
Communication and control of distributed hybrid systems

T. Şimşek, P. Varaiya and J. Borges de Sousa 1

email: {simsek,varaiya,sousa}@eecs.berkeley.edu
Tel: (510) 642-5649
Fax: (510) 642-6330

Dept. of Electrical Engineering and Computer Science
University of California, Berkeley, CA, 94720

Abstract

The rich and exciting research over the past decade con-
cerning the description, analysis, controller design, simu-
lation, and implementation of distributed systems is re-
viewed. From control engineering, this research has in-
herited the concepts and theories of optimality, stability,
controlled differential equation models, and the motivation
to improve the performance of increasingly complex phys-
ical processes. From computer science, the research has
incorporated the theories of logical specification and verifi-
cation, event-driven state machine models, concurrent pro-
cesses and object-oriented approaches. The review is or-
ganized in the framework of dynamic networks of hybrid
automata (DNHA). The case study of an automated high-
way system (AHS) is used to illustrate the challenges posed
by a complex distributed system, and the research contri-
butions that address different challenges. There is an equal
emphasis on the conceptual and theoretical contributions
and on tools and techniques that yield more immediately
practical benefits.

Keywords Distributed hybrid systems, communication,

control, networked multi-vehicle systems, AHS, Hybrid Sys-

tems, SHIFT.

1 Introduction

The last decade has witnessed unprecedented interac-
tions between technological developments in comput-
ing, communications and control, and the design and
implementation of interacting dynamical systems, such
as networked multi-vehicle systems. These develop-
ments enable engineers to design new systems, and in
turn, the implementation of those systems leads to a
better understanding of the underlying technological
issues, and to the formulation of new theories. One
such example, and the one that we are concerned with
in this paper, is the theory of distributed hybrid sys-
tems. That theory led to the development of a body of
technology and tools for simulation, analysis and de-

1Research supported by Office of Naval Research Award
N00014-98-1-0585 and National Science Foundation Grants ECS-
9728748 and ECS-9873451.

sign. The objective of this paper is to present a survey
of some of this material.

The control of distributed hybrid systems has presented
a new challenge to control theory. The challenge comes
from the distributed nature of the problem. For ex-
ample, in networked multi-vehicle systems, information
and commands are exchanged among multiple vehicles,
and the roles, relative positions, and dependencies of
those vehicles change during operations. In fact, this
challenge entails a shift in the focus of control theory
– from prescribing and commanding the behavior of
isolated systems to prescribing and commanding the
behavior of interacting systems.

The control and computer science communities address
this challenge in the context of distributed hybrid sys-
tems, and contribute complementary views and tech-
niques. The inter-disciplinary nature of hybrid systems
requires a new description language. This language is
in the process of being developed. Meanwhile, con-
trol engineers have developed a collection of idioms,
patterns and styles of organization that serves as a
shared, semantically rich, vocabulary among them [68].
However, this shared vocabulary is still deeply rooted
in the underlying mathematical framework – differen-
tial equations and dynamic optimization – and lacks
some semantically rich concepts invoked by distributed
computing. The cause may be that experience and
functionality in computing are acquired at a rate un-
matched by the rate of evolution of concepts in control
systems. For example, it was only recently that the
expressiveness of the language of differential equations
and dynamic optimization was enlarged with concepts
from mathematical logic, under the denomination of
hybrid control (see for example [66], [57], [16], [34]). In
this paper we will attempt to provide an overview of the
complementary views and perspectives from computer
science and control systems.

The paper is organized as follows. In Section 2, we
present the Automated Highway System (AHS) as the
motivation for our discussion on distributed hybrid sys-
tems. In Section 3, we discuss and survey distributed

hybrid systems research. In Section 4, we use the
Smart Automated Highway System (Smart-AHS) case
study to illustrate some the concepts discussed before.
In Section 5 we draw some conclusions and discuss open
questions.

2 Case Study

Recent advances in hybrid systems are partly due to
the diversity of their application domains ranging from
control systems to bioinformatics [8]. In this section
we focus on the control of distributed dynamic sys-
tems that have played a central role. Novel exam-
ples of distributed control systems include the control
and coordination of Unmanned Aerial Vehicles (UAVs),
autonomous underwater vehicles [13, 30, 27], Mobile
Offshore Bases (MOB) [29, 28] and Intelligent Vehi-
cle/Highway Systems (IVHS). To fix ideas we will dis-
cuss selected topics from the Partners for Advanced
Transit and Highways (PATH) Automated Highway
System (AHS) – a fully automated IVHS policy.

The AHS is a distributed and hierarchical control sys-
tem that aims to increase highway capacity, safety and
efficiency without building more roads. Due to its size
and impact on everyday life, the design of a safe, effi-
cient and practical AHS has been the source of chal-
lenges leading to the development of control, commu-
nication, traffic flow theories and enabling sensor and
actuator technologies. The hybrid systems field is no
exception. After a brief description of the AHS we pro-
vide examples that promote the use of hybrid systems
for AHS.

2.1 AHS concepts
Traffic is organized into groups of tightly spaced vehi-
cles called platoons. In this case the capacity of the
highway is given by [79]:

Capacity =
vn

ns + ∆x(n − 1) + d
vehicles/lane/hour

where the quantities v, n, s, ∆x and d represent the av-
erage velocity, platoon size, vehicle length, inter-vehicle
spacing and inter-platoon spacing respectively. A sim-
ple calculation shows that for an average platoon size
of 20 with inter-vehicle spacing of 1m the capacity of
the highway increases by a factor of 4 with respect to
free-flow traffic:

v n s ∆x d Capacity
(kph) (m) (m) (m) (vehicles/lane/hour)

72 1 5 free-flow 30 2, 100
72 5 5 2 60 3, 840
72 20 5 1 60 8, 000

Furthermore, this approximation is conservative in that
a large inter-platoon spacing of 60m is assumed. The

tight inter-vehicle spacing also accounts for increased
safety and efficiency. The former is due to a small rel-
ative velocity in the event of a collision (it is assumed
that the 60m inter-platoon spacing is sufficiently large
to avoid collisions between vehicles in separate pla-
toons) and the latter due a reduction of average aero-
dynamic drag experienced by a vehicle.

The benefits of the AHS are accounted by the tight for-
mation of vehicles in a platoon traveling at relatively
high velocities. It is clear that control policies beyond
those of human drivers are needed to realize such pla-
toon configurations. The AHS envisions full automa-
tion.

A typical scenario under full automaton is illustrated
as follows. Say you are the driver and are in a manual
lane. You drive your car into the transition area where
it is validated, registered and queued by the AHS en-
try/exit system. You place your car under automatic
control and the car merges into the automated lane.
Until your car reaches its destination it performs a dy-
namic sequence of maneuvers such as joining/leaving
platoons, changing lanes and yielding to other vehicles
that may merge on to the AHS. At your destination
exit the control of your vehicle is returned to you.

In August 1997, the National Automated Highway Sys-
tems Consortium (NAHSC) demonstrated AHS tech-
nologies, including an eight-vehicle platoon system, on
I-15 in San Diego, CA.

2.2 Selected AHS problems
The AHS introduced several challenges that led to the
development of tools, techniques and theories for hy-
brid systems. In this section we provide selected exam-
ples and explore the motivation for these advances.

The hierarchical control architecture [79, 81] illustrated
in Figure 1 provides a setting for our examples:

1. Physical layer – Open-loop vehicle dynamics.
2. Regulation – Control of join, split, lane-change ma-
neuvers.
3. Coordination – Compute maneuver sequences to ful-
fill a goal.
4. Link – Control vehicle activity for a section of the
highway.
5. Network – Control of traffic flow amongst links.

The salient feature of this architecture is that it breaks
down AHS control into a self-contained hierarchically
organized functional layers.1 That is, it provides us
with a semantic framework in which we extract sub-
problems from AHS and reason about them in self-

1We will restrict our attention to the regulation, coordination
and link layers. Neither the physical nor network layer have been
addressed in the context of hybrid system formalisms.

contained theories.

For example, consider again the AHS scenario de-
scribed above. Assume there is a prescribed set of ideal
conditions. Under these conditions the AHS is said to
be functioning in the normal mode of operation. The
assignment of a vehicle to the enter, exit, or yield oper-
ations is a control action taken by the link layer. This
action is broken down into a sequence of join, split and
lane-change maneuvers by the coordination layer. This
sequence of maneuvers is then carried out by closed-
loop feedback laws at the regulation layer. For the
normal mode of operation the functions of these three
layers are described using self-contained theories. The
functions of the regulation, coordination and link lay-
ers are described using the theories of continuous-time
feedback control, Finite State Machines (FSMs) and
fluid flows respectively.

A comprehensive control system design must also con-
sider non-ideal conditions. These include conditions
resulting from obstacles on the highway, noisy commu-
nications links, a flat tire, sensor and actuator failures.
The difficulty with non-ideal conditions is that they do
not admit a compact representation in the ideal theo-
ries.

network

link

layer

layer

coordination

regulation

physical

layer

layer

layer

traffic
information

velocities
activities

vehicle
densities

order
maneuver

maneuver
complete

control
signal

sensor

signal

conditions
boundary
inlet & outlet

coordination

regulation

physical

layer

layer

layer

coordination

regulation

physical

layer

layer

layer

maneuver

coordination

vehicle neighborneighbor

Roadside
System

Vehicle
System

On-board

Figure 1: AHS control hierarchy. Figure from [81].

