
Communicating with waves between volumes:
evaluating orthogonal spatial channels
and limits on coupling strengths

David A. B. Miller

A rigorous method for finding the best-connected orthogonal communication channels, modes, or degrees
of freedom for scalar waves between two volumes of arbitrary shape and position is derived explicitly
without assuming planar surfaces or paraxial approximations. The communication channels are the
solutions of two eigenvalue problems and are identical to the cavity modes of a double phase-conjugate
resonator. A sum rule for the connection strengths is also derived, the sum being a simple volume
integral. These results are used to analyze rectangular prism volumes, small volumes, thin volumes in
different relative orientations, and arbitrary near-field volumes: all situations in which previous planar
approaches have failed for one or more reasons. Previous planar results are reproduced explicitly,
extending them to finite depth. Depth is shown not to increase the number of communications modes
unless the volumes are close when compared with their depths. How to estimate the connection
strengths in some cases without a full solution of the eigenvalue problem is discussed so that estimates
of the number of usable communications modes can be made from the sum rule. In general, the
approach gives a rigorous basis for handling problems related to volume sources and receivers. It may
be especially applicable in near-field problems and in situations in which volume is an intrinsic part of
the problem. © 2000 Optical Society of America
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1. Introduction

Much of the information that we communicate is sent
in the form of waves. Often, as in vision or radio
transmission, the waves propagate through free
space. It is obviously important to know how many
independent information channels we have available
to us and how good a connection we can make on a
given channel. These elements are among the fac-
tors that will limit our ability to communicate infor-
mation, providing bounds, for example, on optical
interconnection, optical memory access, and our abil-
ity to exploit techniques such as very-fine-line lithog-
raphy or near-field microscopy. The details of such
applications are beyond the scope of this paper, but
here we deal with two particular underlying and re-
lated questions and some of their consequences: ~i!
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At a given frequency, what are the independent spa-
tial channels available for sending information on
waves between two volumes? ~ii! How strong are
hese connections? These are simple questions, and
he discussion is restricted to the simplest case of
calar waves.
Despite this simplicity, previous approaches, al-

hough useful, do not yield simple and universal an-
wers; much such research addressed communication
etween regular plane surfaces only. Here we show
hat there is a rigorous and an exact approach to
hese problems for arbitrary volumes that

~i! Allows us to define uniquely the set of available
patial channels for communicating between arbi-
rary volumes1 ~the communications modes!.

~ii! Gives us a very general sum rule for the con-
ection strength and the number of such channels.1
~iii! Enables us to deduce the approximate answers

of previous models that were based on communicat-
ing paraxially between parallel planar surfaces.

~iv! Lets us draw clear conclusions about the effects
of finite thickness on the number of communications
channels.
10 April 2000 y Vol. 39, No. 11 y APPLIED OPTICS 1681



t

a
s
s
l
l
h
f
t
c
a
t
T

o

1

~v! Enables us to estimate the number of usable
communications modes in some cases.

~vi! Relates communications modes to resonator
heory.1

For many situations, especially those involving the
near field, a scalar approach clearly is not sufficient
for optical problems. In other research, my co-
worker and I2 analyzed the vector case and found
analogous results. In this paper, I analyze the sim-
pler scalar case in detail and build some concepts and
intuition that underlie both the scalar and the vector
cases.

Two important previous approaches to this prob-
lem ~for plane surfaces! are summarized in Section 2.
In Section 3 the model that is used in this paper is
defined. The approach here is based on expanding
the source function in the transmitting volume and
the resultant wave in the receiving volume in com-
plete sets. By use of linear algebra—here for the
case of two spaces with different basis sets—the sum
rule for the coupling strengths between the volumes
is derived in Section 4. In Section 5 the concept of
communications modes is introduced. The commu-
nications modes essentially are pairs of functions,
with each pair consisting of one function for the
transmitting volume and one for the receiving vol-
ume. The different communications modes are all
orthogonal and define the two sets of functions with
the best possible couplings between the volumes.
These two sets of functions can be calculated as so-
lutions to two eigenfunction problems, and they cor-
respond to the best possible distinct communications
channels between the volumes. The sum rule takes
on a particularly simple form when the communi-
cations modes are used as the basis sets in the
respective volumes. Explicit results for the com-
munications modes between rectangular prism vol-
umes and between small volumes are derived, and
with an explicit calculation the communications
modes between extreme volumes are illustrated.
Also shown is the relation between communications
modes and resonator modes, and the size of the
connection strengths is rationalized on the basis of
a heuristic approach. The main conclusions are
summarized in Section 6.

2. Previous Approaches

The problem stated in Section 1 has been discussed
mostly in the context of optics for which we might
wish to know the number of separately resolvable
spots when looking at an object with an imaging lens.
We could also refer to this number of resolvable spots
as the effective number of degrees of freedom in the
image. A resolved spot corresponds effectively to a
distinct channel from object to image, and each such
spot could be used to send a separate channel of
information, as in turning on and off a small light in
the object and detecting the result with a small de-
tector in the image space.

We can get an intuitive feel for the problem’s solu-
tion by considering elementary diffraction theory.
682 APPLIED OPTICS y Vol. 39, No. 11 y 10 April 2000
The smallest spot we can use will be the one from
which the diffracted light approximately fills the ap-
erture of the imaging lens or surface ~see Fig. 1!.
The diffraction angle from a spot of size d in one
direction is u ; lyd, so the diffraction solid angle from

spot of area a is V ; l2ya. If we try to use smaller
pots, the diffraction angle will get larger, and we will
tart not to collect some significant fraction of the
ight with the lens or the image surface; hence we will
ose strength in the interconnection. We will also
ave increasing difficulty in distinguishing the signal
rom two such adjacent spots if we attempt to image
hem by using a lens in the image surface. Hence we
hoose the spot area a such that its diffraction solid
ngle corresponds to the solid angle V, which is sub-
ended by the image surface at the object surface.
he number of distinct spots is N ; Aya, i.e.,

N , VAyl2. (1)

Expression ~1! therefore corresponds to the number of
distinct channels for communication between these
two surfaces. ~It is easily shown that the same re-
sult is obtained for N if the roles of the two surfaces
are interchanged.! This type of model was formal-
ized to some extent by Gabor ~see Ref. 3 and refer-
ences therein!, di Francia,4,5 and other authors ~e.g.,
Walther6!, and, for simplicity, we refer to it as the
diffraction model. This kind of approach, which
goes back at least to von Laue ~see discussion in Ref.
3! still appears to be the main one for such problems.
We also can view this kind of model equivalently in
terms of the spatial frequencies in the object surface
being Fourier transformed into the image surface by
propagation, with the finite size of the image surface
imposing a frequency cutoff. In such a picture, we
can use the sampling theorem to deduce the effective
number of independent channels for such a band-
limited function.

The diffraction model is very useful but has several
formal weaknesses. Gabor3 concluded that the best
form of spot to consider was a Gaussian spot, which is
well known to have a minimum uncertainty
property—it has essentially the smallest diffraction
angle for a given spot size—and he used this for his
quantitative results. A Gaussian spot, however, ex-
tends sideways forever, so no finite object volume can
actually generate a true Gaussian spot. Perhaps
more importantly, no two Gaussian spots are truly
independent in the mathematical sense: They al-

Fig. 1. Illustration of the diffraction approach to estimating the
number of independent channels or resolvable spots for communi-
cating between two surfaces. N ; VAyl2, where N is the number
f channels and l is the wavelength.
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ways overlap to some degree and are not orthogonal.
We cannot use such Gaussian spots as an orthogonal
basis to describe the object. Of course, we can imag-
ine intuitively that the object is made up of a series of
spots, and using a set of approximately Gaussian
spots is not an unreasonable way to approximate the
object’s emitted light.

The diffraction model’s Gaussian spots therefore do
not rigorously define independent communication
channels between two volumes. It is reasonable to
expect that there are rigorously independent commu-
nication channels ~or communication modes! between
two volumes ~and how to evaluate these is described
below!. Essentially, Gabor took an intelligent guess
at a set of functions that, although they are not the
rigorous communications modes between two vol-
umes, have many of the expected properties of such
communications modes and can be used intuitively to
generate a reasonable guess at some useful results.7
Gabor is aware of problems with the rigor of this
approach; to quote Gabor, “It may be mentioned that
the theorem has not yet been proved with a rigour
which would satisfy mathematicians, but physicists
have their own standards in these matters . . .” ~Ref.
3, p. 120!. In the sampling-theorem approach, to
specify the function completely at all points within a
finite domain ~rather than at a discrete set of sam-
pling points! actually also requires an infinite num-
ber of samples, so there may be channels beyond
those counted in a simple sampling-theorem ap-
proach.

