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Abstract

We study the information flows that arise among a set of agents with local knowledge
and directed payoff interactions, which differ among pairs of agents. First, we study
the equilibrium of a game where, before making decisions, agents can invest in pairwise
active communication (speaking) and pairwise passive communication (listening). This
leads to a full characterization of information and influence flows. Second, we show
that, when the coordination motive dominates the adaptation motive, the influence of
an agent on all his peers is approximately proportional to his eigenvector centrality.
Third, we use our results to explain organizational phenomena such as: the emergence
of work cliques; the adoption of human resources practices that foster communication
(especially active communication); and the discrepancy between formal hierarchy and
actual influence.

1 Introduction

Communication is one of the defining characteristics of humans. A large part of our day
is spent on various media, ranging from having informal conversations to writing formal
reports, from exchanging email messages to participating in social media. This is true in
social contexts as well as in the workplace. Corporate leaders spend upwards of 80 percent
of their work time on communication-centered activities (Mintzberg 1973, Bandiera et al.
2009)

∗We thank Jose Apesteguia, Can Celiktemur, Wouter Dessein, Jan Eeckhout, Luis Garicano, Bob Gib-
bons, Christian Hellwig, Rachel Kranton, David Myatt, Ignacio Palacios-Huerta, Alessandro Pavan, Daniel
Rappoport, Karl Schlag, Juuso Välimäki, Fernando Vega-Redondo, and Yves Zenou. We are also grateful
to audiences at the University of Chicago, Columbia University, Duke University, MIT Sloan, Northwest-
ern University, EUI (Florence), Universitat Pompeu Fabra, Stockholm University and at the conference
on “Social Networks and Peer Effects: Theory and Applications” in honor of Toni (Universitat Autònoma
de Barcelona), the European Summer Symposium in Economic Theory (Gerzensee), and the Workshop on
Communication and Belief Manipulation (Paris School of Economics).
†Toni passed away in November 2007. We miss his friendship, energy, and talents. While the ideas and

the results contained in this paper are due to the three authors, only de Martí and Prat are responsible for
any remaining errors or omissions.
‡A previous version of this paper was circulated under the title “Endogenous Communication in Complex

Organizations.”

1



The endogeneity of communication patterns should lie at the center of a theory of
organization (Arrow 1974). We have some control on whom we decide to speak to, email, or
telephone. As communication requires time, we are selective and instrumental in how much
we invest in communicating with different agents. As Simon (1986) noted: “If we record the
frequency of communication between different nodes, we [will] find that the pattern is not
uniform but highly structured. In fact, the pattern of communication frequencies [should]
reflect, approximately, the pattern of authority.”The objective of this paper is to develop a
model of endogenous costly communication and to use it to understand influence patterns.

The model can be sketched as follows. There are a number of agents who face local
uncertainty (for simplicity, local states are assumed to be mutually independent). Each
agent observes the realization of his local state and must take an action. The payoff of each
agent depends on his local state, his own action, and the action of other agents. The pattern
of payoff interactions among agents is described by a directed graph that encompasses two
dimensions of heterogeneity: the interdependence of individual actions and the pairwise
intensity of these interdependences. While our setup encompasses both negative and positive
payoff interactions, in most of the paper we restrict attention to positive complementarities
only.

Before choosing his action, an agent can engage in communication. He can inform other
agents about his own state of the world and he can gather information about other agents’
state of the world.1 Formally, the agent selects a vector of active communication intensities
and a vector of passive communication intensities. The precision of the communication of
one agent to another is then determined by how much the sender invests in active commu-
nication (talking) and how much the receiver invests in passive communication (listening).
Both types of communication are costly, and the cost is an increasing and convex function
of communication intensity. In this model, the intensity of communication and influence
(how much an agent’s state influences another agent’s action) is represented by continuous
variables. This allows us to study varying degrees of interpersonal ties, as suggested by the
sociological literature (Granovetter, 1973).

Our analysis is divided in three parts. We first characterize communication patterns
and individual decisions in equilibrium. We show that games in the class we consider have
a unique equilibrium in linear strategies, namely one where the action of each agent is a
linear function of his own signal and the signal that he receives from other agents.

These games feature various levels of strategic interaction. Active communication, pas-
sive communication, and decision influence are strategic complements. Alice invests in
talking to Bob, because she hopes that Bob will invest in listening to her and will use the
information he has received to coordinate his action’s with Alice’s state, something that
would benefit Alice. Bob is influenced by the signal she receives from Alice because he has
invested in listening and he thinks that she has invested in active communication; hence the
signal should be valuable in coordinating his action with hers. With more than two agents,
these interactions may be indirect. Alice and Carol are not interested in coordinating their
actions per se, but they both want to coordinate with Bob. In equilibrium they might invest
in communicating with each other, in the knowledge that Bob’s action will be affected by

1 In our set-up, which allows for one round of communication only, there is no loss of generality in assuming
that communication only relates to the observed state of the world. Things would be different if we allowed
for more than one round.
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their states.
One way of finding the fixed point of this set of interactions is to proceed iteratively, at

each step taking into account a higher level of interactions. Our equilibrium corresponds to
the limit of this iterative process. In equilibrium, a simple linear relation describes active
and passive communication from one agent to the other as a linear function of how much the
latter is influenced by information he receives. In turn, influence coeffi cients are determined
jointly for all agents as a linear system. This tractable equilibrium characterization is useful
to draw lessons on patterns of communication and influence.

In the second part of the paper we use the main characterization result to explore
patterns of communication and influence. As one would expect, we can prove that commu-
nication flows and influence relations between two agents become stronger, if these agents
have stronger exogenous interaction ties. Less obvious are indirect effects, namely how
communication between two agents changes when other interaction ties change. Suppose
the exogenous ties between a subset of workers become stronger: in the labor sociology lan-
guage, a work “clique”forms.(Dalton, 1959). We show the existence of an insularity effect,
pushing the subset of workers to reduce their interest in talking to the outside world, and
an opposite reinforcement effect, whereby outsiders are keen to understand what goes on in
the subset. Active and passive communication intensities move in opposite directions. The
overall effect on influence from the subset to the rest of the workers is positive at first when
they have relatively weak ties, but it turns to negative when the ties become suffi ciently
strong.

In our non-cooperative set-up, communication and influence is generally ineffi ciently
low. Agents do not internalize the benefit that investment in communication generates for
other agents. This is true for both active and passive communication. However players tend
to under-invest, in relative terms, more in active communication than in passive commu-
nication. To see this, suppose that active and passive communication have the same cost.
A planner would choose the same level of active and passive communication. Yet, with
n > 2, agents spend less on active communication. The benefit of listening is direct: the
receiver incorporates the information in his decision-making. The benefit of speaking is in-
direct: the sender hopes that the receiver will incorporate the information he receives in his
decision-making. We relate these results to the evidence on the effect on firm performance
of introducing innovative Human Resources Management (HRM) practices (Ichniowski and
Shaw, 1997).

In the third and last part of the paper we ask which agents are most influential overall.
We define the global influence of an agent as the aggregate effect that a marginal change
in the agent’s local state has on other agents’actions. In our setting global influence is
an equilibrium variable, which is in turn jointly determined by three other equilibrium
phenomena: active communication, passive communication and decision-making.

We uncover a connection between global influence and eigenvector centrality. In the
quadratic setting we study, each agent cares about adaptation (fitting his action to his own
local state) and coordination (fitting his action to other agents’actions). We show that, as
the coordination motive becomes more and more important, the vector of global influences
defined above tends to the vector of eigenvector centralities computed on a primitive of the
problem: the matrix of directed interaction payoffs (with a correction factor when some
agents’ interaction coeffi cients are larger in aggregate). This can be seen as an approxi-
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mation result. In a game where coordination is much more important than adaptation,
the relative global influence of every agent is well approximated by his eigenvector central-
ity. Given the simplicity of eigenvector measares, our result is useful for characterizing the
asymptotic properties of the games we study.

This result relates to Ballester et al. (2006). They analyze a class of complete informa-
tion games with quadratic payoffs and pairwise dependent strategic complementarities and
they show that in the equilibrium of these games the effort exerted by each agent strongly
depends on his position in the network of relations. In particular, this effort is proportional
to his Bonacich index, a centrality measure constructed by summing paths emanating from
one agent (with a decay factor). In our game, an agent’s influence can be expressed as a
linear function of Bonacich centralities and this fact is used in the proof of Theorem 5.2

We apply the asymptotic equivalence result to study influence in hierarchical structures.
Weber’s top-down view of optimal bureaucracies came into question when empirical studies
started showing that, in the presence of conflicts of interest, the most influential members
of an organization are often found at mid-level rather than at the top. Armed with the
asymptotic correspondence between influence and eigenvector centrality, we first show that
the Weberian view holds in a regular hierarchy, namely one where exogenous interaction
patterns repeat themselves at every level. In the equilibrium of our communication game,
a superior and his subordinates invest in reciprocal communication. Because of the tree-
like nature of the hierarchy, this implies that the global influence of an agent is larger,
the higher the agent is in the organization. However, Weber’s monotonicity breaks down
when there are groups of agents with stronger ties. In that case, as Dalton predicted, the
most influential members of the organization are the top people within their “clique”. The
complementarity between interaction, communication, and influence mean that the head
of the clique is more influential not only towards his subordinates, but also towards his
superior. This corresponds to Dalton’s observation that the most influential agents are
often low-level managers in charge of well-defined processes.

The rest of the paper is organized as follows. Following the literature review, Section 2
introduces the model. Section 3 presents the first main result of the paper: the equilibrium
characterization theorem. Section 4 uses the characterization theorem for comparative sta-
tics and welfare analysis, with an emphasis on the role of complementarities, both between
communication and decisions, and between active and passive communication. Section 5 re-
ports the second main result, the asymptotic equivalence between agent’s influence and the
eigenvector centrality, and applies it to Dalton’s hierarchies. Section 6 concludes by relating
our work to the existing literature in organizational economics and network economics and
by suggesting future avenues of research. All proofs are in Appendix.

Also available is a Supplementary Material section with an array of robustness checks
and additional results: alternative timeline, equilibrium uniqueness, ban on communication
between certain links, broadcasting (as opposed to pairwise communication), corner solu-
tions, and additional comparative statics. These extensions are referenced in the text in
informal terms and proven formally in the supplementary section.

2The technical connection between our two papers is discussed in detail in the remarks after Theorem
5. The obvious difference is that in Ballester et al (2006) there is no information asymmetry, and hence
communication, and that they do not discuss the Invariant Method.
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1.1 Literature Review

This paper relates to two strands of literature: organizational economics and the economics
of networks.

In the first strand of literature, there are a number of papers which study endogenous
communication in a variety of settings. Our approach to multi-person decision making
under asymmetric information, as well as our normal-quadratic formulation, is inspired
by Marschak and Radner’s (1972) team theory. Some recent papers (Dessein and Santos
2006, Alonso et al. 2008, Rantakari 2007, Dessein et al 2006) explore decentralized decision
making within organizations. Besides sharing their normal-quadratic set-up, we are also
interested in the tradeoff between adaptation and coordination. We are particularly close
to three models of endogenous costly communication between two agents.

In Dessein and Santos (2006) an agent can send a signal about his local state to the
other agent, and the precision of the signal is endogenous.3 They show the existence of
complementarities between communication, adaptation, and job description: in particular,
when communication costs decrease, the organization is more likely to adopt a new set of
organizational practices that include broader tasks and more adaptation.

Dewatripont and Tirole (2005) analyze a model of endogenous costly communication
between a sender and a receiver. As in our model, both active and passive communication
are endogenous and costly, and there are positive externalities (it takes two to communicate).
Dewatripont and Tirole’s communication model has a number of features that are absent
here, such as the presence of signaling and the possibility of sending “cues”—information
about the sender’s credibility.

Van Zandt (2004) develops a model of endogenous costly communication where several
agents can transmit information at the same time. This leads to screening costs on the
part of receivers and the potential for “information overload”. Van Zandt examines pos-
sible mechanisms for reducing overload —an important problem in modern organizations.
Our paper abstracts from information overload, by assuming that receivers do not face a
screening problem (they can always choose not to listen to a particular sender).

Our contribution with respect to these three papers is to extend endogenous commu-
nication to complex architectures. We discuss an array of phenomena that have limited
or no meaning with only two agents, such as cliques, global influence, indirect effects, the
opportunity to encourage active communication, etc.

Following the seminal work of Radner (1993), the literature of organizational economics
has also studied the role of networks in minimizing human limitations in information process-
ing. The works of Bolton and Dewatripont (1994), Van Zandt (1999a), Garicano (2000),
Guimerà et al. (2003), and Dodds et al. (2003) highlight the importance of hierarchies,
and more general network structures, to diminish the costs related to processing informa-
tion that flows through the network of contacts. This literature is surveyed by Van Zandt
(1999b) and Ioannides (2003). Our work is complementary to this one, and analyzes how
individual payoff complementarities shape both the network structure of communication
and the equilibrium actions.

3One technical difference is that Dessein and Santos’(2006) signals are either fully informative or unin-
formative, and precision is defined as the probability that the signal is informative. Here, instead, signals
are normally distributed and the precision is the reciprocal of the variance.

5



Cremer, Garicano, and Prat (2007) formalize Arrow’s (1974) idea of coding: the medium
of communication used by a group of people (the organizational language) is endogenous
and it determines communication costs. For analytical tractability, in the present model the
communication medium is not modeled explicitly but it is represented by a communication
cost function.4

Related work can also be found in political economy. Dewan and Myatt (2007) analyze
the role of communication in the interplay of leaders and activists in political parties. Lead-
ers are heterogeneous in two different skills: their ability to interpret which is the correct
policy to promote, and the clarity of communication of his ideas to the activists. Activists
seek to advocate for the correct policy by listening with different intensities to the party
leaders. The authors show that, generally, clarity in communication is the leader’s ability
that induces higher influence on activists’opinion. Their interpretation of communication is
close to the one we propose in our work: in a bayesian game with quadratic payoff functions
and normally distributed signals, that represent the messages send and received, agents can
affect the precision of these signals. On the other hand, the communication protocols and,
therefore, the strategic effects of communication are different in the two models, as well as
the questions that are analyzed.

In the second strand of literature — network economics — the closest contribution is
Calvó-Armengol and de Martí (2009), which considers a normal-quadratic team-theoretical
set-up and studies the effect of communication among agents. The authors provide a full
characterization of the decision functions and the equilibrium payoffs given a communication
structure. Calvó-Armengol and de Martí also study what the best communication struc-
ture is when the overall number of links among agents is bounded: they provide suffi cient
conditions for the optimal communication network to be a star or the maximum aggregate
span network. However, the only choice between two nodes is no communication or full
communication, so the kind of communication intensity analysis that we perform here is
absent.

This paper also adopts a normal-quadratic specification, close to the one in Calvó-
Armengol and de Martí. The key innovation here is of course that communication is en-
dogenous. We also move away from a team-theoretical framework (now a special case, when
all agents belong to the same team), we introduce the idea of communication intensity and
we distinguish between active and passive communication.5

Our eigenvector centrality result is related to three papers. Golub and Jackson (2010)
study a learning model where agents communicate on a network and process signals they
receive naively. They show that, when beliefs converge, the consensus belief is a weighted
average of agents’initial beliefs and the weights, which corresponds to a measure of global
influenc, are given by a principal eigenvector of the social network matrix. Golub and
Elliott (2013) study a setting where agents can exert costly effort to generate nonrival,

4Cremer (1993) and Prat (2002) study costly endogenous information collection in a team-theoretic
setting. Hellwig and Veldkamp (2008) examine optimal information choices in a strategic setting. The
present paper is complementary in that it endogenizes communication rather than information collection.