The following observations are immediate.

1. The ideal theories assigned to the regulation and
coordination layers naturally form a hybrid system – a
dynamic system that evolves in alternating continuous
and discrete phases. In fact, we will demonstrate below
that the regulation layer functions alone form a special
class of hybrid systems called piece-wise continuous dy-
namic systems.

2. The ideal theories must extend to accommodate

mutations and dynamic reconfigurations. For example,
to model the join maneuver. Suppose vehicle v is to join
platoon p. The control laws of v must be reconfigured
dynamically to operate in closed-loop with the vehicles
in p and vice-versa.

3. The tools used to describe the system functions must
admit a formal methodology, for example, to derive
degraded modes of operation from ideal modes. The
methodology used should provide tools and techniques
to preserve properties of the ideal controllers and rea-
son about degraded modes of operation with respect to
these properties.

Item 1 promotes the use of hybrid systems to de-
scribe AHS functions for obvious reasons. Items 2
and 3 promote hybrid systems due to their rich syn-
tax and semantics that incorporates an expressive lan-
guage for differential equations and dynamic optimiza-
tion endowed in a formal and structured logical frame-
work. For example, in Section 4 we describe the object-
oriented programming language Shift. Shift provides
structured programming facilities to describe dynamic
networks of hybrid automata. The language provides
a formal syntax and semantics that incorporates first
order predicate logic that is used to dynamically recon-
figure the state of a hybrid automaton. On the other
hand, its abstraction constructs – such as inheritance
– are used to incrementally describe ideal (eg. normal)
and extended (eg. degraded) behaviors for hybrid au-
tomata.

2.2.1 Safe controller design example: Con-
sider a merge maneuver with the following specifica-
tions. The inter-vehicle displacement ∆x, lead vehicle
velocity vl, follower vehicle velocity vf , relative velocity
∆v = ∆̇x and the maximum recommended velocity for
a vehicle to travel on the highway vmax. The objective
is to design an efficient and comfortable control law
that decreases the initial relative displacement ∆x(0)
to a desired inter-vehicle spacing ∆xjoin subject to the
safety constraint

∆x(t) ≤ 0 ⇒ ∆v(t) ≥ −v̄ and vl > 0 (1)

for all times t. The quantity v̄ is the maximum toler-
ated impact velocity in case of a collision. The follow-
ing theorem [54] states the existence of safe control laws
and provides a class of maximum braking safe control
laws.

Theorem 1 Suppose that the acceleration of each ve-
hicle is bounded by [−a, ā] and that the maximum decel-
eration −a is achieved and maintained at most d sec-
onds after a maximum braking command is issued. Let
XMS , Xsafe and Xbound denote the set of all triples
X = (∆x, ∆v, vl) with vl ≥ 0 that satisfy (1), (2) and

(3) respectively:

∆v ≥ Ad − max
{ √

2a∆x + vl
2 + v̄2 + aAd2 − vl,

v̄
(2)

∆v ≥ −max
{ √

2a∆x + vl
2 + v̄2 − vl,

v̄
(3)

where A = a + ā. Then, provided that X(t) ∈ Xsafe:

1. There exists a control law that is safe for all times
s > t. ie., ∀s > t, X(s) ∈ XMS .
2. Any control law that applies maximum braking
whenever X(t) �∈ Xsafe is safe for all times s > t.
Furthermore, ∀s > t, X(s) ∈ Xbound.
3. Xsafe ⊂ Xbound ⊂ XMS.

Observe that the maximum braking safe control law
naturally defines a class of two-state hybrid automa-
ton as illustrated in Figure 2. In the Max Braking
state Theorem 1 asserts that X ∈ Xbound provided that
maximum braking is applied. In the notation of hybrid
automata the former is described as the invariant of
the Max Braking state and the latter by its flow. In
the Control state we impose the invariant X ∈ Xsafe

and do not put any restrictions on the flow. That is,
any control law may be applied in this state. The con-
ditions of Theorem 1 are satisfied as soon as we deploy
the transition from Control to Max Braking which is
specified to occur as soon as X �∈ Xsafe.

See also [58] where a three-state regulation layer con-
troller is designed as a hybrid automaton and its safety
properties are verified use game-theoretic methods.

Control

invariant: X-safe
flow : true

Max braking

invariant: X-bound
flow : max. braking

when: X not in X-safe

when: X in X-safe

Figure 2: Safe hybrid controller for merge maneuver.

2.2.2 Communications example: The com-
munications requirement for AHS are diverse and a va-
riety of communication protocols and technologies are
needed. Traditionally communication and control have
been done separately. We will demonstrate below how
hybrid systems are used to incorporate communication
protocols and control theory in a natural manner.

Two classes of protocols have received the most atten-
tion. The first are protocols whose properties – fair-
ness, liveness and deadlocks – are formally verified.
These protocols and properties are formulated within a
formal framework such as FMSs or timed automata and
the delivery of messages are modeled as events. In [72]

a fault-diagnosis protocol is presented. It is claimed
that in a platoon consisting of N vehicles with a per-
sistent receiver or transmitter fault of a single vehicle,
the protocol will identify the faulty vehicle within a fi-
nite number of protocol steps. The protocol is specified
with Shift and the correctness of the claim is verified
using Kronos [25]. Similarly, in [37] coordination layer
communication protocols for a fault-tolerant AHS are
specified as FSMs and their properties are verified us-
ing Cospan.

The second class of results pertains to protocols that
analyze the implications of communication latency for
controller performance such as stability. The control
system is modeled as a sampled data system and the
protocols are parameterized in terms of sampling rate
and data interpolation methods. For example, in [82]
results are presented for the stability analysis of a class
of linear networked control systems with distributed
sensors.

s

r
when: p
event: e

do: a

automaton c

u

v
when: true
event: c(e)

do: b

automaton d

(s,u)

(r,v)

when: p & true
do: a & b=

Figure 3: One-to-one composition of automata.

sj

rj

when: pj
event: ej

do: aj

automaton cj
(j=1,...,N)

s0

r0

when: true
event: exists cj(ej) for cj

in {c1,...,cN}
do: a0

automaton c0

(s0,s1,...,sN)

(r0,r1,s2,...,sN) (r0,s1,r2,s3,...,sN)

(r0,s1,...,sN-1,rN)

when: p1
do: a0 & a1

when: p2
do: a0 & a2

when: pN
do: a0 & aN

=

Figure 4: Existential composition of automata.

Hybrid systems admit a compact representation of both
types of protocols mentioned above. The former are de-
scribed using the inherent FSM of the hybrid automa-
ton and the latter using timed transitions. Further-
more, the DNHA computation model admits a compact
representation for dynamic scheduling and network re-
configuration. We demonstrate these concepts in the
following example.

Consider again the regulation layer merge maneuver
controller of Figure 2. Suppose there are are N such
controllers, denoted by c1, . . . , cN , interacting in closed
loop. Denote the control variable of controller cj by xj

and that the control law for cj is given by

ẋj(t) = fj(xj , z1, . . . , zj−1, zj+1, . . . , zN)
zi(t) = xi(t), t ∈ [t0, t0 + T). (4)

The objective is to extend the controller cj with a safe
real-time data communications. We demand that N is
not fixed – that is, the network may change over time.

The transmission of a message is modeled using com-
position. This is illustrated in Figure 3. Given two
automata c and d that agree on an event e, their com-
position is an equivalent automaton as illustrated. No-
tice that the event need not appear in the composite
automaton. The actual data delivery is captured by the
action of the composite automaton. For example, the
actions a and b may stand for “transmit message” and
“receive message” respectively. We say that c trans-
mits a message to d on the event e when the enabling
conditions p is true (if the enabling condition of d is not
necessarily true then d may block c from transmitting).

The 1-to-1 synchronization is sufficient to model a
static communications network. However, when the
network is dynamic – that is, nodes in the network
may appear/disappear – then more sophisticated data
structures are needed. DNHA provides such constructs
based on first-order predicate logic. Existential com-
position is illustrated in Figure 4. N similar automata
denoted by cj , j = 1, . . . , N may transmit a message
on the event ej . Suppose that c1 is ready to trans-
mit – ie. the enabling condition p1 is true. Then, the
distinguished automaton c0 existentially quantifies c1

out of the set {c1, . . . , cN} and executes a synchronous
transition as illustrated in the composite automaton.
The important properties are (i) c1 is made available
in the action a0 and (ii) c2, . . . , cN are blocked during
the synchronous transition. Since N is not fixed, it is
possible to model dynamic communication networks.

Using these composition constructs we design a time-
division medium access protocol as illustrated in Fig-
ure 5. Fix a controller cj and consider its Control
state. We divide time into slots of length T/N . At
the jth time slot the controller broadcasts its control
data. This is captured using the self-transition from
the Control state on the event ej. All other controllers
receive a message as a result of the self-transition on
the existentially quantified event ej. This satisfies the
real-time requirements for the controller cj as given by
(4). A similar protocol is applied to the Max. Braking
state.

