
March 1990 (revised April 1991) LIDS - P - 1972

Communication Algorithms for Isotropic Tasks

in Hypercubes and Wraparound Meshesi

by

Emmanouel A. Varvarigos and Dimitri P. Bertsekas 2

Abstract

We consider a broad class of communication tasks, which we call isotropic, in a hypercube and in a

wraparound mesh of processors. These tasks are characterized by a type of symmetry with respect to

origin node. WVe show that executing such tasks in a minimum number of steps is equivalent to a matrix

decomposition problem. We use this property to obtain minimum completion time algorithms. For a special

communication task, the total exchange problem, we find algorithms that are simultaneously optimal with

respect to completion time, and average packet delay. We also prove that a particularly simple type of

shortest path algorithm executes isotropic tasks in time which is optimal within a small bound.

1 Research supported by NSF under Grant NSF-ECS-8519058 and by the ARO under Grant DAAL03-b6-

K-0171.

2 Laboratory for Information and Decision Systems, M.I.T, Cambridge, Mass. 02139.

1

1. Introduction

1. INTRODUCTION

The processors of a multiprocessor system, when doing computations, often have to communicate

intermediate results. The interprocessor communication time may be substantial relative to the

time needed exlusively for computations, so it is important to carry out the information exchange

as efficiently as possible.

Algorithms for routing messages between different processors have been studied by several authors

under a variety of assumptions on the communication network connecting the processors. Saad and

Shultz [SaS85], [SaS86] have introduced a number of generic communication problems that arise

frequently in numerical and other methods. For example they consider the problem where each

processor is required to send a separate packet to every other node; following [BeT89], we call this

the total exchange problem. Saad and Schultz have assumed that all packets take unit time to traverse

any communication link. Processors can either transmit along all their incident links simultaneously

or they can transmit along a single incident link at any one time. Johnson and Ho [JoH89] have

developed minimum and nearly minimum completion time algorithms for similar routing problems

as those of Saad and Schultz but using a different communication model and a hypercube network.

Their model quantifies the effects of setup time (or overhead) per packet, while it allows packets to

have variable length, and to be split and be recombined prior to transmission on any link in order

to save on setup time. In the model of [JoH89], each packet may consist of data originating at

different nodes and/or destined for different nodes. The extra overhead for splitting and combining

packets is considered negligible in the model of [JoH89]. Bertsekas et al [BOS89], and Bertsekas

and Tsitsiklis [BeT89] have used the communication model of Saad and Shultz to derive minimum

completion time algorithms for several communication problems in a hypercube. In particular, they

have given an algorithm for the total exchange problem that executes in a minimum number of steps

(n/2 for an n-processor hypercube). Several other works deal with various communication problems

and network architectures related to those discussed in the present paper; see [BhI85], [DNS81],

[HHL88], [Joh87], [KVC88], [McV87], [Ozv87], [SaS88], [StW87], and [Top85].

In this paper, we introduce a new class of communication tasks, called isotropic, which are char-

acterized by transmission requirements that are symmetric with respect to origin node (a precise

definition will be given later). For example, the total exchange problem is an isotropic task; the

communication problem "looks identical" to every node. The structure of isotropic tasks can be

exploited particularly well in networks that have themselves a symmetric structure, such as a hy-

percube and a wraparound mesh. Consequently, we restrict attention to these two networks. We

use the Saad and Schultz communication model, but as we will show in Section 4, our minimum

2

1. Introduction

completion time results are essentially independent of the communication model used. The idea is

that to achieve minimal completion time, some critical network resource must be used 100% of the

time, and this constraint is limiting for any communication model.

A central result of this paper is that executing isotropic tasks on a hypercube or a wraparound

mesh is equivalent to solving a matrix decomposition problem. We use this result to characterize

the class of algorithms that execute such tasks in minimum time. Within this class and for the total

exchange problem, we identify simple and easily implementable algorithms with further optimality

properties, such as minimum or nearly minimum average packet delay. No algorithms of this type

have been previously discussed in the literature. Earlier works in data communications ([BCW81]

and [Wan88]) have also shown the equivalence of certain optimal time slot allocation problems and

matrix decomposition problems. However, these works involve a very different context where there

is one transmitter, and several receivers connected with a direct link to the transmitter; network

situations are not addressed and symmetry plays no role.

We also consider a class of particularly simple-minded algorithms, called non-wasting, that are

required to satisfy just a very weak and natural restriction; they must never leave a communication

link idle as long as there is a waiting packet that can reduce its distance to its destination by using this

link. An interesting new result is that any algorithm with this property executes in nearly minimum

time for the total exchange problem; the deviation from optimality is bounded by a small number.

Similar results can be shown for non-wasting algorithms applied to other isotropic communication

tasks.

There are two main contributions in this paper. The first is to relate the routing problem, which

is a scheduling problem with a combinatorial character, with a matrix decomposition problem, which

is a problem in linear algebra. Such a connection is new and quite unexpected. It provides a simpler

and more powerful characterization of optimal routing algorithms for the total exchange and other

related problems than in earlier works (e.g. [BOS89]). It also allows simple and elegant analyses of

minimum average delay algorithms and the suboptimal non-wasting algorithms, which despite their

practical significance, have not been discussed so far in the literature.

The second main contribution of this paper is to introduce isotropic tasks as a practically im-

portant and analytically interesting class of communication problems. It is clear that there is an

incentive to formulate new routing problems in terms of isotropic tasks, whenever this is reasonable,

to take advantage of the corresponding simple and elegant analysis. For example, it may be fruitful

to analyze a "nearly isotropic" communication problem as an isotropic problem with appropriate

modifications. Examples of such analyses will be given in future publications.

The paper is organized as follows. Sections 2 through 7 deal with the hypercube, while Section

3

2. The Task Matrix

8 deals with the wraparound mesh. Section 2 defines the class of the isotropic tasks and introduces

the key notion of the task matrix. A lower bound for the completion time of both isotropic and non-

isotropic tasks is also given. Section 3 deals with the evolution of the task matrix when symmetric

routings are used. It also transforms the problem of minimizing the task's execution time into the

problem of writing the task matrix as the sum of a minimum number of permutation matrices. The

solution to the matrix decomposition problem is given in Section 4. Section 5 describes non-wasting

algorithms and proves their near-optimal performance. Algorithms with both optimal completion

time and optimal or near optimal average delay for the total exchange problem are found in Section

6. Section 7 treats the case where each node can use simultaneously at most k rather than all its

incident links. Finally, Section 8 extends the hypercube algorithms and analysis to the case of a

d-dimensional wraparound mesh.

2. THE TASK MATRIX

We first introduce some terminology. The d-dimensional hypercube network has n = 2d nodes and

d2d-1 links. Each node can be represented by a d-bit binary string called identity number. There

are links between nodes which differ in precisely one bit. As a consequence, each node has d = log n

incident links. When confusion cannot arise, we refer to a d-cube node interchangeably in terms of

its binary representation and in terms of the decimal representation of its identity number. Thus,

for example, the nodes (00 ... 00), (00 ... 01), and (11 ... 11) will also be referred to as nodes 0,1, and

2d- 1, respectively. The j-type link (or j-link) of node s = (sl ... s ... sd) is the link connecting node

(s1 sd) with node (sl.... ... sd). (We denote by x the complement of the binary number

x, that is, x = 1 - x.)

Given two nodes sl and s2, the node s l E s2 is the node with binary representation obtained by

a bitwise exclusive OR operation of the binary representations of nodes sl and s2.

The Hamming distance between two nodes is the number of bits in which their identities differ.

The number of links on any path connecting two nodes cannot be less than the Hamming distance

of the nodes. Furthermore, there is a path with a number of links which is equal to the Hamming

distance, obtained, for example by switching in sequence of bits in which the bit representations of

the nodes differ (equivalently, by traversing the corresponding links of the hypercube). Such a path

is referred to as a shortest path in this paper.

Information is transmitted along the hypercube links in groups of bits called packets. In our

algorithms we assume that the time required to cross any link is the same for all packets, and is

4

2. The Task Matrix

taken to be one unit. We assume that packets can be simultaneously transmitted along a link in

both directions, and that their transmission is error free. Only one packet can travel along a link

in each direction at any one time; thus, if more than one packet are available at a node and are

scheduled to be transmitted on the same incident link of the node, then only one of these packets

can be transmitted at the next time period, while the remaining packets must be stored at the node

while waiting in queue. Each node is assumed to have infinite storage space. With the exception

of Section 7 we assume that all incident links of a node can be used simultaneously for packet

transmission and reception. Finally, we assume that each of the algorithms proposed in this paper

is simultaneously initiated at all processors.

WCe now define the communication tasks that are the subject of this paper.

Definition 1: A communication task g is defined as a set of triplets (sl, s2, k), where sl is a node

(source), s2 is a node (destination), and k is an integer (the number of packets whose source is sl

and whose destination is s 2).

