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Communication-and-Computing Latency

Minimization for UAV-Enabled Virtual Reality

Delivery Systems
Yi Zhou, Cunhua Pan, Phee Lep Yeoh, Kezhi Wang, Maged Elkashlan,

Branka Vucetic, Fellow, IEEE, and Yonghui Li, Fellow, IEEE

Abstract—In this paper, we propose a low-latency virtual
reality (VR) delivery system where an unmanned aerial vehicle
(UAV) base station (U-BS) is deployed to deliver VR content
from a cloud server to multiple ground VR users. Each VR
input data requested by the VR users can be either projected
at the U-BS before transmission or processed locally at each
user. Popular VR input data is cached at the U-BS to further
reduce backhaul latency from the cloud server. For this system,
we design a low-complexity iterative algorithm to minimize the
maximum communications and computing latency among all VR
users subject to the computing, caching and transmit power
constraints, which is guaranteed to converge. Numerical results
indicate that our proposed algorithm can achieve a lower latency
compared to other benchmark schemes. Moreover, we observe
that the maximum latency mainly comes from communication
latency when the bandwidth resource is limited, while it is
dominated by computing latency when computing capacity is low.
In addition, we find that caching is helpful to reduce latency.

Index Terms—UAV communication, computing, caching, la-
tency minimization, joint optimization.

I. INTRODUCTION

THE demand for virtual reality (VR) applications that can

create high-definition ultra-immersive VR environments

for mobile users has increased significantly in 5G and beyond

wireless networks [1, 2]. However, due to the low comput-

ing capability and finite battery lifetime of VR users, it is

extremely challenging for wireless networks to support these

computing-intensive and latency-sensitive VR applications. To

alleviate computing resource constraints and reduce latency,

mobile edge computing (MEC) has emerged as a promising

enabler for VR delivery by equipping high-capacity computing

resources at the network edge [3, 4]. In [5], a task scheduling
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strategy was proposed to solve a transmission data consump-

tion minimization problem with delay constraint in MEC-

enabled VR systems. In [6], by optimizing the bandwidth allo-

cation of the uplink and downlink channels, the authors solved

an end-to-end delay minimization problem in a VR mobile

social edge network. In [7], the authors proposed an efficient

algorithm to minimize the offloading energy consumption

under latency and power constraints for augmented reality

applications. In [8], an energy consumption minimization

framework was developed for a two-tier computing offloading

MEC network. In [9], the authors implemented and developed

a low-latency management framework for distributed service

function chains enabling tactile internet with MEC. In [10],

by jointly coordinating the task assignment, computing, and

transmission resources among edge devices, multi-layer MEC

servers and cloud center, the authors proposed an efficient

algorithm that aimed at minimizing the system latency includ-

ing total computing and transmission time in heterogeneous

multi-layer MEC networks. In [11], by jointly optimizing

the users’ transmit power, computing capacity allocation, and

user association, a latency minimization problem of an MEC

system was formulated.

To further reduce latency consumption, caching has been

considered for MEC servers to pre-cache popular data files

from the cloud servers during off-peak periods [12–14]. By

doing so, the backhaul latency for requesting data from the

cloud server can be minimized during peak periods. In [12],

the authors formulated a joint radio communication, caching

and computing decision problem to maximize the average

tolerant delay with a given transmission rate constraint in a fog

radio access network. In [13], joint caching and computing op-

timization was proposed to minimize the average transmission

rate in MEC-based VR delivery systems. The authors in [14]

jointly optimized the computation offloading, content caching

and resource allocation such that the total latency consumption

is minimized.

Due to its mobility and flexibility, unmanned aerial vehicle

(UAV) is an ideal platform to provide high-quality and low-

latency transmissions by deploying the UAV in close proximity

to serve ground users [15–18]. Different from a ground base

station which suffers from highly scattered Rayleigh fading

channels, the UAV can exploit a strong line-of-sight (LoS)

channel when it is above a certain altitude and the propaga-

tion conditions between the UAV and ground users can be

approximated as free space. Furthermore, the UAV can be



optimally deployed between the ground users and cloud server

to further reduce the transmission and backhaul latency, which

is perfectly suitable for latency-sensitive applications. Sev-

eral papers have addressed the performance of UAV-enabled

MEC systems with computing resource constraints [19–21].

In [19], a security maximization UAV-enabled MEC frame-

work was proposed by jointly optimizing the UAV location,

users’ transmit power, UAV jamming power, offloading ratio,

UAV computing capacity, and offloading user association.

The authors in [20] developed a low-complexity power min-

imization algorithm by jointly optimizing user association,

power control, computation capacity allocation and location

planning in a MEC network with multiple UAVs. In [21],

the UAV trajectory, user association and user offloading ratio

were jointly optimized to minimize the maximum latency

in UAV-MEC networks. The performance of a UAV-enabled

caching system was investigated in [22–24]. In [22], a secure

transmission scheme was proposed for a UAV-enabled caching

system based on interference alignment. In [23], the UAV

location, content caching decision and user association were

jointly optimized to maximize the users’ quality-of-experience.

In [24], the file caching policy, UAV trajectory and file

transmission scheduling were jointly optimized in a UAV-

enabled network with proactive caching. Notably, no prior

works have jointly considered the communication, computing,

and caching (3C) performance of UAV systems which is

critical for successful low-latency VR delivery, thus motivating

this work.
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Fig. 1. UAV-enabled communication, computing and caching VR delivery
system.

In this paper, we present a novel framework with the

aim of minimizing the maximum latency of a UAV-enabled

communication, computing and caching VR delivery system

as shown in Fig. 1, which consists of one cloud server, one

UAV aerial base station (U-BS) equipped with both caching

and computing capabilities, and multiple ground VR users with

local computing resources. To reduce the traffic burden on the

backhaul link and backhaul communication latency, the U-BS

caches the most popular input data in its cache container and

the data which has not been cached at the U-BS needs to be

transmitted from the cloud server via a wireless backhaul link.

Moreover, to further reduce latency, the U-BS may choose

to process the input data with its computing resource and

transmit the projected output data to VR users for display, or

send the input data to VR users directly for local computing.

We note that compared to [5–7] where a VR delivery system

was proposed for ground communications, our work exploits

the advantages of UAV communications where the latency

consumption can be further reduced by optimizing the UAV

location, UAV computing capacity allocation and UAV caching

policy. In addition, our work which jointly considers the

computing and caching capabilities of UAV-enabled systems

is different from other research on UAV communications

such as [19–21] and [22–24] which solely focused on either

computing or caching capabilities, respectively.

The main contributions of this paper are summarized as

follows.