To each controller is associated a fault-diagnosis proto-
col dj . The object dj continuously monitors the system
and in case of a fault signals the event abort. We do
not require dj to be a hybrid automaton. We only
require it to agree on the event abort with the con-

troller cj .2 Thus we are free to use an off-the-shelf
fault-diagnosis protocol whose safety properties have
already been verified (for example, see [37]). The con-
troller cj transitions to a state called Abort on the event
abort. The synchrony laws ensure that this transition
is not missed. We have not specified the invariant and
flow for the Abort state. We assume that a suitable
control law may be specified. This satisfies the safety
requirements for the controller cj .

Control

invariant: X-safej
flow: fj & t' = 1

Max braking

invariant: X-boundj
flow: max. braking

when: xj not in X-safej

when: xj in X-safej

when: t mod N*T > j*T
event: ej
do: reset t = 0
and transmit Xj

Controller cj
j=1,...,N

when: true
event: exists cj(ej) for cj in
{c1,...,cN}
do: receive xj and set yj=xj

event : abort

Fault-diagnosis protocol dj
associated to controller cj

Abort

invariant: true
flow: true

when: true
event: dj(abort)

Figure 5: Safe controller with real-time communications.

2.3 Motivations for hybrid systems
The previous sections demonstrated the basic use of
hybrid systems to model a safe merge controller de-
sign and a safe communications protocol design. We
address the question “what is the advantage of the hy-
brid systems formulation?” under the following topics.

Scope. The controller and protocol design examples
demonstrate that hybrid systems model a wide range
of problems.

Extension. In the controller design example the flow
of the Control state is not specified (see Figure 2).
We say that the partially specified hybrid automaton
is abstract. That is, it defines a class of such hybrid
automata. Recent advances in formal methods for hy-
brid systems provides us with a collection of tools and
techniques to extend or specialize this abstract hybrid
automaton. See Section 3.3.

Simulation. The structure of hybrid automata allows
us to program the desired behavior of controllers. Tools
are available to simulate the behavior of a given pro-
gram. These tools which are summarized in Section 3.3

2Many fault diagnosis protocols are specified as either FSMs
or timed automata.

provide a formal syntax and semantics to describe the
behavior (either graphically or programmatically or
both) and a means to observe simulation traces.

Implementation. The programmatic nature of FSMs
admits the description of hybrid automata as formal
programs that can be processed for deployment on real
systems. Tools (see Section 3.3) help to generate plat-
form specific code from a simulation model.

Verification. Several results and tools exist for the ver-
ification of hybrid automata. That is, given a hybrid
automaton and a formal specification, these tools check
whether the hybrid automaton satisfies the specifica-
tion. Note that in the safety design for the communi-
cations protocol example we relied on verification tech-
niques for FSMs and timed automata.

Computational techniques. The study of hybrid au-
tomata has lead to advances for several computational
techniques. These include algorithms that accurately
detect guard crossings, synthesis of switching condi-
tions that satisfy a given formal specification and fil-
ters to eliminate or reduce jitter – ie. excessive switch-
ing amongst the states of a hybrid automaton about a
nominal state or trajectory.

Presentation. The structure of hybrid automata admits
a natural graphical representation as in Figure 2.

3 Distributed hybrid systems

3.1 Introduction
Informally, a distributed hybrid system is a collection
of hybrid automata that interact through the exchange
of data and messages. Here, we provide an overview of
distributed hybrid systems research. Before doing so,
we succinctly describe the control systems and com-
puter science backgrounds that paved the way to this
research.

Several topics in control theory are of value for the
research on hybrid systems:

Optimal control. Optimal control produced a body of
theory and results that has been fundamental for hy-
brid systems research: 1) Witsenhausen [83] produced
early ground-breaking work in hybrid systems; 2) the
Pontryagin maximum principle – which gives necessary
conditions for optimality – provides for an operational
characterization of the reach set [80]; 3) the principle of
optimality and dynamic programming provide an inter-
pretation of reach sets and solvability sets 3 in terms
of the level sets of the value functions of some spe-
cific optimization problems (see [49]), and also for a

3A solvability set [49] is the set of all initial conditions from
which a target set can be attained

method for state feedback control synthesis; 4) Ben-
soussan contributed conditions of optimality for sys-
tems where the control space includes measures, thus
allowing for discontinuous trajectories [12]; 5) the op-
timal control formulation also allows to express rela-
tions between optimality and several forms of invari-
ance in terms of hamiltonian equations (see [35], [45]);
6) control of an ordinary differential equation subject
to positive switching costs is addressed in [20], where it
was proved that the corresponding value functions are
viscosity solutions to the dynamic programming quasi-
variational inequalities (the corresponding differential
game formulation was introduced in [84] as a zero-sum
differential game).

Viability theory. Viability can be described as follows:
given a dynamical system, a set K, and a set of initial
conditions that lie within K, synthesize a control law
that ensures the state of the system never leaves K [9].
The concepts and techniques from viability theory, that
uses techniques from set-valued analysis (see [11]), have
an natural extension to hybrid systems.

Differential games. The setting here is that of a dy-
namic optimization problem where the control inputs
are partitioned into at least two classes: 1) those avail-
able for controlling the system, 2) those available to
the adversary or the disturbance. This setting extends
that of deterministic optimal control to the case where
a stochastic characterization of the disturbances is not
available, preventing the formulation of a stochastic op-
timal control problem. Some important observations
are: 1) the reach set is different under closed and open-
loop controls, 2) the principle of optimality does not al-
ways apply, 3) there are conditions under which closed-
loop and open-loop controls produce the same results
but, in general, the results achieved with the class of
closed-loop strategies cannot be achieved with open-
loop controls ([45], [51]).

Automata and supervisory control theories. These the-
ories are used to model and control the behavior of
discrete event dynamical systems (see [46], [21]), an im-
portant component of the behavior of hybrid systems.

Switched controls. There is a large research on switched
controls that precedes work on hybrid systems. The
problem consists in selecting a strategy to switch be-
tween several control laws to achieve some goal [55].
On one hand, switching controls arise naturally in sys-
tems with discrete actuator settings. The controller has
to switch between these settings. On the other hand,
switching is sometimes essential. For example, some
systems cannot be stabilized with a continuous feed-
back law [22]. However, the introduction of discontin-
uous feedback laws is not trivial, since those tend to be
quite sensitive to measurement errors [74]. Krasovskii
proposed what amounts to be a precursor to hybrid

controllers to solve this problem [45].

Computer science brought new concepts and tech-
niques into play:

Formal methods. for specification, analysis and design.
This is an significant topic in computer science research
(see [78]), and can be important for hybrid systems: 1)
formal methods provide a basis for computer aided ver-
ification; 2) computer scientists are developing logical
theories within which specific properties can be formal-
ized and analyzed (e.g., [6, 4, 5]); 3) results from game
theory have been used and extended to model systems,
and to prove properties [26].

Computer-aided verification. The verification problem
can be described as follows: given a discrete transition
system, a controller, and a set of properties check if the
system indeed satisfies these properties. This problem
is solved algorithmically. Research resulted in the de-
velopment of a considerable number of techniques and
software tools (e.g., [47],[25]).

Concepts and terminology. Formal methods and logic
theories introduced the possibility to express concepts
and properties that are of importance for hybrid sys-
tems. Examples of those are the notions of fairness –
that is studied in the context of infinite runs of transi-
tion systems – and of least restrictive control – a control
that satisfies some prescribed properties, and which is
specified as a set of options from which the one applied
to the system is selected.

The developments in hybrid systems research seem now
predictable in terms of this background. We propose
to discuss these developments in terms of: 1) models,
2) languages and tools, 3) analysis and control syn-
thesis. Space limitations prevent us from presenting
an exhaustive survey. We opted to informally organize
each subsection into two parts: the first part introduces
the baseline research for the topic under discussion, the
second part provides pointers to more specific material.

3.2 Models
Any model of the operation of multiple interacting dy-
namic systems should be able to capture two essential
features of these systems: 1) switched mode operation
and, 2) dynamic interactions.

Hybrid automata. Hybrid automata [2] are quite con-
venient to model a switched mode control system. We
present a formal definition of a hybrid automaton after
[66].

A hybrid automaton consists of control locations with
edges between the control locations (see Figure 2). The
control locations are the vertices in a graph. A location
is labeled with a differential inclusion, and every edge

is labeled with a guard, and a jump and reset relation.
A hybrid automaton is H = (L,D,E) where:

• L is a set of control locations.

• D : L → Inclusions where D(l) is the differential
inclusion at location l.

• E ⊆ L X Guard X Jump X L are the edges - an
edge e = (l,g,j,m) ε E is an edge from location from
l to m with guard g and jump relation j.

The state of a Hybrid Automaton is a pair (l, x) where
l is the control location and xεRn is the continuous
state. Hybrid automata are classified according to the
characteristics of L, D and E (see [66]).