5The literature of information sharing in oligopoly has also considered a normal-quadratic setup. See, for
example, Vives (1994), Gal-Or (1985, 1986), and Raith (1996). Vives (1999) surveys this literature. While
the setup in these papers bears some resemblance with our one, there are several differences in the analysis,
both because communication is public and hence there is no network component and because the focus is
quite different (industry competition rather than organization economics).
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heterogeneous benefits for otheragents and characterize Lindahl outcomes as the eigenvector
centrality action profiles. Golub and Lever (2010) study how eigenvector centrality of agents
in a network changes when initially disconnected groups begin interacting with each other
via a new bridging link. Weak intergroup links can have arbitrarily large effects on the
distribution of centrality.

Hagenbach and Koessler (2008) and Galeotti, Ghiglino and Squintani (2009) also con-
sider, as we do, strategic endogenous communication in a network game. However, their
focus is on costless, non verifiable information (cheap talk) when agents may have biases
as in Crawford and Sobel (1982) (see Sobel (2011) for a survey). Our set-up is different in
that we focus on costly and verifiable information. The kind of issues we address are thus
entirely different (and complementary).6

With regards to the literature on the formation of (communication) networks, Bloch and
Dutta (2007) study the creation of communication networks with endogenous link strength.
In their model, agents have a fixed resource, for example time, and have to decide how
to allocate it to create connections with others. The benefits of a connection depends on
the decisions of both agents involved in it. Furthermore, in the spirit of the connections
model introduced in Jackson and Wolinsky (1996), an agent obtains benefits of indirect
connections through the more reliable path connecting them with each one of the agents in
the society. In their setup, both the equilibrium and the effi cient networks are star-shaped,
i.e., with one agent connected to all the rest of the population and all the rest connected
only to this center.

Rogers (2008) analyzes another network formation game in which all agents have a
limited resource available to spend building links with the rest of agents, but differs with
the work of Bloch and Dutta in the structure of benefits. In Rogers (2007) the utility of
an agent depends on the utility of each other agent with which he is directly connected.
This recursive definition of utilities generates indirect effects that spread through indirect
connections of any length. The author analyzes two games, one in which the dependency
expresses that each agent gives utility to his connections, and another one in which the
dependency expresses that each agent receives utility from his connections. In both cases,
the Nash equilibria are characterized.

Our paper is also linked with the growing literature on games played in a network, in
which players’ payoffs are intimately related to the geometry of relations among them.7

Ballester et al. (2006).has already been cited in the introduction. Goyal and Galeotti
(2008) model both the network formation process and the play of a game that depends on
the network formed. The authors study a game in which payoffs depend on the, costly,
information they acquire and gather from their neighbours in a network of relations. The
analysis of this game in a fixed network is performed in Bramoullé and Kranton (2008), in
which a set of varied possible equilibria are presented. The novelty in Goyal and Galeotti
is that they allow agents to choose their connections. They show that the introduction of

6A point of overlap with Hagenbach and Koessler (2008) is their result that, when information is fully ver-
ifiable, agents will want to communicate all they know. This corresponds to our set-up when communication
costs go to zero.

7We analyze an incomplete information game played in a network. However, as usual in the literature,
we assume full knowledge by all players on the realized network structure. For some facts about network
games with incomplete information on the network structure we refer the interested reader to Galeotti et al.
(2007).
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endogenous network structures induce a simpler core-periphery structure in the equilibrium
formed. In particular, equilibrium networks show a core-periphery pattern in which a set of
few individuals are highly connected with a high number of poorly connected agents. While
their setup is different from ours, we share Goyal and Galeotti’s goal of studying a two-
stage game, in which the first stage involves investment in links (in our case communication
precision) and the second stage involves play on the basis of those links. Cabrales et al
(2011) study a network game where network formation and productive efforts are selected
simultaneously and show that there exist two stable interior Pareto-rankable equilibria. The
set-up we study could have another pure-strategy equilibrium characterized by a coordina-
tion failure, but we can rule it out by assuming that an infinitesimal amount of information
transmission occurs even if agents do not invest in communication at all (see the discussion
of uniqueness after Theorem 1).

2 Model

Consider a set of n agents. Agent i faces a local state of the world

θi ∼ N (0, 1/si) ,

where si denotes the precision of θi, i.e. si = 1/V ar (θi). The local states of different agents
are mutually independent. Agent i observes only θi.

All agents engage in, pairwise, communication activity.8 Agent i receives message yij
from agent j, such that

yij = θj + εij + ηij ,

where εij and ηij are two normally distributed noise terms

εij ∼ N (0, 1/rij) , (1)

ηij ∼ N (0, 1/pij) , (2)

and rij (resp. pij) is the precision of εij (resp. ηij). We interpret εij as the noise associated
with active communication (preparing a presentation, writing a report, hosting a visit, host-
ing a liaison offi cer) and ηij as the noise associated with passive communication (listening
to a presentation, reading a report, visiting a plant, appointing a liaison offi cer). All the
noise terms are stochastically independent from each other and from the local states.

Agent i chooses how much to invest in speaking with and listening to other players.
Namely, he selects:

• The precision of the active communication part of all the signals he sends: (rji)j 6=i,
for which he incurs cost k2

r

∑
j 6=i rji, where kr ≥ 0 is a parameter.

• The precision of the passive communication part of all the signals he receives, (pij)j 6=i,
for which he incurs cost k2

p

∑
j 6=i pij , where kp ≥ 0 is a parameter (p is mnemonics for

passive)

8Here we assume that agents can in principle communicate with all other agents. The analysis can be
extended to situations where there are exogenous barriers to communication between certain pairs of agents.
See Section 3 of the Supplementary Material for an example.

8



Thus, communication technology and communication costs are separable, both between
active and passive communication and across agents. The absence of mechanical com-
plementarities will allow us to highlight the presence of strategic complementaries, both
between active and passive communication and across agents, which we will explore in
detail in Section 4.9

We also assume that each precision term is bounded below by a very small number ξ:
rji ≥ ξ, pij ≥ ξ. This avoids dominated equilibria where i does not speak to j because he
does not expect j to listen and viceversa.10

After observing the local state θi and the vector of signals (yij)j 6=i, agent i chooses an
action ai ∈ (−∞,∞).

This setup contains two implicit assumptions. The first one, which was already discussed
in the introduction, is that, when engaging in active communication, the agents cannot
manipulate the signal they send (the report may be more or less clear but it cannot contain
lies; the liaison offi cer cannot be bribed). The second one is that agents do not observe
the communication intensities chosen by other agents directly (i.e. the agent does not see
how much effort the others put into writing their reports or into reading his reports; the
opportunity cost of sending/hosting a particular liaison offi cer is unobservable). If precisions
were observable, each agent would have at his disposal a vector of noiseless continuous
signals, which he could use to communicate his state perfectly.

The payoff of agent i is quadratic:

ui = −

dii (ai − θi)2 +
∑
j 6=i

dij (ai − aj)2 + k2
r

∑
j 6=i

rji + k2
p

∑
j 6=i

pij

 , (3)

where the term dii measures the adaptation motive, i.e. the importance of tailoring i’s
action to the local state, and the term dij represents the coordination motive, namely the
interaction between the action taken by agent i and the action taken by agent j. For the
rest of the paper we assume that the interaction terms are positive (dij ≥ 0 for all i and all
j).11

For now, we study a game where agents invest in communication before observing their
local state. Namely, the timeline is:

1. Agents simultaneously select their active and passive communication intensity vectors
(rji)j 6=i and (pij)j 6=i.

2. Agents observe their local state of the world θi.

3. Agents receive signals from other agents (yij)j 6=i.

9To keep notation simpler, we assume that the cost parameters, kp and kr, are the same for all agents
and all pairs. A straightforward extension is to let the cost parameters depend on the identity of the agent
incurring the cost or even on the identity of both sender and receiver. Theorem 1 would hold with small
modifications.
10A natural question is whether in this model speaking and listening are strategic complements. The

answer to this question is not straightforward at this stage and we postpone it to the discussion that follows
the main result: Theorem 1 on page 12).
11 In our notation, whenever a variable has two agent indices, such as yij or dij , the first index denotes

the agent that is “directly affected”, such as the receiver of a signal or the owner of the payoff.
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4. Agents select their actions ai.

We refer to this game as Γ (D,k, s), where D = (dij)i,j , k = (kr, kp) and s = (si)i.
One can think of a different timing, in which agents invest in communication after ob-

serving their local state, in which case stages 1 and 2 in the timeline above are inverted. The
timing choice depends on whether one thinks of communication investment as long-term or
short-term. Under this alternative timing, the investment in active and passive communi-
cation may depend on agents’local states. For the rest, the game is identical and we denote
it with Γθ (D,k, s). The notation is mnemonics for the fact that communication intensities
are chosen after the θ is observed. In the next section, we will discuss an equivalence result
between these two versions of the game.

The two main assumptions of our model —quadratic payoffs and normal distribution of
signals —are standard in the organizational economics literature inspired by team theory
(Marschak and Radner 1972).12 They are usually justified as limiting results. Quadratic
payoffs can be thought as second-order local approximation of any differentiable utility func-
tion.13 In our case, the normal distribution of signals can be seen, with the use of the central
limit theorem, as the limiting distribution in a scenario where information comes from many
small and independent binary pieces of information that are transmitted satisfactorily, or
otherwise are meaningless, with some probability and where the receiver averages all the
pieces he receives from a sender.

3 Communication and Decisions in Equilibrium

In this section we study how agents invest in communication and make decisions in equilib-
rium. Before stating the formal result, it is useful to provide an informal discussion of the
equilibrium structure. As mentioned in the introduction, this game has a complex array of
interaction effects.

The game is solved by backward induction. In the second stage, agents know their own
communication intensities and have a conjecture about other agents’ intensities. On the
basis of this, they use the signals they receive to choose their actions. Given the linear-
quadratic structure of the game, the optimal action for agent i is given by

Dia
∗
i (yi) = diiθi +

∑
j 6=i

dijE
[
a∗j | yi

]
(4)

In what follows we denote the sum of his interaction parameters for agent i with

Di =

n∑
j=1

dij ,

and the normalized interaction parameter between i and j as

ωij =
dij
Di
.

12See Garicano and Prat (2011) for a survey.
13While we focus in the paper on a specific form of quadratic games, with a particular adaptation-

coordination structure, our results can easily be extended to any quadratic utility function where, as below
in text, the cross-effects in individual actions would determine the interaction matrix we use.
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The first-order condition (4) is thus

a∗i (yi) = ωiiθi +
∑
j 6=i

ωijE
[
a∗j | yi

]
(5)

which contains a directly observable term (θi) and a first-order expectation.(the other
agents’actions)

Combining the first-order conditions of the form (5) generates iterated expectations.
For instance, one additional round yields

a∗i (yi) = ωiiθi +
∑
j 6=i

ωijE

ωjjθj +
∑
k 6=j

ωjkE [a∗k | yj ] | yi


which contains a directly observable term (θi), a first-order expectation on the other agents’
local states, and a second-order expectation.(the other agents’actions). The good news is
that expectations on other agents’local states can be represented in a linear form, for any
order. For instance, the first-order expectation term of i on j’s state is

i→ j : ωijE [ωjjθj | yi] = ωijωjj︸ ︷︷ ︸
second order coord. concern

× pijrij
pijsj + rijsj + pijrij︸ ︷︷ ︸ ×

information extraction

yij

The information extraction ratio is the classical formula for the expected value of an un-
observed normally distributed variable (the local state θj in this case) given an observed
normally distributed signal (the signal from j to i,, yij). In variance terms, it corresponds
to:

1
sj

1
sj

+ 1
pij

+ 1
rij

.

The ratio is decreasing in the precision of the local state, sj , and increasing in the precision
of the signal, the sum of the speaking investment rij and the listening investment pij .

In the next round, the second-order expectation term of i on k’s state, mediated by j’s
signal, is

i → j → k : ωijωjkE [E [ωkkθk | yj ] | yi]

= ωijωjkωkk︸ ︷︷ ︸
third order coord. concern

× pijrij
pijsj + rijsj + pijrij

pjkrjk
pjksk + rjksk + pjkrjk︸ ︷︷ ︸

information extraction about k

× yik

and so on...
In the proof of Theorem 1 we show that expectations converge and we can always find

an equilibrium of the form
a∗i (yi) = biiθi +

∑
j 6=i

bijyij (6)

Furthermore the b-coeffi cients are unique, and they can be characterized in a relatively
simple way as a function of the the communication intensities that are chosen in the first
stage, the p’s and the r’s.
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With these conditions in mind, we can now move to the first stage of the game, where
agents make communication investments. Recall that agent i’s loss, net of communication
costs, is given by

dii (ai − θi)2 +
∑
j 6=i

dij (ai − aj)2 (7)

If communication is poor, agent i suffers in two ways: his own action ai contains an addi-
tional noise and the other agents’actions, the aj’s, contain additional noises. By (6), we
can write

V ar (a∗i ) = b2iiV ar (θi) +
∑
j 6=i

b2ijV ar (yij) ,

which, combined with (7), implies that the marginal benefit of an investment in passive
communication pij yields expected marginal benefit Dib

2
ij and a marginal investment in

active communication rji yields dijb2ji. Given our assumptions on communication costs,
equilibrium communication intensities must be given by

pij =

√
Dibij
kp

and rji =

√
dijbji

kr
. (8)

Now, as shown in the proof, we can close the analysis by plugging equilibrium intensities
in the second stage decision coeffi cient b’s. To provide a complete characterization, we
introduce one last piece of notation:: for any pair of individuals i and j we define

hij =

ωjj if i = j

−sj
(

kp√
Di

+ kr√
dji

)
, otherwise.

Then we can show (see the Appendix for a complete proof):

Theorem 1 For any (D, s), if kr and kp are suffi ciently low, the game Γ (D,k, s) has an
equilibrium where:

(i) Decisions are given by

b·j = (I −Ω)−1 · h·j for all j;

(ii) Active communication is

rij =

√
djibij

kr
for all i 6= j;

(iii) Passive communication is

pij =

√
Dibij
kp

for all i 6= j

12



The theorem offers a simple equilibrium characterization. Conditions (ii) and (iii) cor-
respond to (8) and express each communication intensity as a linear function of just one
decision coeffi cient. It requires that kr and kp are suffi ciently low. If this condition fails,
the lower-bound constraint on communication intensities may be violated. In that case, the
equilibrium involves corner solutions, whereby some or all of the p’s and r’s are equal to the
minimal value ξ. This possibility is explored in section 5 of the Supplementary Material.
However, for any (D, s), there always exist values of kp and kr that are suffi ciently low to
guarantee an interior solution.

Condition (ij,) is based on a characterization of b that is particularly tractable because:
(a) It does not depend on communication intensities (it only depends on primitives); (b) It
can be split into n systems of equations, one for each agent; (c) It is linear; (d) It uses a
coeffi cient matrix that is the same for all n agents.

While system (i) does not contain r and p, one should not think that it captures only
decision considerations. As the presence of communication parameters kr and kp indicates,
(i) also embodies communication considerations. Specifically, each subsystem in condition
(i) determines all the coeffi cients (bij)i=1,...n that relate to decisions taken by the n agents
with respect to information originating from a certain agent j: namely, the signal yij if
i 6= j and the local state θj if i = j.

The matrix (I −Ω)−1 admits a simple interpretation. Since Ω is, by definition, a
contraction we can write

(I −Ω)−1 = I + Ω + Ω2 + Ω3 + · · · =
∑
l≥0

Ωl

The entry ωij of Ωl is the sum of all products of normalized coordination concerns of all
possible chains comprising exactly l connected agents that start with agent i and finish
with agent j. Hence, the entry ϑij of (I −Ω)−1 is based on all product chains from i to
j, comprising any number of agents. The ϑ-terms are always positive and they measure
the strength of direct and indirect coordination concerns between two agents. The matrix
(I −Ω)−1 is the same for all subsystems because the propagation of interaction effects
across agents goes through the same payoff matrix: a change in any part of j’s decision
function affects i through coeffi cient dij .