Definition 2: A communication task g is called isotropic if for each packet that node sl has to

send to node s2, there is a corresponding packet that node sl e x has to send to node s2 E x, where

sl, s2, and x are arbitrary nodes. Mathematically:

(sl,s 2, k) E =:> Vnodes x we have (sl zx, s 2 x, k) E .

An example of an isotropic task is the total exchange, where 5 consists of all the triplets (sl, s2, 1)

as sl and S2 range over all the pairs of distinct nodes [one packet for every origin-destination pair

(sI, S2)].

In the algorithms that we propose, the packets carry with them a d-bit string called routing tag.

The routing tag of a packet is initially set at s l 3 s2, where sl is the source and s2 is the destination

of the packet. As the packet is transmitted from node to node, its routing tag changes. If at time t

a packet resides at a node s and has s2 as destination, then its routing tag is s e s 2. For example, a

packet which is currently at node 001010 and is destined for node 101000, has routing tag 100010.

An important data structure that will be used by our routing algorithms is that of the task matrix

of node s at time t, which will be denoted by Ti(s). The task matrix TI(s) is defined for both isotropic

and non-isotropic tasks and is a binary matrix whose rows are the routing tags of all the packets

that are queued at node s at time t. The routing tags appear as rows of the initial task matrices

To(s) in some arbitrarily chosen order. The rows of subsequent task matrices Ti(s), t > 0, retain

the relative order that the corresponding packets had in To(s). When no packets are queued at node

s at time t, the task matrix Tt(s) is by convention defined to be a special matrix denoted Z. A

task is said to be completed at time t if TI(s) = Z for all s. The smallest t for which the task is

5

2. The Task Matrix

completed under a given routing algorithm is called the completion time of the algorithm.

A communication task can equivalently be defined in terms of its initial task matrices To(s),

s = 0,. . . , n - 1. The task is isotropic if and only if the task matrices To(s) are the same for all nodes

s. In what follows, whenever there is no reason to distinguish among the nodes, we simply denote

the task matrix at time t with T1. When such a notation is used, we implicitly mean that TI(s) = TI,

for all s. The initial task matrix for the total exchange problem is illustrated in Fig. 1.

1 1 1

1 0 1

1 0 0

0 1 0

o 0

Figure 1: The task matrix for the total exchange problem has n - 1 rows and d columns. The
figure illustrates the case where d=3.

We will now derive a lower bound for the completion time of any communication task (isotropic

or non-isotropic).

Theorem 1: Let T be the completion time of any algorithm that executes a task with initial task

matrices To(s), s = 0, 1,.. ., n- 1. Let also ri(s) (or ci(s)) denote the sum of the elements of the ijh

row (or column, respectively) of the task matrix To(s). Then the following inequality holds

T > max -(! cj(s), maxr(s)),
,J =

where the outer maximization is carried out over all rows i and columns j.

Proof: The column sum cj(s) of the jih column of To(s) is equal to the number of packets that

reside at node s at time t = 0 and have the jph bit of their routing tag equal to 1. To arrive to

their destination, these packets have to use a j-link at some future time. Thus, E, cj(s) packets

6

3. Symmetric Routing Algorithms

are going to use j-type links during the execution of the task. Since each node has only one j-link,

there are only n links of j-type in the hypercube. Taking into account that no two packets can be

transmitted on the same link in the same time slot, we conclude that

T > E, c(As)

for all columns j. Therefore,

-n j=,..., (1)

On the other hand, the packet corresponding to the ijh row of To(s) is at a Hamming distance ri(s)

from its destination. Thus the time T required to complete the task is at least ri(s) for all rows i

and nodes s. This gives

T > max ri(s). (2)

By combining (1) and (2), we finally obtain

T > max (n cj (s) max rt (s)

where the maximization is carried out over all rows i and columns j. Q.E.D.

The preceding lower bound cannot always be attained by some algorithm. The following Corollary

1 specializes this lower bound for the case of isotropic tasks. As we will show later there is always

an algorithm that achieves the lower bound of Corollary 1.

Definition 3: The critical sum h of a matrix is equal to maxij(ri, cj), where ri is the sum of the

entries of row i, cj is the sum of the entries of column j, and the maximization is performed over all

rows i and columns j. A row or column with sum of entries equal to h is called a critical line.

Corollary 1: Let an isotropic communication task have initial task matrix To and h be the critical

sum of To. Then a lower bound for the time T required to complete the task is h.

Proof: Using Theorem 1 and the fact that for isotropic tasks we have To(s) = To, ci(s) = cj,

rj(s) = rj for all nodes s = 0, 1,..., n- 1, we obtain T > maxij(cj, r) = h, for any algorithm that

executes the task. Q.E.D.

3. SYMMETRIC ROUTING ALGORITHMS

7

3. Symmetric Routing Algorithms

In this section we will be interested in isotropic tasks and a class of routing algorithms that satisfy

a certain symmetry condition.

Definition 4: Given a task matrix TI(s) for each node s at time t, a switching scheme with respect to

Tt(s) is a collection of matrices {(S(s) I s = 0,..., n-1} with entries 0 or 1. The matrix Si(s) has the

same dimensions as TI(s), satisfies Si(s) < TI(s) (i.e. if an entry of Ti(s) is a zero, the corresponding

entry of Si(s) must also be zero), and has at most one nonzero entry in each row or column. The

switching scheme is called symmetric if for for every t the matrices Si(s) are independent of s, that

is, if for some matrix St we have Si(s) = Si for all s.

Given a time t > 0 and a task matrix Ti(s) for each node s, a switching scheme {Si(s) I s =

0, .. ., n - 1} with respect to T§(s) defines the packet (if any) that will be transmitted on each link

at the time slot beginning at time t. In particular, if the (i, j)ih element of Si(s) is a one, the packet

corresponding to the i
f
h row of Ti(s) will be transmitted on the jih link of node s. The requirement

that each column of Si(s) contains at most one nonzero entry guarantees that at most one packet is

scheduled for transmission on each link.

The task matrices at a given time slot together with a corresponding switching scheme, define

the task matrices for the next time slot. Given a communication task defined by the task matrices

To(s), s = 0,..., n - 1, a routing algorithm can be defined as a sequence {So(s), Si(s),...), such

that So(s) is a switching scheme with respect to the task matrix To(s), Si(s) is a switching scheme

with respect to the task matrix TI(s) (which is defined by To(s) andcSo(s)), and, recursively, S1+l(s)

is a switching scheme with respect to the task matrix Ti+l(s) (which is defined by Ti(s) and Si(s)).

The key fact, proved in the following theorem, is that if at some time t, the task matrices are the

same for all nodes s, and a symmetric switching scheme with respect to Ti(s) is used, then the next

task matrices Ti+l(s) will be the same for all nodes. As a result, for an isotropic task, one may use a

routing algorithm defined by a sequence of symmetric switching schemes. Such a routing algorithm

will be called symmetric. Its action is specified at a single node and is essentially replicated at all

the other nodes; this is a very desirable property for implementation purposes.

Theorem 2: Assume that for a given routing algorithm, at some time t we have a set of nonzero

task matrices TI(s), which are the same for all nodes s. Then if Si, a symmetric switching scheme

with respect to Ti(s) is used by the algorithm at time t, the task matrices Ti+l(s) will be the same

for all s. In particular, we have

Ti(s) = Ti, V s = Ti+:(s) = Ti+, V s,

where T1+i is a task matrix consisting of the nonzero rows of the matrix Ti - Si, except if Ti = Si in

which case T1+1 is equal to the special matrix Z and the algorithm terminates.

8

3. Symmetric Routing Algorithms

Proof: Suppose that at time slot t, node s sends a packet with routing tag xl ... xj..xd over

its j-link to node s ® ej. Then by the symmetry assumption, node s E ej also sends a packet with

routing tag x1 ... xj .xd over its j-link to node (s e ej) E ej = s. This packet arrives at node s

with routing tag xl Xd. Thus each row of the task matrix Ti, which corresponds to a packet

transmitted at slot t, is replaced by a row x1 ... xj ... xd if xl ... x-j ... Xd is nonzero and is discarded

otherwise; see Fig. 2. Since the transmitted packets (if any) on the j-link correspond to the nonzero

entry of the jih column of the matrix Si, we conclude that xj = 1 and, therefore, xj = 0. Thus the

routing tag xl - .-Xj . Xd is either zero or else it is a row of the matrix Tj - Si.

packet s I 01 1 1 packet5 1 0 1 1

packet 4 O0 1 1 1 packet 4 O 1 1 1

packet 3 1 0 0 1 packet3 1 0 0 O

packet 2 1 0 1 1 packet 2 1 O

packet 1 0 1 0 1 packet 1 0 01

Packet I is transmitted on link 2 and packet

3 is transmitted on link 4.

