAS river flow forecasts produced for that point using the 

deterministic rainfall forecasts from DWD (Deutscher Wetterdienst, the German national 

meteorological service) and ECMWF, with purple indicating flows in excess of the EFAS Severe Alert 

Level (SAL) corresponding to a simulated flood event with a return period of >20 yr., red indicating 

flows in excess of the EFAS High Alert Level (HAL) and yellow in excess of the Medium Alert Level. 

The numbers in the subsequent boxes indicate the number of EFAS ensemble members produced 

using the ECMWF ensemble (EUE) and the COSMO-LEPS limited area ensemble (COS) that exceed 

the HAL and Severe Alert Levels (SAL). Courtesy of EFAS, Joint Research Centre, European 

Commission, Ispra, Italy 

Figure F2: “The Flood Guidance Statement issued in England and Wales by the joint Met Office / 

Environment Agency Flood Forecasting Centre provides a simple cartographic display. This same risk 

matrix is now also used by the UK Met Office as part of its National Severe Weather Warning Service 

to communicate the likelihood and impact of severe weather events” 

Figure F3: The Vigicrues flood risk used by the SCHAPI (Service Central d’Hydrométéorologie et 
d’Appui à la Prévision des Inondations/ Central Service for Hydrometeorology and Flood Prediction 

Support) in France to communicate the risk of flooding over the next 24 hours on main rivers. The 

Green, yellow, orange, and red pixels represent escalating levels of hazardousness that call for 

corresponding levels of vigilance in response to the threat. These colour codes do not explicitly 

distinguish the probability of flooding from its magnitude, which can lead to confusion. 

Figure F4: In Austria, emergency services personnel working in the Abteilung Feurwehr und 

Zivilschutz Landeswarnzentrale [the Fire Service & Civil Defence Early Warning Centre] have 

additional access to much richer EP outputs, including ‘spaghetti’ plots of the 51-member ALADIN-

http://newsfeed.time.com/2011/08/26/hurricane-irenes-path-how-do-forecasters-predict-the-cone-of-uncertainty/
http://newsfeed.time.com/2011/08/26/hurricane-irenes-path-how-do-forecasters-predict-the-cone-of-uncertainty/


LAEF of convective rainfall, which are the light colored lines in this plot which also shows the 

deterministic forecast (Hauptlauf) in black and the observed in red. 

Figure F5: In Austria, the public has accessed to simplified HEPS forecasts of streamflow, with the 

blue line showing observation, the green line a ‘best guess’ forecast, and the two grey lines the 10% 
and 90% confidence intervals. 

Figure S1: 1-month and 3-month UK outlook for temperature in the context of the observed 

climatology. UK Met Office Seasonal Outlook, 

http://www.metoffice.gov.uk/publicsector/contingency-planners 

Figure S2: National Weather Service, monthly to seasonal outlooks, 

http://www.cpc.ncep.noaa.gov/products/predictions/long_range/lead01/off01_temp.gif 

 

 