• We formulate a maximum latency minimization prob-

lem of a UAV-enabled VR delivery system by jointly

optimizing the U-BS location, fronthaul and backhaul

bandwidth allocation, computing capacity allocation, data

caching policy and computing offloading policy subject

to computing, caching and power constraints.

• To solve the non-convex optimization problem, we first

apply the block coordinate descent (BCD) method to

decouple the original optimization problem into six sub-

problems and propose a low-complexity algorithm to

solve each subproblem alteratively. We solve the U-BS

location subproblem by applying a successive convex

approximation (SCA) on the U-BS data rate. Then, we

apply Lagrangian dual decomposition method to effi-

ciently solve the bandwidth and computing capacity allo-

cation subproblems. Finally, we obtain efficient closed-

form solutions for the caching and computing policy

subproblems.

• Simulation results show that our proposed algorithm

achieves a lower latency compared to benchmark strate-

gies and highlight a tradeoff between latency and the

primary resource requirements of communication, com-

puting and caching.

The rest of this paper is organized as follows. Section

II introduces the UAV-enabled communication, computing

and caching VR delivery system model and formulates the

joint optimization problem. In Section III, we propose an

efficient iterative algorithm to minimize the maximum latency

consumption. The effectiveness of our proposed solution is

shown through simulation results in Section IV. Finally, we

conclude the paper in Section V.

II. SYSTEM MODEL

Fig. 1 depicts our proposed UAV-enabled communication,

computing and caching VR delivery system with N ground

VR users, one U-BS and one ground cloud server, where

the set of VR users is denoted as N = {1, 2, ..., N}. We



TABLE I
TABLE OF NOTATIONS

Notation Description

N Set of VR users

θi Fraction of fronthaul bandwidth allocated to the i-th VR user

ηi Fraction of backhaul bandwidth allocated for transmitting Ii
fi Computing capacity of U-BS assigned to the i-th VR user

ci Caching policy variable

ai Computing policy variable

pu, pc Transmit power for the U-BS and cloud server

σ2 Noise spectral density

β0 Reference channel power gain

y,wi, v Horizontal location of the U-BS, the i-th VR user and cloud server

Hu Altitude of U-BS

ri Fronthaul data rate at the i-th VR user

rbi Backhaul data rate for transmitting Ii
Ii, Oi Input and output data size of the i-th VR user

α Ratio of size between Oi and Ii
Fi CPU cycles for computing data Ii
f local
i Local computing capacity at the i-th VR user

consider that the U-BS has caching and computing capabilities

which enable it to cache the data requested by each VR user

from the cloud server via wireless backhaul and compute the

data, respectively. Each VR user with computing capability

is able to compute the data locally. We assume that all

devices are equipped with a single antenna for transmitting

or receiving. Due to the long distance and blockages from the

cloud server to the VR users, the direct links between them

are not applicable.

A. Computing Model

We assume that the i-th VR user has the computationally

intensive task Ui to be executed as follows [13]

Ui = (Ii, Oi, Fi), ∀i ∈ N , (1)

where Ii is the input data in bits of the VR video required

by the i-th user which is available in the remote cloud server,

and may or may not be cached at the U-BS, Oi = αIi is the

output data in bits after being processed at the U-BS or locally

with α ≥ 2 as the ratio of size between Oi and Ii [13], and Fi

is the number of CPU cycles for computing one bit of input

data Ii.

We consider VR projection and rendering in our system and

define ai = {0, 1}, ∀i ∈ N , as the computing policy variable

where ai = 1 indicates that the input data Ii required by the

i-th VR user will be projected at the U-BS. Thus, the U-BS

processes the input data and transmits the output data Oi to

VR users for display. On the other hand, ai = 0 indicates

that the i-th VR user decides to compute its data locally, but

this user also needs to receive the input data, Ii, from the U-

BS for calculation. Thus, the fronthaul transmission latency

between the U-BS and each VR user is jointly decided by the

computing policy, data size, and transmission rate, which is

given by

ttri = ai ·
Oi

ri
+ (1− ai) ·

Ii
ri
, ∀i ∈ N , (2)

where ri is the transmission rate between the U-BS and the

i-th VR user which is shown in (10). The first term in the right-

hand-side (RHS) of (2) shows that if the data is computed at

the U-BS, the output data Oi after being processed will be

transmitted from U-BS to the VR user and the second term

means that if the data is computed locally, the U-BS transmits

the input data Ii to the VR user for calculation.

The computing latency which depends on computing policy,

data size, computing capacity, and the required CPU cycles of

the computing data, is given by

tci = ai ·
Ii · Fi

fi
+ (1− ai) ·

Ii · Fi

f local
i

, ∀i ∈ N , (3)

where f local
i is the local computing capacity at the i-th VR

user and fi is the computing capacity of the U-BS assigned

to compute the data requested by the i-th VR user, which is

constrained by a maximum computing capacity given by

N∑

i=1

aifi ≤ fmax. (4)

We note that if the i-th VR user decides to locally compute

its data and ai = 0, the U-BS will not allocate any computing

capacity to this VR user and fi = 0. We set the first term in

the RHS of (3) to zero when ai = 0 and fi = 0.

We model the power consumption at the U-BS for comput-

ing the input data requested by the i-th VR user as [19]

pci = κf3
i , ∀i ∈ N , (5)

where κ is the effective switched capacitance on the chip.



The total power consumption at the U-BS which consists of

transmit power, pu, and computing power should be limited

by a maximum budget pmax, which is given by

pu +

N∑

i=1

aiκf
3
i ≤ pmax. (6)

B. Caching model

We define ci = {0, 1}, ∀i ∈ N as the caching policy

variable where ci = 1 represents that the input data requested

by the i-th VR user has been cached in the U-BS and ci = 0
otherwise. We note that if the U-BS has cached the input data

requested by the i-th VR user, it can apply the data directly

from its cache container. Otherwise, the input data has to

be transmitted from the cloud server to the U-BS and the

corresponding backhaul latency is given by

tbi = (1− ci) ·
Ii
rbi

, ∀i ∈ N , (7)

where rbi representing the backhaul rate for transmitting Ii is

given in (12).

Since different portions of the VR video are viewed by

different VR users based on their geographical locations, we

assume that the input data required by each VR user is

different from each other. Note that the caching storage at

the U-BS should be bounded by a maximum budget cmax,

which is given by
N∑

i=1

ciIi ≤ cmax. (8)

C. Communication Model

Assume that the coordinate of the i-th VR user is denoted by

wi = (xi, yi)
T ∈ R

2×1, ∀i ∈ N . The U-BS is fixed at altitude

Hu, which is the minimum altitude required by regulations to

avoid building obstacles, and its horizontal location is denoted

by y = (xu, yu)
T ∈ R

2×1. For the air-to-ground channel, we

adopt a simple channel model where the channel power gains

are dominated by the LoS links. Then, the channel power gain

between the U-BS and the i-th VR user is given as [25, 26]

hi =
β0

||y − wi||2 +H2
u

, ∀i ∈ N , (9)

where β0 denotes the channel power gain at the reference

distance of one meter.