Figure 2: The change in the task matrix due to packet transmissions (packets 1 and 3 are

transmitted on links 2 and 4, respectively).

By symmetry, at the beginning of slot t there is a packet with routing tag xl ... xj . xad at each

node, and this packet will be replaced (if transmitted) by a packet with routing tag x1 *.j . .. d

at the end of the slot t if xl ... Xj ..- xd is nonzero and will exit the network otherwise. Thus the

task matrix will change in the same way for each node. Q.E.D.

From Theorem 2 we see that if the communication task is isotropic with initial task matrix To, we

can specify a symmetric routing algorithm by a sequence of symmetric switching schemes So, S, ...

as follows:

Symmetric Routing Algorithm Specification:

9

4. Optimal Completion Time Algorithms

The initial task matrix To of the isotropic task is given. For t = 0,1,..., given the task matrix T1,

St must a symmetric switching scheme with respect to T1 ; the task matrix T1+l is then specified

by the nonzero rows of T1 - Si, unless Tj = Si in which case the algorithm terminates.

WVe see therefore that a symmetric routing algorithm that terminates after k+1 time slots amounts

to a decomposition of the initial task matrix To into a sum

To = So + Sl + + Sk,

where each St, i = 0,..., k, is a binary nonzero matrix with the same dimension as To, and with

at most one nonzero element in each column or row. The corresponding switching schemes Si, i =

0, . .., k, consist of the nonzero rows of the matrices S., i = 0,.. ., k, respectively.

Thus, by restricting attention to symmetric routings, our original problem of finding optimal

routings for isotropic communication tasks has been reduced to the simpler problem of "clearing"

the To matrix (i.e. making all its entries equal to 0) in a minimum number of steps. At each step

we are allowed to make 0 up to d entries, provided that these entries do not belong to the same row

or column. The entries should not belong to the same row because at each step a packet cannot be

transmitted on more than one link. The entries should not belong to the same column so that no

two packets will use the same outgoing link. We will derive optimal algorithms within this class.

These algorithms will be shown to attain the lower bound of Theorem 1, so they are guaranteed to

be optimal within the class of all routing algorithms.

4. OPTIMAL COMPLETION TIME ALGORITHMS

WVe consider the problem of clearing the task matrix in the minimum number of steps. At each

step we are allowed to clear at most 1 entry from each row or column. Our analysis will use some

theorems and tools that were also used in [BCW81] and [Wan88] in a different context. We first

introduce some more definitions. For any matrix, we use the term line to refer to a row or column

of the matrix.

Definition 5: A perfect matrix is a square matrix with nonnegative integer entries and with the

property that the sum of the entries of each line is the same for all lines.

Definition 6: A permutation matrix is any matrix with entries equal to 0 or 1 with the property

that each line of the matrix has at most one nonzero entry.

10

4. Optimal Completion Time Algorithms

It can be noted that the nonzero entries of a permutation matrix form an independent set of

entries in the sense that no two of them belong to the same line. As a result, a set of entries of the

task matrix which form a permutation submatrix can be cleared during the same step. In particular

a permutation matrix S can be used as a switching scheme for any node at any time as long as the

task matrix at that node and time satisfies S < T (see Definition 4). An important result for our

purposes is Hall's Theorem (see [Rys65]), which states that a perfect matrix can be written as a sum

of h permutation matrices, where h is the sum of the entries of its lines. The following two theorems

extend slightly Hall's Theorem.

Theorem 3: Given any nonnegative integer square matrix M with critical sum h, there exists a

nonnegative integer matrix E such that M + E is a perfect matrix with critical sum h.

Proof: WVe give a constructive proof. Let ri (cj) be the sum of the entries of row i (column j).

We augment each element Mij of the matrix such that ri < h and cj < h by min(h - ri, h - cj) one

at a time and update M after each change, thus obtaining a matrix with at least one more critical

line and line sum equal to h. At the end of this process we will have added to M a nonnegative

integer matrix E, thereby obtaining a matrix M + E with critical sum h and such that for each pair

(i, j) either row i is critical or column j is critical. For this to be true, either all rows of M + E

must be critical or else all columns must be critical. Assume without loss of generality that all rows

are critical. Then, the sum of the elements of M + E is mh, where m is the number of rows and

columns, while each column sum is at most h. It follows that each column sum of M + E is exactly

equal to h, so each column is critical, and M + E is perfect. Q.E.D.

Theorem 4: A nonnegative integer matrix with critical sum h can be written as the sum of h

permutation matrices.

Proof: Let T be a nonnegative integer matrix with dimensions m x d. We assume, without loss

of generality that m > d. We can extend T to a square matrix M = [T I 0] by adding m - d zero

columns. Then, by Theorem 3, M can be augmented to a perfect matrix M+E with line sums equal

to h. By Hall's theorem we conclude that M + E can be written as a sum Fk=l Pk of h permutation

matrices P1, P2,... Ph. Since E has nonnegative integer entries, M can also be written as a sum

h~=lS Pk of square permutation matrices Pl, P2,. . Ph; each Pk is obtained by setting to zero some

of the entries of Pk. Since M = [T I 0], T can be written as a sum of h permutation matrices of

dimension m x d. Q.E.D.

The following is the main result of this section.

Theorem 5: The optimal completion time for an isotropic communication task is equal to the

11

4. Optimal Completion Time Algorithms

critical sum h of its task matrix.

Proof: From Theorem 4 we know that the initial task matrix To can be written as the sum k'=l Sk

of permutation matrices S, S2,... , Sh. Consider the symmetric switching scheme {Sk}, where for

k = 1,..., h, Sk is obtained from Sk by removing the zero rows. Then the task matrix at times t

with 1 < t < h consists of the nonzero rows of To - =l Sk, and at time t = h is equal to Z. Hence

the communication task is completed after h steps. Since, by Theorem 1, h is also an upper bound,

the corresponding symmetric routing must be optimal. Q.E.D.

It is easy to see that if at any step we clear one entry from each critical line of the matrix Tj

matrix, we can clear the task matrix within the optimal number of steps. On the other hand we

cannot clear the matrix in h steps if we are not clearing an entry from each critical line at each step.

In order to see this, let h1 be the critical sum of the task matrix T1. We observe that the critical

sum of the task matrix can decrease by at most 1 at each step (hi > hi-l-1). Thus, if during slot t

there is a critical line which is not served, then hi = h-l1 and it is not possible to clear the matrix

in ho = h steps. Thus, we conclude that a symmetric switching scheme achieves optimal completion

time if and only if it adheres to the following rule:

Optimal Completion Time Rule (abbreviated OCTR):

At each step an entry is cleared from each critical line of the task matrix.

We finally note that if the initial task matrix contains a column, say the jih, which is critical,

then the j-type links constitute a critical resource in the sense that they must all be used 100% of

the time during the execution of any optimal completion time algorithm. Under these circumstances

it is impossible to reduce the optimal completion time by using an algorithm that allows packets to

be split and be recombined during its course. In the less usual case where the only critical lines are

rows, the optimal completion time could be reduced under a different communication model, e.g.

wormhole routing [KeK79], [DaS87].

We will now use the preceding results to find optimal algorithms for two isotropic tasks.

Total Exchange

In the total exchange task, we have initially n - 1 packets with different routing tags queued at

each node. The tags are different because each node has to send n - 1 distinct packets, one to each

12

5. Using Non-Wasting Algorithms

node of the hypercube. The critical sum of the initial task matrix To, and therefore also the optimal

completion time, is ". (To see this, note that if we add the 00... 00 string as an ni
h row of To, half

of the entries of each column will be equal to 0 and half of them will be equal to 1.) Any algorithm

that works according to the OCTR is optimal as far as completion time is concerned. Since there is

a decomposition of To into . distinct permutation matrices and these " matrices can be cleared in

any desired order, it follows that the number of optimal total exchange algorithms is at least (n)!. In

fact, there are additional optimal algorithms because there are more than one decompositions of the

task matrix into permutation matrices. This provides a lot of flexibility to select an algorithm that

is optimal not only with respect to completion time but also with respect to some other optimality

criteria. Section 6 describes an algorithm that achieves optimal completion time and optimal average

delay for the case when the dimension d of the hypercube is a prime number. When d is not prime,

the same algorithm achieves near-optimal average delay, as well as optimal completion time.

(K, L) Neighborhood Exchange

In this task, every node s has to send a packet to all the nodes r whose Hamming distance from

s satisfies K <Ham(s, r) < L. For K = 1 and L = d we get the total exchange problem but for

K : 1 and/or L $ d, this task apparently has not been discussed elsewhere. The initial task matrix

To has as rows all the d-long binary strings with i ones, where K < i < L. The critical sum of this

matrix is

h = max (LX E i)

To see this, note that the task matrix has () rows, each having i ones. Since by symmetry the d

columns have equal column sums, each column sum will be equal to Z=}K .' By Theorem 5, the

critical sum h is the time required to execute the task.