A second class of problem occurs if we try to extend
the diffraction model ~to regimes that violate its ap-
proximations and that it was never intended to mod-
el! to make predictions when the object is much
smaller than a wavelength in size. If we were na-
ively to follow Gabor’s result there would then be no
degrees of freedom or communications channels for
such small volumes, which is clearly not the case.
Many radio receivers and transmitters, for example,
are much smaller than a wavelength in size, yet they
communicate successfully, so there is at least one
usable channel despite their small size. Another ex-
ample for which scalar waves are an accurate ap-
proach is a loudspeaker and a microphone ~or, for
that matter, the human mouth and ear!, both of

hich are substantially smaller than the wavelength
f low-frequency sound.
The issue of the number of degrees of freedom was

onsidered from another viewpoint, which, for sim-
licity here, we refer to as the eigenfunction ap-
roach, by di Francia.8 di Francia draws our

attention to a mathematical fact that apparently was
noted by several previous authors ~see Ref. 8 for a
discussion!: The wave that emerges from a volume
is presumably an analytic function for any real phys-
ical situation. If we know an analytic function to an
arbitrarily high accuracy over any finite range, we
can deduce its values everywhere else. This prop-
erty is familiar, for example, in expanding a simple
analytic function in a Taylor series about any given
point; the value of the function and its derivatives at
that point are sufficient to establish the coefficients of
a power series that defines the function everywhere,
and the derivatives can certainly all be calculated if
we know the function over some finite range about
the point of interest. Equivalently, we could per-
form a multipole expansion of a given source or wave
about the point of interest. Hence, if we know the
wave over some finite aperture, we can calculate it
everywhere else. We are therefore forced to con-
clude that the number of degrees of freedom in the
wave that enters the aperture is not changed by the
size of the aperture and must be the same as the
number of degrees of freedom in the entire wave.
This relation appears to contradict the diffraction
result and our physical intuition; regardless of the
size of the lens aperture used to observe the wave
field, the number of degrees of freedom is apparently
the same.

Fortunately, di Francia suggests a solution to this
paradox: The entire wave may be expanded in some
complete set of ~orthonormal! basis functions. We
can view the expansion coefficients as being the am-
plitudes of the degrees of freedom with one basis
function corresponding to one degree of freedom. To
describe the wave within only the aperture, we can
use the same basis set, and we will have to use the
same number of elements of the set as we did for the
complete wave. Hence we still have the same num-
ber of degrees of freedom. But we will find that the
couplings from many such basis functions on the ob-
ject surface to basis functions on the image surfaces
may be so small as to be negligible, and, if we count
only those degrees of freedom for which the coupling
coefficients are substantial, we essentially may retain
the result that our intuition and the diffraction mod-
el’s results suggest. This conclusion by di Francia is
not proved in any rigorous sense for arbitrary aper-
tures either, but it is strongly supported by specific
calculations for rectangular and circular apertures.

In fact, considerable study in this area @e.g., Refs.
–14 ~including the research by di Francia8!# was

stimulated by the mathematical results of Slepian
and Pollak15 on prolate spheroidal functions. These
functions are ideal for analyzing optical problems
with rectangular or circular apertures and have sev-
eral remarkable properties, one of which is that they
are the eigenfunctions for imaging from one plane to
another with such rectangular or circular apertures.
~They also form the basis for the analysis of laser
resonators with finite mirrors.! The eigenvalues are
all approximately the same up to the number corre-
sponding to the intuitive diffraction result @i.e., Ga-
or’s result, expression ~1!# after which they fall off
apidly. This prolate spheroidal eigenfunction work
s reviewed extensively by Frieden.10 This work

does therefore define an orthonormal basis set, at
least for this class of problems, and through the in-
troduction of eigenvalues has introduced the concept
of what is essentially a coupling strength that is as-
sociated with a given basis function and a given ap-
erture. ~This body of research also goes on to discuss
the effects of noise in cutting off the effective number
10 April 2000 y Vol. 39, No. 11 y APPLIED OPTICS 1683
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of degrees of freedom, although we do not discuss that
topic here.! The eigenfunction approach can also be
used to deduce useful results for the case of arbitrary
apertures for which specific eigenfunction solutions
are not known. Examples of such use include the
study of atmospheric turbulence ~see, e.g., Refs. 16–
18!.

Both the diffraction and the eigenfunction ap-
proaches discussed above deal with a situation in
which we are communicating between an aperture on
one surface and an aperture on another. They start
with the commonly used optical approximation of the
Huygens–Fresnel diffraction integral. Essentially,
that approximation says that the wave field emitted
from an aperture can be described if the surface
within the aperture is considered to be filled with
sources that are all of the same kind and of ampli-
tudes proportional to the original wave amplitude
within the aperture. Only the aperture is consid-
ered to have any sources. It is important to under-
stand that, no matter how good a job we do of
choosing the nature of these sources, this is still an
approximation. The only truly exact answer that
relates the wave outside a surface to the wave prop-
erties on a surface is the Kirchhoff integration of the
wave equation, which requires integration over a
complete closed surface ~not merely an aperture! and
also requires two kinds of sources on the surface
whose amplitudes depend not only on the wave am-
plitude at the surface but also on its derivatives.

More recent results19 have shown that one kind of
source can be used in the Kirchhoff integration, es-
sentially in an extension of the Huygens principle, for
the specific case of phase fronts on the surface, but
this is still an approximation in the general case.
The formal problems with the boundary conditions on
the surface outside the aperture itself are also noto-
rious. This is not to say that previous use of
Huygens–Fresnel diffraction integrals is wrong in
any sense in earlier research for the problems being
addressed there. But if we wish to obtain absolutely
rigorous results or if we wish to deal with, for exam-
ple, volumes smaller than a wavelength in size or
closer to one another than the lateral dimensions of
the volumes, such approximations should be avoided.

Hence, although both the diffraction model and the
previous eigenfunction approaches yield useful re-
sults and insights, they do not provide a complete
answer to the questions of the communications
modes and their strengths. The approach in this
paper is to treat the communication as being between
volumes and not between apertures in surfaces.
This approach uses techniques of linear algebra sim-
ilar to those used in the previous eigenfunction ap-
proaches but starts with formally exact integrals over
volume sources. The method derived below can
therefore be viewed as an extension to arbitrary vol-
umes ~as opposed to apertures in flat surfaces! of the
igenfunction approach. It is important to note that
nly by considering volumes ~or complete surfaces
hat enclose volumes! can we achieve exact results.
he method will reproduce the important results of
684 APPLIED OPTICS y Vol. 39, No. 11 y 10 April 2000
oth the previous eigenfunction and diffraction mod-
ls. In addition, however, the present method also
llows us to deduce results and insights that go be-
ond either of these previous approaches.

3. Formalism

A. Physical Problem and Wave Equation

First, we need to define the physical problem. We
consider two volumes VT and VR, as sketched in Fig.
2. Note that we do not consider situations with an
additional lens between the two volumes, i.e., a three-
volume problem that could be considered as an ex-
tension to the present approach; it is not necessary to
have any such lens to establish communications
channels between two volumes, however. The dis-
cussion in this paper is restricted to the situation
with only two volumes and no material bodies
present. The approach can be extended to include
material bodies ~which makes the Green’s functions
different through the necessary inclusion of addi-
tional boundary conditions!,2 although only volumes
n free space are considered here.

There are sources C~rT, t! in the transmitting vol-
me VT that generate waves F~rR, t! and obey the

scalar wave equation

¹2F~r, t! 2
1
c2

]2F~r, t!
]t2 5 2C~r, t!, (2)

where c is the wave velocity. We consider only
onochromatic sources of the form

C~r, t! 5 c~r!exp~ivt! 1 c.c. (3)

nd scalar waves of the form

F~r, t! 5 f~r!exp~ivt! 1 c.c., (4)

where v is the angular frequency. ~This analysis
could be extended to the general time-dependent
case, although we do not do so in this paper.! We
can usefully define the wave number as k 5 cyv.
The scalar wave equation can now be written as the
usual inhomogeneous Helmholtz equation:

¹2f~r! 1 k2f~r! 5 2c~r!. (5)

Henceforth, we consider only the positive frequency
component, i.e., exp~ivt!, with the knowledge that we

Fig. 2. Schematic diagram of the transmitting volume VT, which
ontains sources C~rT! of waves, and the receiving volume VR,

which contains a wave field f~rR! that arises from the sources in
he transmitting volume.
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can return to the real wave by adding the complex
conjugate at the end of the calculation, as usual.

The Green’s functions for Eq. ~5!, i.e., the possible
waves resulting from a point source at position r1, in
otherwise empty space and with no other sources of
waves are

G~r, r1! 5
exp~6ikur 2 r1u!

4pur 2 r1u
. (6)

The positive sign in Eq. ~6! corresponds to inward-
propagating waves ~the advanced solution!, and the
negative sign corresponds to outgoing waves ~the re-
tarded solution!. Because we are interested here in
only the case of outgoing waves, we henceforth use
only the retarded solution:

G~r, r1! 5
exp~2ikur 2 r1u!

4pur 2 r1u
. (7)

By using this Green’s function @Eq. ~7!#, we can there-
fore formally add together all the waves from all the
sources within volume VT to obtain the resultant
wave:

f~r! 5 *
VT

G~r, rT!c~rT!d3rT. (8)

B. Mathematical Formalism

Now we can set up the mathematical formalism for
the problem. To describe an arbitrary source func-
tion in the transmitting volume VT, we choose a com-
plete orthonormal basis set of functions that is
defined within VT, namely, aT1~rT!, aT2~rT!,

T3~rT!, . . . . Similarly, to describe an arbitrary
wave in the receiving volume VR, we choose another
complete orthonormal basis set of functions that is
defined within VR, namely, aR1~rR!, aR2~rR!,

R3~rR!, . . . . At the moment it is not important to
know what the sets of functions aTi~rT! and aRj~rR!
are as long as they are complete orthonormal basis
sets in their respective volumes. These basis sets
satisfy the usual orthonormality relations:

*
VT

aTm
~rT!a*Tn~rT!d3rT 5 dmn, (9)

*
VR

aRm~rR!a*Rn~rR!d3rR 5 dmn, (10)

where dmn is the Kronecker delta ~dmn 5 1, m 5 n;
dmn 5 0, m Þ n!.