Define θi ≥ 0, ∀i ∈ N as the fronthaul bandwidth allocation

factor which represents the fraction of fronthaul bandwidth

that the U-BS allocates to the i-th VR user. The achievable

data rate at the i-th VR user is denoted by ri in bits/second

(bps), which is expressed as

ri = θiBlog2

(

1 +
puhi

θiBσ2

)

, ∀i ∈ N , (10)

where pu is the transmit power at the U-BS, B is the total

fronthaul bandwidth, and σ2 is the noise spectral density.

Assume that the coordinate of the cloud server is denoted by

v = (xc, yc)
T ∈ R

2×1. Then, the channel power gain between

the cloud server and the U-BS is given as [25, 26]

hb =
β0

||y − v||2 +H2
u

. (11)

We define Nuncached = {i|ci = 0, ∀i ∈ N} as the set of VR

users whose input data has not been cached in the U-BS and

ηi ≥ 0, ∀i ∈ Nuncached as the backhaul bandwidth allocation

factor which represents the fraction of backhaul bandwidth that

the cloud allocates to transmit the input data Ii which has not

been cached in the U-BS. We note that for the i-th VR user

whose requested input data Ii has been cached in the U-BS,

i.e., ci = 1, the cloud will not allocate any backhaul bandwidth

for transmitting Ii and ηi = 0, ∀i ∈ N/Nuncached. The

achievable backhaul data rate for transmitting Ii is denoted

by rbi in bits/second (bps), which is expressed as

rbi = ηiBbacklog2

(

1 +
pchb

ηiBbackσ2

)

, ∀i ∈ Nuncached, (12)

where pc is the transmit power at the cloud server and Bback

is the total backhaul bandwidth.

According to (2), (3), (7), (10), and (12), the total latency

to complete the task at each VR user is given by

ti = ttri + tci + tbi

= ai

(
Oi

ri
+

IiFi

fi

)

+ (1− ai)

(
IiFi

f local
i

+
Ii
ri

)

+
(1− ci)Ii

rbi
,

∀i ∈ N .
(13)

D. Problem Formulation

We note that the satisfaction of VR experience among all

users is dominated by the user who experiences the worst

latency. To achieve the fairness among all VR users, we

formulate an optimization problem aimed at minimizing the

maximum latency among all VR users subject to comput-

ing capacity, caching storage and total power constraints.

We jointly optimize the U-BS location y = {(xu, yu)
T },

fronthaul bandwidth allocation θ = {θi, ∀i ∈ N}, backhaul

bandwidth allocation η = {ηi, ∀i ∈ Nuncached}, computing

capacity allocation f = {fi, ∀i ∈ N}, data caching policy

c = {ci, ∀i ∈ N}, and computing policy a = {ai, ∀i ∈ N}.

The optimization problem can be formulated as

min
y,θ,η,f,c,a

max
i∈N

ti (14a)

s.t.

N∑

i=1

aifi ≤ fmax (14b)

N∑

i=1

ciIi ≤ cmax (14c)

pu +

N∑

i=1

aiκf
3
i ≤ pmax (14d)

ai = {0, 1}, ∀i ∈ N (14e)

ci = {0, 1}, ∀i ∈ N (14f)

N∑

i=1

θi ≤ 1 (14g)

N∑

i=1

ηi ≤ 1. (14h)

Define an auxiliary variable T , max
i∈N

ti as the maximum

latency among all VR users, we can reformulate the original



optimization problem as

min
y,θ,η,f,c,a,T

T (15a)

s.t. ai

(
Oi

ri
+

IiFi

fi

)

+ (1− ai)

(
IiFi

f local
i

+
Ii
ri

)

+
(1− ci)Ii

rbi
≤ T, ∀i ∈ N

(15b)

(14b) − (14h),

where the newly defined constraint (15b) is based on the

intrinsic limitation that the latency consumption of each user

should be less than its maximum value. Although reformu-

lated, Problem (15) is still a non-convex optimization problem

due to the following reasons. First, the optimizing variables

for computing policy a and data caching policy c are binary

integers. Second, even with given a and c, (15b) is still a non-

convex constraint with respect to U-BS location y. Therefore,

the main challenge that we will address in the following

section is to develop an efficient algorithm to solve the latency

optimization problem in (15).

III. PROPOSED LATENCY MINIMIZATION ALGORITHM

In this section, we detail our proposed latency minimization

algorithm for UAV-enabled VR delivery systems. To solve

Problem (15), we apply the BCD method which alternately

optimizes one block of optimization variable in each iteration

while keeping other blocks of optimization variables fixed

to obtain a high-quality suboptimal solution [15]. Therefore,

we can decouple the original optimization problem into six

subproblems to solve the U-BS location y, fronthaul bandwidth

allocation θ, backhaul bandwidth allocation η, computing

capacity allocation f, data caching policy c, and computing

policy a in an iterative manner.

A. U-BS Location Subproblem

For any given θ,η, f, c, and a, the U-BS location of Prob-

lem (15) can be optimized by solving the following problem

min
y,T

T (16a)

s.t.
aiOi + (1− ai)Ii

θiBlog2

(

1 + ζi
||y−wi||2+H2

u

) +
(1− ci)Ii

ηiBbacklog2

(

1 + γi

||y−v||2+H2
u

)

≤ T − ρi, ∀i ∈ N ,
(16b)

where the constraint (16b) corresponds to (15b), and all the
other constraints in (15) are not applicable. In (16), we define

ζi =
puβ0

θiBσ2 ,γi =
pcβ0

ηiBbackσ2 , and ρi = ai
IiFi

fi
+ (1− ai)

IiFi

f local
i

.

Note that (16) is a non-convex optimization problem and
the non-convexity arises from the logarithm terms. In the

following, we first introduce slack variables ǫ , {ǫi, ∀i ∈ N}
and ω , {ωi, ∀i ∈ Nuncached}, and reformulate the U-BS

location subproblem as

min
y,ǫ,ω,T

T (17a)

s.t.
aiOi + (1− ai)Ii

ǫi
+

(1− ci)Ii
ωi

≤ T − ρi, ∀i ∈ N (17b)

θiBlog2

(

1 +
ζi

||y − wi||2 +H2
u

)

︸ ︷︷ ︸

Ii

≥ ǫi, ∀i ∈ N (17c)

ηiBbacklog2

(

1 +
γi

||y − v||2 +H2
u

)

︸ ︷︷ ︸

Zi

≥ ωi, ∀i ∈ Nuncached.