5. USING NON-WASTING ALGORITHMS

In this section we will show that any "reasonable" switching scheme (it does not have to be

deterministic) will give a completion time for an isotropic task which is larger than the optimal

by at most d- 1 time units. By the term "reasonable" switching scheme, we mean a symmetric

switching scheme {So, Si,.. .} with the property that a communication link is never idle while there

is a waiting packet that can reduce its distance to its destination by using this link. Mathematically,

we require that for all t and j = 1, . . ., d, if the (i, j)th entry of T1 is nonzero, then either the ijh row

13

6. Optimal Average Delay Algorithms

of Si is nonzero or the jth column of SI is nonzero (or both). We call this the non-wasting property

and we call the corresponding switching scheme non-wasting.

Since the task is isotropic and we are using a symmetric switching, the task matrices T1 are

the same at all nodes at each time t. Let h, and h, be the maximal column and row sum of To,

respectively. We will prove that the (i, j)th entry (To).i of To will become zero after at most hr, +h-1

steps. Indeed, assume that (To),j is initially not 0 and that (To)ij is not cleared during the steps

1, 2, .. ., hr + h, - 2. Then the non-wasting property implies that one entry of row i or one entry

of column j (or both) were cleared at each of these steps. Thus by time ri + cj - 2, all the entries

of the i
t h row and the jth column, except for (To),i, have been cleared. Then by the non-wasting

property, we conclude that at time ri + cj - 1 the entry (To),j is cleared. Since ri + cj < hr + he the

result follows.

Since hr < d and h, is at most equal to the optimal completion time, we see that a non-wasting

algorithm executes an isotropic task within time that is within d - 1 time steps of the optimal. For

tasks with hr < d this estimate can be improved. For example a non-wasting algorithm executes the

(K, L) neighborhood exchange task within L - 1 steps of the optimal time.

6. ALGORITHMS ACHIEVING SIMULTANEOUSLY OPTIMAL COMPLETION TIME

AND OPTIMAL AVERAGE DELAY

In the previous sections we have only been concerned with completion time optimality. A second

important aim, which has not been considered so far in the literature, is the simultaneous minimiza-

tion of the average delay suffered by a packet. In particular if Wi is the time between the start of

the execution of the task and the time that packet i reaches its destination, we want to minimize the

average delay, given by F-=1 WI/N, where N is the number of packets involved in the task. In this

section we find algorithms for the total exchange and neighborhood exchange problems that achieve

both optimal (or near-optimal when d is not prime) average delay and optimal completion time.

In order to achieve optimal completion time, the OCTR is followed at every step. With this

rule, packets follow shortest paths to their destination and for both the total exchange and the

neighborhood exchange tasks, links are utilized 100% of the time. For algorithms where these

properties hold, we will see that a sufficient condition to achieve optimal average delay is to transmit

at each time slot the packets that are nearest to their destination (equivalently, whose routing tags

have the least number of l's). The intuition behind this comes from queueing theory situations

where to achieve minimum average customer delay, the customers requiring less service should be

served first. This priority rule is made precise in the following directive.

14

6. Optimal Average Delay Algorithms

Optimal Average Delay Directive (abbreviated OADD):

No packet is, at any slot, transmitted over a link of the network if some packet which is nearer

to its destination is not transmitted during the same slot.

Il the appendix we prove the following theorem, which holds for any network of directed links -

not just a hypercube.

Theorem 6: Consider a network and an arbitrary communication task. An algorithm that executes

the task and in which

(a) packets are sent to their destinations over shortest paths,

(b) all links are used at all time slots prior to the algorithm's termination (100% utilization)

and at every slot packets are transmitted according to the OADD,

is optimal with respect to the average delay criterion.

The question that arises now is whether we can follow the OADD at each step simultaneously

with the optimal completion time rule of the previous section. In general, insisting on optimal

completion time can prevent us from minimizing the average delay. Fortunately, at least for the

total exchange and the neighborhood exchange problems it is possible to achieve either optimality

or near-optimality within a small bound.

Case Where d is Prime

Consider the total exchange problem. We will show that when d is prime we can simultaneously

achieve strictly optimal average delay and completion time. In the algorithm that we will pro-

pose the packets with initial routing tags (111 ... 111), (011 ... 111), (101... 111), ... ,(111 ... 101),

(111 . .110) will not be transmitted along any link prior to the last d steps. This implies that during

the first 2 - d slots the maximum column sum of the task matrix To is greater than d. As a result,

the critical lines of the matrices Ti, t = 1,..., - d will be columns. Therefore, during the first

n/2 - d steps we are allowed to clear any d entries of the task matrix that we want, provided that

at each step we clear exactly one entry from each column (equivalently from each critical line), with

no two of them belonging to the same row.

In the following discussion we will show how the previous rules (OCTR and OADD), which are

sufficient in order to achieve the two kinds of optimality, can be implemented for the total exchange

task for the case where d is a prime number. (The neighborhood exchange problem is simpler and will

be discussed briefly later.) The proposed algorithm will incorporate the idea of equivalence classes

15

6. Optimal Average Delay Algorithms

that was introduced in [BeT89] (Section 1.3) for the purpose of constructing a multinode broadcast

algorithm for the d-cube. The reader should refer to [BeT89] for a more complete description of

these concepts.

The set of all possible routing tags is partitioned into d sets Nk, k = 1,..., d. The set Nk has

(d) elements each of which is a routing tag having k unity bits and d - k zero bits. Each set Nk is

in turn partitioned in disjoint subsets Rkl,..., Rkcn which are equivalence classes under a single bit

rotation to the left.

We define a layered graph with n nodes. Each node is identified by a d-long binary number and

corresponds to a row (or routing tag) of To. Each layer of the graph contains d routing tags belonging

to the same equivalence class. The links of the graph start from an element of R,i and end at an

element of R«i-l)k for some k. The links have the following useful property: if s and t are distinct

routing tags belonging to the same level and (s, s d ej), (t, t E el) are the arcs starting at nodes s and

t, then j : 1. Note that because d is prime, each class Rii has d elements, as illustrated in Fig. 3.

N N N N4
2 34

(1 i 1 R21I i

R " R21 R 22 R 3 1 R3 2 R 4

00001 10001 01001 1001 101 1101

00000

iI~g 10 011 001 1011

001000 01 I00 1010 11 I I 01011 01111 I

10000 I1000 10100 1 I 100 10110 1 1110 O ; 111i I

Figure 3: The graph of equivalence classes Rij for d=5. Because d is prime, each class Rj has d
elements.

WVe can describe now an algorithm that clears the entries of the task matrix and follows both

OCTR and OADD, assuming d is prime. The algorithm consists of ",. - 1 phases. Each of the

16

6. Optimal Average Delay Algorithms

- 2 first phases corresponds to the clearance of the routing tags (rows of the task matrix) of a

specific equivalence class Rij. Because the routing tags that belong to different equivalence classes

do not always have the same number of ones, each class requires different number of slots to be

cleared. The equivalence classes are cleared in the order

R1 R21 ... R2n2 ... R(d- 2)nd_2{R(dl)l(11 ... 1)}. (3)

The clearance of both R(d-1)l and (11 ... 11) takes place during the last phase and will be described

later.

At phase 1, the rows of To corresponding to the d routing tags of class R11 are selected. Since

each routing tag of this class has only one unity bit and since this bit is at a different position

for each tag, the routing tags of class R11 can be cleared in one time slot. Therefore, the first

phase requires one time slot. At phase 2, the routing tags of the next class R 21 are selected to get

cleared. In order to clear the corresponding rows of the task matrix we first find the routing tags

of this class on the graph. At each slot we clear the bits of the routing tag in the order that the

arcs of the graph indicate. Thus if an arc on the graph is pointing from sl ... sk... sd (sk = 1) to

sl . .. k ·.. sd and a row of the task matrix is equal to sl .. s ... sd, then when this row is cleared

the first entry to be cleared is the row's klh entry. The next entry of that row that will be cleared

depends on the successor of node sl sd on the graph. If the successor of sl ... k... sd is,

say, sl ... k ... j ... sd then the jth bit is the next entry of the row to be cleared. Thus, for d = 5 we

see from Fig. 3 that at the second phase the packets with routing tags 10001, 00011, 00110, 01100,

11000 are cleared. At the first slot of this stage these packets are transmitted on links 1, 5, 4, 3,

2 respectively and the task matrix changes to one having routing tags 00001, 00010, 00100, 01000,

10000 instead of those of class R21. At the second slot of the second phase these routing tags are

cleared in the obvious way.

This procedure continues up to the point where only class R(d1-)l and the single member class

11 ... 11 remain. At this point, we cannot clear the class Rad-l) 1 because we will violate the optimal

completion time rule. This happens because now the row corresponding to the routing tag 11... 11

has also become critical. In order to follow the OCTR, one entry from each critical line of the task

matrix must be cleared at each step. In the last phase both the rows and the columns are critical

lines. One of the ways to clear the last two equivalence classes is indicated in Fig. 4. All it does is

follow the OCTR rule.