With this notation, the theorem says that the influence of agent j over agent i is deter-
mined as follows:

bij =
n∑

m=1

ϑimhmj = ϑijωjj − sj
∑
m 6=j

ϑim

(
kp√
Dm

+
kr√
djm

)
.

The influence coeffi cient bij has a positive term and n−1 negative terms. The positive term
is larger when ωjj = djj/Dj is large, namely, when the sending agent’s adaptation concern is
large compared to his coordination concerns. That shows a natural effect: if j’s adaptation
concern is strong, his action is going to be close to his local, private, information; knowing
this, agent i reacts by increasing his weight in the message he receives from j, and this
reaction is stronger the more he cares to coordinate (directly, or because other individuals
he cares about want to coordinate with j) with j —as captured by ϑij .

Each negative term of the form ϑimhmj dampens the influence of j over i and relates
to three factors: the predictability of j’s environment (sj), i’s desire to coordinate with m
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(ϑim), the cost of communication relative to the desire for coordination (
kp√
Dm

+ kr√
djm
),

which will be discussed at length in the next section.
Regarding (ii) and (iii), there is an asymmetry between the two expressions: investment

in active communication depends on one interaction parameter (dji) while investment in
passive communication depends on the sum of all parameters (Di). This asymmetry reflects
a difference in the individual benefit of learning from others and the individual benefit of
informing others. This strategic asymmetry between listening and speaking will be discussed
at length in section 4.2.

When communication cost vanishes (kp → 0, kr → 0), the Theorem predicts that all
communication precisions grow unboundedly. The vector of actions tends to a simple limit:

a∗ = (I−Ω)−1

 ω11θ1
...

ωnnθn

 ,

The robustness of the result can be probed in a number of directions. First, we can
ask what happens if, instead of assuming that communication investments are made before
learning the local states, we assume the opposite. Recall that we defined Γθ (D,k, s) as a
game that is identical to Γ (D,k, s) except that the order of the first two stages is reversed.
In Γθ, agents invest after they observe their θ. In general we would expect the set of
equilibria to be different because the incentive of agents to invest in active and passive
communication may depend on the value of their local states. This in turn could create
a signaling issue. However, we can prove that Game Γθ (D,k, s) has a perfect Bayesian
equilibrium that corresponds to the pure-strategy equilibrium of Γ (D,k, s). The intuition
for this result has to do with the assumption that payoff functions are quadratic. The choice
of ai does of course depend on the value of θi. However, the marginal benefit of additional
information is the same whether the agent knows the actual value his local state, as in Γθ,
or only its expected value, as in Γ. Strange signaling outcomes are also prevented by use of
a probability distribution with a full-support. This result is stated and proven in section 1
of the Supplementary Material.

Second, is the equilibrium in theorem 1 unique? First, the assumption that commu-
nication intensities are bounded below by ξ rather than zero prevents the existence of
equilibria based on pure mis-coordination. Second, there could be non-linear equilibria. In
the equilibrium that we describe the actions of agents are linear functions of the signals
they receive.Within this class, it is immediate to see that our equilibrium is unique. This is
a common assumption in the literature that uses the normal-quadratic approach, but, while
there are no known counterexamples, it is not obvious to show that only linear equilibria
are possible (e.g. Angeletos and Pavan (2009), Dewan and Myatt (2008)). While we cannot
prove uniqueness in our game, we can prove uniqueness in a sequence of games whose limit
is the game under consideration. In section 2 of the Supplementary Material we consider
a truncated version of our game, where agents’action are bounded below and above. We
show that this game has a unique equilibrium and that such equilibrium tends to ours as
the bound goes to infinity.

Third, one may also think that in reality communication can only occur between certain
nodes. Namely, information transmissions is impossible on certain edges of the graphs. Our
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equilibrium characterization can be modified to accommodate this additional constraint
(section 3 of the Supplementary Material).

Also note that a characterization similar to theorem 1 obtains even under different
assumptions on the structure of communication costs. For instance, rather than having
pairwise communication, we could imagine that the agents “broadcast”their signals. Thus,
each agent sustains the cost of active communication only once. This possibility is explored
in section 4 of the Supplementary Material section.

4 Complementarities in Communication and Influence

As it became apparent in the equilibrium characterization result, there are strategic com-
plementarities between active communication, passive communication and decision-making,
which arise in models with three or more agents. This section builds on Theorem 1 to explore
two aspects of these complementarities. It first studies indirect effects of the interaction
parameters on communication and decisions, namely what happens to bij , rij , and pij when
dij stays constant but other interaction parameters change. As we shall see, there are subtle
non-monotonic effects. The second part of the section focuses on ineffi ciencies arising from
the complementarity between communication and decision-making. In particular, we will
see that, when there are three or more agents, underinvestment in active communication is
particularly acute and we will argue that in real organizations, this form of ineffi ciency is
contrasted by management practices that encourage active communication.

4.1 Indirect Effects

It is easy to check that, if there are only two players, comparative statics is relatively
straightforward: an increase in the strength of the interaction parameters d12 and d21 leads
to more investment in communication between the agents. This confirms previous results
based on the presence of two agents only (Dewatripont and Tirole 2005, Dessein and Santos
2006).

However, as we mentioned earlier, how Alice influences Bob does not only depend on
the direct interaction between Alice and Bob, but potentially on all other interactions. The
analysis of indirect effects is less straightforward.

The following example —which provides a link to the sociology of labor —is the simplest
way to illustrate the kind of non-monotonic effects that can arise. Consider three agents
with the following interaction matrix

D =

 d q 1
q

q d 1
q

1 1 d

 with q ≥ 1

When q = 1, the three agents are symmetric. As q increases, a “clique”—to borrow a
term used by labor sociologists (Dalton 1959) —forms between the first two agents with the
exclusion of the third, the “outsider”.

What happens when the the exogenous link between agents 1 and 2 becomes stronger?
As 1 and 2 care less about the outsider, there is a reduction in both communication and
influence by the outsider. The effect on communication and influence in the other direction
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is instead non-monotonic. First, there is a clique insularity effect : 1 and 2 care less about
the outsider, and hence they invest less in talking to him: active communication variables
r13 and r23 decrease (figure 1a). Second, the outsider is affected by the clique reinforcement
effect. As 1 and 2 communicate and coordinate more with each other, their mutual influence
increases. The outsider realizes that 1 and 2’s local states affect each other’s actions and
he becomes even more eager to learn them. He invests more in passive communication, at
least for low values of q (figure 1b). When q is suffi ciently high, the insularity effect must
dominate. As 1 and 2 talk less and less to the outsider, the outsider begins to invest less in
listening. Therefore, the overall pattern of influence is monotonic (figure 1c).14

It is also interesting to note that the ratio between active and passive communication
is decreasing in q throughout, confirming that the presence of a stronger exogenous tie
between 1 and 2 causes an increasing imbalance between the desire of outsiders to obtain
information and the willingness of 1 and 2 to provide it.15

14The plot uses the following parameters: d = 5, s1 = s2 = s3, kp = kr = 0.01.
15Cliques can damage the agents that are excluded from them. Section 3 if the Supplementary Material

presents a three-agent example where a player is better off if communication between the other two players
is prohibited
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1a: Active Communication by Agents 1 and 2 (r13/r23)
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1b: Passive Communication by Agent 3 (p13/p23)
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1c: Influence of Agents 1 and 2 on Agent 3 (b13/b23)
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.

4.2 Underinvestment

The presence of complementarities among agents is likely to lead to ineffi ciently low invest-
ment in communication. To verify this claim, we must first define the “effi cient”benchmark,
and there are two candidates. One can compare the equilibrium outcome to the outcome
that would arise if communication intensities were chosen by a planner, while decision func-
tions were still be delegated to agents. Or one can use as a benchmark the case where
the planner is also responsible for choosing decision functions. Here, we analyze the first
case, as we are particularly interested in ineffi ciencies that derive from underinvestment in
communication.

Reconsider our baseline game Γ (D,k, s). Keep the same payoff functions ui defined in
(3), but now assume that each agent i solves

max
{b∗ij}nj=1

E [ui]

while a planner solves

max
{p∗ij}i,j ,{r∗ij}i,j

n∑
i=1

E [ui]

The planner moves first, but —as in the rest of the paper —we assume that agents do not
observe communication investments directly.16 Call this new game Γ∗ (D,k, s).

We can offer an equilibrium characterization that mirrors the one of Theorem 1:

Proposition 2 The decision network and communication network that arise in equilibrium
are given by:

b∗·j = (I −Ω)−1 · h∗·j for all j

r∗ij =

√√√√ n∑
k=1

dik +

n∑
k 6=i

dki
b∗ij
kr

for all i 6= j

p∗ij =

√√√√ n∑
k=1

dik +
n∑
k 6=i

dki
b∗ij
kp

for all i 6= j

with

h∗ij =

{
ωjj if i = j

−sj kp+kr√
Di+

∑n
k 6=j dkj

otherwise

Communication creates positive externalities that players do not internalize in the non-
cooperative game. Comparing Proposition 2 with Theorem 1, we see that there are two

16 In another conceivable version of the planner’s problem communication investments could be publicly
observable. This will generate an additional discrepancy between the baseline game and the planner’s
problem.
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channels that generate ineffi ciency. first, for any given vector of decision coeffi cients b,
communication intensity vectors r̂ and p̂ are larger in the planner’s solution, namely, for
any given pattern of influence, agents under-invest in communication. Second, the h∗ji are
smaller in the planner’s solution, meaning that there is an additional feedback effect that
goes through influence. In the planner’s solution, agents expect communication intensities
to be higher and hence they are more influenced by signals they receive. As both effects go
in the same directions, this proves the following:

Proposition 3 In the equilibrium of Γ∗ (D,k, s) all the decision coeffi cients and commu-
nication intensities are larger than in the equilibrium of Γ (D,k, s).

Now that we know that communication investment is too low, we can ask whether
underinvestment is more of a problem for active or for passsive communication. Namely,
for any directed link between two agents, is the ratio rij/pij higher in the baseline case or
when the planner chooses communication intensities? From Proposition 2 and Theorem 1,
we see that:

Proposition 4 In the planner’s solution the active/passive ratio ratio depends only on
relative cost

rij
pij

=
kp
kr
.

Instead, in the non-cooperative solution the ratio is

rij
pij

=
kp
kr

√
dji
Di

In general, we should expect Di > dji.17 For instance, if the problem is symmetric
(dij = d̄Q for all i 6= j and dii =

(
1− (n− 1) d̄

)
Q), we have

γij = d̄ for all i 6= j.

Consider the case in which active and passive communication are equally costly, i.e. kp = kr.
As d̄ < 1

n−1 , this means that the ratio between active and passive communication is bounded
above by 1

n−1 , implying that: (i) it is smaller than 1; (ii) it becomes lower as n increases.
The only case where passive communication does not have an intrinsic advantage is when
there are only two agents. Conversely, as the number of agents increases, the ratio tends to
zero.

As we mentioned after Theorem 1, there is strategic asymmetry between active and
passive communication, which favors passive communication. We will now offer a more
precise intuition for this result. consider two agents, i and j, and focus on communication

17Only in the case that agent i is particularly prominent and the interaction coeffi cient dji for another
agent j is larger than the sum of interaction coeffi cients Di that affect agent i, active communication can
be relatively more intensive than passive communication.
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from j to i, both i listening (pij) and j speaking (rij). The payoffs of the two agents, net
of communication costs, are given by

ui = −dii (ai − θi)2 −
∑
k 6=i

dik (ai − ak)2

uj = −djj (aj − θj)2 −
∑
k 6=j

djk (aj − ak)2

The signal that i receives from j, yij , affects i’s action. As our equilibrium is linear,

daij
dyij

= bij .

An increase in the precision of the signal yij increases the precision of the action aij , which
in turn is beneficial to our risk-averse agents because it eliminates unnecessary noise in the
decision. However, the expressions for ui and uj show that this effect is asymmetric. For
the receiver i, the effect is quite direct as it involves his action ai directly, and it affects all
the terms of his payoff:

duj
dyij

= Dibij .

Instead, for the sender j the effect is less direct as it does not involve his action aj directly
but just the receiver’s action:

dui
dyij

= djibij .

The asymmetry captures the idea that passive communication has a more immediate use
than active communication because the receiver can control the action directly, while the
sender must reply on the receiver’s decision.

Our results imply that organizations —and in particular firms —should look for direct
and indirect ways to incentivize communication, and in particular active communication.
Indeed, companies often boast about their culture of internal communication. Many man-
agement methods introduce protocols that require workers to set aside time to communi-
cating with other agents. A case in point is Quality Function Deployment (QFD), a quality
management method that originated in Japan and is now widely used across the world
(Akao 1990). There is direct evidence that QFD operates by increasing communication
intensity beyond hierarchical lines (Griffi n and Hauser 1992). Another example of a struc-
tured way to encourage communication is provided by the use of “quality circles”in Total
Quality Management (TQM).

It is interesting to note that management methods such as the above cited QFD place a
great emphasis on giving a voice to all team members, encouraging them to communicate
their information independent of their hierarchical position. In our set-up, this can be seen
as an attempt to reduce the cost of active communication, which, has we have just seen,
would be particularly useful to the company, especially if it is a large one.

Ichniowski and Shaw’s (1997) influential study of the effect of the adoption of human re-
sources management (HRM) practices finds a positive effect of setting up meetings between
managers and workers. Ichniowski et al (2005) considers in particular the role of commu-
nication and show that the successful adoption of innovative (and performance-enhancing)
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HRM practices requires investing in workers’connective capital. The latter, however, comes
at a cost: “these investments in connective capital can be costly —involving higher training,
screening, and information sharing costs, and potentially higher wages.”Thus it appears
that moving towards the planner’s solution requires the organization to invest in a set of
tools and practices that encourage employees to communicate.

The result that underinvestment in active communication is more severe than underin-
vestment in passive communication depends on our assumption that communication has a
pairwise nature. In our set-up, there are no economies of scale in sending signals to multiple
agents or receiving signals from multiple agents. Phone calls and site visits are good exam-
ples of pairwise costs. However, other communication modes display economies of scale on
the active side. The cost of sending an email or updating a website is almost independent
from the number of recipents or readers. However such economies of scale are mostly absent
on the passive side. As one expects, this would re-adjust the balance between active and
passive communication.18 This observation does not invalidate the result that there is a
tendency to underinvest in active communication; it just implies that the tendency can be
offset by strong economies of scale in active, but not passive, communication.

5 How Influential Is an Agent?

In this section, we use the characterization in Theorem 1 to measure the overall influence of
agents on their peers. Influence has so far only been discussed in bilateral terms: how much
does agent i influences agent j? We now ask how influential an agent is with respect to all
other agents. The global influence of agent i will capture the marginal effect of a change
in i’s local state on the other agents. The assumption that local states are independent
guarantees that influence is purely due to communication and coordination, and not to
spurious correlation between actions due to correlation between states.

The global influence of agent i, that we denote by Ii, is

Ii =
n∑
j=1

bji k = 1, . . . , n

In words, the global influence of agent i corresponds to the sum of the expected effects
of a change on the agent’s local state on all actions (including the agent’s own action).The
average action of the group conditional on the values of ~θ = (θ1, . . . , θn) is equal to19

E~θ

 1

n

∑
i

n∑
j=1

bjiyji

 =
1

n

∑
i

n∑
j=1

bjiθi =
1

n

∑
i

Iiθi

Our notion of influence is an equilibrium concept. It depends on the communication
investment and decision strategy that the players in our game choose. In this section we will
first show that our game-theoretic notion is linked to an widespread axiomatic measure of

18 In section 4 of the Supplementary Material, we modify the baseline model to allow for economies of scale
on the active communication side and we show that the ratio between active and passive communication is
approximately one.
19We define yii = θi for all i.
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centrality: eigenvector centrality. We then illustrate, through an example insipred by Dalton
(1959), how this correspondence can be used to understand and measure organizational
phenomena.