Using these basis sets @Eqs. ~9! and ~10!#, we can
expand c~rT! and f~rR! to obtain

c~rT! 5 (
i

biaTi~rT!, (11)

f~rR! 5 (
j

djaRj~rR!. (12)
Using these expansions @Eqs. ~11! and ~12!#, we can
ormally rewrite Eq. ~8! as

dj 5 (
i

gjibi, (13)

where

gji 5 *
VR

*
VT

a*Rj~rR!G~rR, rT!aTi~rT!d3rTd3rR. (14)

The variables gji can now be thought of as coupling
coefficients between the transmission from mode i in
volume VT and the reception by mode j in volume VR.
We can also think of gji as being a kind of transad-
mittance that relates the wave amplitude in one vol-
ume to the source amplitude in the other.

Note that Eq. ~13! @together with the expansions in
Eqs. ~11! and ~12!# is exactly equivalent to Eq. ~8!.
Instead of expressing the value of the wave at a given
point in VR directly, we have given the coefficients dj
for the basis functions aRj~rR!. It can be conceptu-
ally useful to think of Eq. ~13! in matrix terms, in

hich case we can rewrite it as

3
d1

d2

d3···
4 5 3

g11 g12 g13 · · ·
g21 g22 g23 · · ·
g31 g32 g33 · · ·
···

···
···

· · ·
43

b1

b2

b3···
4 , (15)

where it should be noted that this matrix will be
infinite, or we can rewrite with f and c as the vectors
f elements d1, d2, d3, . . . and b1, b2, b3, . . . , respec-

tively, and GRT as the matrix with elements gji:

f 5 GRTc. (16)

~In practice, the matrix form is the one that we will
likely use in actual calculations.! We can now view
GRT in general as the communications operator be-
tween the transmitting and the receiving volumes.

C. Interpretation and Measurement of the Coupling
Coefficients gji

Before proceeding to the main results presented in
this paper, we should formally clarify the physical
meaning of the coupling coefficients gji. They have
specific meanings in terms of the power-transfer co-
efficients between the two volumes.

One way of completing the transfer of energy into
the receiving volume from the transmitting volume is
to set up a receiving source CR~rR, t! in the receiving
volume VR. Our goal is to have the wave F~rR, t!
transfer energy to this source. To keep matters sim-
ple, we formally require that the source CR~rR, t! be

eak so that it does not itself generate any wave that
s significant compared with the wave F~rR, t! that is

arriving from sources in the transmitting volume.
Hence the total wave in the receiving volume is, in
the limit of weak CR~rR, t!, the original wave F~rR, t!.

In the wave equation @Eq. ~2!# C can be viewed as
orresponding to force ~per unit volume! and F as
orresponding to displacement in the wave. As a
10 April 2000 y Vol. 39, No. 11 y APPLIED OPTICS 1685
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result, the work done per unit time per unit volume
by the force CR~rR, t! on the wave is the usual product
of force and velocity, i.e.,

W 5 CR~rR, t!
]F~rR, t!

]t
. (17)

Averaging over complete half-cycles of the wave ~or
ver times that are long compared with a cycle! for

our monochromatic wave yields

W 5 2vIm@cR~rR!f*~rR!#. (18)

The total average power transferred from the wave to
the source in VR is therefore

P 5 2*
VR

2vIm@cR~rR!f*~rR!#d3rR. (19)

If we consider the specific case of a normalized
source in VT that corresponds to one of our basis
functions, c~rT! 5 aTi~rT!, in the transmitting volume
and choose a receiving-source function that is propor-
tional to the complex conjugate of one of the basis
functions, aRj~rR!, i.e., cR~rR! 5 Ca*Rj~rR!, we obtain

P 5 22vC *
VR

Im@a*Rj~rR!f~rR!#d3rR

5 22vCIm~gji!. (20)

If we choose cR~rR! 5 iCa*Rj~rR!, we have

P 5 22vC *
VR

Im@ia*Rj~rR!f~rR!#d3rR

5 22vCRe~gji!. (21)

Hence the real Re and the imaginary Im parts of gji
are essentially the power-coupling coefficients be-
tween the source function aTi~rT! in VT and a
receiving-source function aRj~rR! in VR for the two
possible orthogonal phases.

An alternative way, which is mathematically very
similar to the preceding power-transfer method, to
detect the signals in the receiving volume is to mea-
sure the wave at every point in the volume, weight
these measurements by a weighting function w~rR!,
nd add ~i.e., integrate! to obtain a result M ~which is,
n general, complex!. If we choose w~rR! 5 a*j~rR!,
hen, for a normalized source c~rT! 5 aTi~rT!, the
esult is

M 5 *
VR

a*j~rR!f~rR!d3rR

5 gji. (22)

4. Sum Rule

To this point all we have done mathematically is to
recast the problem in terms of basis sets, coupling
coefficients, and an abstract operator and matrix no-
tation. Now we can proceed to use this formalism to
686 APPLIED OPTICS y Vol. 39, No. 11 y 10 April 2000
derive a key result, which is a sum rule on the
strengths of the coupling coefficients. Specifically,
we can state the following theorem:

gRT ; (
i, j

ugjiu2 5
1

~4p!2 *
VR

*
VT

1
urR 2 rTu2

d3rTd3rR.

(23)

Here we have, for convenience, defined the quantity
RT, which we can refer to as the magnitude or the

norm of the communications operator.! Theorem
23! can be proved by expansion of G~rR, rT! in the

basis sets. First, we expand G~rR, rT! in the com-
plete set of functions a*Ti~rT!. ~Note that, given that
he set aTi~rT! is complete, it follows that the set

a*Ti~rT! is also complete.! Hence we obtain for points
rR in VR and rT in VT

G~rR, rT! 5 (
i

ni~rR!a*Ti~rT!, (24)

where

ni~rR! 5 *
VT

G~rR, rT!aTi~rT!d3rT. (25)

Further expanding ni~rR! by use of the complete set
aRj~rR! yields

ni~rR! 5 (
j

gjiaRj~rR!, (26)

where we made use of the definition of gji from Eq.
~14!. Consequently, by using Eqs. ~24! and ~26!, we

ave

G~rR, rT! 5 (
i, j

gjiaRj~rR!a*Ti~rT!. (27)

@The steps from Eq. ~24! to Eq. ~27! technically cor-
espond to a similarity transformation from a contin-
ous to a discrete basis, which constitutes a standard
pproach that is given here completely for clarity.#
ow we have

uG~rR, rT!u2 5 F(
i, j

gjiaRj~rR!a*Ti~rT!G
3 F(

p,q
g*qpa*Rq~rR!aTp~rT!G . (28)

Integrating the right-hand side of Eq. ~28! over both
olumes VT and VR and using the orthonormality

relations of Eqs. ~9! and ~10! of the basis sets, we
btain

*
VR

*
VT

uG~rR, rT!u2d3rTd3rR 5 (
i, j

ugjiu2. (29)

From Eq. ~7!, we can deduce that

uG~rR, rT!u2 5
1

~4p!2urR 2 rTu2
, (30)

and, finally, from Eqs. ~29! and ~30!, we deduce the
um rule @Eq. ~23!#.
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Equation ~23! has the remarkable property of the
um of the modulus squared of the coupling coeffi-
ients depending on only the shapes and the relative
ositions of the two volumes. This result is also true
ndependently of the basis sets we choose in each
olume ~as long as they are complete and orthonor-
al! because we placed no restrictions on the choice

f basis sets.

5. Communications Modes

So far, we have used only arbitrary basis sets for the
functions in the two volumes VT and VR. We can
reasonably ask whether there is a natural pair of
basis sets for this problem in which the mathematical
results become particularly simple and the physical
interpretation becomes clearer. In fact, for any pair
of volumes there are such natural sets, and we can
view these as defining communications modes. We
now proceed to derive these sets. We first take a
heuristic approach that shows that the communica-
tions modes are the pairs of functions that diagonal-
ize the communications operator. Second, we start
afresh mathematically to derive the eigenvalue prob-
lems whose eigenfunctions will yield the communica-
tions modes. The mathematical approach is
essentially similar to that of the singular-value de-
composition of matrices ~although we have to derive
the results in integral-equation form for formal rea-
sons that are related to the infinite basis sets!.

A. Heuristic Approach to Communications Modes

It is immediately clear from Eq. ~23! that there is
some maximum value of ugjiu

2; in the worst case ugjiu
2

cannot possibly exceed gRT. Hence there must be
some pair @c1~rT!, f1~rR!# of ~normalized! transmit-
ting and receiving functions that are most strongly
coupled, i.e., a pair for which the coupling coefficient
g has the largest squared modulus ugu2, and we can
label this coupling coefficient g1.

There are many ways with which we could attempt
to evaluate such a pair of functions, including, for
example, some variational method to maximize ugu2.
~It is also conceivable, especially in situations with
high symmetry, that there is more than one such pair
with the same, i.e., the largest value of ugu2. Such
degeneracy causes no problems here, and it does not
matter which of these pairs of degenerate functions
we choose first. We know, anyway, that the number
of such degenerate-function pairs must be finite be-
cause of the sum rule.! We now choose c1~rT! as the
first member of a new basis set for the transmitting
volume VT and similarly choose f1~rR! as the first
member of a new basis set for the receiving volume
VR.

We can now find the second members @c2~rT!,
2~rR!# of the basis sets by a similar procedure, except
t this point, we also require that these ~normalized!

functions be orthogonal to the corresponding first
members. The corresponding coupling coefficient g2
will have the next-largest value of ugu2. ~In the case
of degenerate functions, ug1u2 5 ug2u2.! We can con-
inue to proceed in this manner to find all the other
members of the basis set, requiring that each succes-
sive member of each set be orthogonal to all the pre-
vious members of that set.

