
J. Chem. Phys. 148, 011101 (2018); https://doi.org/10.1063/1.5011798 148, 011101

© 2018 Author(s).

Communication: An improved linear scaling
perturbative triples correction for the
domain based local pair-natural orbital
based singles and doubles coupled cluster
method [DLPNO-CCSD(T)]
Cite as: J. Chem. Phys. 148, 011101 (2018); https://doi.org/10.1063/1.5011798
Submitted: 03 November 2017 • Accepted: 22 December 2017 • Published Online: 04 January 2018

Yang Guo, Christoph Riplinger, Ute Becker, et al.

ARTICLES YOU MAY BE INTERESTED IN

A new near-linear scaling, efficient and accurate, open-shell domain-based local pair
natural orbital coupled cluster singles and doubles theory
The Journal of Chemical Physics 146, 164105 (2017); https://doi.org/10.1063/1.4981521

Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through
neon and hydrogen
The Journal of Chemical Physics 90, 1007 (1989); https://doi.org/10.1063/1.456153

Density-functional thermochemistry. III. The role of exact exchange
The Journal of Chemical Physics 98, 5648 (1993); https://doi.org/10.1063/1.464913

https://images.scitation.org/redirect.spark?MID=176720&plid=1857434&setID=378408&channelID=0&CID=683627&banID=520741325&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=56129c2c6549691b74cdb6aedd7be016bc03f88d&location=
https://doi.org/10.1063/1.5011798
https://doi.org/10.1063/1.5011798
https://aip.scitation.org/author/Guo%2C+Yang
https://aip.scitation.org/author/Riplinger%2C+Christoph
https://aip.scitation.org/author/Becker%2C+Ute
https://doi.org/10.1063/1.5011798
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5011798
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5011798&domain=aip.scitation.org&date_stamp=2018-01-04
https://aip.scitation.org/doi/10.1063/1.4981521
https://aip.scitation.org/doi/10.1063/1.4981521
https://doi.org/10.1063/1.4981521
https://aip.scitation.org/doi/10.1063/1.456153
https://aip.scitation.org/doi/10.1063/1.456153
https://doi.org/10.1063/1.456153
https://aip.scitation.org/doi/10.1063/1.464913
https://doi.org/10.1063/1.464913


THE JOURNAL OF CHEMICAL PHYSICS 148, 011101 (2018)

Communication: An improved linear scaling perturbative triples
correction for the domain based local pair-natural orbital based
singles and doubles coupled cluster method [DLPNO-CCSD(T)]

Yang Guo,1 Christoph Riplinger,1 Ute Becker,1 Dimitrios G. Liakos,1 Yury Minenkov,2

Luigi Cavallo,2 and Frank Neese1,a)

1Max Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
2King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division
(PSE), KAUST Catalysis Center (KCC), 23955-6900 Thuwal, Saudi Arabia

(Received 3 November 2017; accepted 22 December 2017; published online 4 January 2018)

In this communication, an improved perturbative triples correction (T) algorithm for domain based

local pair-natural orbital singles and doubles coupled cluster (DLPNO-CCSD) theory is reported.

In our previous implementation, the semi-canonical approximation was used and linear scaling was

achieved for both the DLPNO-CCSD and (T) parts of the calculation. In this work, we refer to this

previous method as DLPNO-CCSD(T0) to emphasize the semi-canonical approximation. It is well-

established that the DLPNO-CCSD method can predict very accurate absolute and relative energies

with respect to the parent canonical CCSD method. However, the (T0) approximation may introduce

significant errors in absolute energies as the triples correction grows up in magnitude. In the majority

of cases, the relative energies from (T0) are as accurate as the canonical (T) results of themselves.