In more abstract terms, this modeling problem con-
sists in combining continuous time dynamics and dis-
crete event dynamics. There are other ways to do this.
Hence the diversity of models for hybrid control sys-
tems. For general representative references see [67],
[18], [63] and [16]. An attempt to produce a model
which subsumes the others appears in [16].

Dynamic interactions. The problem of modeling dy-
namic interactions is quite difficult. First, we want to
be able to express links and exchange of information
among different dynamic systems, for example hybrid
automata. Second, there are several modalities for in-
teractions: information exchange can take time, and
depend on the communication environment. See Sec-
tion 2.2 for illustrative examples.

Researchers have used DNHA to model dynamic inter-
actions [33]. Informally, DNHS allow for interacting au-
tomata to create and destroy links among themselves,
and for the creation and destruction of automata. For-
mally, for each hybrid automaton, there are two types
of interactions: 1) the differential inclusions, guards,
jump and reset relations are also functions of variables
from other automata, 2) exchange of events among au-
tomata. Obviously, interactions are mediated by means
of communication. Hence, a model for dynamic interac-
tions has to include a description of the mechanisms by
which automata interact. At the level of software im-
plementation, the mechanisms by which software mod-
ules interact are called models of computation, or se-
mantic frameworks. Hence, models of computation
provide the formal basis for dynamic interactions. The
choice of the model of computation (or mix of models)
for a specific implementation is quite dependent on the
properties of the underlying problem domain [53].

When it comes to simulation and deployment, model-
ing dynamic interactions requires the consideration of a
full-fledged programming language that maintains data
structures representing links, and their evolution with

time. This modeling problem has received significant
attention in computer science, as one can infer, for ex-
ample, from Milner [60]. In fact, he argues that a rich
conceptual development, that gives a distinct character
to the principles and concepts underlying computing,
is in progress . In his claim, the distinct and unifying
theme encompassing the new developments is what he
calls ”Information flow”:

...information flow - not only the volume
and quantity of flow, but the structure of the
items which flow and the structure and the
control of the flow itself.

The notion of dynamic reconfiguration is an essential
element for the control of the information flow:

Dynamic reconfiguration is a common fea-
ture of communicating systems. The notion
of link, not as a fixed part of the system but
as a datum that we can manipulate, is es-
sential for understanding such systems. Is
there a common notion of link which sub-
sumes pointers, references, channels, variables
(in the programming sense), locations, names,
addresses, access, rights, . . ., and is it possi-
ble to take this notion as basic in a computa-
tional model?. . . What is the mathematics of
linkage?

The problem is that the realm of interactions and pro-
cesses is not captured by the formal theories behind
programming languages 4 . The theories of computa-
tion have to evolve from notions like value, evaluation
and function to those of link, interaction and process.
The Π-calculus [61] is a first attempt in this direction.

3.3 Languages and tools
The rapid growth of hybrid systems theory, technique
and applications is accompanied by a menagerie of lan-
guages and tools. Early development of such tools finds
origins in automata-theoretic formal methods. In par-
ticular, the formal verification tools such as Cospan
[39], Spin [43], SMV [62] and PVS [64] has had a
large impact in the development of formal methods
for hybrid systems. These developments are followed
shortly by the development of specification and mod-
eling languages specific to hybrid systems. The struc-
ture and purpose of these tools were driven by their
application domains. One such example is the Shift
language [33]. Shift was designed to meet the com-
plex modeling requirements of AHS. The underlying

4The character of each programming feature is defined by
associating with it a specific space of meanings. These include
domains, functions and values, and can be expressed in a specific
calculus – the λ-calculus .

model, DNHA, proved adequate in a variety of prob-
lem domains , where other models and tools failed.
The lessons learned from both the formal methods
and specification tools suggest that the hybrid systems
paradigm is sufficiently powerful and this observation
is reflected in the recent development of hybrid systems
based implementation tools and techniques. Such ad-
vances include methodologies and real-time code gen-
eration for hybrid systems models.

Although hybrid systems tools finds origins in the soft-
ware and hardware formal methods community it turns
out that the mainstream of development has been along
the lines of modeling, design and analysis of software
related methods. This may be due to the relatively
large growth of the software community over the last
few decades and the resulting availability of resources.
The main trends for hybrid system tools may be sum-
marized under the following software categories: com-
putational packages, modeling and design tools, pro-
gramming languages and implementation tools.

Computational packages. Computational packages are
software packages that perform a specific computation
or algorithm for hybrid systems. For example, Ver-
iShift [14] is a C++ package that performs approximate
reach-set analysis for DNHA. The Shift in VeriShift is
due to underlying model which is borrowed from the
programming language Shift. The mainstream for com-
putational packages perform model checking and verifi-
cation. Most packages are based on automata-theoretic
concepts and hence assume some form of hybrid au-
tomata as their underlying computational models.

Hybrid automata have an inherently complex struc-
ture. Furthermore, specific algorithms rely on various
sets of assumptions. For example, the decidability as-
sumption for a computation to terminate. Thus, most
computational packages are accompanied by a form of
lexical parser or grammar that allows the user to spec-
ify hybrid automata while ensuring the desired struc-
ture and assumptions by construction. For example,
see Kronos [86] and HyTech [76] which perform veri-
fication of timed and linear hybrid automata respec-
tively.

Modeling and design tools. The largest trend in soft-
ware tools for hybrid systems consist of modeling
and design tools. These tools are largely developed
as subsystems of multidisciplinary tools that support
a larger class of application domains based on dif-
ferential and algebraic equations, sampled systems,
discrete-event and real-time systems. Examples in-
clude Simulink/Stateflow from Mathworks, Ptolemy II
[56] and Omsim/Omola [17]. Such tool sets assume an
underlying computational model for hybrid automata
and allow the user to rapidly develop and simulate
application models. These tools provide state-of-the-

art simulation engines for differential algebraic equa-
tion (DAE) and Ordinary Differential Equation (ODE)
solvers and data visualization utilities. Extended tool
sets provide support for sub-system analysis, synthesis
and verification.

All modeling and design tools support bottom-up de-
sign methodologies. Support is provided for model
libraries and application models are developed using
model composition techniques. Furthermore, the na-
ture of the bottom-up methodologies are similar – in
the form of block diagrams with input/output composi-
tion semantics. This is due largely to their large appli-
cation domains that inherits the state-space representa-
tion for continuous-time dynamic systems. Support is
also provided for top-to-bottom design methodologies.
That is, a methodology to extend a given model. State-
flow and Ptolemy II support hierarchical construction
of input/output blocks and FSMs. Omsim/Omola pro-
vides support for object-orientation with inheritance.
Design methodologies are enforced by graphical model
editors.

A recent advance is presented by Ptolemy II which sup-
ports polymorphic models (called actors) that allow the
underlying computational model to be changed.

Programming languages. Modeling and design tools al-
low the rapid development of hybrid systems by making
use of various design techniques, model libraries and
composition semantics. The emphasis is on the design
methodology. Programming languages share the same
ultimate goal – to design large hybrid systems. How-
ever, their emphasis in on the elementary structure of
the hybrid automata. The hybrid automaton is taken
as the most elementary programming construct. Its
basic properties – flows, invariants, guards, events and
actions – are given through a coherent set of elemen-
tary language primitives. These primitives are then
used to create hybrid system based abstractions and
methodologies that are specific to a given application
domain. Examples of hybrid systems based program-
ming languages are Shift [33], λ-Shift [71] and Charon
[3].

The languages are greatly influenced by conventional
object-oriented programming languages. The language
primitives are used to describe a class of hybrid au-
tomata and support is provided for instantiation, de-
struction and object-management techniques such as
hiding.

The characterizing features of the languages are their
support for composition and abstractions. Shift al-
lows hybrid automata to interact through dynami-
cally reconfigurable input/output connections and syn-
chronous composition. λ-Shift provides a generalized
set of accessors whose instances include dynamic in-

put/output connections and cause-effect event synchro-
nization. The abstraction mechanisms for these lan-
guages include object-orientation, type systems and in-
heritance.

A coherent collection of language primitives provides
a framework to reason about the language as a self-
contained theory. This has lead to many important
advances for hybrid systems. For example, the first or-
der predicate constructs of Shift (eg. existential and
universal quantification) were found useful to provide
compact representations of dynamic synchronous com-
position. In Section 2.2 we illustrated the use of this
technique to implement a dynamic communication pro-
tocol for an AHS merge maneuver controller. Another
example is the exception handling/debugging frame-
work of λ-Shift. The basic parts of a hybrid automa-
ton – flows, invariants, guards, events and actions – are
given as language primitives the language exploits their
atomic properties to define classes of conditions specific
to hybrid automata. For example, a class of flow condi-
tions may be used to describe the positive definiteness
of the state matrix of a symmetric differential Ricatti
equation.

Implementation tools. The lessons learned from the
computational and modeling tools and programming
languages suggests that hybrid systems paradigms are
sufficiently rich and understood well to be applicable
to real-world systems. Implementation tools attempt
to deploy a given algorithm, model or program on a
real system. There are two main categories for such
tools: code-generation and real-time hybrid automata
based programming languages.