An important question is whether the off-diagonal
coupling coefficients ~i.e., gji, j Þ i! are zero when we
use this basis. In fact, they are all zero, as is easily
proved. Essentially, if the off-diagonal elements
were not zero, we would be able to find functions with
larger coupling coefficients than those of these basis
sets, which is impossible by definition. A second im-
portant question is whether this set of communica-
tions modes is unique ~except for the usual
arbitrariness associated with linear combinations of
degenerate functions!. In fact, they are ~within a
phase factor!; this point will become clear from the
ormal mathematical solution described in Subsec-
ion 5.B. In this new representation, therefore, the
atrix GRT is diagonal with its diagonal elements

being the coupling coefficients g1, g2, g3, . . . , ar-
ranged in descending order of their squared magni-
tudes.

The communications modes, then, are those pairs
of functions @cj~rT!, fj~rR!# that are unique ~within a

hase factor! except for the arbitrary linear combina-
ions of possible degenerate solutions that, when used
s the complete orthogonal basis functions for their
espective volumes, diagonalize the communications
perator GRT. Such functions also yield the largest

possible coupling coefficients.

B. Formal Eigenfunction Solution for Communications
Modes

The maximization procedure described in Subsection
5.A is not necessarily a convenient one in practice for
calculating the functions. Also, such an approach
does not prove the completeness and the uniqueness
of the solutions. Hence it is useful to recast the
solution of this problem in terms of eigenfunction
problems; then we can use standard linear-algebra
techniques to arrive at the solutions. In fact, this
kind of problem is well known mathematically, and
some aspects of it have already been applied ~in the
two-dimensional case and on the basis of diffraction-
theory approximations! to the theory of optical prop-
agation in turbulent atmospheres.16–18 In matrix
form the solutions we seek would reduce to the re-
sults of a singular-value decomposition of the matrix
GRT of the coefficients gji, although, to justify the
results here, we need some of the results of functional
analysis to be applied to integral equations. Thus
we briefly derive the solution in the integral-equation
form.

Formally, we wish to deduce which ~normalized!
source function c~rT! yields the ~unnormalized! wave
f~rR! with the largest magnitude in volume VR,
where, by magnitude, we mean the quantity

ugu2 5 *
VR

f*~rR!f~rR!d3rR. (31)

@Note that, in Eq. ~31!, g must, by definition from Eq.
~14!, then be the coupling coefficient between the nor-
10 April 2000 y Vol. 39, No. 11 y APPLIED OPTICS 1687
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malized source function c~rT! and the corresponding
ormalized wave function fN~rR! of the same form as

f~rR!, i.e., f~rR! 5 gfN~rR!.#
Substituting from Eq. ~8! into Eq. ~31! yields

ugu2 5 *
VR

*
VT

*
VT

G*~rR, r*T!c*~r*T!G~rR, rT!

3 c~rT!d3r*Td3rTd3rR, (32)

that is,

ugu2 5 *
VT

c*~r*T! *
VT

K~r*T, rT!c~rT!d3r*Td3rT, (33)

where

K~r*T, rT! 5 *
VR

G*~rR, r*T!G~rR, rT!d3rR. (34)

ote that K~r*T, rT! is Hermitian, i.e.,

K~r*T, rT! 5 K*~rT, r*T!. (35)

Also, because VR and VT are completely separate and
nite volumes, the terms urR 2 rTu and urR 2 r*Tu are

never zero, and K~r*T, rT! can have no singularities
nd is a continuous, bounded function. Addition-
lly, with VT finite, we have

*
VT

*
VT

uK~r*T, rT!u2d3r*Td3rT , `.

This boundedness of the integral and the integrand
comprises sufficient conditions to make the linear
map that corresponds to this kernel K~r*T, rT! techni-
cally compact,20 which means that, in practice, K~r*T,

T! can be expanded bilinearly in a complete set of
functions aTi~rT!:

K~r*T, rT! 5 (
j,i

kjiaTj~r*T!a*Ti~rT!. (36)

The eigenfunctions of such a compact Hermitian ker-
nel themselves form a complete set for functions in VT
and have real eigenvalues,20 and it is also a standard
result that the Hermitian form @Eq. ~33!# is maxi-

ized when c~rT! is chosen as the eigenfunction of
K~r*T, rT! with the largest eigenvalue,20,21 i.e., the
function c~rT! that solves the integral equation

ugu2c~r*T! 5 *
VT

K~r*T, rT!c~rT!d3rT (37)

with the largest value of ugu2. Indeed, the set of or-
thogonal functions with the largest successive values
of ugu2 is the set of eigenfunctions c1~rT!, c2~rT!,
c3~rT!, . . . , arranged in descending order of their eig-
envalues ug1u2, ug2u2, ug3u2, . . . . @This result becomes
relatively obvious if we choose the eigenfunctions for
the expansion in Eq. ~36!, which yields a diagonal
expansion ~i.e., kjÞi 5 0! with the eigenvalues as the
diagonal expansion coefficients ~i.e., kj5i 5 ugiu

2!.#
688 APPLIED OPTICS y Vol. 39, No. 11 y 10 April 2000
For any given normalized source function cn~rT!
there is a corresponding ~unnormalized! wave
fnU~rR! generated in the receiving volume, which al-
lows us to define normalized waves as fn~rR! 5
fnU~rR!ygn. We know that the proportionality con-
stant here is gn because ugnu2 is the value that we
deduced for ugu2 for the case of source function cn~rT!
nd ugu2 is, by definition, the magnitude ~squared! of
he generated wave from Eq. ~33!. Note, inciden-
ally, that the phase of gn is arbitrary because wave

fn~rR! is itself arbitrary within a phase factor. It is
not immediately obvious, but these waves fn~rR! also
form an orthonormal complete set in the receiving
volume VR because, as we now show, they are also the
eigenfunctions of a compact Hermitian kernel. We
have by definition

gnfn~rR! 5 fnU~rR! 5 *
VT

G~rR, rT!cn~rT!d3rT. (38)

Now, by using Eqs. ~34! and ~37!, changing the order
of the integrations, and interchanging the use of the
variable names rT and r*T, we have

*
VR

G*~rR, rT!F*
VT

G~rR, r*T!cn~r*T!d3r*TGd3rR

5 ugnu2cn~rT! 5 *
VR

G*~rR, rT!gnfn~rR!d3rR, (39)

here we have made use of the definition of fn~rR!
from Eq. ~38!. Hence we have

g*ncn~rT! 5 *
VR

G*~rR, rT!fn~rR!d3rR. (40)

Substituting Eq. ~40! into Eq. ~38! yields

ugnu2fn~rR! 5 *
VR

J~rR, r*R!fn~r*R!d3r*R, (41)

where

J~rR, r*R! 5 *
VT

G~rR, rT!G*~r*R, rT!d3rT. (42)

Equation ~42! is a compact Hermitian kernel by the
same arguments as given above and therefore has a
complete set of eigenfunctions with real eigenvalues.

Note that this problem of communicating from one
volume to another has turned out to be a remarkably
symmetrical and reciprocal one. There are two sets
of eigenfunctions, one set for each volume, with a
one-to-one correspondence between the members of
the sets in the two volumes and the same eigenvalues
for the eigenfunctions in the different volumes. It is
also true, incidentally, that, by taking the complex
conjugate of Eq. ~40!, we have

gnc*n~rT! 5 *
VR

G~rR, rT!f*n~rR!d3rR, (43)
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which means that, if we had a source of the form
f*n~rR! in volume VR, it would generate a wave of the
form c*n~rR! in volume VT. Such a source could be
generated by the well-known process of phase conju-
gation, whereby, usually through some nonlinear op-
tical process, we generate a source that is
proportional to the ~spatial! complex conjugate of the
wave in a volume. We return to this point below in
Subsection 5.F.

C. Communications Modes for Two Rectangular Prism
Volumes

Now let us consider the specific case of the commu-
nications modes between two rectangular prism vol-
umes ~volumes in which each face is rectangular!.
This case gives us an explicit connection to the eigen-
function approach presented in Subsection 5.B and
yields analytic results for cases of practical interest.

Consider two rectangular prism volumes VT and
R that are oriented along the same axis and are a

distance r apart ~center to center!, as shown in Fig. 3.
The volumes are of size 2DxT, 2DyT, and 2DzT, in the
x, the y, and the z directions, respectively, for VT and
are similar for VR. We presume that the volumes
re far apart compared with their sizes:

r..2DxT, 2DyT, 2DzT, 2DxR, 2DyR, 2DzR. (44)

We can formally find the communications modes by
solving Eqs. ~37! and ~41!. Explicitly, from Eq. ~37!,
we have

Because of condition ~44!, we can approximately re-
place urR 2 rTu and urR 2 r*Tu with r in the denominator
in Eq. ~45!. In the exponent, for example, we have

urR 2 rTu 5 @~r 1 zR 2 zT!2 1 ~xR 2 xT!2 1 ~yR 2 yT!2#1y2

> r 1 ~zR 2 zT! 1
~xR 2 xT!2

2r
1

~yR 2 yT!2

2r
,

(46)

Fig. 3. Transmitting volume VT, receiving volume VR, rectangu-
ar prism volumes, and their coordinates and dimensions.

ugu2c~rT! 5 *
VT

F*
VR

exp~ikurR 2 r
~4p!2urR
where xR, yR, and zR are the coordinates relative to
the center of VR and similarly xT, yT, and zT are the
coordinates relative to the center of VT, which can be
viewed as a paraxial approximation. Hence

exp~ikurR 2 rTu!exp~2ikurR 2 r*Tu!