Unfortunately, in rare cases and in particular for small gap systems, the (T0) approximation breaks

down and relative energies show large deviations from the parent canonical CCSD(T) results. To

address this problem, an iterative (T) algorithm based on the previous DLPNO-CCSD(T0) algorithm

has been implemented [abbreviated here as DLPNO-CCSD(T)]. Using triples natural orbitals to

represent the virtual spaces for triples amplitudes, storage bottlenecks are avoided. Various carefully

designed approximations ease the computational burden such that overall, the increase in the DLPNO-

(T) calculation time over DLPNO-(T0) only amounts to a factor of about two (depending on the basis

set). Benchmark calculations for the GMTKN30 database show that compared to DLPNO-CCSD(T0),

the errors in absolute energies are greatly reduced and relative energies are moderately improved. The

particularly problematic case of cumulene chains of increasing lengths is also successfully addressed

by DLPNO-CCSD(T). Published by AIP Publishing. https://doi.org/10.1063/1.5011798

The importance of triples correction for coupled clus-

ter with singles and doubles (CCSD) was recognized early

on.1 The approximated iterative or non-iterative triples correc-

tion methods are more economical than full triples.2,3 Derived

from CCSDT-1,4 a non-iterative method CCSD[T] was devel-

oped by Bartlett and co-workers in 1985.5 By adding a singles

term correction to CCSD[T], Pople and co-workers proposed

the CCSD(T) method in 1989.6 The CCSD(T) method is the

most widely used wave function method for small molecules

and is considered to be the “gold standard.” However, the

high computational costs limit the applicability of canonical

CCSD(T) to systems with not more than about 1000 basis

functions on the most powerful hardware.7 Many groups have

worked on new developments in order to be able to apply

the CCSD(T) method to medium- and large-sized systems.8–20

The large and fast growing literature about low order or lin-

ear scaling CCSD algorithms has been extensively reviewed

in earlier publications.11–13 In this communication, we only

a)Author to whom correspondence should be addressed: Frank.Neese@
cec.mpg.de

discuss the studies that are focused on the (T) correction.

Schütz and Werner implemented the first projected atomic

orbitals (PAOs) based linear scaling local (T) method in

2000.8,21 In their work, different variants of local (T) were

explored. Their variant using the semi-canonical (SC) approx-

imation is the most efficient one since it neglects the couplings

between different triples by the off-diagonal Fock matrix ele-

ments and hence bypasses the storage of the triples ampli-

tudes. This SC-based local (T) method is usually referred

as LCCSD(T0). Another alternative in their paper is called

LCCSD(T), in which the triples amplitudes Tabc
ijk

are com-

puted iteratively. More accurate (T) correlation energies can

be recovered using converged amplitudes compared to the

LCCSD(T0) results. However, the triples amplitudes Tabc
ijk

expressed in PAOs for the virtual space have to be stored

either on disk or in memory and must be updated itera-

tively. In the LCCSD(T) method, a large amount of storage

is needed to apply the method to medium-sized systems. To

overcome this difficulty, orbital-specific virtual (OSV) orbitals

were used to reduce the virtual space of each triple.22 Further-

more, Schmitz and Hättig introduced the Laplace transforma-

tion (LT) technique23 and used pair natural orbitals (PNOs)24
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in their recent PNO-CCSD(T) method.25,26 The storage bot-

tleneck of the triples amplitudes is completely avoided by

using the LT technique. The explicitly correlated method (F12)

was integrated into their method as well, which can repro-

duce very accurate absolute energies. Alternatively, Schütz

also extended their LCCSD(T) method to the CCSDT-1b

method,5 which can avoid the storage of triple amplitudes as

well.10

Besides the above mentioned direct local correlation

methods, fragment-based local CCSD(T) method devel-

opment is a very active area of research.14–20 Popular

approaches include the cluster-in-molecule (CIM),15 the

natural linear-scaled coupled cluster,16 the divide-expand-

consolidate (DEC),20 the incremental,14 and the local natural

orbital (LNO)18 methods, all of which have led to low-order

or linear scaling CCSD(T) methods.17,19,27–29 Most recently,

Nagy and Kállay combined their LNO approach with LT

CCSD(T).29 Their new scheme is capable to compute very

accurate CCSD(T) correlation energies for systems with more

than ten thousand basis functions. By calculating all intermedi-

ates on the fly, there is no storage bottleneck anymore in their

new method. More importantly, by using the LT technique,

there is no redundant calculation in the triples amplitudes’

evaluation from the overlapping fragments.

