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This paper is devoted to the design of communication and memory architectures of massively parallel hardware multiprocessors
necessary for the implementation of highly demanding applications. We demonstrated that for the massively parallel hardware
multiprocessors the traditionally used flat communication architectures and multi-port memories do not scale well, and the
memory and communication network influence on both the throughput and circuit area dominates the processors influence.
To resolve the problems and ensure scalability, we proposed to design highly optimized application-specific hierarchical and/or
partitioned communication and memory architectures through exploring and exploiting the regularity and hierarchy of the
actual data flows of a given application. Furthermore, we proposed some data distribution and related data mapping schemes in
the shared (global) partitioned memories with the aim to eliminate the memory access conflicts, as well as, to ensure that our
communication design strategies will be applicable. We incorporated these architecture synthesis strategies into our quality-driven
model-based multi-processor design method and related automated architecture exploration framework. Using this framework,
we performed a large series of experiments that demonstrate many various important features of the synthesized memory and
communication architectures. They also demonstrate that our method and related framework are able to efficiently synthesize
well scalable memory and communication architectures even for the high-end multiprocessors. The gains as high as 12-times
in performance and 25-times in area can be obtained when using the hierarchical communication networks instead of the flat
networks. However, for the high parallelism levels only the partitioned approach ensures the scalability in performance.

1. Introduction

The recent spectacular technology has enabled implemen-
tation of very complex multi-processor systems on single
chips (MPSoCs). Due to this rapid progress, the computa-
tional demands of many applications, which required hard-
ware solutions in the past, today can be satisfied by soft-
ware executed on micro-, signal-, graphic-, and other proces-
sors. However in parallel, new highly demanding embedded
applications are emerging, in fields like communication and
networking, multimedia, medical instrumentation, monitor-
ing and control, military, and so forth, which impose
stringent and continuously increasing functional and para-
metric demands. The demands of these applications cannot
be satisfied by systems implemented with general-purpose
processors (GPPs). For these highly demanding applications,

increasingly complex and highly optimized application-
specific MPSoCs are required. They have to perform real-
time computations to extremely tight schedules, while satis-
fying high demands regarding the energy, area, cost, and
development efficiency. High-quality MPSoCs for these ap-
plications can only be constructed through usage of efficient
application-specific system architectures exploiting more
adequate concepts of computation, storage, and communica-
tion, as well as usage of efficient design methods and elec-
tronic design automation (EDA) tools [1].

Some of the representative examples of these highly de-
manding applications include the based-band processing in
wired/wireless communication (e.g., the upcoming 4G wire-
less systems), different kinds of encoding/decoding in com-
munication, image processing and multimedia, 3D graphics,
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ultrahigh definition television (UHDTV), encryption appli-
cations, and so forth. These applications require to perform
complex computations with a very high throughput, while
at the same time demanding low energy and low cost. The
decoders of the low density parity check (LDPC) codes [2],
adopted as an advance error-correcting scheme in the newest
wired/wireless communication standards, like IEEE 802.11n,
802.16e/m, 802.15.3c, 802.3an, and so forth, for applications
as digital TV broadcasting, mm-wave WPAN, and so forth,
can serve as a representative example of such applications.
These standards specify ultrahigh throughput figures in the
range of Gbps and above [3] that cannot be achieved using
general-purpose processors (GPPs), digital signal processors
(DSPs) [4], or general-purpose graphic processing units
(GPGPUs) [5]. For example, an execution of LDPC decoding
on the famous Texsas Instruments TMS320C64xx DSP
processor running at 600 MHz delivers a throughput of only
5 Mbps [4]. Similarly, implementations of LDPC decoders
on the multicore architectures result in throughputs in the
order of 1∼2 Mbps on the general-purpose x86 multicores,
and ranging from 40 Mbps on the GPU to nearly 70 Mbps
on the CELL broadband engine (CELL/B.E) as reported in
[5]. For the realization of the throughput as high as several
Gbps, massively parallel hardware multiprocessors are indis-
pensable.

Traditional hardware accelerator design approaches are
focused on an effective design of data processing modules,
without adequately taking into account the memory and
communication structure design [6]. However, for the appli-
cations that require massively parallel hardware implemen-
tations, the effectiveness of communication and memory
architectures and the compatibility of the processing, mem-
ory, and communication subsystems play the decisive role.
As we will demonstrate in this paper, the communication
architectures cannot be designed as simple flat homogenous
networks and the memory as a simple (multi-port) memory.
The communication network among the processors or pro-
cessors and memories has a dominating influence on all
the most important physical design aspects, such as delay,
area, and power consumption. The additional performance
gains expected from an increased parallelism will end up in
diminished returns, when exploding the interconnect com-
plexity. Therefore, all the architectural as well as the data
and computation mapping decisions regarding the memories
and processors have to be made in the context of the com-
munication architecture design to actually boost the perfor-
mance. For the massively parallel hardware accelerators, the
problem of how to keep up with the increasing processing
parallelism while ensuring the scalability of memory and
communication is a very challenging design problem. To our
knowledge, it has not been addressed satisfactorily till now.

This paper is devoted to the design of communication
and memory architectures of application-specific massively
parallel hardware multiprocessors. First, it discusses the
communication and memory-related design issues of such
multiprocessors. Analysis of these issues resulted in ade-
quate architecture concepts and design strategies for their
solutions. These concepts and strategies have been incorpo-
rated to our quality-driven model-based accelerator design

methodology [6] and related automatic architecture design
space exploration (DSE) framework. This makes it possible
to effectively and efficiently resolve the memory and com-
munication design problems, and particularly, to ensure the
scalability of the corresponding architectures. We exploit
these strategies in a coherent manner when at the same time
accounting for the corresponding task and data mapping
to particular processors and memories, as well as the tech-
nology-related interconnect and memory features, such as
delay, power dissipation or area, and tradeoffs among them.

As a representative test case, we use LDPC decoders for
the above-mentioned newest communication system stan-
dards. We demonstrate the application of these design strate-
gies to the design of the multi-processor LDPC decoders.
Using our DSE framework, we performed a large series of ex-
periments with the design of various multi-processor acceler-
ators, when focusing on their communication and memory
architectures. In this paper, we discuss a part of our results
from these experiments.

The rest of the paper is organized as follows. Section 2
discusses the memory and communication-related issues of
hardware multiprocessors. Section 3 introduces our quality-
driven model-based multi-processor design methodology.
Section 4 discusses our approaches to design the efficient
communication and memory architectures and related ex-
perimental results. Section 5 presents the main conclusions
of the paper.