> exp(2ikHzT 2
1
2r

~xT
2 1 yT

2! 2 z9T 1
1
2r

~xT
92 1 yT

92!

1
1
r

@xR~xT 2 x9T! 1 yR~yT 2 y9T!#J). (47)

Now we can choose to write

c~rT! 5 FT~rT!bT~rT!, (48)

where

FT~rT! 5 expH2ikFzT 2
1
2r

~xT
2 1 yT

2!GJ . (49)

The term FT~rT! can be described as a focusing func-
tion; it corresponds to a spherical wave that is cen-
tered on the receiving volume ~see Fig. 4!. The
purpose of this separation @Eq. ~48!# is to take out the

nderlying spherical focusing of the source from the
athematical problem that we now solve for the func-

ion bT~rT!.
With the definitions of Eqs. ~48! and ~49!, we can

ow rewrite Eq. ~45! with our approximation ~47! as

ugu2bT~rT! 5
1

~4pr!2 *
VT

*
VR

expH2
ik
r

@xR~xT 2 x9T!

1 yR~yT 2 y9T!#Jb~r*T!d3rRd3r*T. (50)

Now we postulate that we can write

bT~rT! 5 aTx~xT!aTy~yT!aTz~zT!. (51)

This separation @Eq. ~51!# is justified a posteriori be-
ause we show that functions of this form are eigen-
unctions of Eq. ~50!. With the form of Eq. ~51!, the
roblem can be rewritten as

gu2aTx~xT!aTy~yT!aTz~zT! 5
1

~4pr!2 *
VT

*
VR

3 (expH2
ik
r

@xR~xT 2 x9T! 1 yR~yT 2 y9T!#J
3 aTx~x9T!aTy~y9T!aTz~z9T!)d3rRd3r*T, (52)

p~2ikurR 2 r*Tu!

TuurR 2 r*Tu
d3rRGc~r*T!d3r*T. (45)
Tu!ex

2 r
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which is now separable into three eigenfunction
equations in the three directions:

hTxaTx~xT! 5 *
2DxT

DxT H*
2DxR

DxR

expF2
ik
r

xR~xT 2 x9T!GdxRJ
3 aTx~x9T!dx9T. (53)

The equation for the y direction is similar, and for the
z direction it is

hTzaTz~zT! 5 *
2DzT

DzT

*
2DzR

DzR

aTz~z9T!dzRdz9T, (54)

where
hTxhTyhTz 5 ~4pr!2ugu2. (55)

The eigenequation @Eq. ~54!# for the z direction is
trivially solved. The left-hand side of the equation
depends on zT, whereas the right-hand side does not.
The only solution to Eq. ~54! is for aTz~zT! to be a
onstant, in which case

hTz 5 ~2DzR!~2DzT!. (56)

@Note that we now do not have a complete set of
eigenfunctions for the z direction, which is a conse-
quence of the approximations that we have made
here. The resultant kernel in Eq. ~54! is itself a
constant, which therefore maps all functions onto
constants and thus is a many-to-one mapping that
cannot be inverted. A full solution of this problem
without approximations would presumably result in
a set of functions in the z direction.#

The situation for the x and the y directions is more
nteresting. The integration over xR can be per-

formed in Eq. ~53!, yielding

*
2DxR

DxR

expF2
ik
r

xR~xT 2 x9T!GdxR

5
r

ik~xT 2 x9T! HexpFik
r

DxR~xT 2 x9T!G
2 expF2

ik
r

DxR~xT 2 x9T!GJ
5

2pDxR

VTx

sin@VTx~xT 2 x9T!#

p~xT 2 x9T!
, (57)

Fig. 4. Illustration of the focusing functions FT~rT! and FR~rR!
that arise in the analysis of communications between rectangular
prism volumes.
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where

VTx 5
kDxR

r
. (58)

Note, incidentally, that

2pDxR

VTx
5

2pr
k

5 lr, (59)

where l is the ~free-space! wavelength. Equation
~57! leads to a rewriting of Eq. ~53! to yield

nTxaTx~xT! 5 *
2DxT

DxT sin@VTx~xT 2 x9T!#

p~xT 2 x9T!
aTx~x9T!dx9T, (60)

where

nTx 5
hTx

lr
. (61)

Now Eq. ~60! is the defining eigenequation for the
prolate spheroidal wave functions.10 Hence we have
found the desired solutions to Eq. ~45! ~within the
approximations made!. Explicitly, we have

cnxny~rT! 5 FT~rT!anx~xT!any~yT!, (62)

where anx
~xT! is the nxth ~linear! prolate spheroidal

unction with a bandwidth VTx, a scale DxT, and an
eigenvalue nnx; the situation is similar for the y di-
rection. These sets of functions are known to be
complete over the associated intervals 6Dx and 6Dy,
respectively.

To relate to the standard notation of Flammer22 for
prolate spheroidal wave functions, we scale the
lengths in units of DxT ~and similarly for the y and the
z directions! to obtain instead of ~but equivalent to!
Eq. ~60!

nTnxS0nx~cx, jT! 5 *
21

1 sin@cx~jT 2 j9T!#

p~jT 2 j9T!
S0nx~cx, j9T!dj9T,

(63)

where

jT 5
xT

DxT
, (64)

the dimensionless parameter cx is given by

cx 5 DxTVTx, (65)

and S0m~c, j! is the ~0, m!th angular prolate spheroi-
dal function.

The eigenvalues nTnx are known to have the prop-
erties10

1 $ n0 . n1 . n2 . · · · 0, (66)
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and for small nx the nTnx fall off slowly until they
reach a critical value

nxcrit 5
2DxTVx

p
5

2
p

cx 5
~2DxT!~2DxR!

lr
, (67)

after which they fall off rapidly. We refer to this
critical value as the effective number of degrees of
freedom ~in the x direction! because, as we see below,
this is the number of degrees of freedom that we
would expect from the usual diffraction models of
communications between surfaces.

Note, however, that nxcrit can be less than 1 here if
sizes DxT and DxR are too small, the meaning of
which is that the communications modes are not as
well connected as they might otherwise be for vol-
umes that are spaced such a distance apart. Again,
this situation agrees with our intuitive notions of
diffraction: If the volumes are so small that, accord-
ing to a simple diffraction model, the wave from the
source volume cannot all be focused efficiently onto
the receiving volume, then the communications mode
is not well connected.

Incidentally, Eq. ~67! can be viewed as having a
simple physical meaning. The ratio 2DxRyl is the
number of wavelengths that correspond to the size of
the receiving volume ~in this x direction!, and the
ratio 2DxTyr is the angle subtended by the transmit-
ting volume ~in this x direction!. Expression ~67!
therefore corresponds to the notion that the number
of resolvable spots is the area expressed in units of
wavelength and weighted by the subtended angle, as
we would expect from the results of diffraction the-
ory. Equivalently, ly2DxT is the diffraction angle of
he radiation that emanates from the aperture of the
ransmitting volume ~in the x direction!, 2DxRyr is

the angle subtended by the receiving volume at the
transmitting volume ~in the x direction!, and nxcrit is
the number of times this diffraction angle can be
fitted into this subtended angle. It is also clear from
expression ~67! that we can view the size, the diffrac-
tion angle, and the subtended angle from the perspec-
tive of the other ~y and z! volumes and obtain the
same answer.

Thus we will find, equivalently to expression ~67!,

hTx # lr, (68)

with hTx staying close to lr up to the critical number
xcrit. If we take expression ~68! for hTy, the equiv-

alent expression for hTy, and Eq. ~56! for hTz and
substitute these into Eq. ~55!, we have

ugu2 #
l2~2DzT!~2DzR!

~4p!2 . (69)

Now, for the case in which the volumes are far apart
compared with their dimensions the sum rule @Eq.
~23!# reduces to

( ugu2 5
VT VR

~4pr!2 . (70)
Hence the maximum number of communications
modes that we could have that are as well connected
as is the best mode is

Nmax 5
VR VT

~4pr!2

~4p!2

l2~2DzT!~2DzR!

5 nxcritnycrit, (71)

which is exactly the number we would deduce directly
from the properties of the eigenvalues of the prolate
spheroidal functions. Hence our result is consistent
with the sum rule.

To complete the problem, we need also to find the
associated wave functions in the receiving volume
VR. The solution proceeds with a function that is
exactly analogous to the source functions derived
above, except that we start with Eq. ~41!. By anal-
gy with Eq. ~48!, we can write

f~rR! 5 FR~rR!bR~rR!, (72)

where

FR~rR! 5 expHikFzR 2
1
2r

~xR
2 1 yR

2 !GJ (73)

is the receiving focusing function. By choosing the
separation

bR~rR! 5 aRx~xR!aRy~yR!aRz~zR! (74)

s in Eq. ~51!, we similarly deduce that aRz~zT! is a
onstant with the associated eigenvalue

hRz 5 ~2DzR!~2DzT!. (75)

xactly following steps analogous to those above, we
ave

fnxny~rR! 5 FR~rR!anx~xR!any~yR!, (76)

where anx
~xR! is the nxth ~linear! prolate spheroidal

function with a bandwidth of VRx 5 kDxTyr, a scale
DxR, and an eigenvalue nnx; the situation is similar
for the y direction. All the results that we deduced
bove about the eigenvalues and the numbers of
trongly coupled modes can be deduced identically if
e consider this eigen problem for the received
aves. Note that the x functions in the transmitting
nd the receiving volumes are identical in form to one
nother; the cx parameter is the same number for

both sets of prolate spheroidal functions. The scale
factors of the functions will, however, in general be
different if the sizes of the volumes are different in
the x direction. Similar conclusions apply to the
functions in the y direction. It does not matter
which volume we consider first; having solved the
problem for one volume, we already know the solu-
tions for the other volume.