Both the OCTR and the OADD are followed up to the last phase of the total exchange algorithm.

At this point a slight diversion from OADD takes place, because the row 11... 11 begins getting

cleared before the class R(d-l)1 has been cleared. The question is whether by violating the OADD

during the last d slots of the algorithm, the average delay optimality is lost. (The completion time

optimality is not lost because we still follow the OCTR.)

17

6. Optimal Average Delay Algorithms

11l 1 1 1 1 1 1 1 1 1 1
0 1 0 0

0 1 1 1 0 1 1 0 1 0 I 1 1 0

_ 0 1 1 0 0 1 0 0 ow

1 I _ 1 1 1 0 1 0 1 1

101 1 10 1 o 1 1 0

1_ 1 0 _1 1 1 1 I0o o o o o O

1000 o o o o 0o 0 o o

0 0 1O 0 I I I 0 0 0 0 I

o 0 1 0 o 0 0lolo o o

0oIo l o o o o o o o o o o000

Figure 4: The clearance of classes R(dl)1 and (11 ... 11) for d=5.

The answer to this question is that strict average delay optimality is still maintained. In order

to see that, consider a modification of the original algorithm. In particular the modified algorithm

is the same with the original one during the first -l phases and differs from it in that the OADD

is followed at the last phase too. In other words, in the modified algorithm the class R(d-1) is

completely cleared before starting to transmit the packets with routing tags 11... 11. Although

the modified algorithm is suboptimal with respect to completion time, it is guaranteed to achieve

optimal average delay. This is because the corresponding schedule in the auxiliary problem (see the

appendix) satisfies the properties of Proposition 1. Therefore, in order to prove that the original

algorithm has optimal average delay, it is enough to show that it has the same average delay with the

modified algorithm. In order to see that, we can forget about the first - - 2 phases and consider

only the additional delay that the last phase -! - 1 introduces for the last d + 1 packets. If OADD

were followed at the last phase also, this average additional delay would be (d-1)d+2d-1 = d 1

for each of the last d + 1 packets. If the scheduling indicated in Fig. 4 is followed the average delay

for the last phase of the d + 1 packets will be equal to + = d- , again. Since OADD is+ - d-, again. Since OADD is

followed up to the last phase and the diversion from it during the last phase does not cause any

additional delay, we conclude that the original algorithm achieves optimal average delay as well as

optimal completion time.

18

6. Optimal Average Delay Algorithms

Evaluation of the Optimal Average Delay for Total Exchange when d is Prime

We now calculate the optimal average delay for the total exchange problem, for the case where the

dimension d of the hypercube is prime. The average delay of a packet given that its initial routing

tag belongs to the set Ni is

Mi + mi
Di = 2,

2

where mi and Mi are the minimum and maximum delay, respectively, suffered by packets with initial

routing tags belonging to Ni. For the sets N 1, Nd-, Nd we have that ml = Ml = 1, md-1 = Md-1,

Md = md. However, in general, mi and Mi need not be equal.

It is not difficult to see that for i > 1:

d)

mi = mi-l + (i-1) (-I')

Mi = Mi- + i(

Thus

mi = 1 + E j, Mi = E i.
j=-I (=

Since there are () packets with initial tags belonging to class N,, it is concluded that the average

delay DTE for the total exchange algorithm is

DTE = .(Mi + (n)
i=l2(- 1)

d= (d) ' d(E (d 2

= 0.5 + EZ) I ZdE l.=1 d(n - 1- d(n - 1)

5 1 E(d 1 (2d - 1)!
\/_= 0.5 + n 3 J d(n - 1) [(d- 1)!]2

This formula gives the optimal average delay for the total exchange task when d is prime, but

does not tell anything about its order of magnitude. In the following lemma (which is true even if

d is not prime) we prove that DTE is actually O(n).

Lemma 1: The optimal average delay DTE of the total exchange task is O(n).

Proof: It is easy to see that DTE is O(n) since the optimal completion time TTE is equal to n/2

and DTE < TTE. It remains to show that DTE = Q(n).

Let S1 be the set of n/4 routing tags with the larger number of ones that are cleared last in the

optimal average delay algorithm. For each routing tag t in S1 with k ones (except for t = 11 .. 11)

19

6. Optimal Average Delay Algorithms

there is a corresponding routing tag t (the bitwise complement of t) with d - k ones. Let these

corresponding routing tags be a set S2 with cardinality n/4 - 1. Consider now the submatrix of the

initial task matrix To that correspond to routing tags in S1 U S2. The critical sum of this submatrix

is equal to I-d = n/4. This is so because there are n/4 pairs of tags t and t (we include the all 0

tag for completeness) and each pair has a total of k + d - k = d bits equal to one. Let now S3 be

the set of routing tags of To that do not belong to S1 U S2. The critical sum of the submatrix of To

that corresponds to S3 is equal to n/2 - 1 - n/4 = n/4 - 1. This means that the routing tags of

S3 require at least n/4 - 1 steps to get cleared. Since in the optimal average delay algorithm the

routing tags of S1 are cleared after those of S3, their delay will be at least n/4 - 1 steps. By taking

into account that there are n/4 routing tags in S1 and each of them has a delay greater than n/4- 1,

we conclude that the average delay DTE will be at least n/16 = Q(n). Q.E.D.

Case Where d is Not Prime

When d is not a prime number, strict optimality with respect to the average delay criterion is

not guaranteed. The reason is that when d is not prime, some of the classes Rj have less than d

elements; we call such classes degenerate. However, in this case we can still find algorithms that

complete the total exchange task in an optimum number of steps and achieve near-optimal average

delay. In order to do so, we can first clear the nondegenerate classes by applying both the OCTR

and the OADD and then clear the degenerate classes by just following the OCTR (relaxing the

OADD). It can be shown (see e.g. [Lei83]) that there are at most O(n½) routing tags belonging to

degenerate classes while there is a total of n different routing tags. Thus, the loss of average delay

optimality introduced by the degeneracy is negligible. In particular, since the delay of the packets

that belong to degenerate classes is at most n/2 (because OCTR is followed), the loss in optimality

can be upper-bounded by O(nl/2) n
I = 0(nl/2). Since the optimal average delay is O(n) (Lemma
n

1), we conclude that the algorithm for d not prime is near-optimal with respect to average delay. In

addition to that, it is guaranteed to be optimal with respect to completion time since the OCTR is

never violated.

Wte should note here that the preceding analysis which jointly optimizes both the completion time

and the average delay (and the average storage requirements at the nodes) can be extended to other

isotropic tasks as well. As an example, in the (K, L) neighborhood exchange problem simultaneously

optimal completion time and near-optimal packet delay are achieved if the equivalence classes are

cleared in the order RK1 ... RKnK . . . RL ... RLnL. For general isotropic tasks, it is not difficult to

find algorithms that achieve optimal completion time and near-optimal average delay by insisting

20

8. Optimal Algorithms in VWraparound Meshes

on the OCTR and ignoring, the OADD when both cannot be satisfied. A bias towards the opposite

direction will result in the opposite results.

7. CASE WHERE ONLY K LINKS OF EACH NODE ARE USED

In this section we consider the case where due to hardware limitations the hypercube nodes can

use only k < d incident links during a slot. The analysis of this case follows the same lines with the

case where a node can use all its incident links. For isotropic tasks the critical sum h of the initial

task matrix To is again a lower bound of the completion time of a task (since k < d). We define the

total sum a of a matrix To to be equal to the sum of all the entries of To, i.e. = ij(To),j. Then

if T is the completion time of an algorithm that executes the task it can be seen that

T > max (Wk h).

We define a k-permutation matrix to be a permutation matrix with at most k nonzero entries. Then,

it is an easy extension of the discussion in [BCW81] to see that a matrix To with critical sum h

and total sum a can be written as the sum of max(r[j, h) k-permutation matrices. By restricting

attention to symmetric routings that use k-permutation matrices as switching assignments and

transforming the scheduling problem to a matrix decomposition problem, we can prove the following

theorem.

Theorem 7: Let To be the initial task matrix of an isotropic task. The optimal completion time

of the task when each node can use up to k < d links during a slot, is equal to

max ([l h),

where h and a are the critical and the total sum of To, respectively.

For the total exchange task it can be seen that a = nd/2 and the optimal completion time when

up to k links per node are used is equal to

TP() f=n dl
TE -'

It is worth noting that if r[l < h, then using only k < d links of a node at each slot rather than d,

does not increase the time required to complete the task.