(17d)

We note that the constraint (17b) is convex now and the non-

convexity of Problem (17) arises from constraints (17c) and

(17d). Next, we adopt the SCA technique, where the original

function can be approximated by a more tractable expression

at a given local point in each iteration [15][19]. We note that

Ii is convex with respect to ||y−wi||
2, thus, a concave lower

bound expression Ilb
i can be derived by applying the first-

order Taylor expansion with given U-BS location y[m] in the

m-th iteration, which is given by

Ilb
i = θiBlog2

(

1 +
ζi

||y[m]− wi||2 +H2
u

)

−
θiBζi(||y − wi||

2 − ||y[m]− wi||
2)

(||y[m]− wi||2 +H2
u + ζi)(||y[m]− wi||2 +H2

u) ln 2
.

(18)

We apply a similar approach on Zi and the corresponding

concave lower bound Z lb
i is given by

Zlb
i = ηiBbacklog2

(

1 +
γi

||y[m]− v||2 +H2
u

)

−
ηiBbackγi(||y − v||2 − ||y[m]− v||2)

(||y[m]− v||2 +H2
u + γi)(||y[m]− v||2 +H2

u) ln 2
.

(19)

With given U-BS location y[m] and the lower bound ex-

pressions in (18) and (19), the U-BS location subproblem can

be solved as

min
y,ǫ,ω,T

T (20a)

s.t.
aiOi + (1− ai)Ii

ǫi
+

(1− ci)Ii
ωi

≤ T − ρi, ∀i ∈ N (20b)

Ilb
i ≥ ǫi, ∀i ∈ N (20c)

Zlb
i ≥ ωi, ∀i ∈ Nuncached. (20d)

We note that Problem (20) is a convex optimization problem

and it can be efficiently solved by utilizing mathematical

optimization software with the polynomial complexity [27].

B. Fronthaul Bandwidth Allocation Subproblem

For any given y,η, f, c, and a, the fronthaul bandwidth

allocation of Problem (15) can be optimized by solving the

following problem



min
θ,T

T (21a)

s.t.
χi

T − νi
≤ θiBlog2

(

1 +
puhi

θiBσ2

)

, ∀i ∈ N (21b)

N∑

i=1

θi ≤ 1. (21c)

θi ≥ 0, ∀i ∈ N (21d)

T ≥ νi, ∀i ∈ N , (21e)

where νi = ai
IiFi

fi
+(1−ai)

IiFi

f local
i

+ (1−ci)Ii
rb
i

and χi = aiOi+

(1 − ai)Ii. We define θiBlog2

(

1 + puhi

θiBσ2

)

, 0 when θi =

0, ∀i ∈ N , such that the RHS of (21b) is continuous with

respect to θi over the whole domain. We analyze the convexity

of Problem (21) in the following lemma.

Lemma 1. Problem (21) is a convex problem.

Proof. It can be easily noted that (21a), (21c), (21d), and (21e)

are convex terms due to their linearity. Therefore, proving

Lemma 1 is equivalent to proving that the constraint (21b) is

convex. To show this, we define g(x) = xlog2
(

1 + 1
x

)

, x > 0,

and we have

∂2g

∂x2
= −

1

x(x+ 1)2 ln 2
< 0, ∀x > 0, (22)

which indicates that g(x) is a concave function. Thus, we can

conclude that the RHS of (21b) is a concave term with respect

to θi. Moreover, We note that the left-hand-side (LHS) of (21b)

is a convex term with respect to T . Therefore, we show that

the constraint (21b) is convex and prove that Problem (21) is

a convex problem.

Next, we apply the Lagrangian dual decomposition method

to solve this convex problem. It can be verified that the Slater’s

condition is satisfied for Problem (21), which indicates that the

duality gap between (21) and its dual problem is zero [27].

The partial Lagrangian function of Problem (21) is given by

L(T,θ,µ, ι) = T +

N∑

i=1

µiχi

T − νi

+

N∑

i=1

[

ιθi − µiθiBlog2

(

1 +
puhi

θiBσ2

)]

− ι,

(23)

where µ = {µi, ∀i ∈ N} and ι are Lagrangian multipliers

associated with constraints (21b) and (21c), respectively. The

boundary constraints (21d) and (21e) will be absorbed into the

optimal solution in the following. The dual function is given

by

f(µ, ι) = min
T,θ

L(T,θ,µ, ι) (24a)

s.t. θi ≥ 0, T ≥ νi, ∀i ∈ N , (24b)

and the dual problem of (21) is given by

max
µ,ι

f(µ, ι) (25a)

s.t.µ � 0, ι ≥ 0. (25b)

To derive the primal optimal solution of Problem (21),

we apply the Lagrange duality and derive f(µ, ι) by solving

Problem (24). We note that with given dual variables µ and

ι, Problem (24) can be decomposed into N + 1 independent

subproblems where one subproblem is for optimizing T and

the other N subproblems are for optimizing θi, ∀i ∈ N . The

subproblem for optimizing T can be formulated as

min
T

T +

N∑

i=1

µiχi

T − νi
(26a)

s.t. T ≥ νi, ∀i ∈ N . (26b)

By setting the first-order derivative of (26a) with respect to

T to zero, we observe that the optimal T should satisfy

T =

{

T |
N∑

i=1

µiχi

(T − νi)2
= 1, T ≥ νi

}

, (27)

which can be found by applying the bisection method.
Moreover, the subproblem for optimizing θi, ∀i ∈ N can

be formulated as

min
θi

ιθi − µiθiBlog2

(

1 +
puhi

θiBσ2

)

(28a)

s.t. θi ≥ 0, ∀i ∈ N . (28b)

By setting the first-order derivative of (28a) with respect to

θi to zero, we obtain the closed-form expression of the optimal

bandwidth allocation as

θi =







puhi

Bσ2






−

1

W

(

− 1

exp(1+ ι ln 2

µiB
)

) − 1







−1





+

, (29)

where [x]+ = max{x, 0} and W(x) is the Lambert function,

which is defined as the inverse function of f(x) = x exp(x).
The value of dual variables µ and ι can be determined by

the sub-gradient method. The updating procedure can be given
by

µi =

[

µi + φ

(
χi

T − νi
− θiBlog2

(

1 +
puhi

θiBσ2

))]+

, ∀i ∈ N

(30a)

ι =

[

ι+ φ

(
N∑

i=1

θi − 1

)]+

, (30b)

where φ > 0 is a dynamic step-size sequence, which can be

selected by using the typical self-adaptive scheme [18].