Hence we see that, by considering rectangular
prism volumes that are far apart compared with their
dimensions, we ~i! reproduce the results of the previ-
us analysis8 for surfaces and obtain prolate spheroi-

dal wave functions as the forms of the source and the
10 April 2000 y Vol. 39, No. 11 y APPLIED OPTICS 1691
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wave functions in the two volumes, ~ii! obtain results
rom the direct solution of the eigen problems for the
umber of strongly connected modes that agree with
he sum rule @Eq. ~23!#, and ~iii! find that the inclu-

sion of the finite thickness of the two volumes has no
effect on the number of degrees of freedom ~or on the

umber of strongly connected modes! for communi-
ating between the two volumes ~under the assump-
ion that the separation of the volumes is large
ompared with their dimensions!, although the com-
unications modes in thicker volumes are more

trongly connected @see, e.g., expression ~69!# in pro-
ortion to the thicknesses of both volumes.
As an illustrative numerical example, let us con-

ider two volumes that are separated by 81l, a trans-
itting volume VT of dimensions 9l 3 9l 3 27l, and

a receiving volume of dimensions 9l 3 9l 3 18l.
We find that we will have to deal with numbers of
degrees of freedom of 1, 2, 3, and 6 as we analyze this
problem. The prolate spheroidal functions S0n~c, j!
or 1, 2, and 3 degrees of freedom ~c 5 py2, p, 3py2,

respectively! are shown in Fig. 5. These functions
were calculated by use of the routines described in
Refs. 23 and 24. Note that, as might be expected,
the number of zeros in the functions over the range
21 to 1 is equal to the index n. Note also that the set
of functions ~with n 5 0, 1, 2, . . .! for a given value of
c is complete and orthogonal over the interval 21 to
1.

Table 1 lists the calculated eigenvalues nn that cor-
respond to the various functions shown in Fig. 3.
~Note that these are not the eigenvalues quoted by
Flammer22 for prolate spheroidal wave functions; as
discussed by Frieden,10 the relevant eigenvalues are

ifferent here and are actually derived from the ra-
ial prolate wave functions.! Note that the func-
ions with large eigenvalues have small amplitudes
t 11 and 21 and also have gradients that appear to
ecome asymptotic parallel to the axis. This asymp-
otic behavior is consistent with the function’s being
elatively well confined within this range. Func-
ions with small eigenvalues correspond to functions
hat are not well focused into the volume, and they
ill have substantial amplitudes outside the volume.
There are many different possible relative config-

rations for the example volumes. For example, if
e line up the long directions of the two volumes in

he y direction ~i.e., 2DxT 5 9l, 2DyT 5 27l, 2DzT 5
l, 2DxR 5 9l, 2DyR 5 18l, and 2DzR 5 9l!, which

we might consider to be the most conventional optical
configuration, we find that nxcrit 5 1 and nycrit 5 6.
We would find approximately six strongly connected
communications modes, each corresponding to differ-
ent patterns in the y direction in each volume.

Another relatively conventional optical configura-
tion is the crossed transverse configuration with the
long ~27l! axis in the y direction in the transmitting
volume and the receiving volume’s long ~18l! axis in
the x direction ~i.e., 2DxT 5 9l, 2DyT 5 27l, 2DzT 5
l, 2DxR 5 18l, 2DyR 5 9l, and 2DzR 5 9l!. This

configuration has values of nxcrit 5 2 and nycrit 5 3.
For each of three patterns in the y direction there are
692 APPLIED OPTICS y Vol. 39, No. 11 y 10 April 2000
two distinct patterns in the x direction, again giving
six strongly connected communications modes.

There are several other distinct configurations.
Figure 6 illustrates a configuration in which the long
~18l! axis is in the z direction in the receiving volume
~i.e., 2DxT 5 9l, 2DyT 5 27l, 2DzT 5 9l, 2DxR 5 9l,

Fig. 5. Normalized prolate spheroidal functions for various pa-
rameter values: ~a! 1 degree of freedom ~c 5 py2!, ~b! 2 degrees of
freedom ~c 5 p!, ~c! 3 degrees of freedom ~c 5 3py2!.
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Table 1. Eigenvalues n That Correspond to the Various Functions
2DyR 5 9l, and 2DzR 5 18l! with values of nxcrit 5 1
and nycrit 5 3. The most extreme, well-connected
ommunications mode, nx 5 0 and ny 5 2, is illus-

trated in Fig. 6. Note in this case that there are only
three well-connected communications modes because
of the greater depth in the z direction in the receiving
volume, although each of these three modes is more
strongly connected than in the previously discussed
cases that each had six strongly connected modes.

Note that, in the example above ~Fig. 6!, we chose
the dimensions such that nxcrit and nycrit were always
greater than or equal to 1. This choice ensures that
we have strongly connected modes for all the relative
orientations discussed above. The situation in
which one or more of the dimensions is too thin to
satisfy this criterion yields somewhat different re-
sults, which we discuss below.

D. Communications Modes for Very Small Volumes

Consider now the case of volumes of arbitrary shape
that are very small. Formally, for the volume to be
very small, we require that the diffraction angle from
one volume be much larger than the angle subtended
by the other volume:

DxTMDxRM

l0 r
,, 1, (77)

here DxTM ~DxRM! is now the maximum size of the
transmitting ~receiving! volume in the x direction.
There is an equivalent relation for the y direction.

Fig. 6. Most extreme well-connected communications mode with
~left-hand image! and 9l 3 9l 3 18l ~right-hand image!. The tw
shown to scale in an isometric projection.

n

Shown in Fig. 3a

Eigenvalue nn

Degrees of Freedom

1 2 3

n0 0.783 0.981 0.999
n1 0.205 0.750 0.969
n2 0.011 0.244 0.733
n3 0.025 0.263
n4 0.0005

Total 1.00 2.00 2.96

aBlank entries indicate that the values are negligibly small.
The diffraction angle should also be such that the
maximum size of the volume in the z direction ~the
direction of the axis between the volumes! is still
much less than the separation r between the vol-

mes. Then we have

exp~ikurR 2 rTu!exp~2ikurR 2 r*Tu! > exp~2ik$zT 2 z9T%!,

(78)

nd the eigenequations of Eqs. ~37! and ~41! become
ery simple. Specifically, we have

ugu2c~r*T! 5
1

~4pr!2 *
VT

*
VR

exp~ik@zT

2 z9T#!d3rRc~rT!d3rT, (79)

ugu2f~r*R! 5
1

~4pr!2 *
VR

*
VT

exp~ik@zR

2 z9R#!d3rTf~rR!d3rR, (80)

respectively. By writing

c~rT! 5 bT~rT!exp~2ikzT!, (81)

e obtain the trivial integral equation

ugu2bT~rT! 5
1

~4pr!2 *
VT

*
VR

bT~r*T!d3rRd3r*T. (82)

Nothing in the integrand of Eq. ~82! depends on rR, so
the integral over rR simply becomes VR. Similarly,

othing on the right-hand side of Eq. ~82! depends on
T, so the only solution is that bT~rT! is a constant.

Hence the only solution is

c~rT! 5
1

ÎVT

exp~2ikzT!, (83)

where we also normalized this source function with

ugu2 5
VR VT

~4pr!2 . (84)

Note that the value of ugu2 from Eq. ~84! is sufficient
o satisfy the sum rule completely, so there are no

0 and ny 5 2 between volumes with dimensions of 9l 3 27l 3 9l
lumes are separated by 81l ~center to center!. The volumes are
nx 5
o vo
10 April 2000 y Vol. 39, No. 11 y APPLIED OPTICS 1693
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other communications modes with finite connection
strength in this limit.

Similarly, we deduce that

f~rR! 5
1

ÎVR

exp~2ikzR! (85)

for the normalized wave function f~rR!. Hence we
conclude that, for such small volumes, there is essen-
tially only one communications mode with finite con-
nection strength and that the optimum choice of
source is one with the same form as a plane wave that
propagates along the direction between the transmit-
ting and the receiving volumes. This propagation
direction gives rise to a wave that is essentially a
plane wave within the receiving volume ~although it
cannot, in general, be a plane wave with such a finite
source, as would be quite apparent if we were to look
at the wave substantially outside the receiving vol-
ume!.

E. Communications Modes for Arbitrary Volumes

We can use the general method presented in Subsec-
tion 5.B to deal numerically with extreme situations
or cases that simply cannot be approached by the
methods of previous authors. An example is shown
in Fig. 7. We have two very thin ~1y10 wavelength!
volumes at right angles to each other and only one
wavelength apart. A conventional picture based on
plane-parallel surfaces can tell us nothing about the
communications modes in this situation. Note that
the separation between these volumes is less than the
thickness ~horizontal length! of the transmitting vol-
ume and that the receiving volume effectively has a
large numerical aperture in the vertical direction,
especially as seen from the nearer end of the trans-
mitting volume.

In general, we can find an approximate numerical
solution by taking a finite number of basis functions
in each volume; in the limit of large numbers of basis
functions this approach can be proved to converge
toward the actual solution and is known to yield re-
liably an underestimate of the coupling strengths.20

Solving numerically for the communications modes
by use of Eqs. ~37! and ~41! yields the functions illus-
trated in Fig. 7 for the two strongest modes. For this
integration, we formally used a finite Fourier basis in
each volume initially, constructed the matrix of the
coefficients gji, and then solved the resulting matrix
eigenequations for the eigenfunctions and the eigen-
values. In each case, the functions do not vary sig-
nificantly along the thin directions, so the functions
in these directions were taken to be constant.