The use of pair natural orbitals (PNOs)30–32 was revived

and introduced into local correlation methods in 2009.24

Since then, a series of linear scaling CCSD(T) methods for

both closed-shell and open-shell systems have been devel-

oped.12,13,33,34 In all these PNO-based CCSD(T) methods,

the SC approximation is used. In the following, our previous

domain based local pair-natural orbital (DLPNO)-CCSD(T)13

method is denoted as DLPNO-CCSD(T0), whereas the

DLPNO-CCSD method with the improved perturbative triples

correction, described in this communication, is abbreviated as

DLPNO-CCSD(T).

Several studies have shown that the local (T0) method

is a very good approximation to compute relative or reaction

energies.12,26 However, two of us (Y.M. and L.C.) found that

DLPNO-CCSD(T0) can fail for a few cases, for example, the

atomization-like energy of cumulene chains, because of the

large deviations from the canonical results caused by the (T0)

corrections. To overcome this difficulty, we here present an

iterative local (T) algorithm. Our strategy is similar to Schütz’s

LCCSD(T) method.8 Only a subset of triples is considered in

the (T), which scales linearly with the system size. Meanwhile,

by using triples natural orbitals (TNOs) instead of PAOs, the

virtual spaces of surviving triples are greatly reduced. To fur-

ther speed up our algorithm, three additional approximations

are introduced. In the following, after a detailed description of

the algorithm, a series of benchmark calculations is conducted.

Finally, a range of medium-sized to large-sized molecules is

studied to demonstrate the accuracy and efficiency of the new

DLPNO-CCSD(T) method.

The indices i,j,k,l are used to denote the occupied MOs,

and a,b,c,d denote virtual MOs (TNOs). Note that for each

ijk combination, there is a different set of quasi-canonical

TNOs as denoted by a subscript aijk .12 Using converged

DLPNO-CCSD singles- and doubles-amplitudes, the energy

contribution of each triple is computed by

Eijk =

(

2 − δij − δjk

)
∑

aijk ,bijk ,cijk

T̂
aijkbijkcijk

ijk

×
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T̂abc
ijk = 4Tabc
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ijk + T cab

ijk + Tbca
ijk

)

.

(1)

The T
aijk

i
in Eq. (1) is the converged singles amplitudes from the

DLPNO-CCSD calculation. The number of explicitly treated

index-triples ijk increases linearly with the systems size.13 The

intermediate W
aijkbijkcijk

ijk
has the same definition as in our previ-

ous work.11 The construction of TNOs was adopted from the

DLPNO-CCSD(T0) method as well. Since localized, occupied

MOs are used, the T
aijkbijkcijk

ijk
amplitudes have to be computed

iteratively in order to reproduce canonical (T) results,
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where f
j

i
is the Fock matrix elements and S

aijkbijkcijk

aijlbijlcijl
are over-

lap matrices between TNO spaces of two different triples.

Note that the TNOs are chosen to be quasi-canonical, and

therefore, no coupling terms arise in the virtual block. In

the DLPNO-CCSD(T0) method, the T
aijkbijkcijk

ijk
amplitudes are

approximately computed by

W
aijkbijkcijk

ijk
+ T

aijkbijkcijk

ijk

(

f
aijk

aijk
+ f

bijk

bijk
+ f

cijk

cijk
− f i

i − f
j

j
− f k

k

)

= 0.

(3)

All intermediates and amplitudes are evaluated on the fly under

the (T0) approximation. The extension from the linear scaling

(T0) approach to (T) is straightforward. In the (T0) calculation,

only a subset of triples is considered, the number of which

increases linearly with the system size. By using TNOs, the

virtual space of each triple is greatly reduced. In fact, the num-

ber of TNOs per triple approaches a constant with increasing

system size (on average less than 80 TNOs per triple for calcu-

lations with triple-ζ basis sets). Hence, the storage needed for

all intermediates during the iteration process is not a bottle-

neck anymore. After the DLPNO-CCSD(T0) calculation, the

T
aijkbijkcijk

ijk
amplitudes and other intermediates can be saved on

disk. Next, the T
aijkbijkcijk

ijk
amplitudes are updated according to

Eq. (2) until convergence is achieved. Finally, inserting con-

verged T
aijkbijkcijk

ijk
amplitudes into Eq. (1), the final local (T)

correction energy is computed. Although the (T) algorithm is

linear scaling, the central processing unit (CPU) time spent

on the iteration step is at least five times more than the (T0)

method for medium-sized molecules. The bottleneck in the (T)

calculations is the TNO space transformations between triples.
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Hence, we have carefully introduced three additional approx-

imations in order to ease the computational burden while not

sacrificing any additional accuracy in the results.