2. Issues and Requirements of
Communication and Memory Architecture
Design for High-End Multiprocessors

Hardware acceleration of critical computations has been in-
tensively researched during the last decade, mainly for sig-
nal, video, and image processing applications, for efficient-
ly implementing transforms, filters, and similar complex
operations. This research was focused on the monolithic pro-
cessing unit synthesis with the so-called “high-level syn-
thesis” (HLS) methods [7–14], and not on the massively
parallel multi-processor accelerators required for the high-
end applications. Specifically, this research did not address
the memory and communication architecture design of
multi-processor accelerators. HLS only accounts for a simple
memory in the form of registers and simple flat interconnect
structure between the data path functional units and regis-
ters.

Although some research results related to the memory
and communication architectures can be found in the litera-
ture [15–21] in the context of programmable on-chip multi-
processor systems, the memory and communication archi-
tectures were proposed there for the much larger and much
slower programmable processors. They are not adequate for
the small and ultra-fast hardware processors of the massively
parallel multi-processor accelerators, due to a much too low
bandwidth and scalability issues. The approaches proposed
in the context of the programmable on-chip multiprocessors
utilize time-shared communication resources, such as shared
buses or network on chip (NoC). Such communication
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resources are however not adequate to deliver the data trans-
fer bandwidth required for the massively parallel multi-pro-
cessor accelerators. In case of the massively parallel multi-
processor accelerators, the application-specific processors
and the corresponding memory and communication archi-
tectures must be compatible (match each other) in respect
to bandwidth (parallelism). Therefore, the communication
architecture cannot be realized using the traditional NoC or
bus communication to connect the processing and storage
resources but requires point-to-point (P2P) communication
architectures compatible with the parallel processing and
memory resources. The traditional NoC-based communica-
tion architectures utilize a network of switches, as for in-
stance, each switch connected to one resource (processor,
memory, etc.) and four interconnected neighboring switches
forming a mesh [20]. This way a large number of resources
can be connected without using long global wires and thus
reducing the wire delays (scalability). However, the time-
shared links introduce extracommunication cycles, which
negatively impact the communication and overall perfor-
mance. The performance degradation grows with the in-
crease of the number of processing elements and more global
or irregular application communication patterns and grows
especially fast for applications that require a large number of
processors and massive global or irregular communication.
Our approach to communication architecture is somewhat
similar to the approaches proposed in [15, 16], but only in
relation to the concept of hierarchical organization of the
computation and communication resources, while this con-
cept is differently exploited in our case. Moreover, these ap-
proaches consider memory sharing limited to a cluster of
processors, but do not consider the global memories shared
among the processing tiles.

Since LDPC decoding is used as a representative appli-
cation in the evaluation of our design method, as well as
our memory, and communication architectures, we briefly
discuss the processor, memory and communication architec-
tures proposed for the LDPC decoding. In the past, several
partially parallel architectures have been proposed in the
past for the LDPC decoding [22–30]. However, they only
deliver a throughput of a few hundreds of Mbps. For the so
low throughput, a very limited processing parallelism is ex-
ploited, and in consequence, simple communication and
memory architectures are needed in the form of simple
shifters and vector memories, correspondingly. The pro-
posed partially parallel architectures are not adequate for
the high-end applications that require throughputs in the
ranges of multi-Gbps. To achieve such ultrahigh throughput,
massive parallelism has to be exploited. This makes the mem-
ory and communication architecture design a very challeng-
ing task.

From the above discussion of the related research, it fol-
lows that the memory and communication architecture de-
sign, being of crucial importance for the high-end hardware
multiprocessors, is not adequately addressed by the related
research.

Many modern applications (e.g., various communica-
tion, multimedia, networking, or encryption applications,
etc.) involve sets of heterogeneous data-parallel tasks with

complex intertask data dependencies and interrelationships
between the data and computing operations at the task
level. Often the tasks iteratively operate on each other data.
One task consumes and produces data in one particular
order, while another consumes and produces data in a
different order. Additionally, in the high-performance multi-
processor accelerators, parallelism has to be exploited on a
massive scale. However, due to area, energy consumption,
and cost minimization requirements, partially parallel archi-
tectures are often used which are more difficult to design than
the fully parallel ones. Moreover, many of the modern appli-
cations involve algorithms with massive data parallelism at
the macro-level or task-level functional parallelism. To ade-
quately serve these applications, hardware accelerators with
parallel multi-processor macroarchitectures have to be con-
sidered. These macroarchitectures have to involve several
identical or different concurrently working hardware proces-
sors, each operating on a (partly) different data subset. This
all results in complex memory accesses and complex com-
munication between the memories and processing elements.
For applications of this kind, the main design problems
are related to an adequate resolution of memory and com-
munication bottlenecks and to decreasing the memory and
communication hardware complexity.

Moreover, each of the processors of the multi-processor
can be more or less parallel. This results in the necessity
to explore the various possible tradeoffs between the paral-
lelism at the micro- and macroarchitecture levels. The two
architecture levels are strongly interwoven also through their
relationships with the memory and communication struc-
tures. Each micro-/macroarchitecture combination affects
the memory and communication architectures in a different
way. For example, exploitation of more data parallelism in
a computing unit microarchitecture usually demands getting
the data in parallel for processing. This requires simultaneous
access to memories in which the data reside (this results
in for example, vector, multibank, or multi-port memories)
and simultaneous transmission of the data (this results e.g.,
in multiple interconnects), or prefetching the data in paral-
lel to other computations. This substantially increases the
memory and communication hardware. From the above, it
should be clear that for applications of this kind, complex
interrelationships exist between the computing unit design
and corresponding memory and communication structure
design. Also, complex tradeoffs have to be resolved between
the accelerator effectiveness (e.g., computation speed or
throughput) and efficiency (e.g., hardware complexity and
power consumption).

The traditionally used simple flat communication
scheme, independent of its specific implementation, does
not scale well with the increase in the number of processing
elements and/or memories. For instance, in the switch-based
architectures, both the switch complexity and the number of
switches grow with the increase of the number of processing
elements and/or memories. In the traditional flat intercon-
nection scheme, for n processing elements that have to com-
municate with m memories, we require an m × n (Inputs
Ports × Outputs Ports) crossbar switch, as shown in Figure 1.
In result, when used for a massively parallel hardware
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Figure 1: (a) Example of communication network among M global memories and N processors (b) Multi-port memory structure to satisfy
the bandwidth requirement of multiprocessors with low complexity point-to-point (P2P) interconnects.

multiprocessor, the communication network influence usu-
ally dominates the processing elements influence on the
throughput, circuit area, and energy consumption. Finally,
the large flat switch that would be necessary for such a multi-
processor accelerator can be difficult to place and route, even
with the most advanced synthesis tools. The place and route
may use a long time or in some cases not finish their work
at all. This represents an actual practical limitation on the
interconnect design.