5.1 Eigenvector Centrality

As mentioned in the Introduction, eigenvector centrality displays properties that are unique
among centrality measures (Palacios-Huerta and Volij 2004) and has been applied success-
fully in search engines and citation indices. To the best of our knowledge, there exists no
game-theoretic microfoundation of eigenvector centrality.

Let us now provide a formal definition (in the remarks to Theorem 5 we will discuss
how eigenvector centrality relates to other centrality measures). Given a network described
by an n-square adjacency matrix G, let G̃ be the normalized version of the matrix, where
all the gii’s are set to zero and every element g̃ij is defined as

g̃ij =
gij∑
k 6=i gik

The eigenvector centrality index is defined as the smallest left eigenvector of matrix G̃,
namely the smallest strictly positive vector ι that solves

ι = G̃′ι (9)

Since G̃ is by definition a stochastic matrix its largest eigenvalue is equal to 1, and therefore
1 is also the largest eigenvalue of G̃′. The Perron-Frobenius Theorem ensures then that
there exists a non-negative eigenvector of G̃′ associated to this eigenvalue. The eigenvector
centrality vector is just a normalization of this vector. Note that the vector can always
be normalized so that its elements sum up to one. From now on, we always use this
normalization.

One way of understanding this definition is to see G̃ as a Markov transition matrix and
ι as its ergodic state. Imagine an object that bounces probabilistically from one node to the
other according to G̃: the value of ιi denotes the percentage of time that the object spends
on average in node i.

Another way of understanding eigenvector centrality is to think of the “importance”of
node i as defined by a weighted sum of the other nodes’“importances,”where the weights
are given by the g’s, namely

ιi =
∑
j 6=i

g̃jiιj

In other words, node i “receives”a percentage g̃ji of the importance of node j. If we repeat
this exercise for all nodes, we obtain the system (9). Thus, the vector ι is the fixed-point
of this importance-distribution procedure.

To connect eigenvector centrality to our game, fix D, s, kr and kp, and define the payoff
function:

ui = −

dii (ai − θi)2 +
1

t

∑
j 6=i

dij (ai − aj)2 + tλk2
r

∑
j 6=i

rji + tλk2
p

∑
j 6=i

pij

 ,
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where t ∈ (0,∞) and λ > 1.
For every value of the parameter t we have a well-defined instance of our game, which,

with a slight abuse of notation, we can call Γ (D, s, kr, kp, t). A decrease in t has two effects:
it reduces the relative importance of adaptation over coordination, and it reduces the cost
of communication (even faster as λ is larger than one).

For every (D, s, kr, kp), we have a definition of:

• Global influence. For every t > 0, Theorem 1 provides to a unique characterization
of the equilibrium in communication and decisions, which in turn results in a unique
vector of global influences. We let Ii (t) denote the global influence of agent i when
the parameter has value t.

• Eigenvector centrality. Let G̃ be the matrix with entries γii = 0 for all i, and γij =
dij∑
k 6=i dik

. Based on the discussion above, the eigenvector index of agent i is ιi, defined

as the i-th component of the vector that solves:

ι = G̃′ι

and that satisfies
∑

j ιj = 1. Note that this definition only makes use of the interaction
matrix D, not of s, kr, and kp.

The two notions are related by the following:

Theorem 5 As t → 0, the relative global influence of agents converges to the ratio of
eigenvector centrality indices weighted by an adaptation vs coordination ratio. Namely, for
any i and j,

lim
t→0

Ii (t)

Ij (t)
=
ιi
ιj

dii
D−i
djj
D−j

In particular, if dii = djj and D−i = D−j for all i, j ∈ N , then we obtain that

lim
t→0

Ii (t)

Ij (t)
=
ιi
ιj

Theorem 5 builds on two intermediate results. First, we show (Step 1 of the proof, see
appendix) that the global influence of an agent Ii (t) can be written as weighted sum of the
Bonacich centrality indices of all the agents, where the weight on agent i is positive and
the weights on all the other agents are negative. Bonacich centrality is based on counting
the number of paths (with appropriately weights) that reach a certain node.20 In our case
the weight of a path is the product of all the dij of the links that form the path. A node is
more central if the weighted sum of paths is larger. This first step is inspired by Ballester,
Calvo-Armengol and Zenou’s (2006) result on network games with linear-quadratic utilities,
but extends the framework to asymmetric information and endogenous communication.

20See Jackson (2010, Chapter 2) for a discussion of Bonacich centrality and eigenvector centrality and for
more bibliographical references. Confusingly, Bonacich worked on both measures and his name is associated
with both. We follow the convention, adopted by most economists, of calling Bonacich centrality the measure
used by Ballester, Calvo-Armengol and Zenou’s (2006).
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Furthermore, we shows that when communication costs go down, all the negative terms in
the weighted sum of the Bonacich centrality indices vanish and Ii (t) tends to the Bonacich
centrality of agent i. This is intuitive because when communication becomes costless our
model converges to Ballester, Calvo-Armengol and Zenou’s (2006) complete information
set-up.

Second, we show that, when the relative importance of the adaptation terms dii’s goes
to zero, the ratio between the Bonacich centralities of two agents tends to the ratio of the
eigenvector centralities of those two agents (multiplied by diiD−j

D−idjj
). The underlying idea is

that the difference between Bonacich centrality and eigenvector centrality is that the former
puts some exogenous baseline centrality on each agent. In our case, it is proportional to
their adaptation coeffi cient dii. As we let the relative importance of adaptation go to zero,
Bonacich centrality tends to eigenvecator centrality. This intermediate result is closely
related to Bonacich (1991), which establishes an asymptotic connection between Bonacich
centrality and eigenvector centrality. Bonacich’s result is extended by Golub and Lever
(2010, Theorem 3), which provides general conditions under which Bonacich centrality
converges to eigenvector centrality.

The proof, reported in the appendix, consists of five steps. The first step shows that
global influence of an agent Ii (t) can be written as weighted sum of the Bonacich centrality
indices. The second step —the most technically demanding —shows that limt→0 Ii (t) exists
and it is different from zero: there is thus a discontinuity a zero (more about that below).
Third, we show the actual statement of the theorem. Finally, we check that the non-
negativity constraints on r and p, which we abtract from in the rest of the proof, are
actually satisfied in the limit, thanks to the fact that the communication cost tends to zero
fast.

Note that the precision of agent i’s state, si, does not appear in Theorem 5. This is
because Ii measures a marginal effect. Of course, the average influence of an agent on other
agents will be greater if the precision si is lower.

Remark 6 When t = 0, Ii (t) is not well-defined. When t = 0 Theorem 1 does not
apply for two reasons. First, if all adaptation terms dii’s are zero, the matrix (I −Ω) is
singular and b’s are not well-defined, which captures the fact that agents who care only
about coordination can achieve their goals by agreeing to select all the same arbitrary action
independent of the realization of local states. Second, if kr and kp are zero, the expressions
in (ii) and (iii) of Theorem 1 are not well defined, because the agents would choose infinite
precisions.

Theorem 5 can be understood as an approximation result. When agents are much
more interested in coordinating with other agents than adapting to their own state, relative
influence can be approximated by a weighted version of the eigenvector centrality index.
To illustrate this point, consider the following numerical example. Suppose that s1 = s2 =
s3 = s4, and that the interaction matrix is given by:

D =


q 1 2 4
1 q 2 4
1 2 q 4
1 2 4 q


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As this example satisfies the condition that dii and D−i are constant across agents, we
can use the simplified version of Theorem 1. Also suppose that kr = kp = 0.001q2. For
every positive value of q, one can use Theorem 1 to compute the communication-based
global influence of each agent. The relative influence is depicted in Figure 2 below as
Ii/ (I1 + I2 + I3 + I4).

The eigenvector centrality indices can be easily computed from D:

ι1 = 0.125, ι2 = 0.208, ι3 = 0.303, ι4 = 0.363.

Figure 2 compares the eigenvector indices and the global influences for positive values
of q. As Theorem 5 predicts, when q tends to zero, the relative global influences tend to
the eigenvector indices. One can also see that the eigenvector centrality index is a good
approximation even for relatively large values of q, in fact values that are larger than any
of the other interaction parameters, like q > 1.21

21 It is interesting to note that other simple graph-theoretic measures would not perform as well. Take
for instance one of the simplest measures of the value of a node, the (relative) in-degree, namely the sum
of the strength of interactions from other agents toward a particular agent (divided by the total strength of
interaction over the graph):

IDi =

∑
j dij∑
i,j dij

The result would be
ID1 = 0.107; ID2 = 0.178; ID3 = 0.285; ID4 = 0.428,

which is a much worse approximation for for all values of q on the range.
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Figure 2: Global Influence

5.2 Influence in Hierarchical Structure

Because of its extreme tractability, the eigenvector centrality allows us to obtain simple
predictions on which agents will be more influent. Instead of trying to characterize the
comparative statics of the whole game, we can focus our attention on the eigenvector cen-
trality indices, which are computed on coordination parameters (dij)i 6=j only. Of course,
as proven in Theorem 5, these predictions are only approximately correct and the valid-
ity of the approximation depends on how strong the coordination motive is vis a vis the
adaptation motive.

The range of applications is virtually boundless. One natural question, which we can use
to illustrate the scope of the theorem, has to do with influence in hierarchies. According to
Weber (1946), effi cient bureaucracies take the form of hierarchies where influence emanates
necessarily from the top. Dalton (1959) famously showed that the Weberian view was at
odds with extensive evidence from a US chemical plant. Top managers appeared to be
less influential than mid-managers. The latter formed “cliques”with workers and exerted
the actual control on production: these arrangements were often motivated by personal
goals, but they also helped make the firm run smoothly. While these issues are complex
and deserve a more systematic treatment, our set-up yields a simple benchmark result on
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when we should expect middle managers to be more influential than top managers. We
first show that hierarchies show an intrinsic bias toward making top agents in higher tiers
more influential. We then give an example of what has to happen in order for this bias to
be overcome.

Hierarchical structures can be represented as a subclass of our games. Consider a set
of agents grouped into K levels. At level 0, there is one agent. An agent at level k has
s ≥ 2 subordinates at level k − 1. Every agent reports to exactly one superior. The agents
at level K have no subordinates. If i is a subordinate of j, then we assume that dij = 1 (a
normalization) and dji = a.22 We call the problem we have just defined a regular hierarchy
—because it looks the same at every level, except the top and the bottom.

Dalton’s non-monotonic influence cannot occur in a regular hierarchy:23

Proposition 7 For any s ≥ 2 and any 2 ≤ k ≤ K − 1, the ratio between the influence of
an agent and his superior is

Ik+1

Ik
= a.

In a regular hierarchy Dalton’s anomaly cannot arise: global influence is monotonic in
the agent’s level — increasing if a > 1 and decreasing if a < 1. Given that superiors have
many subordinates, but subordinates have only one superior, the natural assumption is that
a < 1. In fact, one might assume that an agent cares as much about his superior as the set
of his subordinates: as = 1. In that case, the influence ratio is the reciprocal of the span:

Ik+1 =
1

s
Ik.

What is the intuition for this result in terms of our non-cooperative communication and
influence game? In equilibrium, agents invest in communication mostly along hierarchical
lines. Agents will also invest in communicating laterally and skipping levels (e.g. to coor-
dinate with his superior’s action, an agent wants to know his superior’s superior’s state).
However, these investments are much lower. Hence, influence too follows hierarchical lines:
the local state of a superior affects her subordinates’decisions and the local states of infe-
riors affect their superior’s action. However, one superior affects many subordinates while
one subordinate only affects one superior. This multiplier effect determines monotonicity
in influence.

To find a situation à la Dalton where influence is non-monotonic, we abandon the as-
sumption that the hierarchy is regular. For instance, we can assume that interaction terms
22For any other two agents, we assume dij = 0. For a generic game, the presence of zero interaction

coeffi cients could lead to binding non-negativity constraints. However, in the asymptotic case under consid-
eration, the cost of communication becomes a negligible fraction of the coordination gains. As we show in
the proof of Theorem 5, nonnegativity constraints are not binding in the limit.
23This ratio does not apply at the top and at the bottom. At the bottom, monotonicity holds a fortiori.

At the top, there is a potential problem because the agent at level 0 interacts with only s agents and hence
he is at a disadvantage. For the top two levels,

I1
I0
= a+

1

s

The assumption that an agent cares equally about his superior and the set of his subordinates (as = 1)
guarantees monotonicity at the top.
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are stronger at lower levels than at higher levels. Suppose that K = 3 and s = 2. First, con-
sider a regular hierarchy where dij = 1 and dji = 1

2 for all superior-subordinate pairs. The
proposition above is confirmed: the eigenvector centrality indices increase monotonically
with the agent’s rank:

I0 = I1 =
8

48

I2 =
4

48

I3 =
1

48

Now modify the hierarchy above, by assuming that, if i belongs to k = 3 and j belongs
to k = 2, dij = 4 and dji = 2. For this irregular hierarchy, the eigenvector centrality yields:

I0 = I1 =
4

48

I2 =
5

48

I3 =
2

48

Hence, now agents at tier 2 are more influential that agents in the top two tiers.
What breaks the Weberian influence monotonicity in this example is that the two bottom

levels have strong ties to each other. They invest a lot in communicating with each other
and they influence each other. These strong ties do not extend to the top two levels and
agents at the two bottom level are not very influenced by the local states of top managers.
In Dalton’s language each level-2 manager with his two level-3 workers constitutes a vertical
symbiotic clique: a two-way tie between an offi cer and his subordinates that represents the
“most common and enduring clique in large structures”(Dalton, 1959, p.59).

The results in this section —both the proposition and the counterexample —are approx-
imations that were obtained by looking only at coordination coeffi cients of the form dij ,
with i 6= j. The analysis was much simpler than if we had tried to operate directly on the
equilibrium of the non-cooperative game. But we also know that the approximations are
valid, at least locally. For values of the adaptation coeffi cients dii and the communication
parameters k that are suffi ciently low, Theorem 1 guarantees that the relations that we
have uncovered for eigenvector centrality indices are reflected in similar relations for global
influence.

6 Conclusion

The present paper is a step towards modeling equilibrium endogenous costly information
flows among multiple agents, but much work remains to be done. Of course, it would be
interesting to know what happens beyond the normal-quadratic set-up —and to show under
what conditions the normal-quadratic is a good approximation of other settings. Other
communication structures are explored in the Supplementary Material section (broadcast-
ing and alternative communication protocols). However, it would be interesting to take a
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more general approach and perform comparative statics on communication modes, for in-
stance asking how communication and influence change when the communication technology
changes.

Does our model have the potential to be used for empirical work? What kind of data
could identify the model? Suppose that we observe the information flows among nodes of
a network (e.g. what amount of resources each firm spends for liaising with other firms)
but not the underlying interaction matrix, communication cost parameters, local state un-
certainty, or decision functions. The potential for identification is there. If the number of
agents is at least four, Theorem 1 supplies a number of restrictions that is at least as large
as the number of primitive variables to be estimated.24

A similar identification potential exists in the other formulation of the problem, which
is explored in the Appendix. This observation, although preliminary, appears to indicate
that data on information flows could be a fruitful avenue for investigating organizations
empirically, if combined with a model —not necessarily the present one —of endogenous
communication in network games (Garicano and Prat 2011).

In our paper asymmetric information flows occur as a response to asymmetric interaction
structures. However, Dessein et al (2013) show that, with different communication cost
structures, asymmetric information flows arise in symmetric situations, thus forming the
basis for a rational inattention theory of endogenous leadership.

Finally, we have considered and static setup and, although this seems a natural starting
point for our inquire, it would be interesting to analyze dynamic communication protocols
in a similar environment. Information would then come from direct communication and
from learning of the past activity of some, or all, agents in the organization. This relates
to a recent literature on social learning in networks (see for example, Bala and Goyal, 1998
and Acemoglu et al., 2008) and we plan to pursue this analysis in future research.