8. OPTIMAL ALGORITHMS FOR ISOTROPIC TASKS IN WRAPAROUND MESHES

In this section we focus on a class of communication tasks (which we will call isotropic again) in

the d-dimensional wraparound mesh of processors. The performance criteria for various algorithms

21

8. Optimal Algorithms in Wraparound Meshes

will be their completion time and the arithmetic mean of the packet delays. All the algorithms

which we will present for the wraparound mesh are optimal with respect to completion time. For

the total exchange problem, we find algorithms that simultaneously achieve optimal completion

time and near-optimal average delay. For the two-dimensional and one-dimensional wraparound

meshes, algorithms which achieve strict optimality for both performance criteria are also presented.

Finally, we prove that a non-wasting switching scheme in a d-dimensional wraparound mesh executes

isotropic tasks in near-optimal time.

d-Dimensional Wraparound Mesh and Task Matrices

The d-dimensional wraparound mesh consists of n processors arranged along the points of a

d-dimensional space that have integer coordinates. We assume that there is an equal number

p= n

along each dimension (although this is not essential). The processors along the ijh dimension are ob-

tained by fixing coordinates z,.. . , xi-, xi+l, xd, and have identities (x,.... 7 xi, , i+,. . , xd),l

xi = 0,... ,p- 1. Two processors (x1,... ,2,. .. ,Xd) and (Y, .. .,Yi,. .. , Yd) are connected by a two-

directional link, if and only if for some i we have Ixi - yl=1 and xj = yi for all j : i. In addition

to these links, in the wraparound mesh, there are also two-directional links of the type

((X1, ... , X,-1, , xi+l... X d), (X1 ... , Xi-1,P- 1, 2Xi+l, ,Yd)).

A two-dimensional wraparound mesh is illustrated in Fig. 5.

For an integer vector x = (xl,..., xd), we use the notation

xmod(p) = (ximod(p), ... , xdmod(p)).

We will be interested in isotropic tasks which are defined as follows.

Definition 7: A communication task in a d-dimensional wraparound mesh is isotropic if

(a) when processor x has to send m packets to processor y, processor x also has to send m packets

to processor [2x - y]mod(p) and

(b) for each packet that processor x has to send to destination y, every other processor z has to

send a packet (called corresponding packet) with destination [z + y - x]mod(p).

Part (a) in the above definition specifies that the transmission requirements of a node are the

same in both directions along each dimension. Part (b) specifies that the transmission requirements

22

8. Optimal Algorithms in Wraparound Meshes

(0,0) (0, 1) (0,2)

(1,0) (1,I) (1,2)

(2:,O) (2,1) (2,2)

Figure 5: A two-dimensional wraparound mesh with n = 9 processors.

are the same for all nodes. An example of an isotropic task is the total exchange. The following

definitions will be necessary for our analysis.

Definition 8: The i+ link of a node z = (z1,... , i,.. , d) is the link connecting x with node

(x + et) mod(p), where et is the unit vector whose ith entry is equal to one. Similarly, the i- link of

a node x is the link connecting x with node (x - ei) mod(p).

Definition 9: The distance along the i+ dimension between processors x = (I ,..., xi,..., x) and

y = (Y1,...,Yt ,. .,yd) is defined as

,y)= Yi - xi, if Yi > ;X;;

Yi -(; + p, otherwise.

Similarly the distance along the i- dimension is defined as

Ni(x, y) = i Yi if. ;
xzi-- yi+ p, otherwise.

Consider the set of packets a originating at node 0 with destinations f(a) satisfying Pi (0, f(a)) =

p/2 ,

Ai = {a I Pi(O, f(a)) = p/2} .

We arbitrarily partition A, into two disjoint subsets At and A- such that A- = A + U A- and

O < IA+l-IATI < 1.

23

8. Optimal Algorithms in Wraparound Meshes

The initial task matrix in the context of the wraparound mesh is an np x (2d) matrix, where np

is the number of packets that each node has to send and d is the dimension of the mesh (so that 2d

is the number of outgoing links from each node). Each column of the task matrix corresponds to an

outgoing link in the order 1+, 1-, 2+, 2- ,..., i+, i-,... , d+, d-. Let a be the packet that originates

at node 0 and corresponds to row R, and let f(a) be the packet's destination. Then the i+th and

the i-th entry of R are given by

R+ = { Pi(O, f(a)), if P,(0, f(a)) < N,(O, f(a)) or a E A +

0 otherwise

and

R.- N= (0, f (a)), if Ni (0, f(a)) < Pi (O, f(a)) or a E At,

0 otherwise,

respectively. The row R is also the initial routing tag of packet a. Routing tags carried by packets

in the course of algorithms are defined analogously, with node 0 replaced by the node where the

packet resides. The task matrix for the total exchange task in a two-dimensional wraparound mesh

with n = 9 is shown in Fig. 6.

o 1 0 1

1 1 0
1 0 0 1

1 0 1 0

o 0 1 0 o

o i
1 0 0 0

INK: i 1- 2+ 2-

Figure 6: The task matrix for the total exchange problem in a two-dimensional wraparound
mesh with n=9.

A difference between the task matrix in a hypercube and the task matrix in a mesh is that the

entries of the latter are not necessarily binary, but can take any value between 0 and e_- (or 2)

when p is odd (or even, respectively). This is not illustrated in Fig. 6 because a small mesh with

diameter P-_ = 1 was chosen for convenience.

2424

8. Optimal Algorithms in Wraparound Meshes

As in the case of the hypercube, we will restrict attention to symmetric switching schemes. A

symmetric switching scheme is characterized by the property that if processor 0 sends a packet with

some routing tag over its i+ (or i-) link, then during the same slot every other processor sends over

its i+ (respectively i-) link a packet with the same routing tag. For symmetric switching schemes,

it can be shown that executing an isotropic task is equivalent to a matrix decomposition problem.

The proofs of the following lemmas follow similarly as in the hypercube case and are omitted.

Lemma 2: The optimal time required to execute an isotropic task is equal to the minimum number

of steps required to clear its task matrix, i.e., to make all its entries equal to zero. At each step, one

is allowed to decrement by one unit independent entries of the task matrix, that is, entries that do

not belong to the same line.

Lemma 3: The optimal time required to execute an isotropic task is equal to the critical sum of

its task matrix.

A symmetric switching scheme achieves optimal completion time if and only if it follows the

following rule.

Optimal Completion Time Rule (OCTR):

At every step, an entry from each critical line of the task matrix is decreased by one.

It can be shown that it is always possible to follow the OCTR. In the following subsection this

rule will be used to obtain optimal algorithms for the total exchange problem.

Optimal Completion Time Algorithms for the Total Exchange in Wraparound Meshes

In order to calculate the optimal number of steps required for a total exchange we simply have

to calculate the critical sum of the initial task matrix matrix. For a wraparound mesh with odd p

the critical sum can be calculated to be

pzA p-1 p-1
1 2 2 2

TTE 2 ... E ldl,
l=- 2=- jd=- 2

which gives
pn n

TTE P

If p is even, we can similarly find that

pn
TTE=- p if d > 1,

825

25

8. Optimal Algorithms in Wraparound Meshes

and for the ring case

Trr: n(n + 2)
TTE=(), if d= 1.

Near-Optimality of Non-Wasting Algorithms

Let h, and hr be the maximum column and row sum of the initial task matrix. Then by using

arguments similar to those presented in Section 5, we can show that any non-wasting algorithm

executes the task in at most

hr + hC - 1

steps. Thus any non-wasting algorithm is suboptimal by at most hr steps (hr < IP-& for p odd and

h, < •- for p even). In particular, for the total exchange task any non-wasting algorithm achieves a

completion time of at most

pn- n (p -- 1)d
P 1

8 ' 2

for p odd and
np + pd

8 2

for p even. As an example, if n = 1000 and d = 3, then an optimal algorithm will take 1250 steps

and any non-wasting algorithm will take at most 1265 steps. The conclusion is that any non-wasting

algorithm is very close to being optimal.

Algorithms with Optimal Completion Time and Near-Optimal Average Delay for the

Total Exchange

If the OCTR is followed by an algorithm, this algorithm is guaranteed to have optimal completion

time. With this rule, packets arrive to their destinations over shortest paths. In the algorithms that

we propose for the total exchange problem, this rule is always followed. It is not difficult to see

that for the total exchange 100% utilization of the links is achieved. If in addition to following the

OCTR it is assured that the packets which are transmitted at each slot are those that are nearer to

their destinations at that slot, then the average delay of a packet is also optimal. This priority rule

is captured by the Optimal Average Delay Directive which was introduced in Section 6.

We will now present an algorithm for the total exchange in a d-dimensional wraparound mesh in

which the OCTR is always followed and the OADD is partially followed. In the next subsection,

algorithms that follow both rules and achieve both kinds of optimality will be given for the case of

the two-dimensional and the one-dimensional wraparound mesh.

26

8. Optimal Algorithms in Wraparound Meshes

Instead of describing the algorithm in terms of transmissions over the links, we will equivalently

describe the order in which the entries of the initial task matrix are cleared. Before proceeding it is

necessary to describe some new concepts.