Regarding the memory issues, the memory bandwidth
(number of ports) should be compatible with the processing
bandwidth. Thus, a multi-port memory application with as
many memory ports as required by the processing elements
(aggregate bandwidth) seems to be the most natural and
straightforward approach (see Figure 1). However, with
increase in the processing parallelism, the required memory
bandwidth (number of ports) increases. The situation quick-
ly deteriorates with parallelism increase resulting in a high
complexity due to high memory bandwidth (number of
ports) required in the massive parallelism range. For the
massively parallel multiprocessors, the single multi-port
memory would have a prohibitively large area and long
delay, when satisfying the required memory bandwidth (see
Figure 2). Therefore, the data have to be organized in multi-
ple multibank or vector memories to satisfy the required
memory bandwidth, while keeping the delay and area of the
memory architecture substantially lower. Consequently, the
most important issues of the memory architecture design
are the following:

(i) the organization of data in vectors (tiles) and the data
tiles into multiple memory tiles (partitions) to satisfy
the required bandwidth,

(ii) the data distribution and related data mapping into
the memory tiles ensuring the conflict-free memory
accesses and reducing the memory-processor com-
munication complexity.

It is possible that a data distribution scheme would be
conflict-free, but data might be distributed very randomly in
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Figure 2: Area versus access time of multi-port memory character-
ized for CMOS 90 nm process using HP CACTI 5.3 cache/memory
compiler.

the memory partitions. This would increase the communi-
cation complexity. Therefore, a memory exploration and
synthesis method should adequately address the issues of
memory partitioning and data distribution. Also, with
increase of the processing parallelism, data have to be
partitioned and stored in more and more distributed parallel
memories for more parallel access. This causes the memory
block sizes to shrink. At some point, it becomes not any more
efficient to store the data in embedded SRAM memories,
but the register-based (Flip-Flop) memories have to be used
which are more efficient for small memory sizes. We take into
account this issue during the memory architecture design.
Our experiments with different memory configurations
demonstrated that for sizes lower than (height × width =

32× 168), the SRAM memories are less efficient than the FF-
based memories. For example, a memory of size (16 × 168)
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when implemented as embedded SRAM is almost 1.6 times
larger than when implemented as FF-based (implemented in
TSMC 90 nm LPHP Standard Cell Library) memory, and the
area proportion grows fast with further decrease in memory
sizes. Therefore, for the case of IEEE 802.15.3c LDPC de-
coders, the SRAM-based memories are only efficient (and
considered in our DSE and experimental designs) for a com-
bined processing parallelism of up to 84 only.

Additionally, the memory and communication issues are
not orthogonal in nature, resolving and optimizing one issue
in separation heavily influences the other. Thus, the memory
and communication architecture synthesis has to be realized
as one coherent synthesis process accounting for the mutual
influences and tradeoffs.

Summing up, the massive data, operation-level and
task-level parallelism to be exploited to achieve the ultra-
high throughput required by the highly demanding appli-
cations, the complex interrelationships between the data
and computing operations, and the combined parallelism
exploitation at the two architecture levels (micro-/macro-
architecture) make the design of an effective and efficient
communication and memory architecture a very challenging
task. To effectively perform this task, the (heterogeneous)
parallelism available in a given application has to be explored
and exploited in an adequate manner in order to satisfacto-
rily fulfill the design requirements through constructing an
architecture that satisfies the required performance, area, and
power tradeoffs.

To illustrate the requirements and issues of memory and
communication architecture design, as well as to introduce
and illustrate our design approach, we will use a represen-
tative case of the low-density parity-check code (LDPC) de-
coding.

A systematic LDPC encoder encodes a message of k bits
into a codeword of length n with the message bits k followed
by m parity checks, as shown in Figure 3. Each parity check is
computed based on a subset of message bits. The codeword is
transmitted through a communication channel to a decoder.
The decoder checks the validity of the received codeword by
computing these parity checks using a parity check matrix
(PCM) of size m × n. To be valid, a codeword must satisfy
the set of all m parity checks. In Figure 4, an example PCM
for a (7,4) LDPC code is given. “1” in a position PCMi, j

of this matrix means that a particular bit participates in a
parity check equation. Each PCM can be represented by its
corresponding bipartite graph (Tanner graph). The Tanner
graph corresponding to an (n, k) LDPC code consists of
n variable nodes (VNs) and m = n − k check nodes
(CNs), connected with each other through edges, as shown
in Figure 4. Each row in the parity check matrix represents a

parity check equation ci, 0 ≤ i ≤ m − 1, and each column
represents a coded bit v j , 0 ≤ j ≤ n − 1. An edge exists
between a CN i and VN j if the corresponding value PCMi, j

is nonzero in the PCM.
Usually, iterative message passing (MP) algorithms are

used for decoding of the LDPC codes [31]. The algorithm
starts with the so-called intrinsic log-likelihood ratios (LLRs)
of the received symbols based on the channel observations.
During decoding, specific messages (extrinsic) are exchanged
among the check nodes and variable nodes along the edges
of the corresponding Tanner graph for a number of itera-
tions. The variable and check node processors (VNP, CNP)
corresponding to the VN and CN computations iteratively
update each other data, until all the parity checks are satisfied
or the maximum number of iterations is reached. The
data related to the check and variable node computations
are stored in the corresponding shared check and variable
nodes memories (Mcv, Mvc), respectively. The CNPs read
data from Mvc in their required order and after processing
write back in Mcv in the order required by VNPs, and vice
versa for VNPs. The complicated intertask data dependencies
result in complex memory accesses and difficult-to-resolve
memory conflicts in the corresponding partially parallel
architectures. In many practical MP algorithms, the variable
node computations are implemented as additions of the
variable node inputs and the check node computations as log
or tanh function computation for each check node input and
addition of the results of the log/tanh computations. In some
simplified practical algorithms, the check nodes just compare
their inputs to find the lowest and second lowest value.
Since each node receives several inputs, the basic operations
performed in nodes are the multi-input additions or multi-
input comparisons.

The Tanner graphs corresponding to practical LDPC
codes of the newest communication system standards involve
hundreds of variable and check nodes, and even more edges.
Thus, the LDPC decoding for these standards represents
a massive computation, as well as complex storage and
communication task. Moreover, as explained in the intro-
duction, for realization of the multi-Gbps throughput re-
quired by these standards, massively parallel hardware multi-
processors are necessary. For such multiprocessors, the mem-
ory and communication architecture design plays a decisive
role. To adequately support the design process for such
applications, we proposed the quality-driven model-based
design methodology [6] briefly discussed below.