7 Appendix A. Proofs

Proof of Theorem 1:

Agent i’s payoff gross of communication costs is given by

ui = −

dii (ai − θi)2 +
∑
j 6=i

dij (ai − aj)2


As is well-known for quadratic games, the action that maximizes i’s expected payoff is

ai = diiθi +
∑
j 6=i

dijE [aj ] .

In the conjectured equilibrium, in the second stage of the game agent i knows that he has
chosen (r̃ji)j 6=i and (p̃ij)j 6=i (which may be different from the equilibrium values). He as-
sumes that the other agents have chosen communication intensities according to the equilib-
rium values and that they will choose actions according to the equilibrium linear strategies.
24Palacios-Huerta and Prat (2010) exploit email traffi c data within a company to compute the eigenvec-

tor centrality of individual workers and show that it predicts the workers’ success within the company as
measured in terms of rank, income, and career path.
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The optimal action is then

ai = diiθi +
∑
j 6=i

dijE

bjjθj +
∑
k 6=j

bjkyjk


= diiθi +

∑
j 6=i

dijE

bjjθj +
∑
k 6=j

bjk
(
θk + εjk + ηjk

)
The solution to this classical signal extraction problem is a linear function

ai = b̃iiθi +
∑
j 6=i

b̃ijyij

where coeffi cients are defined by

Dib̃ii = dii +
∑
j 6=i

dijbji (10)

Dib̃ij =
rij p̃ij

sjrij + sj p̃ij + rij p̃ij

∑
k 6=i

dikbkj for all j 6= i (11)

Now consider the first stage of the game. While precisions yield more compact final
expressions, the first part of this proof is more readable if we use variances. We denote by
σi = 1/si the variance of θi, ρij = 1/rij the variance of εij , and πij = 1/pij the variance of
ηij (the omission of the square sign is intentional: σ, ρ and π are variances not standard
deviations). The payoff for agent i in Γ (D,k, s) is given by

ui = −

dii (ai − θi)2 +
∑
j 6=i

dij (ai − aj)2 +
∑
j 6=i

k2
r

(
1

ρji

)
+
∑
j 6=i

k2
p

(
1

πij

) ,

Given the strategies to be used in the second stage:

−ui = dii

(b̃ii − 1
)
θi +

∑
k 6=i

b̃ik (θk + εik + ηik)

2

+
∑
j 6=i

dij

∑
k

(
b̃ik − bjk

)
θk +

∑
k 6=i

b̃ikεik +
∑
k 6=i

b̃ikηik −
∑
k 6=j

bjkεjk −
∑
k 6=j

bjkηjk

2

+
∑
j 6=i

k2
r

(
1

ρji

)
+
∑
j 6=i

k2
p

(
1

πij

)

Given the assumption that noise terms are stochastically independent, the expected payoff
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of i is:

−E [ui] = dii

(b̃ii − 1
)2
σi +

2∑
k 6=i

b̃2ik (σk + ρik + πik)

 (12)

+
∑
j 6=i

dij

∑
k

(
b̃ik − bjk

)2
σk +

∑
k 6=i

b̃2ik (ρik + πik) +
∑
k 6=j

b2jk
(
ρjk + πjk

)
+k2

r

∑
j 6=i

1

ρji
+ k2

p

∑
j 6=i

1

πij
.

By the Envelope Theorem, we can disregard effects of the form db̃ik/dρik. The first-order
conditions are:

−∂E [ui]

∂ρji
= dijb

2
ji + k2

r

(
1

ρji

)2

= 0 (13)

−∂E [ui]

∂πij
= Dib̃

2
ij + k2

p

(
1

πij

)2

= 0. (14)

Now replace precisions in (13) and (14) and combine them with (10) and (11) for all
agents to obtain a system of equations which characterize the equilibriium:

Dibii = dii +
∑
j 6=i

dijbji for all i (15)

Dibij =
rijpij

sjrij + sjpij + rijpij

∑
k 6=i

dikbkj for all i, j 6= i (16)

√
djibij

kr
= rij for all i, j 6= i (17)

√
Dibij
kp

= pij for all i, j 6= i (18)

Restrict attention to a particular i. Plugging (17) and (18) into (16), we obtain(
sj

kp√
Di

+ sj
kr√
dji

+ bij

)
Di =

∑
k 6=i

dikbkj for all j 6= i

which can be re-written as

bij −
∑
k 6=i

dik
Di

bkj = −sj

(
kp√
Di

+
kr√
dji

)
for all j 6= i. (19)

Also note that (15) can be re-written as

bii −
∑
k 6=i

dik
Di

bki =
dii
Di

(20)
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Using the definitions of ωij and hij , the system composed of (19) and (20) becomes

bii −
∑
k 6=i

ωikbki = hii

bij −
∑
k 6=i

ωikbkj = hij for all j 6= i

which in matrix notation corresponds to:

(I −Ω) b·j = h·j ,

with solution
b·j = (I −Ω)−1 · h·j .

The last expression, combined with (17) and (18), constitutes the statement of the
theorem.

Proof of Proposition 2:

The agents’best responses in the second round, given communication intensities and other
agents’strategies are the same as in the baseline case, namely (15) and (16). Instead, of
course, the first-order condition for communication intensities given the b’s has changed.
The planner solves:

− ∂

∂ρji

n∑
k=1

E [uk] =

 n∑
k=1

dik +

n∑
k 6=i

dki

(b∗ji)2 − kr ( 1

ρji

)2

= 0

− ∂

∂πij

n∑
k=1

E [uk] =

 n∑
k=1

dik +

n∑
k 6=i

dki

(b∗ij)2 − kp( 1

πij

)2

= 0

which can be re-written as

r∗ij =

√√√√ n∑
k=1

dik +
n∑
k 6=i

dki
b∗ij
kr

for all i 6= j

p∗ij =

√√√√ n∑
k=1

dik +

n∑
k 6=i

dki
b∗ij
kp

for all i 6= j

The values of h∗ are obtained by replacing p∗ and r∗ in (15) and (16).

Proof of Proposition 3:

We have that h∗ji > hji for all j 6= i and that h∗ii = hii. This immediately implies that
b∗ji > bji for all i, j and, therefore, that r∗ij > rij and p∗ij > pij for all i, j because

∑n
k=1 dik +∑n

k 6=i dki > dji and
∑n

k=1 dik +
∑n

k 6=i dki > Di.
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Proof of Theorem 5

The proof consists of five steps.

Step One

Bonacich Centrality, developed in sociology (Bonacich 1987) and applied to economics by
Ballester et al (2006) is defined as follows. Consider a network described by an n-square
adjacency matrix G, where gij ∈ [0, 1] measures the strength of the path from i to j. Define
the matrix

M (G) = [I−G]−1 .

Each element mij of the matrix M can be interpreted as a sum of the paths —direct or
indirect —leading from node i to node j. Let mij (G) be the ij element ofM .

The Bonacich centrality measure of node i is defined as

βi (G) =

n∑
j=1

mij (G) .

The centrality of node i is determined by the weighted sum of paths to all nodes that begin
in i.

Global influence and Bonacich centrality are connected by the following result:25

Lemma 8 The global influence of agent i can be expressed as a weighted sum of all the
agents’ Bonacich centrality measures, computed on Ω′ with decay factor one, where the
weights are given by the h·i

Ii =

n∑
j=1

βj
(
Ω′
)
hji.

The influence of agent i is a sum of weighted Bonacich measures, where the weights
on the agent’s own measure is positive (because hii = ωii) while all the other weights are
negative. Hence, an agent’s global influence depends positively on the centrality of that
agent and negatively on the centrality of all other agents.
Proof. From Theorem 1, we know that, for all i,

b·i = (I −Ω)−1 · h·i.
25 If we compare Lemma 8 to Ballester, Calvo-Armengol, and Zenou’s (2006) Theorem 1, there are three

differences. First, their result is based on symmetric information, while ours is based on asymmetric infor-
mation and endogenous communication. Second, their measure is a Bonacich index, while our is a weighted
sum of Bonacich indices. Third, their decay rate varies according to the model, while ours is always one.
For all these reasons, it is not easy to establish an intuitive connection between the two results.
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We can write b1i
...
bni

 =


(

(I −Ω)−1
)

11
· · ·

(
(I −Ω)−1

)
1n

...
...(

(I −Ω)−1
)
n1
· · ·

(
(I −Ω)−1

)
nn

 ·
 h1i

...
hni



=
n∑
j=1

hji


(

(I −Ω)−1
)

1j
...(

(I −Ω)−1
)
nj

 =
n∑
j=1

hji


(

(I −Ω)−1
)′
j1

...(
(I −Ω)−1

)′
jn


so that

Ii =

n∑
k=1

bki =
n∑
k=1

n∑
j=1

hji

(
(I − Ω)−1

)′
jk

=
n∑
j=1

(
n∑
k=1

(
(I −Ω)−1

)′
jk

)
hji.

If we define the G matrix in the Bonacich measure to be the transpose of the Ω matrix
used in Theorem 1 and we let a = 1, we have

M (G, a) = M
(
Ω′, 1

)
=
[
I −Ω′

]−1
=
(

[I −Ω]−1
)′

and hence
n∑
k=1

(
(I −Ω)−1

)′
jk

= βj
(
Ω′, 1

)
,

so that

Ii =
n∑
j=1

βj
(
Ω′, 1

)
hji

Step Two

For any given t the matrix Ω̃(t) is equal to

Ω̃ (t) =


0 d12

td011+
∑
j 6=1 d1j

· · · d1n
td011+

∑
j 6=2 d1j

d21
td022+

∑
j 6=2 d2j

0 · · · d2n
td022+

∑
j 6=2 d2j

...
...

. . .
...

dn1
td0nn+

∑
j 6=n dnj

dn2
td0nn+

∑
j 6=n dnj

· · · 0


Note that Ω̃(0) = G̃ (as defined in the text).
For any t > 0 the Bonacich centrality vector associated to Ω̃ (t) , that we denote β(Ω̃ (t)),

is the solution to the system (
I− Ω̃′ (t)

)
β
(
Ω̃ (t)

)
= 1
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Note that the Bonacich centrality measure is well-defined iffthe determinant of
(
I− Ω̃′(t)

)−1

is different than 0, and in such a case the solution to the previous system is

β(Ω̃ (t))=
(
I− Ω̃′(t)

)−1
1

The eigenvector centrality influence vector is related to the system(
I− Ω̃′(0)

)
x = 0

Let E be the set of solutions to this system. Since the largest eigenvalue of Ω̃′(0) is equal to
1 the set E is equal to the eigenspace of this largest eigenvalue. The eigenvector centrality
influence vector, that we denote ι is the only element in this eigenspace that satisfies the
additional normalization condition

∑n
i=1 ιi = 1.

We are going to prove the following result:

Lemma 9 The limit of tβ(Ω̃ (t)) as t tends to 0 is a strictly positive vector, i.e. all its
entries are non-negative and at least one of them is strictly positive.

Proof. Let D−i =
∑

j 6=i dij and Di(t) = td0
ii +D−i. Define Ω̂(t) as the matrix with entries

ω̂ij(t) =
dij
Di(t)

for all i, j. (The difference with respect to Ω̃ (t) is that it includes the elements
td0ii
Di(t)

in the diagonal.) Note that, by definition, Ω̂(t) is a stochastic matrix for all t. Also

define Diag(t) as the diagonal matrix diag(D1(t)
d011

, . . . , Dn(t)
d0nn

). It immediately follows that

Ω̃ (t) = Ω̂(t)− tDiag−1(t)

Hence, we obtain that

I− Ω̃ (t) = I− Ω̂(t) + tDiag−1(t)

=
(
I + tDiag−1(t)

)
I− Ω̂(t)

=
(
I + tDiag−1(t)

)
·
(
I−

(
I + tDiag−1(t)

)−1
Ω̂(t)

)
Therefore, we obtain that(

I− Ω̃ (t)
)−1

=
(
I−

(
I + tDiag−1(t)

)−1
Ω̂(t)

)−1
·
(
I + tDiag−1(t)

)−1

The matrix
(
I + tDiag−1(t)

)−1
is again a diagonal matrix, with entries equal to

(
I + tDiag−1(t)

)−1

ii
=

1

1 +
td0ii
Di(t)

=
td0
ii +D−i

2td0
ii +D−i

Each of these diagonal entries tend to 1 when t tends to 0.

The matrix
(
I + tDiag−1(t)

)−1
Ω̂ is bounded from below (entry by entry) by

(
mini

td0ii+D−i
2td0ii+D−i

)
Ω̂
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and it is bounded from above by
(

maxi
td0ii+D−i
2td0ii+D−i

)
Ω̂. Since all these matrices are non-

negative, this implies that(
I−

(
I + tDiag−1(t)

)−1
Ω̂
)−1

=
∑
k≥0

[(
I + tDiag−1(t)

)−1
Ω̂(t)

]k
is bounded from below by

∑
k≥0

(
min
i

td0
ii +D−i

2td0
ii +D−i

)k (
Ω̂(t)

)k
and bounded from above by

∑
k≥0

(
max
i

td0
ii +D−i

2td0
ii +D−i

)k (
Ω̂(t)

)k
Remember that we want to show that the limit of t (I−Ω′(t))−1 1 as t tends to 0 is a
strictly positive vector (meaning that all its entries are non-negative and at least one entry
is strictly positive). An alternative expression of this vector is

t
(
I + tDiag−1(t)

)−1 ·
(
I− Ω̂′(t)

(
I + tDiag−1(t)

)−1
)−1

1

We have proved before that
(
I + tDiag−1(t)

)−1
tends to the identity matrix, so we have to

focus on the limit of
t ·
(
I− Ω̂′(t)

(
I + tDiag−1(t)

)−1
)−1

1

We have

t

∑
k≥0

(
min
i

td0
ii +D−i

2td0
ii +D−i

)k
Ω̂k

1 ≤

≤ t ·
(
I−

(
I + tDiag−1(t)

)−1
Ω̂
)−1

1 ≤ t

∑
k≥0

(
max
i

td0
ii +D−i

2td0
ii +D−i

)k
Ω̂k

1

Since Ω̂ is stochastic, we know that Ω̂k1 = 1 for all k ≥ 0. Therefore

t

 1

1− td0min+Dmin
2td0min+Dmin

1 ≤ t ·
(
I−

(
I + tDiag−1(t)

)−1
Ω̂
)−1

1 ≤ t

 1

1− td0max+Dmax
2td0max+Dmax

1

where we define Dmin and d0
min (resp. max) as the values of D−i∗ and d

0
i∗i∗ for the i

∗ that

minimizes (resp. maximizes) td0ii+D−i
2td0ii+D−i

. If we pre-multiply all vectors by 1′ and take limits

we get that

n
Dmin

d0
min

≤ lim
t→0

t1′ ·
(
I−

(
I + tDiag−1(t)

)−1
Ω̂
)−1
· 1 ≤ nDmax

d0
max
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Given a square matrix X = (xij) we have that 1′ ·X · 1 =
∑

i,j xij =
∑

i,j xij = 1′ ·X′ · 1.

Therefore the argument above shows that the limit of t1′ ·
(
I− Ω̂′

(
I + tDiag−1(t)

)−1
)−1
·1

as t tends to 0 is also bounded from below by nDmin
d0min

and from above by nDmax
d0max

. This means

that the limit of t
(
I− Ω̂′

(
I + tDiag−1(t)

)−1
)−1
·1 is a strictly positive matrix and therefore

the limit of t · Ω̂′
(
I−

(
I + tDiag−1(t)

)−1
)−1
· 1 is a strictly positive vector, as we wanted

to show. (We are assuming here that Dmin is strictly positive; otherwise, the equilibrium
of the game would entail no communication).

Step Three

Lemma 10 The limit of tβ(t) as t tends to 0 is proportional to the eigenvector centrality
index.