The n - 1 routing tags of the packets sent by a node are partitioned into disjoint sets Ni, i =

1, 2, The set Ni contains all the routing tags with sum values of entries equal to i and corresponds

to packets that are initially located at a distance of i hops from their destination. In the algorithms

that we will propose, the rows of the task matrix which belong to the set Ni are cleared during phase

i of the algorithm and the OCTR is followed. Phase i begins after phase i - 1 has finished. This is

in accordance with the OADD.

Consider the rows of the initial task matrix which correspond to the packets in Ni. These rows

form a submatrix of To which we denote by Mi. For the algorithm to work it is enough to prove that

each Mi can be separately cleared while simultaneously attaining 100% utilization of the links. If we

denote with INiL the cardinality of Ni and by ci the column sums of Mi (the column sums are equal

for all columns by symmetry), then ilN,I = 2dci, from which ci = AiL . Since JNi[> 2d (because2d

at least the packets with routing tags (i, 0,...,0), (0, i, 0 ... ,0), (0,0, i,0, ... ,0), (0,0,0, i,0...,0),

... , (0,....., i, 0), (0,0,...,0, i) belong to Ni), we conclude that ci > i and therefore the critical

sum of Mi is ci (obviously, the row sums of Mi are equal to i). This proves that Mi can always be

cleared in ci steps by following the OCTR. Since the sum of all the entries of the matrix Mi is 2dci,

at each step exactly 2d entries are cleared (because no more than 2d entries can be decremented at

the same step). As a consequence, all the outgoing links of a node are always used. By clearing the

submatrices M1, M2 ,..., Mi,... in this order, we follow the OCTR and at the same time the packets

that are initially i hops away from their destination are received by the destination node before the

packets that belong to sets Ni+1, Ni+2, ... start being transmitted.

This algorithm is expected to have near-optimal average delay and optimal completion time.

However, strict optimality of the average delay is not necessarily achieved. The reason is that the

OADD is not followed within each phase. Suppose now that the submatrices M, can be subdivided

into square matrices Mil, Mi 2 ,..., Mij,..., Mi(IN.I/2d) such that

Mi= -

Mi([Nil/2d)

Suppose also that every submatrix Mj can be completely cleared before starting to clear Mi(j+l),

and while clearing Mij 100% utilization of the links is achieved. In such a case, simultaneously

optimal completion time and average delay are guaranteed. We could not prove that this is possible

for every dimension d. However, for d equal to 1 and 2, algorithms that achieve simultaneously

optimal completion time and average delay can be found. These algorithms are the subject of the

27

8. Optimal Algorithms in Wraparound Meshes

following subsection.

Optimal Completion Time / Optimal Average Delay Algorithms for the Total Exchange

in Wraparound Meshes with d = 1 and d = 2

Consider first a total exchange in the two-dimensional wraparound mesh. We partition the n- 1

routing tags of the packets sent by a node, in sets Ni as described in the previous subsection. Each

set Ni, is in turn partitioned in classes Ra6, where a + b = i, a > 0 and b > 0. The rows of To that

correspond to class Rb are (a, b, O, O), (O,a, b, O), (O,0,a, b), (b,0,O, a). Because the classes Rio and

Ro0 would coincide, we introduced the restriction a > 0 so that only one of them is considered. The

submatrix of the initial task matrix whose rows correspond to class Ra6 has dimensions 2d x 2d and

is denoted Ma6 . Each submatrix Ma6 can be cleared in i = a+ b steps (see Fig. 7). If the submatrices

are cleared in the order

M1o, M20, Mll, M30, M21, Ml2, . . , M-o, M(i-1)l, Ml(i-), .

it can be seen that strictly optimal average delay, as well as optimal completion time are achieved,

because both the OCTR and OADD are followed at each step.

o o b 0o O O

O 0 b O O O 0

1+ I- 2+ 2- 1+ 1- 2+ 2-

Figure 7: Clearing the submatrix corresponding to class Rb.

We next consider the total exchange in a one-dimensional wraparound mesh (ring). The initial

task matrix for the ring has dimensions (n - 1) x 2. Algorithms that simultaneously achieve strictly

28

8. Optimal Algorithms in Wraparound Meshes

optimal average delay and completion time can be found using the principles described earlier. We

omit the details and just give the results. If TTE is the optimal completion time of the total exchange

and DTE is the optimal average delay we can show that

n2- 1
TTE =

DTE = (n + 1)(n + 3)

48

for an odd number of processors n, and

n(n
+ 2)

TTE = 8

DT-E = n(n + 2)(n+ 4) + (n - 1)(n+ 1)(n + 3)

96(n- 1)

for an even number of processors.

29

References

REFERENCES

[BCW81] Bongiovanni, G., Coppersmith, D., and Wong, C. W., "An Optimum Time Slot Assign-

ment Algorithm for an SS/TDMA system with Variable Number of Transponders", IEEE Trans.

Commun., Vol. COM-29, pp. 721-726, 1981.

[BeT89] Bertsekas, D. P., and Tsitsiklis, J. N., "Parallel and Distributed Computation: Numerical

Methods", Prentice-Hall, Englewood Cliffs, N.J., 1989.

[BOS89] Bertsekas, D. P., C. Ozveren, G. D. Stamoulis, P. Tseng, and Tsitsiklis, J. N., "Optimal

Communication Algorithms for Hypercubes", Lab. for Information and Decision Systems Report

LIDS-P-1847, M.I.T., Jan. 1989.

[BhI85] Bhatt, S. N., and Ipsen, I. C. F., "How to Embed Trees in Hypercubes", Yale University,

Dept. of Computer Science, Research Report YALEU/DCS/RR-443, 1985.

[DaS87] Dally, W. J., and Seitz, C. L., "Deadlock-Free Message Routing in Multiprocessor Intercon-

nection Networks", IEEE Trans. on Computers, Vol. C-36, pp. 547-553, 1987.

[DNS81] Dekel, E., Nassimi, D., and Sahni, S., "Parallel Matrix and Graph Algorithms", SIAM J.

Comput., Vol. 10, pp. 657-673, 1981.

[HHL88] Hedetniemi, S. M., Hedetniemi, S. T., and Liestman, A. L., "A Survey of Gossiping and

Broadcasting in Communication Networks", Networks, Vol. 18, pp. 319-349, 1988.

[Joh87] Johnsson, S. L., "Communication Efficient Basic Linear Algebra Computations on Hyper-

cube Architectures", J. Parallel and Distr. Comput., Vol. 4, pp. 133-172, 1987.

[JoH89] Johnsson, S. L., and Ho, C. T., "Optimum Broadcasting and Personalized Communication

in Hypercubes", IEEE Transactions on Computers, Vol. 38, 1989,. pp. 1249-1268.

[KeK79] Kermani, P., and Kleinrock, L., "Virtual Cut-Through: A New Computer Communicating

Switching Technique", Comput. Networks, Vol. 3, pp. 267-286, 1979.

[KVC88] Krumme, D. W, Venkataraman, K. N., and Cybenko, G., "The Token Exchange Problem",

Tufts University, Technical Report 88-2, 1988.

[Lei83] Leighton, F. T., "Complexity Issues in VLSI", M.I.T. Press, Cambridge MA., 1983.

[McV87] McBryan, O. A., and Van de Velde, E. F., "Hypercube Algorithms and their Implementa-

tions", SIAM J. Sci. Stat. Comput., Vol. 8, pp. 227-287, 1987.

[Ozv87] Ozveren, C., "Communication Aspects of Parallel Processing", Laboratory for Information

and Decision Systems Report LIDS-P-1721, M.I.T., Cambridge, MA, 1987.

[Rys65] Ryser, H. J., "Combinatorial Mathematics", The Mathematical Association of America,

Rahway, N.J., 1965.

[SaS85] Saad, Y., and Schultz, M. H., "Data Communication in Hypercubes", Yale University Re-

search Report YALEU/DCS/RR-428, October 1985 (revision of August 1987).

30

References

[SaS86] Saad Y., and Schultz, M. H., "Data Communication in Parallel Architectures", Yale Uni-

versity Report, March 1986.

[SaS88] Saad Y., and Schultz, M. H., "Topological Properties of Hypercubes", IEEE Trans. on

Computers, Vol. 37, 1988, pp. 867-872.

[StT90] Stamoulis G., and Tsitsiklis J., "Efficient Routing Schemes for Multiple Broadcasts in Hy-

percubes", Laboratory for Information and Decision Systems, Report LIDS-P-1948, February 1990.

[StW87] Stout, Q. F., and Wagar, B., "Passing Messages in Link-Bound Hypercubes", in Proc. 1986

Hypercube Conference, SIAM, Philadelphia, pp. 251-257, 1987.

[Top85] Topkis, D. M., "Concurrent Broadcast for Information Dissemination", IEEE Trans. Soft-

ware Engineering, Vol. 13, pp. 207-231, 1983.