We note that in the primal problem of (21), the optimal T
and θ can be derived by solving (27) and (29), respectively.

Moreover, in the dual problem of (21), the optimal dual

variables µ and ι can be found by solving (30a) and (30b),

respectively. The details for obtaining the optimal solution to

Problem (21) are summarized in Algorithm 1. We note that

Problem (24) has been decomposed into N + 1 subproblems.

To solve the subproblem for optimizing T , the complexity

of solving (27) via the bisection method is O(log2(1/ǫ))
with ǫ being the iterative accuracy. To solve each of the N
subproblems, since the closed-from solution has been derived

in (29), the complexity for these N subproblems is O(N).
Moreover, the complexity of updating dual variables is O(N)
according to (30a) and (30b). As a result, the total complexity



of Algorithm 1 is O(L1L2N
2 log2(1/ǫ)), where L1 is the

number of iterations for outer layer in Algorithm 1 and L2

is the number of iterations via the dual method of solving

Problem (21).

Algorithm 1 Fronthaul Bandwidth Allocation Algorithm for

Solving Problem (21).

1: Initialize µ and ι.
2: repeat
3: Obtain the optimal T and θ by solving (27) and (29),

respectively;
4: Update the Lagrangian multipliers µ and ι by solving (30a)

and (30b), respectively;
5: until The objective function in (21a) converges.

C. Backhaul Bandwidth Allocation Subproblem

For any given y,θ, f, c, and a, the backhaul bandwidth

allocation of Problem (15) can be optimized by solving the

following problem

min
η,T

T (31a)

s.t.
Ii

T − zi
≤ ηiBbacklog2

(

1 +
pchb

ηiBbackσ2

)

, ∀i ∈ Nuncached

(31b)

Nuncached∑

i=1

ηi ≤ 1 (31c)

ηi ≥ 0, ∀i ∈ Nuncached (31d)

T ≥ zi, ∀i ∈ Nuncached, (31e)

where zi = ai

(

Oi

ri
+ IiFi

fi

)

+ (1 − ai)
(

IiFi

f local
i

+ Ii
ri

)

. We

set ηiBbacklog2

(

1 + pchb

ηiBbackσ2

)

, 0 when ηi = 0, ∀i ∈

Nuncached, such that the RHS of (31b) is continuous with re-

spect to ηi over the whole domain. We note that Problem (31)

is a convex problem and the proof is similar to that of (21) in

Subsection III-B.

As such, we can apply the Lagrangian dual decomposition

method to solve Problem (31). We denote λ = {λi, ∀i ∈
Nuncached} and ς as Lagrangian multipliers associated with

constraints (31b) and (31c), respectively. The boundary con-

straints (31d) and (31e) will be absorbed into the optimal

solution in the following. The partial Lagrangian function of

Problem (31) is given by

L(T,η,λ, ς) = T +

Nuncached∑

i=1

λiIi
T − zi

+

Nuncached∑

i=1

[

ςηi − λiηiBbacklog2

(

1 +
pchb

ηiBbackσ2

)]

− ς.

(32)
The dual function is given by

f(λ, ς) = min
T,η

L(T,η,λ, ς) (33a)

s.t. ηi ≥ 0, T ≥ zi, ∀i ∈ Nuncached, (33b)

and the dual problem of (31) is given by

max
λ,ς

f(λ, ς) (34a)

s.t.λ � 0, ς ≥ 0. (34b)

To derive the primal optimal solution of Problem (31), we

apply the Lagrange duality method and derive f(λ, ς) by

solving Problem (33). We note that with given dual variables

λ and ς , Problem (33) can be decomposed into Nuncached+1
independent subproblems where one subproblem is for op-

timizing T and the other Nuncached subproblems are for

optimizing ηi, ∀i ∈ Nuncached. The subproblem for optimizing

T can be formulated as

min
T

T +

Nuncached∑

i=1

λiIi
T − zi

(35a)

s.t. T ≥ zi, ∀i ∈ Nuncached. (35b)

By setting the first-order derivative of (35a) with respect to

T to zero, we find that the optimal T should satisfy

T =

{

T |

Nuncached∑

i=1

λiIi
(T − zi)2

= 1, T ≥ zi

}

, (36)

which can be solved by applying the bisection search method.

Moreover, the subproblem for optimizing ηi, ∀i ∈
Nuncached can be formulated as

min
ηi

ςηi − λiηiBbacklog2

(

1 +
pchb

ηiBbackσ2

)

(37a)

s.t. ηi ≥ 0, ∀i ∈ Nuncached. (37b)

By setting the first-order derivative of (37a) with respect to

ηi to zero, we obtain the closed-form expression of the optimal

backhaul bandwidth allocation as

ηi =







pchb

Bbackσ2






−

1

W

(

− 1

exp(1+ ς ln 2

λiBback
)

) − 1







−1





+

. (38)

The value of dual variables λ and ς can be determined by
the sub-gradient method. The updating procedure is given by

λi =

[

λi + φ

(
Ii

T − zi
− ηiBbacklog2

(

1 +
pchb

ηiBbackσ2

))]+

∀i ∈ Nuncached (39a)

ς =

[

ς + φ

(
Nuncached∑

i=1

ηi − 1

)]+

. (39b)

The procedures for obtaining the optimal solution to Prob-

lem (31) is summarized in Algorithm 2. Similar to the com-

plexity analysis in Subsection III-B, we note that the total

complexity of Algorithm 2 is O(L3L4N
2 log2(1/ǫ)), where

L3 is the number of iterations for outer layer in Algorithm 2

and L4 is the number of iterations via the dual method of

solving Problem (31).

D. Computing Capacity Allocation Subproblem

We define Nas = {i|ai = 1, ∀i ∈ N} as the set of VR

users who choose to compute their input data at the U-BS.

Note that for the VR users who choose to self-execute their

tasks, the U-BS will not allocate computing capacity to them

and fi = 0, ∀i ∈ N/Nas. For any given y,θ,η, c, and a,

the computing capacity allocation of Problem (15) can be

optimized by solving the following problem



Algorithm 2 Backhaul Bandwidth Allocation Algorithm for

Solving Problem (31).

1: Initialize λ and ς .
2: repeat
3: Obtain the optimal T and η by solving (36) and (38),

respectively;
4: Update the Lagrangian multipliers λ and ς by solving (39a)

and (39b), respectively;
5: until The objective function in (31a) converges.

min
f,T

T (40a)

s.t.
IiFi

T −̟i

≤ fi, ∀i ∈ Nas (40b)

Nas∑

i=1

κf3
i ≤ pmax − pu (40c)

Nas∑

i=1

fi ≤ fmax (40d)

fi ≥ 0, ∀i ∈ Nas (40e)

T ≥ ̟i, ∀i ∈ Nas, (40f)

where ̟i = ai
Oi

ri
+ (1− ai)(

IiFi

f local
i

+ Ii
ri
) + (1−ci)Ii

rb
i

. We note

that Problem (40) is a convex optimization problem since the

objective function and all constraints are convex and it can

be effectively solved via the Lagrangian dual decomposition

method.