Approximation 1 is based on the observation that, on aver-

age, only 20% of all triples account for more than 90% of the

(T) correction. Hence, it is reasonable to focus attention on

these large triples and treat them at higher accuracy, while

the remaining “weak triples” are treated at lower accuracy.

To this end, all surviving triples after the DLPNO-CCSD(T0)

calculations are ordered by decreasing absolute value of their

energy contributions. Then, these energies are summed until

90% of the (T0) energy is reached. These triples are denoted

as “strong triples” and the remaining ijk index combinations

as “weak triples.” For both strong and weak triples, smaller

TNO spaces are constructed after the conventional (T0) calcu-

lations. These are determined by two separate scaling factors

(TTNOScaleS and TTNOScaleW ) relative to the overall TNO occu-

pation number threshold (TCutTNO) that has the default value

10☞9.13 T
aijkbijkcijk

ijk
with the smaller TNOs will be used in the

iterative process to save computational time. Having obtained

converged amplitudes in the small TNO basis, the final (T)

energy is calculated as

E
(T )TCutTNO ≈

∑

i,j,k

E
(T )TCutTNO∗TTNOScale

ijk
+ ∆E

(T0)

ijk

(

∆E
(T0)

ijk
= E

(T0)TCutTNO

ijk
− E

(T0)TCutTNO∗TTNOScale

ijk

)

. (4)

Results with different TTNOScaleS (TTNOScaleW ) scale factors for

strong (weak) triples are given in Table S1 (see supplemen-

tary material). By setting TTNOScaleS as 10.0 × TCutTNO and

TTNOScaleW as 100.0 × TCutTNO, we still recover more than

99.9% of the (T) correction energies relative to the DLPNO-

CCSD(T) method without the strong/weak separation and

without reduced TNO spaces. From Table S1, one can see

that the DLPNO-(T) algorithm is just about 2-3 times slower

than its (T0) counterpart by using the default setting for a range

of medium-sized (30-50 atoms) model systems.

From Eq. (2), one notices that the couplings between

triples are connected by the Fock matrix elements. For

example, if f l
k
= 0, the contribution from

∑

l,aijlbijlcijl
T

aijlbijlcijl

ijl

f l
k
S

aijkbijkcijk

aijlbijlcijl
term is zero. In approximation 2, couplings between

T
aijkbijkcijk

ijk
and other triples are depending on the size of the off-

diagonal elements of the Fock matrix. If the absolute value

of f l
k

is smaller than a threshold FCut , all couplings between

two triples connected by f l
k

are neglected. This approximation

is commonly employed in local MP2 LMP2 implementa-

tions.35,36 From Table S2 (see supplementary material), one

observes that the (T) correction energies converge very fast

with FCut . By setting FCut to the default value 10☞3, the devi-

ations with respect to the converged results are already below

1 µhartree. Meanwhile, the speedup is about 10% relative to

the calculation without approximation 2.

In order to save computer storage, the Gauss-Seidel

scheme is used for the update of triples amplitudes. The (T)

energies usually converge within four iterations, which is much

faster than, e.g., LMP2. Additionally, we found that the con-

vergence speed of different triples is different. Some triples

contributions converge within even fewer iterations. To fur-

ther speed up the performance of the DLPNO-(T), a triple

will be skipped in the next Gauss-Seidel iteration, if its energy

increment with respect to the energy in the previous itera-

tion is less than a threshold TCutIter . Results in Table S3 (see

supplementary material) show that this approximation, which

represents the 3rd approximation in our algorithm, still guaran-

tees the recovery of 99.9% of the local (T) energies by setting

TCutIter = 0.001. Meanwhile, triple-triple couplings are reduced

substantially in the subsequent (T) iterations.