3. Quality-Driven Model-Based
Accelerator Design Methodology for
Highly Demanding Applications

Our accelerator design method is based on the quality-driven
design paradigm [32]. According to this paradigm, sys-
tem design is actually about a definition of the required
quality, in the sense of a satisfactory answer to the following
two questions: what quality is required and how can it be
achieved? To bring the quality-driven design into effect, qual-
ity has to be modeled, measured, and compared. In our
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Figure 5: Example of a generic architecture template for LDPC decoding accelerators.

approach, the quality of the accelerator required is modeled
in the form of the demanded accelerator behavior and struc-
tural and parametric constraints and objectives to be satisfied
by its design, as described in [6]. Our approach exploits
the concept of a predesigned generic architecture platform,
which is modeled as an abstract generic architecture template
(e.g., Figure 5). Based on the analysis results of the so mo-
deled required quality, the generic architecture template is in-
stantiated and used to perform the DSE that aims at the
construction of one or several most promising accelerator
architectures supporting the required behavior and satisfying
the demanded constraints and objectives. This is perform-
ed through analysis of various architectural choices and
tradeoffs. Our approach considers the macroarchitecture and
microarchitecture synthesis and optimization, as well as the
computing, memory, and communication structures’ syn-
thesis as one coherent accelerator architecture synthesis and
optimization task, and not as several separate tasks, as in the
state-of-the-art methods. This allows for an adequate reso-
lution of the strong interrelationships between the micro-
and macroarchitecture and computation unit, memory, and
communication organization. It also supports an effec-
tive tradeoff exploitation between the micro- and macroar-
chitecture, the memory and communication architecture,
and between the various aspects of accelerator’s effectiveness
and efficiency. According to our knowledge, the so formu-
lated accelerator design problem is not yet explored in any of
the previous works related to hardware accelerator design.

In more precise terms, our quality-driven model-based
accelerator architecture design method involves the following
core activities:

(i) design of a pool of generic architecture platforms and
their main modules, and platform modeling in the form
of an abstract architecture template (once for an ap-
plication class),

(ii) abstract requirement modeling (for each particular
application),

(iii) generic architecture template and module instantiation
(for each particular application),

(iv) computation scheduling and mapping on the generic
architecture template instance (for each particular ap-
plication and template instance),

(v) architecture analysis, characterization, evaluation, and
selection (for each constructed architecture),

(vi) architecture refinement and optimization (processing,
interfacing, and memories abstraction refinement
and optimization, for the selected architectures only).

The exploration of promising architecture designs is per-
formed as follows (see Figure 6). For a given class of appli-
cations, a pool of generic architecture templates, including
their corresponding processing units, memory units, and
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other architectural resources, is prepared in advance by ana-
lyzing various applications of this class, and particularly, ana-
lyzing the applications’ required behavior and ranges of their
structural and parametric demands. Each generic architec-
ture template specifies several general aspects of the modeled
architecture set, such as presence of certain module types and
the possibilities of the modules’ structural composition and
leaves other aspects (e.g., the number of modules of each
type or their specific structural composition) to be deriv-
ed through the DSE in which a template is adapted for a par-
ticular application. In fact, the generic templates represent
generic conceptual architecture designs which become actual
designs after further template instantiation, refinement, and
optimization for a particular application. The adaptation of
a generic architecture template to a particular application
with its particular set of behavioral and other requirements
consists of the DSE through performing the most promising
instantiations of the most promising generic templates and
their resources to implement the required behavior, when
satisfying the remaining application requirements. In result,
several most promising architectures are designed and select-
ed that match the requirements of the application under
consideration to a satisfactory degree.

Our architecture DSE and synthesis algorithm takes as
its input the required accelerator quality (see Figure 7). The
required accelerator quality is represented by the accelerator
behavioral specification in a parallel form, the required accel-
erator throughput and frequency, and the required tradeoff

between the accelerator area and power consumption, as well
as the structural requirement to be constructed as one of
the possible instances of the generic architecture template
and its modules. In a large majority of practical cases, the
throughput and clock speed are the hard constraints that
must be satisfied, while the area, power, and their mutual
tradeoffs are considered as the design objectives that have
to be optimized. In these cases, the effectiveness of an accel-
erator is represented by the throughput and frequency con-
straints, while the area, power, and their mutual tradeoffs
reflect its efficiency. This way the required accelerator quality
is modeled, and this quality model is used to drive the overall
architecture exploration and synthesis process that carefully
stepwise constructs the most promising architectures. It is
performed in the following three stages, each corresponding
to one of the main design issues (subproblems) that have to
be solved to result in complete accelerator architecture:
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(1) decision of the processor’s micro- and macroarchitec-
tures (processing parallelism) for each different data-
parallel task,

(2) decision of the memory and communication archi-
tecture for selected micro-/macroarchitecture combi-
nations,

(3) selection and actual composition of the final com-
plete accelerator architecture.

Since the throughput and clock speed are the hard con-
straints and their satisfaction mainly depends on the pro-
cessing parallelism, and in turn, the required processing
parallelism decides to a high degree the memory and com-
munication architecture, the architecture exploration starts
with the decision of the processing parallelism (stage 1). In
this stage, two major aspects of the accelerator design, being
its microarchitecture and macroarchitecture, are considered
and decided, as well as the tradeoffs between these two
aspects in relation to the design quality metrics (such as
throughput, area, energy consumed, cost, etc.). It is impor-
tant to stress that these macro- and microarchitecture deci-
sions are taken in combination, because both the macro- and
microarchitecture decisions influence the throughput, area,
and other important parameters, but they do it in different
ways and to different degrees. For instance, by a limited area,
one can use more elementary accelerators, but with less par-
allel processing and related hardware in each of them, or vice
versa, and this can result in a different throughput and dif-
ferent values of other parameters for each of the alternatives.

In the second stage, the memory and communication
architectures are decided for each of the step one constructed

and selected candidate partial architectures representing par-
ticular micro- and macroarchitecture combinations (Pmic,
Pmac). It is assumed that the storage and data transfer band-
width per clock cycle must match the processing bandwidth,
that is, bandwidth/cc = Pmic × Pmac × b, where Pmic and
Pmac represent the data parallelism of the micro- and macro-
architecture for a given task, correspondingly, and b repre-
sents the bit width of data. To ensure the storage and data
transfer bandwidth required by processors on a low cost and
satisfactory delays, different memory and communication
architectures are considered during the DSE. The DSE
algorithm explores and selects the most promising of the
memory and communication architectures for a particular
micro-/macroarchitecture combination while taking into
account the design constraints and optimization objectives.
The memory and communication architectures and their
exploration and synthesis strategies for a particular applica-
tion being the main subject of this paper will be discussed in
detail in the next section.