We denote τ = {τi, ∀i ∈ Nas}, δ, and ξ as the Lagrangian

multipliers associated with constraints (40b), (40c) and (40d),

respectively. The boundary constraints (40e) and (40f) will be

absorbed into the optimal solution in the following. The partial

Lagrangian function of Problem (40) is given by

L(T, f, τ , δ, ξ) =T +

Nas∑

i=1

τiIiFi

T −̟i

+

Nas∑

i=1

(
δκf3

i + ξfi − τifi
)

+ δpu − δpmax − ξfmax.
(41)

The dual function is given by

f(τ , δ, ξ) = min
T,f

L(T, f, τ , δ, ξ) (42a)

s.t. fi ≥ 0, T ≥ ̟i, ∀i ∈ Nas, (42b)

and the dual problem of (40) is given by

max
τ ,δ,ξ

f(τ , δ, ξ) (43a)

s.t. τ � 0, δ ≥ 0, ξ ≥ 0. (43b)

To derive the primal optimal solution of Problem (40),

we apply the Lagrange duality method and derive f(τ , δ, ξ)
by solving Problem (42). We note that with given dual

variables τ , δ, and ξ, Problem (42) can be decomposed into

Nas + 1 independent subproblems where one subproblem is

for optimizing T and the other Nas subproblems are for

optimizing fi, ∀i ∈ Nas. The subproblem for optimizing T
can be formulated as

min
T

T +

Nas∑

i=1

τiIiFi

T −̟i

(44a)

s.t. T ≥ ̟i, ∀i ∈ Nas. (44b)

By setting the first-order derivative of (44a) with respect to

T to zero, we observe that the optimal T should satisfy

T =

{

T |
Nas∑

i=1

τiIiFi

(T −̟i)2
= 1, T ≥ ̟i

}

, (45)

which can be solved by applying the bisection search method.
Moreover, the subproblem for optimizing fi, ∀i ∈ Nas can

be formulated as

min
fi

δκf3
i + ξfi − τifi (46a)

s.t. fi ≥ 0, ∀i ∈ Nas. (46b)

By setting the first-order derivative of (46a) with respect to

fi to zero, we obtain the closed-form expression of the optimal

computing capacity allocation as

fi =

[√

τi − ξ

3δκ

]+

. (47)

The value of dual variables τ , δ, and ξ can be determined
by the sub-gradient method. The updating procedure can be
given by

τi =

[

τi + φ

(
IiFi

T −̟i

− fi

)]+

, ∀i ∈ Nas (48a)

δ =

[

δ + φ

(
Nas∑

i=1

κf3
i − pmax + pu

)]+

(48b)

ξ =

[

ξ + φ

(
Nas∑

i=1

fi − fmax

)]+

, (48c)

where φ > 0 is the step-size in each iteration.

We summarize the procedures for obtaining the optimal

solution to Problem (40) in Algorithm 3. Similar to the

complexity analysis in Subsection III-B, we note that the total

complexity of Algorithm 3 is O(L5L6N
2
as log2(1/ǫ)), where

L5 is the number of iterations for outer layer in Algorithm 3

and L6 is the number of iterations via the dual method of

solving Problem (40).

Algorithm 3 Computing Capacity Allocation Algorithm for

Solving Problem (40).

1: Initialize τ , δ, and ξ.
2: repeat
3: Obtain the optimal T and f by solving (45) and (47),

respectively;
4: Update the Lagrangian multipliers τ , δ, and ξ by solv-

ing (48a), (48b) and (48c), respectively;
5: until The objective function in (40a) converges.

E. Caching Policy Subproblem

For any given y,θ,η, f, and a, the caching policy of

Problem (15) can be optimized by solving the following

problem



min
c,T

T (49a)

s.t. ̺i +
(1− ci)Ii

rbi
≤ T, ∀i ∈ N (49b)

N∑

i=1

ciIi ≤ cmax (49c)

ci = {0, 1}, ∀i ∈ N , (49d)

where ̺i = ai

(

Oi

ri
+ IiFi

fi

)

+ (1− ai)
(

IiFi

f local
i

+ Ii
ri

)

. Due to

the linearity of the objective function and all constraints, we

note that Problem (49) is a binary linear programming.

We first analyze the ideal scenario where the U-BS has a

sufficiently large storage capability, i.e., cmax ≥
∑N

i=1 Ii. In

this case, since a lower maximum latency T might be achieved

with a higher ci according to (49b), we can easily obtain that

the optimal solution for Problem (49) is ci = 1, ∀i ∈ N , i.e.,

the U-BS has cached the input data requested by all VR users

and all requested input data can be directly obtained from the

cache container of the U-BS without the backhaul transmis-

sions, which significantly reduces the latency by eliminating

the backhaul latency for all VR users.

For the general scenario where cmax ≤
∑N

i=1 Ii, due

to the limited storage capability of the U-BS, only specific

data which is requested by the VR users with high latency

consumption will be pre-cached so that the maximum latency

can be reduced via caching. Thus, to minimize the maximum

latency T , we first sort the users based on the descending order

in terms of ̺i+
Ii
rb
i

. Next, we consider the input data required

by the user with a higher ̺i +
Ii
rb
i

will be cached at the U-

BS with higher priority until the caching constraint cannot be

satisfied. To derive the closed-form solution, we define a new

indicator set S , {s1, s2, ···, sN} which is sorted in a descend-

ing order in terms of ̺i+
Ii
rb
i

, i.e., s1 = argmax{∀i∈N} ̺i+
Ii
rb
i

and sN = argmin{∀i∈N} ̺i +
Ii
rb
i

. We further define the set

S0 , {s1, s2, · · ·, sm−1},m = min {m:

∑m
i=1 Isi > cmax}.

By following [28], a closed-form expression for the optimal

solution of (49) is given as

ci =







0, if cmax ≤
N∑

i=1

Ii and i /∈ S0

1, otherwise.

(50)

We note that the complexity for the caching policy subprob-

lem is upper bounded by O(N) and the actual complexity may

be much smaller than this upper bound since the proposed

approach may terminate when the caching storage constraint

cannot be satisfied.