Proof. Now define
S0 = {t ∈ R s.t. det

(
I− Ω̃ (t)

)
= 0}

Note that 0 ∈ S0.
We know from the previous lemma that limt→0 tβ(t) exists and is a well-defined strictly

positive vector. By definition, tβ(t) satisfies(
I− Ω̃′ (t)

)
tβ(t) = t1

for all t ∈ R\S0. We can take limits at both sides of this equation to obtain(
I− Ω̃′ (0)

)(
lim
t→0

β(t)
)

= 0

This means that the limit vector limt β̂(t) satisfies the condition that characterizes the
set E, and therefore is proportional to the eigenvector centrality vector.

Step Four

We are now ready to prove the statement of the theorem. From Lemma 8, we know that

Ii =
n∑
j=1

βj

(
Ω̃′ (t)

)
hji.

Hence

lim
t→0
Ii = lim

t→0

n∑
j=1

βj

(
Ω̃′ (t)

)
hji

=

n∑
j=1

(
lim
t→0

tβj

(
Ω̃′ (t)

))(
lim
t→0

1

t
hji

)
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In this case

hji =


dii

dii+
1
t
D−i

if i = j

−si 1
t

(
tλkp√

djj+
1
t
D−j

+ tλkr√
1
t
dij

)
, otherwise.

When j 6= i, we have limt→0
1
thji if limt→0 t

−1+λ+ 1
2 = 0, which is true because λ > 1.

Then we can write the limit of i’s influence as

lim
t→0
Ii = lim

t→0
tβj

(
Ω̃′ (t)

)
lim
t→0

1

t

dii

dii + 1
tD−i

= lim
t→0

tβj

(
Ω̃′ (t)

)
lim
t→0

dii
tdii +D−i

=
(

lim
t→0

tβi(Ω̃
′ (t))

) dii
D−i

We can now apply Lemma 3 to get the result:

lim
t→0

Ii(t)
Ij(t)

=

lim
t→0

tβi

(
Ω̃′ (t)

)
tβi

(
Ω̃′ (t)

)
 dii

D−i
djj
D−j

=
ιi
ιj

dii
D−i
djj
D−j

Step Five

Theorem 1 requires that communication costs are suffi ciently low in order to have an interior
solution. In the previous four steps we operated under the assumption that non-negativity
constraints are not binding. In this last step we vindicate that assumption by showing
that when t approaches 0 we don’t hit any boundary in the actions and communication
intensities decisions.

Lemma 11 If the non-negativity constraints on bi, r−i and p−i are not binding for t = 1,
then they are not binding for any 0 < t < t̄, for some t̄ ∈ (0, 1).

Proof. Consider

ũi (a) = −

dii (ai − θi)2 +
1

t

∑
j 6=i

dij (ai − aj)2 + tλk2
r

∑
j 6=i

rji + tλk2
p

∑
j 6=i

pij


To prove that bis does not hit a boundary condition just note that when t tends to 0

the vectors hi(t) converge to a non-negative vector for all i. Since if djk > 0 for all j 6= k
the matrix (I− Ω̃(t))−1 is strictly positive for all t ∈ (0, 1), the vector (I− Ω̃(t))−1hj(t) is
non-negative if t is close to 0.

To prove interiority of active communication decisions, we can rewrite rij for each i, j
with i 6= j as

rij(t) =

√
dji

kr
bij

= (I− Ω̃(t))−1
ij

√
dji

kr

djj
Dj
− sj

∑
l 6=j

(I− Ω̃(t))−1
il

(
kp
kr

√
dji
Dj

+ 1

)

= (I− Ω̃(t))−1
ij

√dji
kr

djj
Dj
− sj

∑
l 6=j

(I− Ω̃(t))−1
il

(I− Ω̃(t))−1
ij

(
kp
kr

√
dji
Dj

+ 1

)
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The first element (I− Ω̃(t))−1
ij tends to +∞ when t tends to 0. If λ is suffi ciently large,

the first term in the expression in brackets is positive and tends to infinity as t tends to 0,
while the second term in brackets, which is negative, is bounded below because the ratio

(I− Ω̃(t))−1
il

(I− Ω̃(t))−1
ij

is positive and bounded as a consequence of Lemma 9 and the fact that (I − Ω̃(t))−1 is a
non-negative matrix, and all its entries grow at the same rate if dij > 0 for all i 6= j.

Altogether, this proves that rij(t) tends to +∞ when t tends to 0. A similar argument
applies for the case of passive communication. This finishes the proof of the Theorem.

References

[1] Daron Acemoglu, Munther A. Dahleh, Ilan Lobel, and Asuman Ozdaglar. “Bayesian
Learning in Social Networks”Mimeo, MIT, May 2008.

[2] Yoji Akao (editor). Quality Function Development. Productivity press, 1990

[3] Ricardo Alonso, Wouter Dessein, and Niko Matouschek. “When Does Coordination
Require Centralization?”American Economic Review, 98(1), 145-179, March 2008.

[4] George-Marios Angeletos and Alessandro Pavan. “Effi cient Use of Information and
Social Value of Information.”Econometrica 75(4): 1103-1142, July 2007.

[5] George-Marios Angeletos and Alessandro Pavan. “Policy with Dispersed Information.”
Journal of the European Economic Association, 7(1): 11-60, March 2009.

[6] Kenneth J. Arrow. The Limits of Organization. Norton, 1974.

[7] Venkatesh Bala and Sanjeev Goyal. “Learning from Neighbours.”Review of Economic
Studies 65(3): 595-621, July 1998.

[8] Coralio Ballester, Antoni Calvó-Armengol, and Yves Zenou. “Who’s Who in Network.
Wanted: The Key Player.”Econometrica 74(5): 1403—1417, September 2006.

[9] Oriana Bandiera, Luigi Guiso, Andrea Prat, and Raffaella Sadun. “What Do CEOs
Do?”CEPR Discussion Paper 8235, 2011.

[10] Francis Bloch and Bhaskar Dutta. “Communication Networks with Endogenous Link
Strength.”Games and Economic Behavior, forthcoming.

[11] Patrick Bolton and Matthias Dewatripont. “The Firm as a Communication Network,”
Quarterly Journal of Economics 109, 809-839, November 2004.

[12] Phillip Bonacich. “Power and Centrality: A Family of Measures.”American Journal
of Sociology 92(5): 1170—82, March 1987.

[13] Yann Bramoullé and Rachel Kranton. “Public Goods in Networks.” Journal of Eco-
nomic Theory 135(1): 478-494, July 2007.

39



[14] Antonio Cabrales, Antoni Calvó-Armengol, and Yves Zenou (2011), "Social interac-
tions and spillovers", Games and Economic Behavior, 72, 339-360.

[15] Antoni Calvó-Armengol and Joan de Martí. “Information Gathering in Organizations:
Equilibrium, Welfare, and Optimal Network Structure.”Journal of the European Eco-
nomic Association, 7(1): 116-161, March 2009.

[16] Vincent P. Crawford and Joel Sobel. “Strategic Information Transmission.”Economet-
rica 50(6): 1431-1451, November 1982.

[17] Jacques Crémer. “Corporate Culture: Cognitive Aspects.” Industrial and Corporate
Change, 3(2): 351—386, 1993.

[18] Jacques Crémer, Luis Garicano, and Andrea Prat. Language and the Theory of the
Firm. Quarterly Journal of Economics 122(1): 373-407, 2007.

[19] Melville Dalton. Men Who Manage. John Wiley & Sons, 1959.

[20] Wouter Dessein, Andrea Galeotti, and Tano Santos. “Rational Inattention and Orga-
nizational Focus". Working paper, Columbia University 2013.

[21] Wouter Dessein and Tano Santos. “Adaptive Organizations.”Journal of Political Econ-
omy, 114(5): 956—995, 2006.

[22] Torun Dewan and David Myatt. “The Qualities of Leadership: Direction, Communica-
tion, and Obfuscation.”American Political Science Review, 102(3): 351—368, August
2008.

[23] Mathias Dewatripont and Jean Tirole. “Modes of Communication.”Journal of Political
Economy, 113(6): 1217—1238, December 2005.

[24] Peter S. Dodds, Duncan J. Watts, and Charles F. Sabel. “Information Exchange and
the Robustness of Organizational Networks,”Proceedings of the National Academy of
Sciences 100, 12516-12521, October 2003.

[25] Matthew Elliott and Benjamin Golub. A Network Approach to Public Goods. Working
Paper, Stanford University, 2013.

[26] Andrea Galeotti, Christian Ghiglino, and Francesco Squintani. Strategic Information
Transmission in Networks. Economics Discussion Papers 668, University of Essex, De-
partment of Economics. 2009

[27] Andrea Galeotti and Sanjeev Goyal. “The Law of the Few.”Working paper.

[28] Andrea Galeotti, Sanjeev Goyal, Matthew Jackson, Fernando Vega-Redondo and Leeat
Yariv. “Network Games.”Working paper, 2007.

[29] Esther Gal-Or. “Information Sharing in Oligopoly.” Econometrica, 53(2): 329-343,
1985.

40



[30] Esther Gal-Or. “Information Transmission - Cournot and Bertrand Equilibrium.”Re-
view of Economic Studies, 53(1): 85-92, 1986.

[31] Luis Garicano. “Hierarchies and the Organization of Knowledge in Production,”Jour-
nal of Political Economy 108, 874—904, October 2000.

[32] Luis Garicano and Andrea Prat. Organizational Economics with Cognitive Costs,” in
preparation for: Advances in Economics and Econometrics: Theory and Applications,
Proceedings of the Tenth World Congress of the Econometric Society, 2011.

[33] Benjamin Golub and Matthew O. Jackson. Naive Learning in Social Networks and
the Wisdom of Crowds. American Economic Journal: Microeconomics, 2(1):112-149,
February 2010.

[34] Benjamin Golub and Carlos Lever. The Leverage of Weak Ties: How Linking Groups
Affects Inequality. Working paper, Stanford University 2010.

[35] Mark Granovetter. The Strength of Weak.Ties. American Journal of Sociology 78(6):
1360-1380. May 1973.

[36] Abbie Griffi n and John R. Hauser. Patterns of Communication Among Marketing,
Engineering, and Manufacturing —A Comparison between Two New Product Teams.
Management Science 38(3): 360-373, March 1992.

[37] Roger Guimerà, Alex Arenas, Albert Diaz-Guilera, Fernando Vega-Redondo, and An-
tonio Cabrales. “Optimal Network Topology for Search with Congestion,” Physical
Review Letters 89, 248701, December 2002.

[38] Jeanne Hagenbach and Frédéric Koessler. Strategic Communication Networks. Review
of Economic Studies 77(3): 1072-1099, July 2010.

[39] Christian Hellwig and Laura Veldkamp. “Knowing What Others Know: Coordination
Motives in Information Acquisition.”Review of Economic Studies, forthcoming 2008.

[40] Yannis Ioannides “Complexity and Organizational Architecture,”mimeo Tufts Univer-
sity, 2003.

[41] Casey Ichniowski, Kathryn Shaw, Giovanna Prennushi. The Effects of Human Resource
Management Practices on Productivity: A Study of Steel Finishing Lines. American
Economic Review 87(3): 291-313, Jun., 1997

[42] Casey Ichniowski, Kathryn Shaw. Connective Capital: Building Problem-Solving Net-
works Within Firms, mimeo, Stanford University, 2005.

[43] Matthew O. Jackson. Social and Economic Networks, Princeton University Press, 2010

[44] Jacob Marschak and Roy Radner. The Economic Theory of Teams. Yale University
Press, 1972.

[45] Henry Mintzberg. The Nature of Managerial Work. New York,: Harper & Row, 1973.

41



[46] Stephen Morris and Hyun-Song Shin. “Optimal Communication.”Journal of the Eu-
ropean Economic Association, Papers and Proceedings 5, 594-602, April-May 2007.

[47] Ignacio Palacios-Huerta and Andrea Prat. “Measuring the Impact Factor of Agents
within an Organization Using Communication Patterns,” CEPR Discussion Paper
8040, October 2010.

[48] Ignacio Palacios-Huerta and Oscar Volij. “The Measurement of Intellectual Influence,”
Econometrica 72(3), 963-977, May 2004.

[49] Jagdish K. Patel and Campbell B. Read. Handbook of the Normal Distribution. Marcel
Dekker, Inc., 1996.

[50] Andrea Prat. “Should a Team Be Homogeneous?”European Economic Review (46)7:
1187-1207, 2002.

[51] Roy Radner. “The Organization of Decentralized Information Processing,”Economet-
rica 61, 1109-1146, September 1993.

[52] Michael Raith. “A General Model of Information Sharing in Oligopoly” Journal of
Economic Theory 71(1): 260-288, October 1996.

[53] Heikki Rantakari. “Governing Adaptation.”Review of Economic Studies, forthcoming.

[54] Brian Rogers. “A Strategic Theory of Network Status.”Working paper, Northwestern
University, 2008.

[55] Herbert Simon. “The Impact of Electronic Communication on Organizations.” In R.
Wolff (Ed.), Organizing Industrial Development. Berlin: Walter de Gruyter, 1986.

[56] Timothy Van Zandt. “Information Overload in a Network of Targeted Communica-
tion.”RAND Journal of Economics 35(3): 542—560, Autumn 2004.

[57] Timothy Van Zandt. “Real-Time Decentralized Information Processing as a Model
of Organizations with Boundedly Rational Agents,”Review of Economic Studies 66,
633-658, July 1999a.

[58] Timothy Van Zandt. “Decentralized Information Processing in the Theory of Organi-
zations,” in Contemporary Economic Issues, vol.4: Economic Behaviour and Design,
edited by Murat Sertel. London: MacMillan Press Ltd., 1999b

[59] Xavier Vives. “Duopoly information equilibrium: Cournot and Bertrand.”Journal of
Economic Theory 34(1): 71-94, 1984.

[60] Xavier Vives. Oligopoly Pricing: Old Ideas and New Tools. MIT Press, 1999.

[61] Max Weber. Economy and society. University of California Press, 1946.

42



Supplementary Material Not for
Publication

1 Equilibrium Equivalence

In the baseline version of the game, Γ (D,k, s), agents invest in communication before they
learn the value of their local state. In the alternative timeline, Γθ (D,k, s), mentioned
at the end of section 3, agents choose communication intensities after they observe their
local states. In this section, we show that both versions of the game have the same perfect
Bayesian equilibrium.

From Theorem 1 we know that the baseline game Γ (D,k, s) has an equilibrium in linear
decision functions

ai = biiθi +
∑
j 6=i

bijyij

we now show that the alternative version Γθ (D,k, s) has the exact same equilibrium:

Theorem 12 The games Γ (D,k, s) and Γθ (D,k, s) have the same equilibrium in linear
strategies

Proof. We are going to show that both games have perfect Bayesian equilibria which satisfy
the same four sets of conditions, which in turn correspond to the ones used in the proof of
Theorem 1:

Dibii = dii +
∑
j 6=i

dijbji for all i (21)

Dibij =
rijpij

sjrij + sjpij + rijpij

∑
k 6=i

dikbkj for all i, j 6= i (22)

√
djibij

kr
= rij for all i, j 6= i (23)

√
Dibij
kp

= pij for all i, j 6= i (24)

First, note that the second stage is identical in the two versions of the game. Agent i
knows that he has chosen (r̃ji)j 6=i and (p̃ij)j 6=i (which may be different from the equilibrium
values). He assumes that the other agents have chosen communication intensities according
to the equilibrium values and that they will choose actions according to the equilibrium
linear strategies. The first-order conditions are therefore still given by (10) and (11), which
yield (21) and (22).

The only difference in the first stage is that i chooses (r̃ji)j 6=i and (p̃ij)j 6=i after observing

1



θi. It is easy to see that the expression for the expected payoff (12) is now:

−E [ui] = dii

(b̃ii − 1
)2
θ2
i +

2∑
k 6=i

b̃2ik (σk + ρik + πik)


+
∑
j 6=i

dij

∑
k

(
b̃ik − bjk

)2
σk +

∑
k 6=i

b̃2ik (ρik + πik) +
∑
k 6=j

b2jk
(
ρjk + πjk

)
+k2

r

∑
j 6=i

1

ρji
+ k2

p

∑
j 6=i

1

πij
.