The code-generation community is influenced largely
by the success of modeling and design tools. Given
a model the procedure is to generate software that is
capable of executing in an open environment such as
an embedded control application. The difficulty is that
the models contain many abstractions that do not ad-
mit an (efficient) implementation. The technique is to
restrict models at design time or to refine them at code-
generation time. Simulink/Stateflow and Ptolemy II
provide support for real-time code generation for sev-
eral target architectures.

The programming language community does not envi-
sion code generation as a separate process. The primi-
tive features of the language are designed to admit an
efficient atomic implementations. The overall imple-
mentation of a given application is then derived from
the compositional and abstraction properties of these
elementary constructs. The advantage of this approach
is that the programmer may reason about the efficiency
of an implementation in terms of these primitives. This
leads to new methodologies for implementing hybrid
systems. An example of a hybrid systems based im-

plementation tool is Teja which finds applications for
the efficient implementation of communication related
protocols on network processors.

3.4 Analysis and control synthesis
Analysis. Researchers have extended Lyapunov theory
to accommodate the intricacies of the stability analy-
sis for hybrid systems. Branicky [16], proposes multiple
Lyapunov functions, and Sontag et al. nonsmooth con-
trol Lyapunov functions [75].

See [32] for recent perspectives on stability of hybrid
systems, and ([16], [66]) for discussions on hybrid sys-
tems analysis. For a detailed discussion on qualitative
properties of hybrid systems see [59]. The control geo-
metric perspective for the analysis of hybrid systems is
provided in [70]. Techniques from non-smooth analysis
are useful for the analysis of hybrid systems [23].

Control synthesis. The problem of control synthesis
can be described as follows: given a dynamic system,
or a collection of interacting dynamic systems, synthe-
size a controller so that the system(s) satisfies(y) some
specifications. The type of specification dictates the
type of control formulation. Examples include: 1) the
problem of invariance; 2) the problem of attaining a
given target set while the trajectories of the system
remain inside some other set; 3) the problem of opti-
mizing some criteria; 4) the problem of stabilizing a
system. These control formulations can be further de-
composed in terms of information sets (addressing the
problem of decision under complete information), and
open and closed-loop control strategies ([44], [49] and
[48]). Inherent to most of these control formulations is
the problem of reach set computation. In fact, given
the reach set, it is quite simple to solve most of these
problems.

The problem of reach set computation has attracted the
attention of both the control and the computer science
communities.

The development of algorithmic approaches to reach
set computation was leveraged by the availability of
tools for computer aided-verification, such as the ones
mentioned before. Hybrid systems in which a prob-
lem can be solved algorithmically in a finite number
of steps are called decidable. The general problem of
reachability of hybrid systems is undecidable. Several
techniques for reachability analysis of hybrid systems
have been proposed. They can be (roughly) classified
in two kinds: 1. Purely symbolic methods based on
(a) the existence of analytic solutions to the differen-
tial equations and (b) the representation of the state
space in a decidable theory of the real numbers. 2.
Methods that combine (a) numeric integration of the
differential equations and (b) symbolic representations
of approximations of state space typically using (unions

of) polyhedra or ellipsoids. These techniques provide
the algorithmic foundations for the tools that are avail-
able for computer-aided verification of hybrid systems
([85] [25] , [40], [76]). The use of these tools usually
presupposes the existence of a controller, whose prop-
erties have to be verified, or whose parameters have to
be synthesized. From a theoretical point of view, and
in order to study control problems for hybrid systems,
Henzinger et al. [41] generalize hybrid automata to hy-
brid games-say, controller vs. plant. The observation is
that if we specify the continuous dynamics by constant
lower and upper bounds, we obtain rectangular games.
They show that, for rectangular games with objectives
expressed in LTL (linear temporal logic), the winning
states for each player can be computed, and winning
strategies can be synthesized.

Reach set computation for hybrid systems has received
considerable attention from the control systems com-
munity. Varaiya suggests an approach for reach set
computation based on the Pontryagin maximum prin-
ciple of optimal control theory, and illustrates the main
concepts for the case of linear systems [80]. Broucke
presents an approximate verification method for hy-
brid systems in which the reach sets of the automaton
are over-approximated, while leaving the vector fields
intact [19]. The method is based on a geometrically-
inspired approach, using tangential and transversal
foliations, to obtain bisimulations. Kurzhanskii and
Varaiya use dynamic programming techniques to de-
scribe reach sets and related problems of forward and
backward reachability [50]. These problems are formu-
lated as optimization problems that are solved through
the Hamilton-Jacobi-Bellman equations. The reach
sets are the level sets of the value function solutions to
these equations. This approach also accommodates the
problem of reach set computation under uncertainty or
under closed and open-loop control [49]. The Verishift
tool implements this approach for linear systems [14].
This implementation uses techniques from ellipsoidal
calculus to solve the Hamilton-Jacobi-Bellman equa-
tions [49].

One of the major difficulties for control synthesis is the
complexity of the underlying models. One approach to
deal with this complexity is to use simpler abstracted
models that propagate desired properties of the original
system (see [65], [1]).

The problem of control synthesis is that, in general,
the controller is not know in advance – it has to be
synthesized. Research in control systems resulted in
several approaches for control synthesis.

Branicky [16], and Branicky et al. [15], used the im-
pulse optimal control framework for synthesizing hy-
brid controllers for hybrid plants. In this framework,
they proved the existence of optimal (relaxed) and

near-optimal (precise) controls and derived ”general-
ized quasi-variational inequalities” that the associated
value function satisfies. They have also proposed al-
gorithms for solving these inequalities based on a gen-
eralized Bellman equation, impulse control, and linear
programming.

See [32] for recent perspectives on stabilization of hy-
brid systems.

Deshpande and Varaiya study the problem of viable
control for hybrid systems [34]. Aubin [10] discusses
the problem of invariance for hybrid systems under im-
pulse controls in the framework of viability of control
systems. He does that with the introduction of impulse
differential inclusions. An impulse differential inclusion
is a pair (F, R), where the set-valued map F : X
→ X ,
mapping the state space X : �n to itself, governs the
continuous evolution of the system in some closed set
K, and R, the reset map, governs discrete switches to
new “initial conditions” to prevent the continuous evo-
lution to leave the set K.

Lygeros et al. [57] and Tomlin et al. [77] have used
techniques from optimal control and game theory to
design controllers for safety specifications in hybrid
systems. Their methodology consists of three phases.
First, they translate safety specifications into restric-
tions on the system’s reachable sets of states. Second,
they formulate a differential game and derive Hamilton-
Jacobi-Bellman equations whose solutions describe the
boundaries of reachable sets. Third, they synthesize
the hybrid controller from these equations. The con-
troller assumes the form of a feedback control law for
the continuous and discrete variables, which guarantees
that the hybrid system remains in the ”safe subset” of
the reachable set. They also discuss issues related to
computing solutions to Hamilton-Jacobi equations.

4 Shift and SmartAHS

The AHS is an IVHS policy that aims to increase high-
way capacity, safety and efficiency through automated
control of vehicles (see Section 2). The design of an
AHS is a challenging task and several proposals con-
sisting of different control strategies have been made.
An important part of the design process is the model-
ing and simulation of the alternate strategies. In this
section we describe the hybrid systems based program-
ming language Shift and its application to the AHS
simulation framework SmartAHS.

Shift/SmartAHS was created to provide a software
modeling and simulation framework for the evalua-
tion and objective comparison of alternate AHS control
strategies. The AHS is a complicated system and this
is reflected in the requirements imposed on a simula-

tion framework for AHS. For a detailed description of
these requirements see [38]. We include a short sum-
mary here:

Modeling. Traffic modeling has traditionally been done
using macro and meso-simulators based on fluid flow
models. However, due to the reduced role of the hu-
man driver, the automated vehicle behaves determin-
istically. Thus, the most accurate information is ob-
tained if simulation is at the individual vehicle level.

Granularity. The multiple goals of AHS – capacity,
safety, efficiency and comfort – require that a given
AHS strategy be evaluated at multiple levels of granu-
larity.

Semantics. The AHS is a dynamic network of inter-
acting vehicles. The simulation framework must be
capable of creating, destroying and reconfiguring the
vehicles dynamically – ie. during a simulation (for ex-
ample, see existential quantification in Section 2.2.2).
The framework must provide explicit support for con-
tinuous and discrete behaviors of system components.

Abstractions. The simulation framework involves sev-
eral categories of users including control engineers, sys-
tem analysts and system planners. Thus, the frame-
work must provide abstraction facilities to associate
physical and logical representations of system compo-
nents.

The Shift/SmartAHS approach is to tackle the AHS
simulation requirements in two steps. First, primitive
support for the system-theoretic concepts is provided
by a single object-oriented programming language with
well-defined simulation semantics. Then, the abstrac-
tion facilities of this language is used to implement ba-
sic classes of system components that may then be ex-
tended and combined to realize a particular AHS sce-
nario (for example, in [7] and [36] the Shift/SmartAHS
framework is deployed to study Adaptive Cruise Con-
trol and Multiple Merge Junctions under AHS oper-
ation respectively). The immediate advantage of this
approach is that the system-theoretic concepts may be
re-used in various other application domains. Shift was
used to create simulation frameworks for Autonomous
Underwater Vehicles [30] Unmanned Aerial Vehicles
and Mobile Offshore Bases [29].