The first mode @Fig. 7~b!# takes at least approxi-
mately 86% of the available communications
strength ~i.e., ug1u2 > 0.86gRT!, and the second mode
@Fig. 7~c!# takes at least approximately 11% ~i.e., ug2u2
> 0.11gRT!. There are apparently no other modes of
significant strength ~the 3% of strength that is unac-
ounted for may be from limitations of the numerical
echnique!. Incidentally, this problem is symmetric,
ielding essentially the same solutions if the roles of
694 APPLIED OPTICS y Vol. 39, No. 11 y 10 April 2000
he transmitting and the receiving volumes and of
he source and the wave functions are interchanged.
he orthogonality of the functions is relatively obvi-
us for the waves ~the second mode has strong side-
obes of opposite sign to the main peak!; the source
unctions are orthogonal also, although it is neces-
ary to look at the entire complex function to see this
learly. We note that the second mode has greater
ntensity in the wave at the edges of the receiving
olume and a somewhat stronger contribution from

Fig. 7. Illustration of ~a! two thin volumes, ~b! the strongest com-
munications mode, ~c! the second-strongest communications mode.
For the transmitting volume VT @the thin horizontal volume shown
in ~a!# the real part of the wave amplitude along the length of the
volume is shown for a particular arbitrary phase. For the receiv-
ing volume VR @the thin vertical volume shown in ~a!# the real part
of the wave is shown in a contour plot that illustrates approxi-
mately half of a period of the wave with a horizontal scale such that
2p of the phase is the same size as one wavelength on the diagram.
With this choice of scale the curvatures of the phase fronts corre-
spond approximately to the actual curvature of the propagating
waves. Dimensions are in wavelengths l. Note that the second
communications mode changes sign between the peak in the center
and those in the upper and the lower lobes. Note also that these
upper and lower lobes are more intense than the center peak. At
least 86% of the available communications strength is in the first
mode, and at least 11% of the strength is in the second mode.
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the far end of the source, as we might expect intu-
itively.

F. Relation to Resonator Theory and Phase Conjugation

Suppose that we start out with the source cn~rT! in
the transmitting volume VT, which generates the
wave f~rR! 5 gnfn~rR! in the receiving volume VR.
Now suppose that we have some physical process in
VR that generates a new source of amplitude, Af*~rR!
5 Ag*nf*n~rR!. This source is, by definition, the
phase conjugate of the wave in VR. Then we know
from Eq. ~43! that the wave generated in the volume
VT is f9~rT! 5 Augnu2c*n~rT!. If we then similarly
have a mechanism in VT that generates a new source
with an amplitude Bf9*~rT!, the resulting source is
BA*ugnu2cn~rT!, which is simply a constant times the
original source. Hence this system constitutes a res-
onator, and the communications modes are essen-
tially the modes of this resonator that reproduce
themselves on multiple reflections inside the
resonator—in other words, we have proved that the
communications modes can be generated physically if
we set up a phase-conjugate resonator system in
which each mirror is a phase-conjugate reflector.25

The communications modes are, quite generally, the
modes of the phase-conjugate resonator that is
formed from the two volumes; this condition applies
without approximations ~the coefficients A and B
must, of course, be constants!, giving a physical in-
terpretation of communications modes.

One very simple case of a resonator is the confocal
resonator formed from two mirrors whose radius of
curvature is equal to the separation between the mir-
ror centers. If the phase front arriving at the mirror
has a curvature that matches that of the mirror the
resulting reflected phase front is actually the phase
conjugate of the incident phase front and has a phase
front that is the exact reversed version of the incident
wave. Such a wave is focused initially on the center
of the other mirror ~although it subsequently dif-
fracts!. The reader can see connection to the situa-
tion depicted in Fig. 4. In fact, it is now obvious from
the above discussion that, in the paraxial case @i.e.,
with conditions similar to those of expression ~44!#,
just as the communications modes between two par-
allel, thin, rectangular volumes that are spaced far
apart are the prolate spheroidal functions, so also are
the modes of the confocal resonator the prolate sphe-
roidal functions, a fact that is already well known
from previous work.10 Hence this present discus-
sion of the modes of phase-conjugate resonators and
communications modes is consistent with this previ-
ous work.

G. Rationalization of the Size of the Connection
Strengths

Above we showed formally how to solve for the com-
munications modes and their ~squared! connection
strengths ugu2. We also showed explicit results for
the case of rectangular prism volumes that are far
apart. In addition we saw in this rectangular
prism case that mathematically the connection
strengths are all similar in size up to a critical
number, above which they fall off dramatically.
We showed too that the product of this size and the
critical number would satisfy the sum rule @Eq.
23!#. This behavior of the connection strengths
aises the following questions: ~i! Is there a phys-
cal explanation of why the connection strengths
xhibit this behavior, an explanation that might
ive us some more general physical insight? ~ii! Is
here a more general way to make intelligent
uesses for what will constitute reasonable commu-
ications modes and to estimate their connection
trengths without the need to calculate an entire
xact solution? Here we attempt to answer these
uestions. The arguments are necessarily approx-
mate and not completely rigorous; exactness is not
he point, however, and we already have exact
ethods for any particular case anyway.
A key concept to understanding these questions is

o understand the extent to which the waves in the
eceiving volume that are generated from different
oints in the transmitted volume are orthogonal to
ne another. We can imagine two sources at points
T1 and rT2 in the transmitting volume, as shown in

Fig. 8. Obviously, if these points are close the
waves that they generate in VR will be almost iden-
tical; hence they will not be orthogonal. As we
move the points further apart for the particular
monochromatic case we consider here, there is, of
course, a rapidly varying phase that would cause
the waves to go through alternating constructive
and destructive interference. Let us presume,
however, that we always make the best possible
choice of relative phase of the two sources to elim-
inate this particular interference effect. Even
with this optimal phase choice, as we move points
rT1 and rT2 further apart, we can expect that the
waves will become progressively different from one
another.

Formally, to assess the orthogonality of the waves,
we should evaluate their overlap integral in VR. Be-
ause the wave at point rR in VR from a point source

at rT is simply G~rR, rT!, the overlap integral of the

Fig. 8. Illustration in cross section of the source points rT1 and rT2

in volume VT and the volume VR, which contains the resultant
aves of interest. Also shown is a volume DVT near rT1. Other

sources in DVT, with their phases appropriately chosen, are ex-
ected to produce waves in VR that are substantially similar ~not

orthogonal! to the wave from the source at point rT1, whereas
sources outside DVT are expected to produce waves in VR that are
ubstantially orthogonal to those from the source at point rT1.
10 April 2000 y Vol. 39, No. 11 y APPLIED OPTICS 1695
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two waves ~within a phase factor for the relative
hase of the two sources! is

K~rT2, rT1! 5 *
VR

G*~rR, rT2!G~rR, rT1!d
3rR. (86)

Note that Eq. ~86! represents the kernel @Eq. ~34!# of
the integral eigenequation that gives the communi-
cations modes and is also involved in calculating the
connection strength ugu2 in Eq. ~33!.

We now use a simplistic model to obtain some ap-
proximate results. As we said above, we expect the
overlap to be large and then to fall off as we separate
the two source points, so we now presume that, for
any point rT1, there is a finite volume DVT for which
K~rT2, rT1! is finite ~neglecting the overall rapid de-
structive and constructive interference! and, for sim-
plicity, is approximately constant ~in magnitude!,
nd again for simplicity, for rT2 outside this volume

K~rT2, rT1! is approximately zero. This approach
will give us an estimate of ugu2. To proceed, we need
to estimate the dimensions of this volume DVT.

We consider only volumes that are far apart com-
pared with their linear dimensons, so we can take
paraxial approximations for simplicity. Then we
have
p
w

N

where FT~rT! is the focusing phase-factor function
@defined above by ~Eq. ~49!#, which takes care of much
f the rapidly varying phase. The remaining expo-
entials in expression ~87! are unity for small argu-
ents; however, after ~xT2 2 xT1! or ~yT2 2 yT1!

becomes sufficiently large, the function overall be-
comes oscillatory as we move through VR, and the
integral @expression ~86!# will tend to average to zero.
Essentially, we then cannot avoid the effects of inter-
ference as we integrate over VR no matter how well
we choose the relative phases of the sources. A char-
acteristic size of ~xT2 2 xT1! for which this interfer-
nce becomes strong occurs when

UkDxRmax~xT2 2 xT1!

r U <
p

2
, (88)

hat is, when

uxT2 2 xT1u <
pr

2kDxRmax
5

1
2

lr
2DxRmax

. (89)

In this case, as we integrate from the middle of VR to
one extreme in the x direction, the phase of the inte-
rand will change by py2. For the purposes of our
rgument, we can use a simplistic approximation and
eplace these remaining exponentials by functions
696 APPLIED OPTICS y Vol. 39, No. 11 y 10 April 2000
hat are unity up to arguments of 6py2 @i.e., no ~de-
structive! interference# and zero otherwise ~i.e., total

estructive interference on the average!. Note, in-
identally, that, given that we make the best choice of
hase for our sources, the sources may have any po-
ition in the z direction. Hence we conclude that our
olume DVT has dimensions of approximately lry

2DxRmax and lry2DyRmax in the x and the y directions,
respectively, and of 2DzTmax in the z direction for a
otal volume of

VT <
lr

2DxRmax

lr
2DyRmax

2DzTmax, (90)

and by use of Eq. ~86! and expression ~87!, we find

K~rT2, rT1! < F*T~rT2!FT~rT1!
VR

~4pr!2 (91)

for rT2 within the volume DVT near rT1 and zero
otherwise.