Finally, to decide the most suitable architecture, the most
promising architectures constructed during the DSE are ana-
lyzed in relation to the quality metrics of interest and basic
controllable system attributes affecting them (e.g., number
of accelerator modules of each kind, clock frequency of
each module, communication structures between modules,
schedule, and binding of the required behavior to the modu-
les, etc.), and the results of this analysis are compared to the
design constraints and optimization objectives. This way the
designer receives feedback, composed of a set of instantiated
architectures and important characteristics of each of the
architectures, showing to what degree the particular design
objectives and constraints are satisfied by each of them. If
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some of the constraints cannot be satisfied for a particular
application through instantiation of given templates and
their modules, new more effective modules or templates can
be designed to satisfy the stringent requirements, or the
requirements can be reconsidered and possibly lowered. Sub-
sequently, the next iteration of the DSE can be started. If
all the constraints and objectives are met to a satisfactory
degree, the corresponding final application-specific architec-
ture template is instantiated, further analyzed, and refined to
represent the actual detailed design of the required accele-
rator.

4. Communication and Memory Architecture
Design for High-End Multiprocessors

In this section, we propose some communication and mem-
ory design strategies that enable us construct effective and
efficient architectures for the multi-processor accelerators.
We then discuss how these strategies are incorporated in our
architecture exploration framework, and how they are used
to quickly explore the various tradeoffs among the different
architecture options and to select the most promising archi-
tecture. Finally, we propose the memory exploration and
synthesis techniques to ensure the required memory band-
width in the presence of complex interrelationship between
data and computing operations.

Our approach is based on the exploration of computa-
tion and communication hierarchies and flows present in
a given application, and on using the knowledge from this
exploration for the automatic design of communication and
memory architectures. Based on the analysis of the commun-
ication hierarchies and flows, the processing elements are
organized in a corresponding hierarchical way into several
tiles (groups). The tiles are then structured into one global
cluster or several global communication-free smaller clusters
(if possible), and their respective data in memory tiles. The
tiles and clusters replace a fully flat communication network
with several much smaller hierarchically organized auto-
nomous communication networks.

Since the global communication complexity and delays
grow drastically with the increase of parallelism, we devel-
oped some strategies to decompose the global cluster into
multiple much smaller global communication-free clusters.
For a particular application, this partitioning is performed by
taking into account the application parallelism and by ade-
quate mapping of computation tasks and their data to the
processors and memories, respectively. This localization of
communication involving several small size clusters elimi-
nates the global intertile communication and results in a sub-
stantial improvement of the communication architecture
scalability for the highly demanding applications.

Secondly, in the cases the intertile global communication
is unavoidable, we use a decomposition strategy in which we
decompose one global cluster (global switch) into multiple
smaller clusters (switches) again by exploiting a careful ana-
lysis of data in memories. Finally, we also exploit several dif-
ferent kinds of switches (e.g., single-stage switches or multi-
stage switches), each appropriate to be used in a different
context. All these strategies combined in a proper way result

in resolution of the communication bottlenecks and related
physical interconnect issues in the architecture. This way
an optimized well-scalable communication architecture is
designed, while at the same time realizing an effective and
efficient application-specific memory-processor communi-
cation, as well as an adequate task and data mapping to par-
ticular processing elements and memories, respectively. The
above-introduced strategies can be applied in different possi-
ble combinations. For example, a two-level hierarchical org-
anization may be followed by partitioning or realized as the
two-level network with different single-/multistage switch
configurations. Different strategies combinations result in
different tradeoffs. The above strategies and the order in
which they can be applied are represented in the form of a
flow diagram in Figure 7.

Due to the complex interrelationships between the data
and computing operations at the task level and complex
intertask data dependencies, an adequate customization of
memory architecture is one of the major design tasks for the
massively parallel hardware multiprocessors. For a given ap-
plication, all data (input and intermediate) specified in the
form of single and multi-dimensional arrays have to be
stored in multiple shared memories. Different tasks and their
corresponding processors impose different access require-
ments (read/write orders) on the shared memories. Taking
into account the single task access requirements on the
shared memories would certainly paralyze the other tasks
that access the same shared memories for other computa-
tions. To ensure the required memory bandwidth and con-
flict-free data access, data have to be partitioned, distributed,
and mapped in multiple vector or multibank memories, as
discussed in Section 2. This way the overall complexity of
the memory architecture will be lower and at the same time
would satisfy the required memory bandwidth. The pro-
blems of data organization into vectors and the required
number of shared vector memory tiles (partitions) are re-
solved together with the communication architecture design,
when the flat communication network is transformed into
the hierarchical network. However, providing as many shared
vector memory tiles (partitions) as the processing tiles would
only partially solve the problem due to the possible memory
access conflicts. Therefore, the data distribution and data
mapping in the partitioned memories are performed with
the aim to eliminate the memory access conflicts, as well as
to ensure that our communication strategies would be appli-
cable. It is worth to be noted that our memory partitioning
and data distribution approach avoid data duplication. The
data distribution and data mapping approach are described
below using an example of two heterogeneous data-parallel
tasks sharing multiple memories.

Let us assume a set of m data-parallel tasks Ti =

{T1, . . . ,Tm} and another set of n data-parallel tasks T j =

{T1, . . . ,Tn}. Let |Pi(Pmic,Pmac)| and |P j(Pmic,Pmac)| be the
number of processing tiles allocated to the tasks Ti and
T j , respectively, where Pmic represents the microarchitecture
parallelism, and Pmac represents the macroarchitecture paral-
lelism of each processing tile. Let |Mi, j| = Pi(Pmic)×Pi(Pmac)
and |M j,i| = P j(Pmic) × P j(Pmac) be the number of memory
tiles shared among the processing tiles |Pi| and |P j|. Further,
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Figure 8: Data distribution strategies in multiple shared memories for conflict-free accesses.

we assume that |Pi| reads data from |Mi, j| and writes to |M j,i|

and vice versa for |P j|. For data distribution, we propose an
interleaved (cyclic) data distribution scheme. This approach
regularly and uniformly distributes data in memories, which
enables us to use our communication strategies. Further,
this approach has the additional benefit that it minimizes
the complexity of the addressing logic. We perform data
distribution based on interleaving in two stages, to resolve
the read and write access conflicts, respectively. Depending
on the number of shared memory tiles (partitions), the data
distribution is performed as given by the equation below:

Mi, j(x) = Si, j%
∣

∣

∣Mi, j

∣

∣

∣, where 0 ≤ x ≤
∣

∣

∣Mi, j

∣

∣

∣,

i = 1, . . . ,m, j = 1, . . . ,n,
(1)

where Mi, j(x) represents the specific shared vector memory
tile to which a particular data tile Si, j is mapped, where
the subscripts i and j in Si, j represent the data dependence
between the task Ti and T j , and |Mi, j| represents the total
number of shared memory tiles from which processors |Pi|
read and |P j| write their data. All the data tiles Si, j are orga-
nized as two-dimensional arrays that facilitate the automatic
data distribution in the shared memory tiles |Mi, j| using
(1). Figure 8 shows our data distribution approaches in the
shared partition memories with 4 memory partitions. This
data distribution (distribution-L1) will resolve all the mem-
ory read conflicts for processors |Pi| that will be in the case
if no memory partitioning is done and all data is stored in
a single memory (single port), as shown in Figure 8. On the
other hand, when the processor tiles |P j| write to the share
memory tiles |Mi, j|, it might result in write conflicts be-
cause of the order imposed by the |Pi| processor tiles for
conflict-free read on the data tiles, as given in (1). Therefore,
we use another level of data interleaving so that the processor
tiles |P j|write their data without any conflict, while ensuring
that |Pi| read accesses will not be effected. Unlike the
interleaving which is at the level of a data tile, we perform
this rather at the block level. All the data tiles distributed
in the partitioned memories |Mi, j| for the task |Ti| are first
divided into sets of equal size blocks (each block consists
of a set of data tiles), then the data tiles of each block are
skewed (interleaved) by a certain value. The data blocks

are formed by taking into account the information about
the set of tasks T j and their relevant data tiles Si, j that are
scheduled simultaneously on the processor tiles P j . The block
is formed in such a way that each block contains a single
data tile Si, j from the scheduled subsets of tasks T j , and to
avoid the conflicts, data tiles are then interleaved (skewed)
in each block by some value. This way the processor tiles
|P j| can write to the shared memory tiles |Mi, j| without
any conflict, when ensuring that the corresponding read will
not be effected. We can determine the block-level data dis-
tribution using the equation below:

Bn(x) = n, where 0 ≤ n ≤ |Bn|, (2)

where B(x) represents the block index number, n represents
the value of the interleaving (skew factor), and |Bn| rep-
resents the total number of blocks. The same conflict-free
read/write access order is valid for |M j,i| shared memory tiles
except that the read/write access order is just reversed. It is
equally possible that during data distribution for resolving
the read conflicts, it might also resolve the write conflicts.
In such scenario, the second level data distribution would
not be needed. Further, the shared partitioned memories
can be implemented using flip-flop- (FF-) based registers or
embedded SRAM memories. We integrated into our DSE
framework, the HP CACTI, a cache, and SRAM compiler,
for memory characterization with different configurations
required during DSE. The above strategies and the order in
which they can be applied are represented in the form of a
flow diagram in Figure 7. We will further explain the above-
discussed communication and memory design approach and
its strategies using as a representative test case the design
of LDPC decoders for the future communication system
standards.

4.1. Case Study: Communication and Memory Architecture
Design for LDPC Decoders. Practical LDPC codes, such as
those adopted in the IEEE 802.15.3c standards for future de-
manding communication systems, exhibit a very compli-
cated, but not fully random, information flow structure,
in which certain regularity and hierarchies are present [3].
According to our communication and memory architecture
synthesis method introduced in the previous section, the
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Table 1: Block-structured PCM, Hbase, of 1/2 rate IEEE 802.15.3c LDPC code with 32 macrocolumns and 16 macrorows, size of each sub-
matrix is 21× 21, and codelength is 672; “—” represents zero matrices.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 — — — 5 — 18 — — — — 3 — 10 — — — — — — 5 — — — — — — — 5 — 7 — —

2 0 — — — — — 16 — — — — 6 — — — 0 — 7 — — — — — — — 10 — — — — — 19

3 — — 6 — 7 — — — — 2 — — — — 9 — 20 — — — — — — — — — 19 — 10 — — —

4 — 18 — — — — — 0 10 — — — — 16 — — — — 9 — — — — — 4 — — — — — 17 —

5 5 — — — — — 18 — — — — 3 — 10 — — 5 — — — — — — — — — — — — — 7 —

6 — 0 — — — — — 16 6 — — — 0 — — — — — 7 — — — — — — — — — 19 — — —

7 — — — 6 — 7 — — — — 2 — — — — 9 — 20 — — — — — — — — — — — 10 — —

8 — — 18 — 0 — — — — 10 — — — — 16 — — — — 9 — — — — — — — — — — — 17

9 — 5 — — — — — 18 3 — — — — — 10 — — 5 — — 4 — — — — 5 — — — — — 7

10 — — 0 — 16 — — — — 6 — — — 0 — — — — — 7 — 4 — — — — — 10 — 19 — —

11 6 — — — — — 7 — — — — 2 9 — — — — — 20 — — — 4 — 19 — — — — — 10 —

12 — — — 18 — 0 — — — — 10 — — — — 16 9 — — — — — — 12 — — 4 — 17 — — —

13 — — 5 — 18 — — — — 3 — — — — — 10 — — 5 — — — — — — — 5 — — — — —

14 — — — 0 — 16 — — — — 6 — — — 0 — 7 — — — — — — — 10 — — — — — — —

15 — 6 — — — — — 7 2 — — — — 9 — — — — — 20 — — — — — 19 — — — — — —

16 18 — — — — — 0 — — — — 10 16 — — — — 9 — — — — — — — — — 4 — — — —

information flow structure of such an application has to be
carefully analyzed. The aim of this analysis is to discover the
application regularities and hierarchies in order to exploit
them for the design of an effective and efficient communica-
tion architecture (possibly several levels) of hierarchical
localized communication clusters. For instance, the practical
LDPC codes are defined by block-structured PCMs. A block-
structured PCM groups a certain number of rows (CNs) of
PCM into a macro-row and the same number of columns
(VNs) into a macro-column, creating this way the corre-
sponding macroentries of the block matrix. For example, 21
rows and columns form a macro-row and macro-column,
respectively, for the PCM shown in Table 1. The particular
macro-entries of this table represent particular submatrices
corresponding to the particular 21 rows and 21 columns.