The only difference is that the term
(
b̃ii − 1

)2
σi is now

(
b̃ii − 1

)2
θ2
i . But it easy to see

that this does not affect the first-order conditions for communication intensities as that
term is separate from (r̃ji)j 6=i and (p̃ij)j 6=i. Hence the first-order conditions are unchanged,
as in (23) and (24).

This equivalence rests on two assumptions. One is that agents’ payoffs are linear-
quadratic. While agent i’s incentive to coordinate with other agents depends on his lo-
cal state of the world θi, his incentive to reduce the variance of the actions of the other
agents does not. But, as the following proof shows, it is only the latter that is affected
by unilateral deviations in communication investments. The other is that signals have full
support. While the normality assumption may not be essecntial, it is important that the
support of yij does not depend on communication investment. If it did, a deviation from
the equilibrium communication investment could be detectable, and costly signaling may
be unavoidable in equilibrium.

The question about uniqueness, which we mentioned for game Γ (D,k, s) and which we
discuss in section 2 of the Supplementary Material, is present here as well.

2 Uniqueness

One may wonder about the importance of the restriction to linear equilibria. Do Γ (D,k, s)
and Γθ (D,k, s) have equilibria where agents use strategies that are not linear in their
signals? A similar question has arisen in other games with quadratic payoff functions, such
as Morris and Shin (2002), Angeletos and Pavan (2007, 2009), Dewan and Myatt (2008),
and Calvó-Armengol and de Martí (2009).

Uniqueness in the team-theoretic setting is proven in Marschak-Radner (1972, Theorem
5).

Calvó-Armengol and de Martí (2009) show that Marschak-Radner’s line of proof extends
to a strategic setting if the game admits a potential. Unfortunately, this does not apply to
the game at hand (Γ (D,k, s) has a potential only in the special case where dij = dji for
all pairs ij).

Angeletos and Pavan (2009) prove uniqueness by showing that in their economy the set
of equilibria corresponds to the set of effi cient allocations. A similar argument is used by
Hellwig and Veldkamp (2008).

Dewan and Myatt (2008) prove uniqueness by restricting attention to strategies with
non-explosive higher-order expectations.
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For our game we can prove the following uniqueness result. Consider Γ (D,k, s) but
assume that local states and actions are bounded above and below. Namely assume that
ai ∈ [−ā, ā] and θi is distributed as a truncated normal distribution on [−kā, kā], where
k < 1. Call this new game Γā (D,k, s). We can show that, as the bound ā goes to infinity,
the set of equilibria of the game Γā (D,k, s) contains (at most) one equilibrium and that
this equilibrium corresponds to the linear equilibrium that we study here.

Consider the following variation of our game:

• payoffs are the same as before

• local information is bounded: θi ∈
[
−θ̄, θ̄

]
, with θ̄ ∈ R, follows a truncated normal

distribution26 with mean 0 and precision s.

• the set of possible actions is bounded. In particular, ai ∈ [−ā, ā] for all i, where
ā = cθ̄, for some c ≥ 1. Note that this implies that

[
−θ̄, θ̄

]
⊆ [−ā, ā].

• communication reports are defined as in text and, thus, are unbounded: yij = θi +
εij + ηij with

εij ∼ N (0, rij)

ηij ∼ N (0, pij)

Observe that as θ̄ → +∞ we converge to our initial specification of the model.

We define the following expectation operators: Ei [·] = E
[
· | θi, {yij}j 6=i

]
for every

i ∈ {1, . . . , n} .

Lemma 13 For any action profile (a1, . . . , an) we have that ωiiθi+
∑

j 6=i ωijEi [aj ] ∈ [−ā, ā]
for all i.

Proof. Just note that Ei [aj ] ∈ [−ā, ā] for all i, j. Since θi ∈
[
−θ̄, θ̄

]
⊂ [−ā, ā] and∑n

i=1 ωij = 1, the linear combination ωiiθi +
∑

j 6=i ωijEi [aj ] must be in [−ā, ā].

Lemma 14 The matrix Ω with off-diagonal entries equal to ωij and diagonal entries equal
to 0 is a contraction.

Proof. Gerschgorin theorem says that all eigenvalues of a matrix Ω are in the union of the
following sets

Fi =

λ | |λ− ωii| ≤∑
j 6=i
|ωij |

 .

In our case, ωii = 0 and
∑

j 6=i |ωij | = 1− dii
Di
, and hence all eigenvalues have absolute value

smaller than 1. This is the necessary and suffi cient condition for Ω being a contraction.

26See, for example, Patel and Read (1996).
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Proposition 15 Given θ̄, ā, and (rij , pij)i,j the game in which agents choose actions {ai}i
has a unique equilibrium.

Proof. Expected payoffs are

−Ei [ui] = dii (ai − θi)2 +
∑
j 6=i

dij
(
a2
i − 2aiE [aj ] + E

[
a2
j

])
− k2

r

∑
j 6=i

rji − k2
p

∑
j 6=i

pij .

Therefore, first order conditions with respect to actions are

−∂Ei [ui]

∂ai
= 2dii (ai − θi) + 2

∑
j 6=i

dij (ai − Ei [aj ]) = 0.

Given information sets {yi}i individual actions satisfy Kuhn-Tucker’s conditions. Thus, for
each i ∈ {1, . . . , n} either

ai = ωiiθi +
∑
j 6=i

ωijEi [aj ]

or
ai ∈ {−ā, ā} .

More precisely:

BRi (a−i) =


ωiiθi +

∑
j 6=i ωijEi [aj ] if ωiiθi +

∑
j 6=i ωijEi [aj ] ∈ [−ā, ā]

ā if ωiiθi +
∑

j 6=i ωijEi [aj ] > ā

−ā if ωiiθi +
∑

j 6=i ωijEi [aj ] < −ā

We can make use of Lemma 13 to show that, indeed,

BRi (a−i) = ωiiθi +
∑
j 6=i

ωijEi [aj ] for all i.

Hence, equilibrium conditions become

a∗i = ωiiθi +
∑
j 6=i

ωijEi
[
a∗j
]

i = 1, . . . , n. (25)

Nesting these conditions we get

a∗i = ωiiθi+
∑
j 6=i

ωijEi

ωjjθj +
∑
k 6=j

ωjkEj [a∗k]

 = ωiiθi +
∑
j 6=i

ωijωjjEi [θj ]︸ ︷︷ ︸
expectations on primitives

+
∑
j 6=i

∑
k 6=j

ωijωjkEiEj [a∗k]︸ ︷︷ ︸
strategic interdependence

(26)
The last term in this expression allows for a new level of nestedness that we obtain plugging
(25) in (26):

a∗i = ωiiθi +
∑
j 6=i

ωijωjjEi [θj ] +
∑
j 6=i

∑
k 6=j

ωijωjkωkkEiEj [θk]︸ ︷︷ ︸
expectations on primitives

+
∑
j 6=i

∑
k 6=j

∑
s 6=k

ωijωjkωksEiEjEk [a∗s]︸ ︷︷ ︸
strategic interdependence
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Observe that, again, this last interdependence term allows for adding another level of nest-
edness, and that we can keep repeating this nestedness procedure up to any level. In
particular, if we repeat this l times we obtain the following expression

a∗i = ωiiθi +
∑
k 6=i

ωikωkkEi [θk] + · · ·+
∑
i1 6=i

∑
i2 6=i1

· · ·
∑

il 6=il−1

∑
k 6=il

ωi,i1 · · ·ωil,kωkkEiEi1 · · ·Eil [θk]︸ ︷︷ ︸
expectations on primitives

(27)

+
∑
i1 6=i

∑
i2 6=i1

· · ·
∑

il 6=il−1

∑
k 6=il

∑
s 6=k

ωi,i1 · · ·ωil,kωksEiEi1 · · ·EilEk [a∗s]︸ ︷︷ ︸
strategic interdependence

where, i1, . . . , il are indices that run from 1 to n.
We want to show that as l → +∞ this expression converges and, therefore, that the

equilibrium is unique. We are going to show this in two steps:

(i) first, we are going to show that the limit when l → +∞ of expectations on primi-
tives is bounded above and below; this ensures that the expression of expectations on
primitives is well-defined at the limit;

(ii) second, we are going to show that the expression of strategic interdependencies van-
ishes when l→ +∞.

The proof of both steps relies on Lemma 14.
To prove (i), first note that all expectations Ei [θk] , EiEj [θk] , . . . , EiEi1 · · ·Eil [θk] are

bounded above by θ̄ and bounded below by −θ̄. Then, the expression∑
k 6=i

ωikωkkEi [θk]+
∑
j 6=i

∑
k 6=j

ωijωjkωkkEiEj [θk]+· · ·+
∑
i1

· · ·
∑
il

∑
k 6=il

ωi,i1 · · ·ωil,kωkkEiEi1 · · ·Eil [θk]

is bounded above by

θ̄

∑
k 6=i

ωikωkk +
∑
j 6=i

∑
k 6=j

ωijωjkωkk + · · ·+
∑
i1

· · ·
∑
il

∑
k 6=il

ωi,i1 · · ·ωil,kωkk


and bounded below by

−θ̄

∑
k 6=i

ωikωkk +
∑
j 6=i

∑
k 6=j

ωijωjkωkk + · · ·+
∑
i1

· · ·
∑
il

∑
k 6=il

ωi,i1 · · ·ωil,kωkk

 .

We can apply now the following result: the entry (i, j) of Ωl, that we denote ω[l]
ij , is

equal to
∑

i1
· · ·
∑

il−1
ωi,i1ωi1,i2 · · ·ωil−2,il−1ωil−1,j . Hence

∑
k 6=i

ωikωkk +
∑
j 6=i

∑
k 6=j

ωijωjkωkk + · · ·+
∑
i1

· · ·
∑
il

∑
k 6=il

ωi,i1 · · ·ωil,kωkk = ωkk

l∑
j=1

ω
[j]
ik

5



The element
∑l

j=1 ω
[j]
ik is the (i, k) entry of the matrix

∑
1≤j≤l Ω

j . A suffi cient condition
for the infinite sum

∑
j≥1 Ωj to converge is that Ω is a contraction. Thus, by Lemma

14, ωkk
∑l

j=1 ω
[j]
ik is bounded when l → +∞ and hence the expression of expectations on

primitives is bounded too. This proves (i).
To prove (ii), first note that, trivially, EiEi1 · · ·EilEk [a∗s] is bounded above by ā and

below by −ā. Hence the expression∑
i1

· · ·
∑
il

∑
k 6=il

∑
s 6=k

ωi,i1 · · ·ωil,kωksEiEi1 · · ·EilEk [a∗s]

is bounded above by
ā
∑
i1

· · ·
∑
il

∑
k 6=il

∑
s 6=k

ωi,i1 · · ·ωil,kωks

and below by
−ā
∑
i1

· · ·
∑
il

∑
k 6=il

∑
s 6=k

ωi,i1 · · ·ωil,kωks.

Then, since
∑

i1
· · ·
∑

il

∑
k 6=il

∑
s 6=k ωi,i1 · · ·ωil,kωks =

∑
s 6=k ω

[l+1]
is and ω[l+1]

is → 0 when

l → ∞ for all s = 1, . . . , n,27 we can ensure that
∑

s ω
[l+1]
is → 0 when l → ∞. Therefore,

the upper and lower bounds of the strategic interdependencies term tend to 0 when l→∞.
This proves (ii).

Note that this proof does not require normality in our structure of communication
reports. Any other information structure would do not change the uniqueness result. Of
course, it would change the shape of this equilibrium.

Proposition 16 The unique equilibrium of the game when θ̄ → +∞ (and, therefore, ā →
+∞ too) is linear.

Proof. The previous proposition states that the equilibrium for any given θ̄ and ā is given
by

a∗i = lim
l→+∞

ωiiθi +
∑
k 6=i

ωikωkkEi [θk] + · · ·+
∑
i1

· · ·
∑
il

∑
k 6=il

ωi,i1 · · ·ωil,kωkkEiEi1 · · ·Eil [θk]

 .

(28)
We have to compute explicitly the expectations in the previous expression when θ̄ →

+∞. Observe that when θ̄ → +∞ all θis probability distributions tend to the normal
distribution with mean 0 and precision s. Bayesian updating with normal distributions
takes a simple linear form. To be more precise, in our setup, since the mean of all prior
distributions is equal to 0, we have that

Ei [θj ] = αijyij for all i 6= j

Ei [yjk] = βijkyik for all k 6= i 6= j 6= k

27This is, precisely, because
∑
l≥1Ω

l converges.

6



with αij ∈ [0, 1] and βijk ∈ [0, 1] being constants that depend on the precisions (rij , pij)i,j
chosen in the first stage of the game. Observe that this immediately implies that also higher-
order expectations EiEi1 · · ·Eil [θk] are linear in {yij}j 6=i. In particular, EiEi1 · · ·Eil [θk] =

ϕ
[l]
ikyik where ϕ

[l]
ik is a product of one α (in particular, of αil,k) and l − 1 different βs. Note

that ϕ[l]
ik ∈ [0, 1] for all i, k, l. Therefore

a∗i = ωiiθi +
∑
k 6=i

ωkk

+∞∑
l=1

ϕ
[l]
ikω

[l]
ikyik for all i. (29)

To show that this expression is well-defined we proceed as in the proof of Proposition
15. The expression

∑+∞
l=1 ϕ

[l]
ikω

[l]
ik is bounded below by 0 and above by

∑+∞
l=1 ω

[l]
ik. This last

infinite sum is the entry (i, k) of the matrix
∑

l≥1 Ωl that is well-defined because Ω is a
contraction. Thus, we conclude that the expression in (29) is well-defined for all players

and linear in
(
θi, {yij}j 6=i

)
for each i ∈ {1, . . . , n} .

3 Precluding Communication and Transfers

In this appendix we intend to demonstrate the existence of a strategic effect due to indirect
interactions between agents. For example, an agent can inhibit a communication channel
by paying some monetary transfer to the agents that would be involved in it. In this section
we illustraet this point with a simple three-agent numerical example.

Consider an organization formed by three agents with interaction matrix

D =

0.3 0.3 1
0.3 0.3 1
1 100 1


and such that si = 0.1 for all i, kp = kr = 0.01. Agents 1 and 2 occupy an equivalent position
inside the organization, and they want primarily to coordinate with agent 3. Instead, agent 3
shows a severe coordination motive with agent 2, compared with any other payoffexternality.

When considering unrestricted communication, as we do in text, the final utilities of
each agent are

u1 = −7. 034 6, u2 = −3. 593 2, u3 = −17. 789.

If, instead, we consider a setup with inhibited communication in which agents 1 and 2
can not communicate with each other, some algebra shows that agents’utilities under this
communication restriction are

u1 = −11. 446, u2 = −6. 129 7, u3 = −16. 267.

Comparing utilities in both cases, one immediately observes that agent 3 benefits from
inhibited communication in the communication lines among agents 1 and 2, while the first
two agents are worse off. This suggests that there is room in this model to analyze monetary
transfers among agents to limit information transmission. Of course, this would raise other
strategic considerations, such as the enforcement of the agreements.
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4 Broadcasting

In our baseline game, communication is essentially bilateral. In particular, investments in
active communication are link-specific. While this is true in certain circumstances, in other
cases there may be economies of scale in active communication. here we consider the polar
opposite, where the investment in active communication that an agent makes affects all his
links equally.

Each agent chooses a unique ri, a common precision for active communication with all
other players. This can be understood as an approximation to the analysis of broadcasting.
When an agent broadcasts a signal, its quality is the same for all agents. Of course passive
communication is still individually chosen. This could be the case of e-mail lists, where the
sender is allowed to send a unique message to the organization as a whole, and it is at the
discretion of each one of the receivers to attend to it. In our model, when the agent chooses
the precision ri, he determines the possible ambiguity in the message: if the signal is very
precise, everybody is going to receive essentially the same common signal; if the signal is
very noisy, the receiver needs to exert a high effort to decode this message.