Now we make an intelligent guess at the eigenfunc-
tions for this problem. We choose a function that is
essentially uniform within a volume of size DVT near
some point rT0 @except for having a phase factor
FT~rT! to ensure that we have the correct choice of
hase for the source# and is zero elsewhere, i.e.,
ithin DVT, we have

c1~rT! 5
1

~DVT!1y2 FT~rT!, (92)

where we have also normalized the function c1~rT!.
ow we can calculate ugu2 from Eq. ~33!:

ugu2 5 *
VT

c*1~rT2! *
VT

K~rT2, rT1!c1~rT1!d
3rT1d

3rT2

5 *
DVT

1
~DVT!1y2

VRDVT

~4pr!2

1
~DVT!1y2 d3 rT2

5
VRDVT

~4pr!2 . (93)

To form another eigenfunction orthogonal to that of
Eq. ~93!, we can simply move sideways to an adjacent
volume of essentially the same shape and construct
the second eigenfunction similarly in that volume.
The second eigenfunction is orthogonal to the first
because there is exactly no overlap between such
functions. It will yield exactly the same result as
G*~rR, rT2!G~rR, rT1! 5
exp@2ik~urR 2 rT1u 2 urR 2 rT2u!#

~4pr0!
2

>
1

~4pr0!
2 FT~rT2!F*T~rT1!expF2

ikxR~xT2 2 xT1!

r0
GexpF2

ikyR~yT2 2 yT1!

r0
G , (87)
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above for ugu . We can continue this process until we
have used up all the volume, which will give us a
number N of orthogonal functions

N <
VT

DVT
, (94)

all with the same value of ugu2. Note that

Nugu2 5
VR VT

~4pr!2 , (95)

which satisfies the sum rule exactly, suggesting that
these are all the modes with strong connections. Ac-
tually, to construct a function orthogonal to all these
functions would require that the function change sign
in the middle of one of the volumes DVT, which in
turn would mean that there would be no net wave in
VR from this source function, hence no connection
strength ugu2, consistent with our arguments.

The above argument works particularly well if the
volume is of uniform thickness in the z direction be-
cause then the various DVT volumes will all be the
same length. Otherwise, they will be of different
lengths with proportionately different coupling
strengths. We have, however, now successfully ra-
tionalized why it is that rectangular prism volumes
have a set of N communications modes all of approx-
imately the same strength, and we can conjecture
that other volumes of uniform thickness will also
have a set of N communications modes of substan-
tially equal coupling strength. We can conversely
conjecture that, for volumes that are not uniform in
thickness, the coupling strengths of the various com-
munications modes will not be substantially equal.
In other words, we can hypothesize that the unifor-
mity of the thickness of the transmitting and the
receiving volumes leads to substantially equal con-
nection strengths for the strongly coupled communi-
cations modes.

One might object that we chose simplistic approx-
imate eigenfunctions that are not in reality very sim-
ilar to the exact solutions of the rectangular prism
volume problem; these exact solutions are, after all,
prolate spheroidal functions that each fill the entire
volume rather than the solutions given here that are
localized each within a subvolume DVT. Note, how-
ever, that all these simplistic approximate eigenfunc-
tion solutions are degenerate, corresponding to the
same eigenvalue; hence we can take orthogonal lin-
ear combinations of them instead, and it is straight-
forward to construct sets that each fill the volume.
The number of orthogonal functions remains un-
changed by such linear combinations. Of course, the
functions should not, in fact, have quite the abrupt
cutoff at the edges that our simple model has, but
smoothing these out somewhat does not change the
basic argument. Our simplistic approximate eigen-
functions, which are constant ~except for a phase fac-
tor! within a given DVT and zero outside it, can be
viewed as a generalization for our volume case of the
spots used by Gabor for the planar case. In fact, if
we perform our approximate argument here for the
case of thin rectangular prism volumes, we essen-
tially recover Gabor’s diffraction-spot picture. Our
simplistic eigenfunctions are no more the true exact
eigenfunctions than are Gabor’s spots, but they do
correctly count the available degrees of freedom and
yield a substantially correct intuitive picture.

Note that our argument here does not apply to the
case in which the volumes are close compared with
their thickness. In that case other modes may ap-
pear that utilize the depth of the volume, as was
found above in the numerical example in Subsection
5.E.

6. Conclusions

We have shown that there is a rigorous and complete
method for finding the orthogonal communications
channels or modes for scalar waves between two ar-
bitrary volumes in free space. In contrast to previ-
ous approaches that were restricted to planar
surfaces that are far apart, this approach is exact and
is valid for volumes of arbitrary shape. The result-
ing communications modes are found as the results of
two well-defined eigenvalue problems. ~We have,
incidentally, shown that these communications
modes are the same as the cavity modes of the reso-
nator that results if the two volumes are filled with a
perfect phase-conjugating material.! The present
approach also provides the strengths of the connec-
tions formed by the channels, and we have derived a
sum rule for those strengths, with the sum depending
on only a simple integral over the two volumes. The
connection strengths can be interpreted in terms of
power-transfer coefficients. The sum rule shows
that, although there may be an infinite number of
communications modes, only a finite number of these
modes can be strongly connected.

We have demonstrated explicitly that the approach
presented here will reproduce previous research re-
sults for rectangular surfaces that are far apart,
showing both that the resulting eigenfunctions ~pro-
late spheroidal functions! correspond to those de-

uced previously and that the sum rule does indeed
redict the number of well-connected modes in the
ystem. We have been able to extend the results to
how the effect of the depth of the volume for both
ectangular prism volumes and, by illustration, more
eneral volumes. Briefly, when the volumes are far
part compared with their depth, the depth does not
enerate any increase in the number of communica-
ions modes, although it can increase the connection
trengths. When volumes are close together com-
ared with their depths, the numerical aperture or
he solid angle subtended by one volume at the other
s large, or both, new modes are possible.

Incidentally, it is important to make the distinction
ere between communications channels and stored

nformation. This question arises, for example, in
onsidering the information capacity of a volume ho-
ogram. All we have considered here is the number
f channels for communicating information, not the
mount of information that can be communicated.
10 April 2000 y Vol. 39, No. 11 y APPLIED OPTICS 1697
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In a simple system in which, for example, we make
only binary decisions about whether there is a signal
in a channel, our number of strongly connected com-
munications modes essentially tells us how many bits
of information can be read out in the receiving volume
from any given source in the transmitting
volume—in optical storage terms it tells us the max-
imum number of bits per page ~for such binary deci-
sions!. We can, of course, choose some other source
unction in the transmitting volume, in which case a
ifferent page of information will be transmitted.
In reading out a volume hologram, we usually gen-
rate the different source function by exciting the
edium with a different readout beam.! Deciding

he maximum number of bits that can be stored in the
ologram is therefore quite a different problem.
ne should not therefore be surprised at our conclu-

ion that the depth of the volume under usual optical
onditions makes no difference to the number of com-
unications channels. It may well be that increas-

ng the depth of the volume does increase the number
f different source functions that can be excited in the
olume by a readout beam ~i.e., the number of pages!,
ut that is quite a different calculation.
We have also shown how to calculate communica-

ions modes in arbitrary or extreme situations. For
xample, we have calculated communications modes
or volumes that ~i! are smaller than a wavelength in
t least one lateral dimension, ~ii! are closer together
han the depth of one volume, ~iii! have one volume
resented edge-on to the other, ~iv! have one volume
hat subtends a large solid angle to the other, and ~v!
ave volumes that are only a wavelength apart.
ny one of these five conditions would have been
nough to invalidate the results of previous methods.
Although any such calculation of modes for arbi-

rary volumes will be approximate because only a
nite basis set can generally be used for numerical
alculations, the sum rule gives us a measure of how
ood any such finite basis approximation is and how
lose we are to finding all the communications modes
f substantial interconnection strength. It can be
roved that any such finite basis will underestimate
he connection strengths; so, if we are close to satis-
ying the sum rule with our finite basis, we can be
ure that we have identified all the significant com-
unications modes and have included enough func-

ions in our basis set.
We have also analyzed the case of communications
odes between small volumes that are far apart.
e found one mode ~essentially the one that has a

lane-wave source and generates an approximately
lane wave in the receiving volume!; we proved by
se of the sum rule that this is the only mode with
ignificant connection strength.
In general, the approach presented here estab-

ishes a rigorous basis for handling problems that are
elated to volume sources and receivers of waves.
e have not attempted to address any specific prac-

ical problem, but this approach could be useful in
nderstanding limits and opportunities in areas in
hich ~i! conventional diffraction approaches break
698 APPLIED OPTICS y Vol. 39, No. 11 y 10 April 2000
own, such as in near-field microscopy or very-fine-
ine lithography, or ~ii! volume is an intrinsic part of
he problem, such as in volume holography or certain
ypes of optical interconnects or information storage
nd possibly modes in photonic bandgap crystals or
ther volume scatterers. It should be emphasized,
owever, that the present study discusses only the
odes or the channels for communicating informa-

ion into and out of volumes and not the information
hat is stored inside the volume or that can be read
ut of the volume. Other extensions of this work
ould include the addition of the time dimension to
he problem ~which can be done relatively straight-
orwardly from a mathematical point of view!, and
olution of the vector ~rather than only the scalar!
ave problem is already being considered to allow
xtensions of the present approach to be applied rig-
rously to electromagnetic waves.2

I am pleased to acknowledge Haldun Ozaktas and
Rafael Piestun for critical readings of versions of this
manuscript.
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