The interconnections among particular macrorows and
macrocolumns of the block-structured PCM are defined by
the nonzero entries (submatrices), zero entry “—” means no
interconnection. Every macro-row is connected to a different
subset of macrocolumns in a complex pseudorandom way
and vice versa. For example, the macro-row {1} is connected
to the macrocolumns {4, 6, 11, 13, 20, 28, 30}, and the
macro-column {1} is connected to the macrorows {2, 5, 11,
16}. However, the interconnections within each submatrix of
the block-structured PCM are defined by regular circularly
shifted identity matrices with shift values represented by the
nonzero entry in the matrix. Hence, in the corresponding
hardware multi-processor, the communication within a sin-
gle nonzero sub-matrix can be realized locally using a quite
regular local communication network, while the communi-
cation among the macrorows and macrocolumns is irregular
and can be realized using a global communication network,
as shown in Figure 9. This substantially decreases the com-
munication network complexity (see Figure 10(b)) com-
pared to the case of the flat communication scheme (see
Figure 10(a)) for different micro-/macroparallelism combi-

nations. In these and the following figures presenting experi-
mental results, P(a, b) denotes a combined micro- and
macroarchitecture parallelism. In tuple P(a, b), a represents
the microarchitecture parallelism of a processor (i.e., the
number of processor inputs/outputs), and b represents the
macroarchitecture parallelism (i.e., the number of proces-
sors). The tuple P(a, b) represents a certain micro- and
macroarchitecture combination with the combined micro-
and macro-parallelism (a, b) of the CNP processors, corre-
spondingly (shown on the x-axis in the figures presenting the
results). Similar notation for the combined processing para-
llelism is used for the VNP processors (although, not shown
on the x-axis of the result figures). As shown in Figure 11(a),
the area saving is as high as 25 times for the architecture
instance P(4, 336). Similarly, except for the low parallelism
levels for which the flat scheme performs well, for the
moderate and high level of parallelism, the hierarchical two-
level interconnect approach provides superior performance.
The performance gain is as high as 12 times for architecture
instance P(2, 336), as shown in Figure 11(b). Moreover, the
performance saturates at a certain higher parallelism level for
the flat communication scheme, and a drop in performance
can be observed by further increase in parallelism, because
the switch delays dominate the processor delays. The same
trend can be observed for the two-level communication net-
work, but at a different parallelism level (e.g., P(4, 336),
P(8, 84)), as shown in Figure 10(b).

Our area estimates are very accurate as we perform a
prior floor planning of the top-level design (macroarchitec-
ture) and the actual design and physical characterization of
various instances of the generic architecture modules (pro-
cessors, memories, and communication resources), when ac-
counting for the interconnect effects during the module
characterization. Since the macroarchitecture design (com-
position of architecture modules to form the accelerator)
is very regular and follows the same general structure for
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Global switch (GS)

Tile-1 Tile-2 Tile-3 Tile-4

MEM-1 MEM-2 MEM-3 MEM-4

PE [1–21] PE [22–42] PE [43–64] PE [65–84]

Local switch (LS-1) Local switch (LS-2) Local switch (LS-3) Local switch (LS-4)

1 21 1 21 1 21 1 21· · · · · · · · · · · ·

Figure 9: Example of the hierarchical communication network of LDPC decoders for IEEE 802.15.3c LDPC code decoder of 1/2 rate (R),
code length 672 (L), and (micro, macro) parallelism of (1,84).
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Figure 10: Area/performance tradeoffs for the flat communication network are shown on the (a) and for the two-level hierarchical on (b).

all architecture instances, the corresponding floorplan and
actual layout are very regular and have almost the same gen-
eral form for all architecture instances. Therefore, the para-
meter predictions based on the parameter values for the
individual blocks and the floorplan do not much differ from
the actual values from the layout both regarding the area
and performance estimates. The blocks and the top-level
design are modeled in Verilog HDL that can be targeted to
various implementation technologies. For performing the
experiments reported in this paper, it has been targeted
at CMOS 90 nm technology (TSMC 90 nm LPHP standard
Cell Library). For blocks characterization (parameters esti-
mations), Cadence Encounter RTL compiler was used for
synthesis and Cadence Encounter RTL-to-GDSII system 9.12

for physical place and route. The area, delay, and computa-
tion clock cycles estimates of both the CNP and VNP pro-
cessors with various microarchitecture parallelisms are pro-
vided in Table 2. To compute the total area of several pro-
cessors, the total processors’ area is calculated using simple
addition of the area of individual processors. For instance,
for the tuple P(1, 84), that is, 84 serial processors, the total
processors’ area is 0.508116 mm2 (=84 × Acnp + 84 × Avnp),
where Acnp and Avnp represent the area of CNP and VNP pro-
cessors each with the microarchitecture parallelism of 1.

Moreover, we also observe that the communication net-
work and memory dominate the processors area, as shown in
Figure 10. For instance, for the tuple P(1, 84), the commu-
nication network’s area is 4.5 times and the memory’s area
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Figure 11: Area tradeoffs for the flat versus hierarchical communication network are shown on the (a) and throughput tradeoffs on (b).

Table 2: Characterization results for CNP and VNP processors using TSMC 90 nm LPHP standard cell library.

Processor type Parameters
Microarchitecture parallelism

1 2 4 8

CNP

Area (mm2) 0.002759 0.003933 0.005998 0.008709

Delay (ns) 0.751 1.413 2.105 2.709

Clock cycles 8 4 2 1

VNP

Area (mm2) 0.003290 0.005089 0.011673 —

Delay (ns) 0.847 0.921 1.366 —

Clock cycles 4 2 1 —

3.4 times larger than the processors’s area, respectively, as
shown in Figure 10(a). In particular, for the higher process-
ing parallelism level, the communication network influence
on the area much dominates the processor influence (see
Figure 10). The processor’s contribution to the total area
is shown in the dark blue color, communication network’
contribution in light blue, and memory’s contribution in
magenta color in Figure 10.

The throughput of an LDPC decoder can be estimated
analytically based on the two-phase message passing (TPMP)
decoding algorithm using the following formula:

TMbps =
R×N × FMHz

CC/I × Itot
, (3)

where TMbps stands for the throughput in Mbps, R stands
for the code rate, N stands for the code length (size of data
frame), Itot stands for the total number of iterations required

to decode a code word, FMHz stands for the clock frequency,
and CC/I is the clock cycles required for a single iteration,
that is, the schedule length in CC when multiplied with Itot.
For a particular LDPC code N , R and Itot are decided in
advance for a particular application and its frame error rate
(FER). Therefore, the parameters that remain to determine
the throughput are the CC/I and FMHz. The CC/I depends
on the micro- and macroarchitecture parallelism exploited.
The clock speed FMHz depends on the processor’s critical
path delays plus the physical delays of the communication
and memory structures. The CC/I is directly influenced by
the processor micro- and macroarchitecture parallelism. For
instance, a fully parallel processing element would perform
the computation in a single cycle, while the serial will take as
many clock cycles as the total number of inputs of a given
multi-input operation (see Table 2). The throughput for
each micro- and macroarchitecture combination is estimated
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based on the actual performance (clock speed and clock
cycles), area, and power numbers corresponding to partic-
ular processor parallelism from processor characterization.
Based on these actual performance numbers, (3) is then used
to compute the final throughput in Mbps.