Before proceeding to present and prove the characterization of the equilibrium in the
broadcasting case we need to introduce additional notation. Given a vector λ·i Let

gji (λ·i) =

 ωii if i = j

−si
(

kp√
Dj

+ kr
λij

)
otherwise

With this notation in mind, we can prove a variant of Theorem 1 for the broadcasting
case:

Proposition 17 For any (D, s), if kr and kp are suffi ciently low, the game Γ̃ (D,k, s) has
a unique pure-strategy equilibrium:

(i) Decisions are given by

b·j = (I −Ω)−1 · g·j(λ·j) for all j;

where λ·j is an endogenously determined vector with positives entries that satisfy
∑

k 6=j djkb
2
kj =

λ2
ijb

2
ij

(ii) Active communication is

ri =
λijbij
kr

for all j;

(iii) Passive communication is

pij =

√
Dibij
kp

for all i 6= j

8



Proof. If agent i chooses a unique ρi, the set of first-order conditions is equal to

−1

2

∂E [ui]

∂bii
= dii (bii − 1)σi +

∑
k 6=i

dij (bii − bji)σi = 0

−1

2

∂E [ui]

∂bij
= diibij

(
σj + ρj + πij

)
+
∑
k 6=i

dik
(
(bij − bkj)σj + bijρj + bijπij

)
= 0

−∂E [ui]

∂ρij
=

∑
j 6=i

dijb
2
ji + k2

r

(
1

ρi

)2

= 0

−∂E [ui]

∂πij
= Dib

2
ij + k2

p

(
1

πij

)2

= 0.

This set of first-order conditions is equivalent to

Dibii = dii +
∑
k 6=i

dijbji (30)

Dibij =
σj

σj + ρj + πij

∑
k 6=i

dikbkj (31)

√∑
k 6=i dikb

2
ki

kr
= ri (32)

√
Dibij
kp

= pij (33)

Since
rjpij

sjrj + sjpij + rjpij
=

σj
σj + ρj + πij

condition (31) becomes

Dibij =
rjpij

sjrj + sjpij + rjpij

∑
k 6=i

dikbkj

By permuting i and j in this last expression, we get

Djbji =
ripji

siri + sipji + ripji

∑
k 6=i

djkbki (34)

Since √∑
k 6=i dikb

2
ki

kr
= ri

we can define an endogenous value λji such that
√∑

k 6=i dikb
2
ki = λjibji for each j 6= i. In

particular, it is the unique positive number such that
∑

k 6=i dikb
2
ki = λ2

jib
2
ji. Then, the first

order condition associated to ρi can be rewritten as

λjibji
kr

= ri
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for any j 6= i. Plugging this expression and (33) in (34), we get that

bji −
∑
k 6=i

wjkbki = −si

(
kp√
Dj

+
kr
λji

)
for all i

or, equivalently, in matrix form

b·i = (I−Ω)−1 · g(λ·i)

Observe that the main difference in the equilibrium action of the broadcasting case as
compared with that of Theorem 1 is the change from the vector h to the vector g(λ·i). The
matrix that relates these vectors with the equilibrium actions b remains the same in both
cases.

A natural question that arises with the analysis of this new communication protocol is
whether we should expect that agents engage in more active communication than before or
not. The following result gives us an answer in terms of the ratio of passive versus active
communication already considered in a previous section.

Proposition 18 In the symmetric case, in which dij = d̄Q for all i 6= j and dii =(
1− (n− 1) d̄

)
Q, for some Q > 0, the ratio of passive versus active communication is

kp
kr

√
(n− 1) d̄.

Proof. Because of symmetry, for all pairwise different i, j, k we have that bji = bki = b∗.
Therefore,

λji =

√∑
k 6=i

dik =
√

(n− 1) d̄Q

This implies that √
(n− 1) d̄Qb∗

kr
= ri

√
Qb∗

kp
= pij

The ratio between active and passive communication in this case is

ri
pij

=
kp
kr

√
(n− 1) d̄Q

Q
=
kp
kr

√
(n− 1) d̄

Again, when active and passive communication are equally costly, i.e. kp = kr, the
upper bound for this ratio is 1. Observe also, that the ratio in the case of broadcasting
does not necessarily decreases when n increases. When d̄ = 1

n , we obtain that the ratio
of active versus passive communication is

√
(n− 1) /n. In that case ri

pij
tends to 1 when

n is large. In clear contrast with the case of pairwise communication, active and passive
communication are almost equal when the number of agents is large.
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5 Corner Solutions

It is natural to assume that communication intensities cannot be negative. In fact, we
assume a small but positive lower bound ξ, to prevent equilibria based on coordination
failure. The equilibrium characterization in Theorem 1 rests on the assumption that the
communication cost parameters, kp and kr, are suffi ciently low to guarantee that the lower
bound ξ is non-binding and the equilibrium can be described by unconstrained first-oreder
conditions.

This section allows some or all of the lower-bound constrainsts to be binding. As one
would expect, the solution of the unconstrained case can be extended with Kuhn-Tucker
conditions. The resulting set of conditions is more complex than the baseline case, but still
tractable —a fact that we illustrate through a numerical example.

We have to include formally in the analysis the inequality constraints

pij ≥ ξ for all i 6= j

rij ≥ ξ for all i 6= j

The relevant terms in the Lagrangian that incorporates i ’s ex-ante expected utility and
the restrictions are:

ûi = −Di

∑
j 6=i

b2ijπij −
∑
j 6=i

dijb
2
jiπji − k2

p

∑
j 6=i

pij − k2
r

∑
j 6=i

rji −
∑
j 6=i

λij (ξ − pij)−
∑
j 6=i

µji (ξ − rji)

= −Di

∑
j 6=i

b2ij(
1

sj
+

1

pij
+

1

rij
)−

∑
j 6=i

dijb
2
ji(

1

si
+

1

pji
+

1

rji
)

− k2
p

∑
j 6=i

pij − k2
r

∑
j 6=i

rji −
∑
j 6=i

λij (ξ − pij)−
∑
j 6=i

µji (ξ − rji)

where λij and µij are the multipliers for the constraint that involve pij and and rij ,
respectively. It follows from the Kuhn-Tucker conditions that

Dib
2
ij

1

ξ2 ≤ k
2
p

whenever p∗ij = ξ, and

dijb
2
ji

1

ξ2 ≤ k
2
r

whenever r∗ji = ξ. Otherwise both inequalities become equalities, and we are in the case
considered in the main text, where all communication precisions are strictly larger than ξ.
We provide below suffi cient conditions for this latter case.

For each channel, from individual j to individual i, there are four different possibilities
depending on whether pij and/or rij are greater or equal than ξ. However, first-order
conditions at the second stage of the game determine that, in any case, the system of
equations that relates the bs is given by

bik =
pikrik

pikrik + sipik + sirik

∑
j 6=i

ωijbjk

11



First of all, we are going to check that the relation between bs that results from the four
different combinations of active and passive communication is in all cases linear. We know
it for the case where both precisions are strictly larger than ξ.

If pik = ξ and rik > ξ we have that

bik =
ξ
√
dki
kr

bik

ξ
√
dki
kr

bik + siξ + si
√
dki
kr

bik

∑
j 6=i

ωijbjk

which after some rearrengement is equal to

bik = −si
ξ

ξ + si

kr√
dki

+
ξ

ξ + si

∑
j 6=i

ωijbjk

This again provides a linear relation.
When pik > ξ and rik = ξ we have that

bik =
ξ
√
Di
kp
bik

ξ
√
Di
kp
bik + siξ + si

√
Di
kp
bik

∑
j 6=i

ωijbjk

which leads to

bik = −si
ξ

ξ + si

kp√
Di

+
ξ

ξ + si

∑
j 6=i

ωijbjk

Again, we end up with a linear relation between the b·k terms.
Finally, if both pik and rik are exacly equal to ξ then

bik =
ξ

ξ + 2si

∑
j 6=i

ωijbjk

which is clearly linear in the entries b·k.
We can gather all these different types of linear relations in a single compact matrix-form

expression. Formally, to check for corner equilibria we have to proceed as follows:

• according to the four different combinations, we can distinguish four types of commu-
nication links: Bidirectional (where both precisions are strictly larger than ξ), Only
Active (where just the active precision of the communication link is strictly larger
than ξ), Only Passive (where just the passive precision of the communication link is
strictly larger than ξ),and Mute (where both are equal to ξ);

• after some rearrangement, if necessary and wlog, we can rewrite the system in blocks
as follows:

bB·k
bOA·k
bOP·k
bM·k

 =


I − ΩB,B −ΩB,OA −ΩB,OP ΩB,M

− ξ
ξ+sΩOA,B I − ξ

ξ+sΩOA,OA − ξ
ξ+sΩOA,OP − ξ

ξ+sΩOA,M

− ξ
ξ+sΩOP,B I − ξ

ξ+sΩOP,OA I − ξ
ξ+sΩOP,OP − ξ

ξ+sΩOP,M

− ξ2

ξ2+2siξ
ΩM,B − ξ2

ξ2+2siξ
ΩM,OA − ξ2

ξ2+2siξ
ΩM,OP I − ξ2

ξ2+2siξ
ΩM,M


−1

·h·k
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where individuals are partitioned according to the communication decisions between
themselves and individual k. The entries of hjk are the same ones as in the interior
case considered in the main text for the Bidirectional, −si ξ

ξ+si
kr√
dki
if the link is Only

Active, −si ξ
ξ+si

kp√
Di
if the link is Only Passive, and 0 if ij is Mute.

• If the solution to the system satisfies the Kuhn-Tucker inequality conditions for the
Only Active, Only Passive and Mute cases we have presented above, then we have
found a corner equilibrium.

We now provide an example of a network that generates a corner equilibrium.

Consider the following network
1↔ 2↔ 3

where coordination concerns are given by d12 = d32 = β, d21 = d23 = γ, and d13 = d31 = 0.
The adaptation concerns are d11 = d22 = d33 = 1. Intuitively, if Player 2 has strong interests
in coordinating with other players but Players 1 and 3 have little interest in coordinating
with each other, it seems that there should exist an equilibrium where only Player 2 invests
in passive communication and nobody else invests in communication, meaning that they fix
all their communication decisions to ξ. Let’s see...

• With regards to agent 2, consider communication with agent 1: (the case with 3 would
be symmetric) in this case 2 is passive and 3 is mute.

 b11

b21

b31

 =

 1 − β
1+β 0

− ξ
ξ+s

γ
1+2γ 1 − ξ

ξ+s
γ

1+2γ

−0 − ξ2

ξ2+2siξ
β

1+β 1


−1

1
1+β

−s ξ
ξ+s

kr√
1+2γ

0



If kr = kp = 1, β = 0.1, γ = 1, ξ = s = 0.5 b11

b21

b31

 =

 1 −0.1
1.1 0

−1
6 1 −1

6
−0 −1

3
0.1
1.1 1

−1 1
1.1

−0.5
2

1√
3

0

 :

 0.909 76
7. 325 6× 10−3

2. 219 9× 10−4


Now for individual 2: in this case, nobody speaks or listens to him. All are mute. The

system is very simple:

 b12

b22

b32

 =

 1 −1
3

β
1+β 0

− γ
1+2γ 1 − γ

1+2γ

−0 −1
3

β
1+β 1


−1 0

1
1+2γ

0


In the numerical case considered before, this becomes
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 b12

b22

b32

 =

 1 −1
3

0.1
1.1 0

−1
3 1 −1

3
−0 −1

3
0.1
1.1 1

−1 0
1
3
0

 =

 1. 030 9× 10−2

0.340 21
1. 030 9× 10−2


The case for Player 3 is symmetric to Player 1.
The inequality Kuhn-Tucker conditions are

Dib
2
ij

1

ξ2 ≤ k2
p whenever p∗ij = ξ

dijb
2
ji

1

ξ2 ≤ k2
r whenever r∗ji = ξ

Given the numbers above, these are equivalent to

Dib
2
ij ≤ 0.25 whenever p∗ij = ξ

dijb
2
ji ≤ 0.25 whenever r∗ji = ξ

In particular, these apply to p12 :

1.1
(
1. 030 9× 10−2

)2 ≤ 0.25

(this one holds).
Also apply to p13 :

1.1
(
2. 219 9× 10−4

)2 ≤ 0.25

(this one also holds)
It should not hold for agent 2:

3 (0.909 76)2 > 0.25

(ok).
And apply to all active, since we are assuming the only communication larger than ξ is

that 2 passively communicates with the others:

dijb
2
ji

1

ξ2 ≤ k
2
r

With relations between 1 and 3 it is clear because d13 = d31 = 0. Between 1 and 2:
r21 : 0.1 (0.909 76)2 ≤ 0.25 (ok)
r12 : 1

(
1. 030 9× 10−2

)
≤ 0.25 (ok)

Therefore, all inequalities in the example above work and we get a case with a corner
equilibrium.
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6 Adaptation, Coordination, and Communication

At least since Marschak and Radner (1972), organizational economics has highlighted the
tradeoff between adaptation and coordination. On the one hand, agents want to adapt to
local information. On the other one, they want to coordinate with the rest of the agents.
One of the advantages of the quadratic set-up adopted by mosty team-theoretic work is that
the relative strength of coordination and adaptation is represented in a simple parametric
way and can be used for comparative statics purposes (e.g Dessein and Santos 2006).

A natural question in our setting is how communication investment varies with the
relative importance of adaptation and coordination. As we shall see, the relation is non-
monotonic: communication is maximal when the two concerns are balanced.

In our model, adaptation and coordination concerns are captured, respectively, by dii
and dij (with i 6= j). We can thus analyze how different weights on these two concerns
affect communication and influence. As we shall see, the relation is non-monotonic. Define
d′ii = λdii and d′ij = (2− λ) dij for all j 6= i. Observe that:

• If λ → 0 then d′ii → 0 and d′ij → 2dij ≥ 0, and d′ii
d′ij
→ 0. Coordination outweighs

adaptation.

• if λ = 1 we have the initial vector of i’s interaction terms d.

• If λ→ 2 we obtain d′ii = 2dii > 0 and d′ij → 0, and d′ii
d′ij
→ +∞. Adaptation outweighs

coordination.

Proposition 19 If λ→ 0 or λ→ 2 agent i does not engage in active communication, and
no agent passively communicates with him, i.e. rji = pij = ξ for all j.

Proof. (i) If λ = 0 then ωii = 0, and this immediately implies that we hit a boundary
equilibrium in which bji = 0 for all j. This implies that agent i is not going to put effort
in actively communicating with agent j, and that agent j is not going to exert any kind of
effort in passive communication to learn about agent i’s state of the world.

(ii) If λ → 2 the matrix Ω tends to Ω′, where Ω′ is equal to Ω except that row i’s
entries in Ω′ are equal to 0. Also

h′ji =

 w′ii → 1 if i = j

−si
(

kp√
Dj

+ kr√
d′ij

)
→ −∞ otherwise

It is easy to see that the non-negative matrix (I −Ω′)−1 satisfies that all entries in row
i are also equal to 0, except for (I −Ω′)−1

ii = 1. Hence, following our equilibrium charac-
terization, the elements b′ji would satisfy that, when λ → 2, b′ii → 1 and b′ji → −∞ if
j 6= i. But this implies that we hit an equilibrium in the boundary that satisfies b′ji = 0
for all j 6= i. Therefore, again there is neither passive communication by agent j nor active
communication by agent i.

The reasons why communication vanishes when we approach the two extreme situa-
tions is different in each case. When coordination motives outweigh the adaptation motive,
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communication engagement is null because there is a natural focal point that resolves co-
ordination problems: agents, according to prior information, fix their actions to be 0. This
trivially resolves coordination and does not affect the decision problem that right now is of
negligible magnitude. Local information is unnecessary.

On the other hand, when adaptation outweighs coordination, agents primarily want
to resolve their respective local decision problems. The obvious way is to determine their
action close to the local information they possess.

16