4.1 Shift overview
Shift is an object-oriented programming language with
simulation semantics. Its computation model is the
DNHA. The world is described by classes of hybrid au-
tomata and their interactions. A simulation world is
populated by instances of these classes.

Primitives. The basic programming entity is a hybrid
automaton. The behavior of a hybrid automaton is

described in discrete modes of operation – by Ordinary
Differential Equations and algebraic read-out relations
– and discrete transitions amongst these modes – by
guards, events and actions:

type Sedan : Vehicle {
input // what we feed to it

output // what we see on the outside

state // what’s internal

discrete // discrete modes of operation

export // event labels

flow // continuous behavior

transition // discrete behavior

setup } // initialization

The inputs, outputs and state variables define the en-
capsulated variables of the class. Shift is a strongly
typed programming language. The type system and
the type-checking compiler ensures that a user writes
correct Shift programs. The class definition implicitly
defines an abstract type. The built-in types are num-
bers, continuous numbers, symbols, links5 and sets and
arrays of these types. The language provides primitives
to program the flows, guards, events and actions using
typed expressions on these variables. These primitives
include the first order predicate calculus on sets and ar-
rays that are used, for example, to realize the dynamic
existential composition illustrated in Section 2.2.2.

Combination facilities. The language provides facilities
to construct aggregate objects from primitive classes of
hybrid automata. There are three mechanisms. The
first is given by support for abstract variable types.
The expressions in a flow, guard or action may use the
output variables of a link:

type Vehicle {
input Vehicle vehicle in front;
output continuous number speed;
flow default
{ speed’ = speed

- speed(vehicle in front); }}

The second is given by a mechanism to establish in-
put/output connections as a side-effect of the setup
clause or action of a discrete transition. The third is
given by the dynamic synchronous composition seman-
tics. In Section 2.2.2 we demonstrated the existential
composition construct to implement dynamic commu-
nication protocols. Similar constructs are defined for
universal composition.

Abstraction facilities. The input, output and state dec-
larations define an input/output encapsulation for hy-

5Links are generalized references to abstract Shift types.

brid automata. Furthermore, the class system is com-
plemented by an inheritance mechanism that is used to
define encapsulated abstract component interfaces. For
example, the Sedan type in the example above is spec-
ified to be a subtype of Vehicle from which it inherits
the input vehicle in front and the output speed.

4.2 SmartAHS architecture
SmartAHS is a simulation framework for the specifi-
cation, simulation and evaluation of AHS strategies.
SmartAHS is developed using Shift. The Shift primi-
tives are used to build libraries of abstract classes of hy-
brid automata that model system components such as
sensors, actuators, engine models and road segments.
The combination facilities of the language are then used
to build generalized models of vehicles and roadside de-
vices as aggregations of the library elements. The ab-
straction facilities are used to specialize the generalized
models to a particular scenario which are then instan-
tiated to populate a simulation. The basic component
libraries consist of road-side elements and vehicle com-
ponents as illustrated in Figure 6.

Vehicle

Vehicle-to-roadway environment
processor

Vehicle dynamics

Actuators

Controllers

Sensor environment
processor

Sensors

Receiver
environment

processor

Communication
devices

Highway
Section, Segment, Lane, Block, Barrier, Weather, Source, Sink

Figure 6: SmartAHS components. Figure from [69].

Road-side elements. The road-side library provides ba-
sic elements to model a highway. A highway is mod-
eled as an aggregation of these elements as illustrated
in Figure 6. Lanes model the right of ways for driv-
ing, segments model the geometric characteristics and
sections model contiguous highway stretches. The ab-
stract Shift interface for a Segment is given by:

type Segment {
output
number length; // length of left edge

number xOffset; // length ...

number gxa,gya,gza; // global coordinates

number orientation; // angle between ...

...
Weather weather; // weather condition

Section section; // segment’s section

Segment upSegment; // upstream segments

Segment downSegment;} // downstream segments

Note that a segment itself aggregates other library
primitives such as Weather objects and even Segment.

To illustrate the extension mechanism we may wish to
associate a Segment with a Traffic Management Center.
Assuming that we have defined such an abstract type
the specialization follows as:

type custom segment : segment {
TMC tmc; } // Traffic management center

All outputs defined for the segment type are inherited.

Complementary tools such as Carmma [69] have beed
developed that allow the graphical specification of com-
plex highway scenarios. Such tools generate the Shift
code that instantiates lanes, segments and sections that
model a complex highway.

Vehicle components. The highest level vehicle com-
ponents presented to the user are illustrated in Fig-
ure 6. A vehicle is modeled as an aggregation of these
basic components. Each component is itself an ag-
gregation of more basic counterparts. For example,
the VehicleDynamics interface defines an interface for
component that outputs the vehicles linear and rota-
tional speeds. The library itself is further populated
with specializations of this interface to kinematic and
dynamic vehicles. The former are used for large simu-
lations (eg. ¿ 1000 vehicles) and the latter for smaller
simulations (eg. 10-100 vehicles). For example, a typi-
cal dynamical vehicle adds a lumped engine, powertrain
and steering model to the basic VehicleDynamics in-
terface.

For a detailed description of SmartAHS components
see [69]. We conclude our presentation with a Shift
code segment that illustrates the use of hybrid au-
tomata to model the Vehicle-to-roadway environment
processor (VREP). The purpose of this component is
to provide a localized coordinate frame for other vehi-
cle components such as the dynamics and controllers.
The following code segment illustrates the automatic
road-side management performed by a VREP compo-
nents. The VREP is associated to a vehicle and as
the vehicle moves to a next section, its lane, segment
and section are updated. These updates are modeled
as a discrete transition of the hybrid automaton that
models the VREP:

cruise -> cruise {updateSection}
when rxp > length(section)

and size(laneDown(lane)) > followLane
define { ... } do { ... };

The VREP is assumed to be in a discrete operation
mode called cruise. When the relative position rxp

satisfies the given condition a self-loop to this discrete
mode is executed. The transition is closed on the
event updateSection which may be used to synchro-
nize with other transitions of other components. The
updates (not shown) are performed in the define and
do clauses.

5 Conclusions

From the above it is clear that traditional questions in
control have been reopened and investigated from the
perspective of hybrid systems. Some of the main dif-
ficulties are still there. One example is the problem
of solving Hamilton-Jacobi-Bellman equations, that is
still seen as the Holy Grail in control. Another example
is reach set computation for hybrid systems. In most
simulation tools a transition is taken when the corre-
sponding guard becomes true – the as soon as possible
semantics. This may not be the case in reality, where
the transition may take place at a later time. This
behavior is known as laziness – the notion of laziness
explicitly distinguishes between the enabling and the
firing of an event in a transition system. Reach set
computation for lazy systems is an open problem.

New questions, that could not have been formulated
a few years ago, are being posed, mainly due to the
technological advancements in computing and com-
munication. Again, these technological developments
made possible to envision the implementation of sys-
tems which could have not been imagined before. Con-
sider the following example:

Example 1 Let us look at the problem of real-time
oceanography and adaptive sampling strategies [24]6.
Adaptive sampling with multiple vehicles can be used as
the motivation for formulating a more abstract prob-
lem that has the potential for being applied in other
domains.

Consider a group of vehicles that, in turn, is organized
into two sub-groups. The first sub-group acts as a nav-
igation device for the second sub-group. It does this by
broadcasting accurate positions of its members, along
with timing information. In fact, this group acts as a
Local Positioning System (LPS) – quite useful for un-
derwater applications. The second group – hereafter
designated as the sensor sub-group – acts as a dis-
tributed sensor by collecting data in spatially distributed

6The next generation of oceanographic field programs requires
economic access to the ocean. Imperatives include abilities to:
1) obtain spatially distributed, temporally correlated measure-
ments; 2) respond in a timely fashion to episodic events; 3) obtain
time series of spatially distributed phenomena, and 4) to interact
with measurement platforms in the course of observations. We
refer to these collective requirements as real-time oceanography.

locations, and by integrating that data in order to deter-
mine the sampling strategy – the motions of this group
with respect to the phenomena under observation. Ob-
viously the two sub-groups exchange information. The
same happens among the vehicles in each sub-group.
Communications are constrained in terms of bandwidth
and range.

The two sub-groups have to coordinate their motions
and activities: 1) the relative positions of the vehicles
for each sub-group should satisfy the local (sub-group)
communication constraints; 2) the relative positions of
the two sub-groups should satisfy global (inter-group)
communication constraints; 3) the spatial arrangement
of the sensor sub-group is dictated by measurements;
4) the spatial arrangement of the LPS sub-group is dic-
tated by optimal positioning constraints; 5) the LPS
sub-group follows the distributed sensor sub-group in
order to provide positioning information to this sub-
group; 6) the sensor sub-group has to incorporate the
motion constraints imposed by the operation of the LPS
in the sampling strategy .