F. Computing Policy Subproblem

For any given y,θ,η, f, and c, the computing policy Prob-

lem (15) can be optimized by solving the following problem

min
a,T

T (51a)

s.t. aiυi + oi ≤ T, ∀i ∈ N (51b)

N∑

i=1

aifi ≤ fmax (51c)

pu +
N∑

i=1

aiκf
3
i ≤ pmax (51d)

ai = {0, 1}, ∀i ∈ N , (51e)

where υi = Oi

ri
+ IiFi

fi
− IiFi

f local
i

− Ii
ri

and oi = IiFi

f local
i

+
Ii
ri

+ (1−ci)Ii
rb
i

. We note that Problem (51) is a binary linear

programming since the objective function and all constraints

are linear.

To solve Problem (51), we first analyze the scenario when

υi ≥ 0. In this case, we observe that a larger ai might result in

a higher T according to (51b). Thus, to minimize T , we can

easily derive that ai = 0 when υi ≥ 0. This corresponds to the

scenario that when the transmission and computing latencies

at the i-th user of local computing is less than that of U-BS

processing, the VR user chooses to self-execute its input data

to reduce latency.

When υi ≤ 0, a lower maximum latency consumption might

be achieved with a larger ai according to (51b). However, due

to the computing capacity and power constraints, only specific

input data which is requested by the VR users with higher

latency consumption will be processed at the U-BS so that

the maximum latency can be minimized benefiting from the

higher computing capacity at the U-BS. Thus, to minimize

the maximum latency T , we first sort the users based on the

descending order in terms of oi. Next, we consider the input

data of the user with a higher oi will be processed at the U-BS

with higher priority until the computing capacity constraint or

the power constraint cannot be satisfied. To derive the closed-

form solution, we define a new indicator set K , {k1, k2, · ·
·, kN} which is sorted in a descending order in terms of oi,
i.e., k1 = argmax{∀i∈N} oi and kN = argmin{∀i∈N} oi.

We further define the set K0 , {k1, k2, · · ·, kl−1}, l =
min{l1, l2} where l1 = min {l1 :

∑l1
i=1 fki

> fmax} and l2 =

min {l2 : pu +
∑l2

i=1 κf
3
ki

> pmax}. Similar to the caching

policy subproblem, a closed-form optimal solution of Prob-

lem (51) with complexity of O(N) is given as

ai =

{
1, if υi ≤ 0 and i ∈ K0

0, otherwise.
(52)

G. Proposed Iterative Algorithm

The iterative procedure for solving Problem (15) is summa-

rized in Algorithm 4, where the U-BS location, fronthaul and

backhaul bandwidth allocation, computing capacity allocation,

data caching policy and computing policy are successively

optimized while keeping the other variables fixed until con-

vergence, and the suboptimal solutions to Problem (15) can

be obtained. In addition, the derived solution in each iteration

will be applied as the input for the next iteration. We note

that for U-BS location subproblem, since we only solve the



Algorithm 4 Proposed Iterative Optimization for Prob-

lem (15).

1: Initialize m = 0, y[m], θ[m],η[m], f[m], c[m], a[m].
2: repeat

3: Given {θ[m],η[m], f[m], c[m], a[m]}, find the optimal

U-BS location y[m+ 1] by solving (20);

4: Given {y[m+1],η[m], f[m], c[m], a[m]}, find the op-

timal fronthaul bandwidth allocation θ[m + 1] according

to Algorithm 1;

5: Given {y[m+1],θ[m+1], f[m], c[m], a[m]}, find the

optimal backhaul bandwidth allocation η[m+1] according

to Algorithm 2;

6: Given {y[m + 1],θ[m + 1],η[m + 1], c[m], a[m]},

find the optimal computing capacity allocation f[m + 1]
according to Algorithm 3;

7: Given {y[m+1],θ[m+1],η[m+1], f[m+1], a[m]},

find the optimal caching policy c[m+1] according to (50);

8: Given {y[m+1],θ[m+1],η[m+1], f[m+1], c[m+
1]}, find the optimal computing policy a[m+1] according

to (52);

9: Update m = m+ 1;

10: until convergence.

approximated subproblem optimally, the convergence analysis

for this subproblem should be studied.

Denote Tub
UBS(y[m],θ[m],η[m], f[m], c[m], a[m]) as the

objective values of (16). First, in step 3 of Algorithm 4, since

the first-order Taylor expansions in (18) and (19) are tight

bounds at given local point y[m] for the original U-BS location

subproblem (16), we have

T (y[m],θ[m],η[m], f[m], c[m], a[m])

=Tub
UBS(y[m],θ[m],η[m], f[m], c[m], a[m]).

(53)

Notice that the U-BS location solution y[m + 1] for Prob-

lem (20) is optimal with other variables fixed, then it follows

that

Tub
UBS(y[m],θ[m],η[m], f[m], c[m], a[m])

≥Tub
UBS(y[m+ 1],θ[m],η[m], f[m], c[m], a[m])

≥T (y[m+ 1],θ[m],η[m], f[m], c[m], a[m]),

(54)

where the last inequality holds due to the fact that the objective

value of Problem (20) is the upper bound of that of its

original problem (16). Next, in step 4-8, since we solve

the fronthaul and backhaul bandwidth allocation, computing

capacity allocation, data caching policy and computing policy

optimally, we have

T (y[m+ 1],θ[m],η[m], f[m], c[m], a[m])

≥T (y[m+ 1],θ[m+ 1],η[m], f[m], c[m], a[m])

≥T (y[m+ 1],θ[m+ 1],η[m+ 1], f[m], c[m], a[m])

≥T (y[m+ 1],θ[m+ 1],η[m+ 1], f[m+ 1], c[m], a[m])

≥T (y[m+ 1],θ[m+ 1],η[m+ 1], f[m+ 1], c[m+ 1], a[m])

≥T (y[m+ 1],θ[m+ 1],η[m+ 1], f[m+ 1], c[m+ 1], a[m+ 1]).
(55)

According to (53)-(55), we can conclude that

T (y[m],θ[m],η[m], f[m], c[m], a[m])

≥T (y[m+ 1],θ[m+ 1],η[m+ 1], f[m+ 1], c[m+ 1], a[m+ 1]),
(56)

which shows that the algorithm yields a non-increasing se-

quence of the objective value. In addition, the objective value

is lower bounded by zero. Hence, our proposed algorithm

is guaranteed to converge. Although the obtained solution

is generally suboptimal, we validate the effectiveness of our

proposed Algorithm 4 in reducing the latency consumption

via simulation results by comparing it with other benchmark

strategies in Section IV. We note that the complexity of

Algorithm 4 is the addition of the complexity in each step [20].

According to the aforementioned complexity analysis of each

subproblem, we obtain that the overall complexity of Al-

gorithm 4 is O(L1L2N
2 log2(1/ǫ) + L3L4N

2 log2(1/ǫ) +
L5L6N

2
as log2(1/ǫ) + 2N), which shows that the complexity

of Algorithm 4 is polynomial in the worst scenario.