[Wan88] Wang, E. Y., "Traffic Control in a Multichannel Optical Fiber Communication Network",

MS. Thesis, Lab. for Information and Decision Systems Report LIDS-P-1784, M.I.T., 1988.

31

Appendix

APPENDIX

In this appendix we prove Theorem 6 of Section 6. For convenience we restate the theorem.

Theorem 6: Consider a network and an arbitrary communication task. An algorithm that executes

the task and in which

(a) packets are sent to their destinations over shortest paths,

(b) all links are used at all time slots prior to the algorithm's termination (100% utilization)

and at every slot packets are transmitted according to the OADD,

is optimal with respect to the average delay criterion.

Proof: Let L be the number of links of the network and N be the number of packets involved

in the communication task. Let xi be the minimum number of hops between the origin and the

destination of packet i. For an algorithm that performs the communication task we denote with Wi

the time that elapses between the beginning of the algorithm and the slot when packet i arrives to

its destination. Let Co0p be the optimal value of ENi= Wi.

We consider the following auxiliary problem.

Auxiliary Problem:

Assume we are given L servers and N customers that have to be served. Assume also that

customer i requires at least xi slots of service (xi is integer) and can be served by at most one

server during the same slot. Each customer can use different servers in different slots and each

server can serve at most one customer per slot. Consider a schedule that assigns customers to

server-slot pairs and let Wi be the time that elapses between the beginning of the schedule and

the slot when customer i completes service. Find a schedule that minimizes E I=l Wi.

Let Co0 be the optimal value of ENf=1 Wi in the auxiliary problem. It can be seen that Cpo <

Cop.. The reason is that the auxiliary optimization problem has less constraints than the initial

problem. (If we regard links as servers and packets as customers then the first problem has additional

constraints on the servers that can be used by each customer and the order in which the servers

are used. In particular the links used by the packets depend on the packets' destinations. Thus,

for every algorithm A in the initial problem we can find a corresponding feasible schedule A in the

auxiliary problem which has the same cost.)

Consider an algorithm A for the initial problem which follows the OADD. Let u(t) be the number

of links that are used at slot t. It can be seen that for such an algorithm, u(t), t = 1, 2,..., uniquely

specifies the cost EN= Wi.

32

Appendix

Consider now a schedule A in the auxiliary problem with the property that at each slot the

customers that are served are those which have the least residual time to complete service. Let fi(t)

be the number of servers that are used at time t = 1, 2, It can be seen that if u(t) = u(t) for all

t, then both A and A have the same cost EN=1 Wi. Thus, if A is optimal with respect to the average

delay criterion, then A is an optimal algorithm in the initial problem since it achieves the same cost

and we have already seen that Cop1 < Cop,. Therefore, in order to prove Theorem 6 it is enough to

prove the following proposition.

Proposition 1: Let A be a schedule in the auxiliary problem with the following properties:

(a) Item i is served during exactly xi slots (i.e. the minimum adequate service time).

(b) At each slot the customers that are served are those that have least residual times to complete

service.

(c) The number of servers used at time t, i(t), is the largest possible, given the assignments

made at slots 1, 2,..., t - 1.

Then A minimizes i=l Wi.

Proof: It is straightforward to see that given any optimum schedule we can find an optimum

schedule in which every customer is served during exactly xi slots. Thus we can limit ourselves to

schedules that satisfy property (a) without losing optimality.

XVe will now prove that among the optimum schedules that satisfy property (a), there is an

optimal schedule that satisfies property (b). Let s(ir) be the first slot where property (b) is violated

for a schedule 7r (if property (b) is never violated then s(7r) = T by convention, where T is the

completion time of 7r). Let also 7rl be a schedule which attains the maximum value for s(7r) over all

optimal schedules. We will prove that s(irl) = T, which means that for schedule wr1 property (b)

holds at all the slots.

We assume s(7rl) < T, and we will construct a schedule .r 2 with no worse cost than 7rl and such

that s(7r2) > s(7rl), thereby reaching a contradiction.

Let i and j be a pair of customers that violate property (b) at the s(7rl)lh slot, that is, one of

them (say i) is served during the s(rj)t1h slot while the other (say j) is not served during this slot,

has not completed service yet, and satisfies ri < ri, where ri and ri are the residual service times at

the beginning of slot s(7rl) for customers i and j, respectively.

Let Ai and Aj be the sets of slots after the s(7rl)lh slot during which customers i and j are served,

respectively, and let mi and m i be their corresponding maximum elements (or equivalently, the slots

where customers i and j complete service). A useful observation is the following:

33

Appendix

Observation:

If i is served at slot k and not served at slot I then either there is an idle server at slot 1 or there

is a customer w which is not served at slot k and is served at slot 1. In both cases it is possible to

serve customer i at slot 1 instead of slot k; in order to do that it may be necessary (when there

is ,no idle server at slot 1) to move customer w to slot k.

We define a new schedule 7r2 to be the same with 7rl during slots 1, 2, ... , s(rl) - 1 and different

than 7rl in some of the subsequent slots as follows:

(1) If m i < mi, then j is served in Tr2 during slot s(7rl) instead of i, i is served in slot mi + 1

(either in an idle server or in the position of an customer w, see the above observation), and

w is served in slot mi. The delay of customer i is then increased by 1, the delay of customer

j is decreased by at least 1 and the delay of customer w is not increased. As a result the

cost EN=I W, is not increased. However, customers i and j no longer cause any violation of

property (b) at slot s(7rl).

(2) If mi > mi, then let B = A, U Aj. In the new schedule 7r2, customer j is served at the

rj first slots of B which constitute a set, say Aj. Packet i can then be served at slots

Ai - Ai at the same servers as before. Apart from these servers, there are also additional

available servers at slots Ai - Ai; however, it may not be possible for i to use all these servers

because (Ai - Ai) n (Aj - Ai) is not necessarily the empty set and an customer cannot use

two servers at the same slot. Let X be the cardinality of (Ai - Aj) n (Aj - Aj), which

means that the cardinality of (Ai - Ai) U (A - A) is rj - X. We assign customer i in slots

(Ai- A) U (Aj-Aj) and in slots mi, mi + 1,..., mi +X and move (if necessary, use the above

observation) customers wl, w2, ... , wX to the X available servers in (Ai - Aj) n (Aj - Aj).

Our claim is that the cost k=l Wk for 7r2 is not larger than that of 7rl. To see this, note

first that the delays for customers wl, w2,..., wx is not increased. Thus,

Cost of lr1- Cost of 7r2 > mi + mj - max(Aj) - mi - X,

or

Cost of 7rl - Cost of 7r2 > mi - max(Ai) - X,

where max(Ai) is the largest element of Ai. Since X is the cardinality of (Ai-Aj)fn(Aj-Ai),

we conclude that at least X elements of Aj are larger than any element of Ai. Therefore,

mj - max(A.) = max(Aj) - max(A,) > X,

because Aj contains the rj smaller elements of B. Thus the cost /N l Wi for er2 is no larger

than 7rl. Furthermore, both 7rw and 7r2 are identical at slots 1,2,..., s(irl) - 1 and their only

34

Appendix

difference at the s(nrl)1h slot is that j took the place of i with rj < ri. By performing at most

L such exchanges we can get a schedule ir2 with no more cost than 7rl (therefore optimal)

and such that the customers with less residual times are served at slot s(ri). Then obviously

s(r 2) > s(7ri). This is, however, a contradiction because we assumed that nri maximizes the

function s(-) over all optimal schedules.

We have proved so far that there is always an optimal schedule that satisfies both properties

(a) and (b). Thus, we can restrict our attention to such schedules without losing optimality. For

schedules in this class the utilization function u(t), which gives the number of servers that are used

at slots t = 1, 2,..., T, uniquely specifies the cost FNM W,. We will prove that a schedule in this

class that uses as many servers as possible at each step, achieves average delay optimality.

The key observation here is that if two schedules zr and a satisfy properties (a) and (b) and their

utilization functions are such that u,(t) = u"(t) for all t < to and u,(to) = u,(to) + 1, then we

can disregard a. The reason is that there is always a feasible schedule p which achieves cost no

greater than that of a (defined e.g. so that up(t) = ur(t) for t < to, up(t) = u,(t) for t > to + 2

and up(to + 1) = u,(to + 1) - 1, since u,(t) > 0 for an optimal schedule a), whose utilization is the

same with that of 7r at slots 1,2, ... , to and is larger at slot to. Therefore, there is always an optimal

schedule that satisfies properties (a) and (b) and uses at every step the largest possible number of

servers (given the assignments made at previous slots).

Thus in the auxiliary problem, a schedule that has properties (a) and (b) and uses as many servers

as possible at each stage is guaranteed to be optimal. This completes the proof of Proposition 1.

Q.E.D.

35