The algorithm proposed above has been implemented

in a development version of ORCA.37 The closed-shell test

sets in the GMTKN30 database38,39 are employed to show

the accuracy of the new DLPNO-(T) method with aug-cc-

pVDZ basis sets (Fig. 1). The canonical CCSD(T) results are

used as references. The maximum absolute deviation (MAD)

FIG. 1. Absolute (a) and relative (b) energy deviations of CCSD, (T), and

total correlation energies (in kcal/mol) calculated by DLPNO-CCSD(T) with

respect to the canonical CCSD(T) using aug-cc-pVDZ basis set and TightPNO

settings for tests sets in the GMTKN30 database. The increment MAD values

produced by DLPNO-(T0) and DLPNO-CCSD(T0) were shown as blank bars.

The detailed average, MAD, and standard deviation values for each test set

can be found in the supplementary material S4.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-011803
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-011803
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-011803
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-011803
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-011803
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of DLPNO-(T) with respect to the canonical (T) results is

less than 2 kcal/mol for all systems by using the TightPNO

settings defined previously.13 By contrast, the largest MAD

obtained with the previous (T0) method is more than 6.0

kcal/mol. The deviations of CCSD and overall correlation

energies with respect to the corresponding references are also

shown in Fig. 1. Although, the deviations introduced by the

DLPNO-CCSD approximations are smaller than (T) in some

cases, the deviations between DLPNO-CCSD(T) and canon-

ical CCSD(T) correlation energies are significantly reduced

compared with DLPNO-CCSD(T0). The relative energy devi-

ations of DLPNO-CCSD(T) and DLPNO-CCSD(T0) show a

similar but less pronounced trend. Both DLPNO-CCSD(T0)

and DLPNO-CCSD(T) methods can reproduce the relative

energies very accurately, MADs of which with respect to the

canonical CCSD(T) results are below 1 kcal/mol. Neverthe-

less, the results computed by DLPNO-CCSD(T) are slightly

better.

As discussed before, the SC approximation can introduce

large deviations in special cases. For the atomization-like reac-

tion of cumulene (CnH4→ nC(S = 0) + 2H2), the deviation in

reaction energies between DLPNO-CCSD(T0) and canonical

CCSD(T) can exceed 11.0 kcal/mol with TightPNO settings

and cc-pVDZ basis set for C16H4. (The error introduced by

DLPNO-CCSD part is only 1.06 kcal/mol.) With the improved

triples correction, this deviation is reduced down to 2.23

kcal/mol. A detailed analysis of these results will be presented

elsewhere.

In order to document the scaling behavior of the present

algorithm with respect to the system size, calculations on a

series of linear alkane chains are presented in Fig. 2. Since

FIG. 2. The scaling behavior of DLPNO-CCSD(T) and DLPNO-CCSD(T0)

for linear alkane chains with def2-TZVP basis set. The timings for the (T)/(T0)

steps and the overall DLPNO-CCSD(T)/(T0) calculations are plotted sepa-

rately. All calculations run on cluster with two Intel(R) Xeon(R) E5-2670

processors. Only one core is used for each calculation.

the number of triples increases linearly with the number of

atoms, the wall times for both methods scale linearly. However,

the (T) algorithm takes about 2-3 times longer than the (T0)

algorithm. In the LT-based local (T) methods,25,29 usually 3-4

quadrature points are needed. Therefore, the CPU time of both

Hättig’s and Kallay’s methods are about 3-4 times slower than

their corresponding (T0) methods. Thus, the formal prefactor

of our DLPNO-CCSD(T) algorithm is comparable to or even

smaller than the LT-based local CCSD(T) methods.

Finally, using the present method, a few medium-sized

molecules are studied (Table I). The penicillin molecule with

the def2-TZVP basis set is the largest canonical CCSD(T)

TABLE I. The accuracy and efficiency comparison for three medium-sized molecules between DLPNO-CCSD(T) and DLPNO-CCSD(T0) with different basis

set.

Diclofenac Penicillin Vancomycin

def2-SVP def2-TZVP def2-QZVPP def2-SVP def2-TZVP def2-QZVPP def2-SVP def2-TZVP def2-QZVPP

No. basis function 329 667 1439 430 858 1921 1797 3593 8033

Accuracy

DLPNO-(T0) 90.32% 91.10% ☞0.178 999 90.46% 91.39% ☞0.219 025 ☞0.525 794 ☞0.821 973 ☞0.919 853

DLPNO-(T) 96.09% 96.11% ☞0.188 199 95.75% 96.00% ☞0.229 296 ☞0.555 634 ☞0.862 413 ☞0.962 056

Canonical (T) (hartree) ☞0.115 737 ☞0.176 850 . . . ☞0.140 410 ☞0.214 880 . . . . . . . . . . . .