Several issues arise from this discussion: 1) the role
and relative position of each vehicle may change with
time; 2) the role and relative position of each vehi-
cle are determined by logical links among the vehicles
of the group; 3) each sub-group, when properly posi-
tioned, exhibits a functionality, for example LPS; 4)
the whole group, exhibits another functionality, whose
performance is a function of the other two functional-
ities; 5) the configuration of the links is controlled and
determines first the performance of each sub-group and,
then, the performance of the ensemble.

This rather conceptual example serves to motivate and
illustrate some important points [31]:

1. The need for an integrated perspective.

2. The need for methods to model and design the struc-
ture of interacting systems, in short, their architecture,
and to capture properties not to be found in constituent
modules. For example, the concept of controlling links
to achieve functionalities that, in themselves, have a
meaning and a value attached. This seems to require
new semantic concepts and, possibly, a different per-
spective on control.

3. The problems of the expressiveness of specification
languages and mapping of requirements onto designs.

The integrated perspective is essential to articulate the
modeling and design process, and to incrementally ad-
just and adapt requirements and designs. This issue
has been informally discussed by Sloman [73]. Ac-
cording to him behaving systems inhabited two linked
spaces. One is the space of designs – a design is an ab-

stract specification which can be instantiated in work-
ing systems that fit the design. The other is the niche
space – the space of requirements. Both spaces are lay-
ered in that regions within them can be described at
different levels of abstraction. Relationships between a
design and a niche space can have a complex form. Sat-
isfaction can be interpreted as a function from a design
and a niche to a partially ordered set of descriptions of
the type and kind of satisfaction.

Hoare [42] and Lamport et al. [52] have discussed set-
theoretic models as a basis to develop new and sim-
ple theories. The elegant simplicity and expressive-
ness of untyped specification languages based on set-
theoretical models is discussed in [52]. Research on
nonsmooth analysis has established important connec-
tions between the functional and the set theoretic rep-
resentations. The later constitute a privileged envi-
ronment to reconcile those representations, as well as
operations among them.

The representation and control of structures and links
requires the consideration of mappings from some ade-
quate state-space to discrete configuration spaces. The
problem of expressing logically constrained changes of
configurations can be addressed in the context of a
specific instance of switched controls with graph con-
strained strategies.

As conclusions we contend that there is great poten-
tial for hybrid systems research, and identify possible
avenues of research. New developments should be trig-
gered by the interactions between engineering practice
and its theoretical background.

If it is true that this paper reflects the opinions - and
hence the biases - of the authors, we hope that this dis-
cussion motivates further discussions, thus contributing
to the advancement of hybrid systems research.

References
[1] Discrete abstractions of hybrid systems. A game theoretic
approach to controller design for hybrid systems. Proceedings of
the IEEE, 88(7):971–84, 2000.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger,
P. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The
algorithmic analysis of hybrid systems. Theoretical Computer
Science, 138(1), 1995.

[3] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee. Mod-
ular specification of hybrid systems in charon. In Proceedings of
the HSCC’00, 3rd International Workshop on Hybrid Systems:
Computation and Control, 2000.

[4] R. Alur and T.A. Henzinger. A really temporal logic.
In Proceedings of the 30th Annual Symposium on Foundations
of Computer Science, pages 164–169. IEEE Computer Society
Press, 1989.

[5] R. Alur and T.A. Henzinger. Real-time logics: complexity
and expressiveness. In Proceedings of the Fifth Annual Sympo-
sium on Logic in Computer Science, pages 390–401. IEEE Com-
puter Society Press, 1990.

[6] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-
time temporal logic. In Proceedings of the 38th Annual Sympo-
sium on Foundations of Computer Science, pages 100–109. IEEE
Computer Society Press, 1997.

[7] A. Antoniotti, A. Desphande, and A. Girault. Microsim-
ulation analysis of multiple merge junctions under autonomous
ahs operation. In Proceedings of Conference on Intelligent Trans-
portation Systems ITSC ’97, pages 147–52. IEEE, 1997.

[8] M. Antoniotti. A first cut micro simulation of circadian
rhythms as a hybrid system. 2001.

[9] Jean-Pierre Aubin. Viability theory. Birkhauser, 1991.

[10] Jean-Pierre Aubin. Impulse differential equations and hy-
brid systems: A viability approach. Lecture Notes, University of
California at Berkeley, 2000.

[11] Jean-Pierre Aubin and Helene Frankowska. Set-valued
analysis. Birkhauser, 1990.

[12] A. Bensoussan and J. L. Lions. Impulse control and quasi-
variational inequalities. Gauthier-Villars, 1984.

[13] C. Bizingre, P. Oliveira, A. Pascoal, F. Lobo Pereira, J. P.
Pignon, E. Silva, C. Silvestre, and J. Borges de Sousa. Design of
a mission management system for the autonomous underwater
vehicle marius. In Proceedings of the 1994 Symposium on Au-
tonomous Underwater Vehicle Technology, pages 112–121. IEEE,
1994.

[14] O. Botchkarev. Ellipsoidal techniques for verification of
hybrid systems. January 2000.

[15] M. S. Branicky, V. S. Borkar, and S. K. Mitter. A unified
framework for hybrid control: model and optimal control theory.
IEEE Transactions on Automatic Control, 43(1):31–45, 1998.

[16] Michael Branicky. Studies in Hybrid Systems: Modeling,
Analysis and Control. PhD thesis, MIT, 1995.

[17] M.S. Branicky and S.E. Mattsson. Simulation of hybrid
systems in omola/omsim. In Computer Aided Control Systems
Design, pages 15–20. Permagon, 1997.

[18] R. W. Brockett. Dynamical systems and their associated
automata. In R. Menicken U. Helmke and J. Saurer, editors,
Mathematical Theory and Applications, pages 29–57. Akademie
Verlag, 1994.

[19] M. Broucke. A geometric approach to bisimulation and
verification of hybrid systems. In Proceedings of the 37th IEEE
Conference on Decision and Control Conference, pages 4277–82.
IEEE, 1998.

[20] I. Capuzzo-Dolcetta and L. C. Evans. Optimal switching
for ordinary differential equations. SIAM J. Control and Opt.,
22(1):143–161, 1984.

[21] C. Cassandras and S. Lafortune. Introduction to discrete
event systems. Kluwer international series in engineering and
computer science. Kluwer Academic Publishers, 1999.

[22] F. H. Clarke, Y.S. Ledyaev, E.D. Sontag, and A.I. Sub-
botin. Asymptotic controllability implies feedback stabilization.
IEEE Transactions on Automatic Control, vol.42,(no.10):1394–
407, 1997.

[23] F. H. Clarke, Y.S. Ledyaev, R. J. Stern, and P.R. Wolen-
ski. Qualitative properties of trajectories of control systems: A
survey. Journal of Dynamical Control, (1):1–48, 1995.

[24] T. Curtin, J. Bellingham, J. Catipovic, and D. Webb.
Autonomous ocean sampling networks. Oceanography, 6(3):86–
94, 1993.

[25] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The
tool kronos. In In Hybrid Systems III, Verification and Control,
Lecture Notes in Computer Science, pages 1066–1080. Springer
Verlag, 1996.

[26] L. de Alfaro and T.A. Henzinger. Concurrent omega-
regular games. In Proceedings of the 15th Annual Symposium
on Logic in Computer Science, pages 141–154. IEEE Computer
Society Press, 2000.

[27] J. Borges de Sousa and A. Deshpande. Real-time multi-
agent coordination using diadem: applications to automobile and
submarine control. In Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics, pages 1769–74.
IEEE, 1997.

[28] J. Borges de Sousa, A. Girard, and K. Hedrick. Real-
time hybrid control of mobile offshore base scaled models. In
Proceedings of the American Control Conference, 2000.

[29] J. Borges de Sousa, A. Girard, and N. Kourjanskaia. The
mob shift simulation framework. In Proceedings of Third In-
ternational Workshop on Very Large Floating Structures, pages
474–482, 1999.

[30] J. Borges de Sousa and A. Gollu. A simulation environ-
ment for the coordinated operation of multiple autonomous un-
derwater vehicles. In Proceedings of the 1997 Winter Simulation
Conference, pages 1169–75, 1997.

[31] J. Borges de Sousa and F. Lobo Pereira. Some questions
about hybrid systems. In submitted for an invited session at the
European Control Conference 2001, 2001.

[32] R. A. Decarlo, M. S. Branicky, S. Pettersson, and
B. Lennartson. Perspectives and results on the stability and
stabilizability of hybrid systems. Proceedings of the IEEE,
88(7):1069–82, 2000.

[33] A. Deshpande, A. Gollu, and L. Semenzato. The shift pro-
gramming language and run-time system for dynamic networks
of hybrid automata. Technical Report UCB-ITS-PRR-97-7, Cal-
ifornia PATH, 1997.

[34] A. Deshpande and P. Varaiya. Viable control of hybrid
systems. In Hybrid Systems II, pages 128–147. Springer, 1995.

[35] F. H. Clarke et. al. Nonsmooth Analysis and Control
Theory. Springer, 1998.

[36] D. Godbole, N. Kourjanskaia, R. Sengupta, and M. Zan-
donadi. Methodology for an adaptive cruise control study using
the shift/smart-ahs framework. In Proceedings of 1998 IEEE
International Conference on Systems, Man, and Cybernetics,
pages 3217–22. IEEE, 1998.