IV. SIMULATION RESULTS

In this section, numerical results are presented to evaluate

the performance of our proposed algorithm. We consider N =
6 VR users that are randomly and uniformly distributed within

a 400m × 400m square area. We set the altitude of U-BS as

Hu = 150 m. The channel power gain is set as β0 = 10−5.

We set the effective switched capacitance at the UAV as κ =
10−27 [21]. The noise spectral density is σ2 = −169 dBm/Hz.

The transmit powers at the U-BS and the cloud server are

pu = pc = 0.5 W. We consider the input data size Ii follows a

uniform distribution with Ii ∼ U [10, 15] KB, the ratio between

Oi and Ii is set as α = 2, and the required number of CPU

cycles per bit is distributed as Fi ∼ U [500, 800] cycles/bit.

The computing capacity of VR users follows a distribution of

f local
i ∼ U [0.5, 1] GHz. The maximum computing capacity,

power budgets and caching storage of U-BS are set as fmax =
5 GHz, Pmax = 4 W, and cmax = 60 KB, respectively. The

fronthaul and backhaul bandwidth are B = Bback = 1 MHz.

Fig. 2 shows the convergence behavior of Algorithm 4

with different U-BS altitude Hu. This figure shows that our

proposed algorithm quickly converges within 8 iterations.

Moreover, we observe that compared to its initial value, the

maximum latency reduces by 63.7% from 47.6 ms to 17.3 ms

when Hu = 150 m, which verifies the effectiveness of our

proposed solution.

Fig. 3 shows the initial latency and optimized latency of

each VR user where the initial latency is generated based on

one set of random realization of input data, computing capacity

of each VR user and required number of CPU cycles per bit. It

can be seen that our proposed joint optimization solution sig-

nificantly reduces the maximum latency consumption among

all VR users by comparing the initial latency and optimized

latency. Moreover, we can see that the optimized latency of

each VR user is almost equal, which shows that minimizing

the maximum latency among all VR users is equivalent to

guaranteeing the fairness among all VR users, so that the

minimum quality-of-service can be improved.
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In Fig. 4, we plot the maximum latency as a func-

tion of maximum computing capacity fmax. We com-

pare our proposed Algorithm 4 with the following five

benchmark schemes: 1) Fuzzy C-Means Clustering algo-

rithm (FCM) [20]: the U-BS location is optimized based

on FCM algorithm and all the other variables are op-

timized by using Algorithm 4; 2) Equal bandwidth and

computing capacity (EBCC): We set θi = 1/N, fi =
a(i) ∗min

(

fmax/Nas, ((Pmax − pu)/Nas/κ)
1/3

)

, ηi = (1−
c(i))/Nuncached, ∀i ∈ N and all the other variables are

optimized by using Algorithm 4; 3) No caching: We set

cmax = 0 KB and all the other variables are optimized by us-

ing Algorithm 4; 4) All offloading: We set ai = 1, ∀i ∈ N and

all the other variables are optimized by using Algorithm 4; 5)

Binary search: We solve the caching policy and computing pol-

icy subproblems by applying the binary search method and all

the other variables are optimized by using Algorithm 4. It can

be seen that compared to the “Binary search” scheme which

has an exponential complexity of O(L1L2N
2 log2(1/ǫ) +

L3L4N
2 log2(1/ǫ) + L5L6N

2
as log2(1/ǫ) + 2N+1), our pro-

posed Algorithm 4 with polynomial complexity achieves the

same latency performance, which indicates that our proposed

algorithm is stable and computationally efficient. Moreover,

Fig. 4 shows that our proposed Algorithm 4 achieves a

lower latency compared to other benchmark schemes except

the “Binary search” scheme. Interestingly, we find that the

performance gap between Algorithm 4 and “All offloading”

scheme is significant when fmax is low, while it reduces to

0 when fmax is greater than 6 GHz. This is because when

fmax is limited, e.g., fmax = 1 GHz, each VR user chooses

to project the input data locally to reduce latency and the

maximum latency is dominated by the computing latency

which occupies 87%. While when fmax ≥ 6 GHz, the input

data requested by all VR users will be processed at the U-BS,

resulting in the same performance as “All offloading” scheme.

Fig. 5 shows the maximum latency as a function of max-

imum power budget Pmax. It can be seen that our proposed

Algorithm 4 achieves the same latency performance compared

to the “Binary search” scheme and outperforms all the other

baseline solutions. Moreover, we find that the maximum la-



tency first decreases then keeps unchanged with an increasing

Pmax. This is because when Pmax is limited, increasing Pmax

increases the computing resource allocated to process the input

data requested by offloading VR users, resulting in a lower

computing latency. However, when Pmax is sufficient, the

computing resource allocation is bounded by the maximum

computing capacity, which makes the latency unchanged. In

addition, we observe that caching is helpful to reduce the

latency.
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Fig. 6. Maximum latency as a function of fronthaul bandwidth B.

In Fig. 6, we plot the maximum latency as a function

of fronthaul bandwidth B. We observe that our proposed

Algorithm 4 achieves the same latency performance compared

to the “Binary search” scheme and outperforms all the other

baseline. Moreover, we observe that when B is limited, e.g.,

B = 0.5 MHz, the maximum latency can be up to 26.5 ms and

it mainly comes from the transmission latency, which occupies

57%. While when B = 1 MHz, the maximum latency is

17.3 ms and the portion of transmission latency reduces to

27%.

V. CONCLUSIONS

In this paper, we have presented the maximum latency

minimization problem for a UAV-enabled communication,

computing and caching VR delivery network. Specifically, we

have jointly optimized the the U-BS location, fronthaul and

backhaul bandwidth allocation, computing capacity allocation,

caching and computing policies. To solve this nonconvex op-

timization problem, we have proposed an efficient iterative al-

gorithm by applying the block coordinate descent method, the

successive convex approximation technique and Lagrangian

dual decomposition method. Simulation results demonstrated

that our proposed algorithm significantly reduces the latency

compared to benchmark schemes. Moreover, it can be seen

that the maximum latency is mainly due to the transmission

latency when the bandwidth is limited, whereas it is dominated

by the computing latency when the computing resource is

low. In addition, we showed that caching is helpful to reduce

latency. We note that our work can be extended to consider

that each VR user will execute multiple computation tasks to

address the impact of queueing delay and consider the use of

multiple UAVs to address limited battery capacity. Moreover,

the extension to a more practical scenario that different VR

users may require the same input data would be an interesting

future research direction which results in a more-complex

optimization problem with multiple possible computing and

caching strategies.
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