DLPNO-CCSD(T0) 99.60% 99.59% ☞4.851 412 99.60% 99.58% ☞3.688 547 ☞15.988 954 ☞19.422 886 ☞20.804 963

DLPNO-CCSD(T) 99.84% 99.84% ☞4.861 683 99.80% 99.80% ☞3.697 747 ☞16.018 653 ☞19.463 164 ☞20.847 166

Canonical CCSD(T)
☞2.834 544 ☞3.459 576 . . . ☞3.753 983 ☞4.550 853 . . . . . . . . . . . .

(hartree)

Wall time (using 4 cores)

DLPNO-(T0) (min) 5.3 41.8 474.3 5.3 34.2 353.0 44.9 218.9a 2393.5a

DLPNO-CCSD(T0) (min) 10.2 71.8 1203.0 10.3 64.5 614.7 147.7 662.4a 8182.9a

Ratio of
4.6 3.2 1.6 4.0 3.2 1.5 4.3 2.7a 1.5a

DLPNO-(T)/DLPNO-(T0)

Ratio of

2.9 2.3 1.2 2.5 2.2 1.3 2.0 1.6a 1.2aDLPNO-CCSD(T)/

DLPNO-CCSD(T0)

Hard disk requirement

Additional space for

22.49 74.41 143.11 21.05 68.10 132.49 113.86 342.94 645.66intermediates in

DLPNO-(T) (GB)

aUsing 8 cores.
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calculation that we can afford (24 days on 6 cores). One can see

that the DLPNO-(T) recovers more than 95% of conventional

(T) corrections, and the overall DLPNO-CCSD(T) method

recovers 99.8% of the total correlation energies. Our method

presents similar accuracy as the results reported by Hättig.25

The computational cost comparison for these systems between

DLPNO-CCSD(T) and DLPNO-CCSD(T0) is given in Table

I as well. The (T) step in the DLPNO-CCSD(T) calculation

is always less than 4 times slower than its (T0) counterpart.

As the basis set is enlarged, the (T) calculations become more

efficient. With the def2-SVP basis set, the (T) costs about 4

times as much as (T0), whereas for the def2-QZVPP basis set

the increase in computational time only costs a factor of about

0.5. In the DLPNO-(T) algorithm, the computing time of the

(T0) step is much more influenced by the basis set size than

the iteration step. The computing time of the iteration step

is only affected by the number of TNOs, which only slightly

increases with the basis set size. Thus, as the size of the basis

set enlarges, the iteration step does not dominate the (T) calcu-

lation anymore. The computational cost comparison between

the overall DLPNO-CCSD(T) and DLPNO-CCSD(T0) calcu-

lation is also given in Table I. As can be readily seen, the overall

DLPNO-CCSD(T) calculation is only slightly more expensive

than the DLPNO-CCSD(T0) calculation (with an overhead of

only 20%-30% for the calculations using def2-QZVPP).

In this work, an improved (T) correction, based on our

previous DLPNO-CCSD(T0) method, is reported. The accu-

racy of the new method was confirmed by studying absolute

and relative energies over test sets in the GMTKN30 database.

The new (T) algorithm scales linearly with the system size, as

does the previous (T0) algorithm. The increase of computer

time of computing (T) relative to (T0) is reasonable, but cer-

tainly not negligible. It is about an additional factor of 4 for

double-ζ basis sets, a factor of 2-3 for triple-ζ basis sets, and

only a factor of 0.5 for quadruple-ζ basis sets. The accuracy

is definitely improved significantly for absolute energies. For

relative energies, the gain in accuracy is modest, but the prob-

lematic cases for which the (T0) approximation failed are well

treated with the improved (T) scheme. The promising combi-

nation of current (T) with the DLPNO-CCSD-F12 method will

be reported in due course. The extension of the DLPNO-(T)

from the closed-shell to the open-shell case is undergoing and

will be reported in due course as well.

See supplementary material for detailed results under the

three approximations and results of test sets in GMTKN30.
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8M. Schütz, J. Chem. Phys. 113, 9986 (2000).
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