[37] D.N. Godbole, J. Lygeros, E. Singh, A. Deshpande, and
A.E. Lindsey. Communication protocols for a fault-tolerant auto-
mated highway system. IEEE Transactions on Control Systems
Technology, 8(5):787–800, September 2000.

[38] A. Gollu and P. Varaiya. Smartahs: a simulation frame-
work for automated vehicles and highway systems. Mathematical
and Computer Modelling, 27(9-11):103–28, 1998.

[39] R.H. Hardin, Z. Har’El, and R.P. Kurshan. Cospan [coor-
dination specification analyzer]. In Proceedings of CAV’96, pages
423–7. Springer-Verlag, 1996.

[40] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Sym-
bolic model checking for real-time systems. Information and
Computation, 111(2):193–244, 1994.

[41] T.A. Henzinger, B. Horowitz, and R. Majumdar. Rect-
angular hybrid games. In J.C.M. Baeten and S. Mauw, editors,
CONCUR 99: Concurrency Theory, Lecture Notes in Computer
Science 1664, pages 320–335. Springer-Verlag, 1999.

[42] C. A. R. Hoare. Algebra and models. In Ian Wand and
Robin Milner, editors, Computing tomorrow : future research
directions in computer science, pages 158–187. Cambridge Uni-
versity Press, 1996.

[43] G.J. Holzmann. The model checker spin. IEEE Transac-
tions on Software Engineering, 23(5):279–95, May 1997.

[44] A. N. Krasovskii. Control under lack of information.
Birkhauser, 1995.

[45] N.N. Krasovskii and A.I. Subbotin. Game-theoretical con-
trol problems. Springer-Verlag, 1988.

[46] R. Kumar and V. Garg. Modeling and control of logical
discrete event systems. Kluwer international series in engineering
and computer science. Kluwer Academic Publishers, 1995.

[47] R. P. Kurshan. Computer-aided Verification of Coordi-
nating Processes: The Automata-Theoretic Approach. Princeton
University Press, 1994.

[48] A. B. Kurzhanskii. Advances in nonlinear dynamics and
control : a report from Russia. Birkhauser, 1993.

[49] A. B. Kurzhanskii. Ellipsoidal calculus for estimation and
control. Birkhauser, 1997.

[50] A. B. Kurzhanskii and P. Varaiya. Ellipsoidal techniques
for reachability analysis. In N. Lynch and B. Krogh, editors,
Computation and control, Lecture Notes in Computer Science,
pages 202–214. Springer-Verlag, 2000.

[51] A. B. Kurzhanskii and P. Varaiya. On reachability un-
der uncertainty. Siam Journal of Control and Optimization, to
appear, 2001.

[52] L. Lamport and L. C. Paulson. Should your specifica-
tion language be typed? ACM Transactions on Programming
Languages and Systems, 21(3):502–526, 1999.

[53] E. Lee and A. Sangiovanni-
Vincentelli. Comparing models of computation,
http://ptolemy.eecs.berkeley.edu/ eal/talks/index.html. 1996.

[54] P. Li, L. Alvarez, and R. Horowitz. Ahs safe control laws
for platoon leaders. IEEE Transactions on Control Systems,
5(6):614–28, November 1997.

[55] D. Liberzon and A. S. Morse. Basic problems in stability
and design of switched systems. IEEE Control Systems Maga-
zine, 19(5):59–70, 1999.

[56] J. Liu, B. Wu, X. Liu, and E.A. Lee. Interoperation of
heterogenous cad tools in ptolemy ii. In Proceedings of the SPIE
– The International Society for Optical Engineering, pages 249–
58, 1999.

[57] J. Lygeros, Datta N. Godbole, and Shankar Sastry. A
game theoretic approach to hybrid system design. Technical
Report UCB/ERL M95/77, University of California, Berkeley.
Electronics Research Laboratory, 1995.

[58] J. Lygeros, D.N. Godbole, and S. Sastry. Verified hybrid
controllers for automated vehicles. IEEE Transactions on Auto-
matic Control, 43(4):522–39, April 1998.

[59] A. Matveev and A. Savkin. Qualitative Theory of Hybrid
Dynamical Systems. Control Engineering. Birkhäuser, 2000.

[60] Robin Milner. Semantic ideas in computing. In Ian Wand
and Robin Milner, editors, Computing tomorrow : future re-
search directions in computer science, pages 246–283. Cambridge
University Press, 1996.

[61] Robin Milner. Communicating and mobile systems : the
Π-calculus. Cambridge University Press, 1999.

[62] A.A. Mir, S. Balakrishnan, and S. Tahar. Modeling and
verification of embedded systems using cadence smv. In 2000
Canadian Conference on Electrical and Computer Engineering.
Conference Proceedings, pages 179–83. IEEE, 2000.

[63] Z. Manna O. D. Maler and A. Pnueli. From timed to hy-
brid systems. In W. Roever J. Bakker, K. Huizing and G. Rozen-
berg, editors, Real-Time: Theory in Practice, LNCS 600, pages
447–484. Springer-Verlag, 1992.

[64] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K.
Srivas. Pvs: Combining specification, proof checking and model
checking. Computer-Aided Verification, CAV’96, 1102:411–4,
July/August 1996.

[65] G. Pappas. Hybrid Systems: Computation and Abstrac-
tion. PhD thesis, University of California at Berkeley, 1998.

[66] Anuj Puri. Theory of hybrid systems and discrete event
systems. PhD thesis, University of California at Berkeley, 1995.

[67] A. Ravn R. Grossman, A. Nerode and H. Rischel, edi-
tors. Hybrid Systems. Lecture notes in computer science ; 736.
Springer, 1993.

[68] Mary Shaw and David Garlan. Formulations and for-
malisms in software architecture. In Jan van Leeuwen, editor,
Computer Science Today: Recent Trends and Developments,
pages 307–323. Springer-Verlag, 1996.

[69] shift home page. http://www.path.berkeley.edu/ shift.
1996.

[70] S. Simic, K. Johansson, S. Sastry, and J. Lygeros. To-
wards a geometric theory of hybrid systems. In Proceedings of
the Hybrid Systems 2000 Workshop. IEEE, 2000.

[71] T. Simsek. The λ-shift specification language for dynamic
networks of hybrid automata, master of science research project,
university of california, berkeley. 2000.

[72] T. Simsek, R. Sengupta, S. Yovine, and F. Eskafi. Fault
diagnosis for intra-platoon communications. In Proceedings of the
38th IEEE Conference on Decision and Control, pages 3520–5.
IEEE, 1999.

[73] A. Sloman. The “semantics” of evolution: trajectories
and trade-offs in design space and niche space. In Progress in
Artificial Intelligence - IBERAMIA 98, pages 27–38. Springer-
Verlag, 1998.

[74] E.D. Sontag and Y.S. Ledyaev. A lyapunov characteri-
zation of robust stabilization. Journal of Nonlinear Analysis,
37:813–840, 1999.

[75] E.D. Sontag and H.J. Sussmann. Nonsmooth control-
lyapunov functions. In Proceedings of the 34th IEEE Conference
on Decision and Control, pages 2799–805. IEEE, 1995.

[76] P. H. Ho T. Henzinger and H. Wong-Toi. Hytech: The
next generation. In Proceedings of IEEE Real-Time Systems
Symposium, PTSS’95, pages 169–183. IEEE Publications, 1995.

[77] C. J. Tomlin, J. Lygeros, and S. Shankar Sastry. A game
theoretic approach to controller design for hybrid systems. Pro-
ceedings of the IEEE, 88(7):949–70, 2000.

[78] Jan van Leeuwen, editor. Handbook of theoretical com-
puter science. Elsevier, 1990.

[79] P. Varaiya. Smart cars on smart roads: problems of con-
trol. IEEE Transactions on Automatic Control, 38(3):195–207,
February 1993.

[80] P. Varaiya. Reach set computation using optimal control.
In Proceedings of the KIT Workshop on Verification of Hybrid
Systems. Verimag, Grenoble, France, 1998.

[81] P. Varaiya. Control design of an automated highway sys-
tem. Proceedings of the IEEE, 88(7):913–25, July 2000.

[82] G. Walsh, Y. Hong, and L. Bushnell. Stability analysis of
networked control systems. In Proceedings of the 1999 American
Control Conference, pages 2876–80. IEEE, 1999.

[83] H. Witsenhausen. A class of hybrid-state continuous-time
dynamic systems. IEEE Transactions on Automatic Control,
11(2):161–167, 1966.

[84] Jiogmin Yong. A zero-sum differential game in a finite
duration with switching strategies. SIAM J. Control and Opt.,
28(5):1234–1250, 1990.

[85] S. Yovine. Methods et Outils pour la Verification Sym-
bolique de Systemes Temporises. PhD thesis, Institut National
Polytechnique de Grenoble – France, 1993.

[86] S. Yovine and A. Olivero. Kronos: a tool for verifying

real-time systems. user’s guide and reference manual. Technical

report, Verimag, Grenoble, France, 1992.