To be able to obtain the experimental results presented in
this section, we had to synthesize and analyze a large set of
promising hardware multi-processor architectures, as shown
in Figure 10. The synthesis and evaluation of such a large set
of architecture instances in a reasonably short time was only
possible through usage of our automated DSE framework.

There are following four types of memories involved in
the decoding of LDPC codes:

(i) Mcv to store the CN messages,

(ii) Mvc to store the VN messages,

(iii) Mch to store the channel messages Ich,

(iv) MHD to store the hard decision messages VHD.

The check node memories Mcv and variable node mem-
ories Mvc are shared between the CNP and VNP processors.
The CNP reads the check node data from the Mcv and after
processing writes the result data to the Mvc memories. Simi-
larly, the VNP reads the variable node data from the Mvc

and after processing writes the result data to the Mcv. This
represents back-to-back (cyclic) data dependencies between
the CNPs and VNPs. The total amount of data required to
be stored in Mcv and Mvc memory is equal to the number
of nonzero (NZsm) elements (sub-matrices) of the block-
structured PCM. Since the total number of nonzero elements
in the rate 1/2 IEEE 802.15.3c 672-bit LDPC code is 108,
108 elements have to be stored in each of the Mcv and
Mvc memories. Please note that a sub-matrix in the block-
structured PCM represents the interconnections between the
CNs and VNs and should not be considered as the actual
data processed by the CNPs and VNPs. Moreover, for each
type of task, the data related to each of the nonzero element
(sub-matrix) of the block-structured PCM can be stored in a
single vector location of a single vector memory, because the
submatrices actually represent the identity-shifted matrices.
In the identity matrices, there is only a single nonzero ele-
ment in each row or column. The width, depth, and number
(partitions) of each type of memory (Mvc or Mcv) depend
on the processing parallelism exploited for each kind of
processors (CNPs and VNPs). For instance, consider the case
of the microarchitecture parallelism of four and the macro-
architecture parallelism equal to the total sub-matrix paral-
lelism (21 for rate 1/2 672-bit code). In this case, all the data
for the CNPs and VNPs can be stored in four vector mem-
ories of each kind Mcv and Mvc. As the macroarchitecture
parallelism is equal to the total sub-matrix parallelism, and
for each sub-matrix, the related data can be stored in a single
location of a single vector memory; a single vector memory
is sufficient to provide the necessary bandwidth for each kind
of processors (CNPs and VNPs). Four memory partitions
are required as the assumed microarchitecture parallelism is
four. This way the aggregate memory bandwidth is satisfied
by four partitioned vector memories Mcv and Mvc for the
CNP and VNP, respectively. Concerning the size of the

memory partitions, each of the memory partitions is of
depth ⌈NZsm/(4 × 1)⌉ and width of sub-matrix ×b (= 21 ×
b), where b represents the data width of CN and VN
messages.

The problem yet to be solved is the data distribution and
data mapping in the so constructed partitioned shared mem-
ories (Mcv and Mvc) located between the CNPs and VNPs. An
adequate resolution of this problem is necessary due to dif-
ferent data access patterns of CNPs and VNPs to the shared
memories. The data can be accessed element by element in
case of the fully serial processors or at once in case of the fully
parallel processors. A CNP requires to access the data from
the same (macro-)row at the nonzero locations (row-major
order), while a VNP requires to access the data from the
same (macro-)column (column-major order). For instance,
the CNPs of macro-row {1} need to access the data from the
nonzero locations {4, 6, 11, 13, 20, 28, 30} of macro-row
{1} stored in Mcv (see Table 1). While the VNPs of macro-
column {1} require to access the data from the nonzero
locations {2, 5, 11, 16} of macro-column {1} stored in Mvc.
Both in the case of CNP and VNP, the processed data have to
be stored back in Mvc and Mcv in the same access order as for
read, respectively. Thus, the CNPs and VNPs share the Mcv

and Mvc for read and write, but with a different access order.
The CNP accesses the shared Mcv rowwise for read, while
the VNP accesses the same shared memory columnwise for
write. On the other hand, the VNP accesses the shared Mvc

columnwise for read and the CNP accesses the same shared
memory rowwise for write. Thus, in order to ensure that
both the read and write accesses for both kinds of processors
(CNPs, VNPs) would be conflict-free, data have to be appro-
priately distributed and mapped in the shared Mvc and Mcv

memories. It is not possible to access the shared memories
rowwise and columnwise without any access conflict.

Some approaches have been proposed in the literature to
overcome the memory access conflicts for LDPC decoding
[33–35]. These approaches use as many vector memories
as the number of nonzero (NZsm) elements in the block-
structured PCM for each task. However, this causes an
increase in the number of memories, even for the proposed
architectures which exploit a low processing parallelism. For
the case of IEEE 802.15.3c codes, it would result in as high as
216 memories with a depth of one and width of (21×b). Also,
32 memories for each of the Mch and MHD messages would
be required. In our method, the memory partitioning is
performed as discussed above for each architecture instance.
The data distribution and related data mapping is performed
using the approach described in the previous section. The
data distribution and related mapping into the shared mem-
oriesMcv andMvc and among the CNP and VNP tiles are per-
formed taking into account the processing parallelism and
the related task mapping. Our data partitioning, data dis-
tribution, and mapping approach provide as many memory
partitions as the number of processing tiles. This enormously
reduces the number of shared vector memories compared to
the proposed approaches [33–35]. Since the Mch and MHD

memories are only accessed by the VNPs, their memory
partitioning, data distribution, and data mapping are trivial,
as these memories are not shared among the different tasks.
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Due to small sizes of data involved in the decoding of
IEEE 802.15.3c LDPC codes, the influence of memories on
the overall area and delay remains low in the whole range
from centralized and relatively larger sizes to extremely dis-
tributed and very small sizes, as shown in Figure 10. Never-
theless, adequate memory design, as well as data distribution
and mapping to distributed memories, is of primary impor-
tance for an effective and efficient communication design. In
consequence, even for applications with small data sizes, the
memory architecture design remains one of the major design
issues.

Recently, several papers on architectures for processing a
single sub-matrix of a single macro-row (serial CNP) and a
single sub-matrix of a single macro-column (serial VNP) are
published. However, processing of a single sub-matrix in iso-
lation only requires a simple local communication network
(switch) and a simple memory structure [22–26]. It does not
solve the problem of an effective and efficient processing of
the whole PCM matrix and related communication archi-
tecture for this aim. Some architectures for processing only a
single macro-row and a single macro-column were also pro-
posed, which required multiple local communication net-
works but no global communication network [27–29]. How-
ever, for the demanding accelerator cases, multiple macro-
rows and macrocolumns have to be processed in parallel,
and this requires solution of a much more complex system
of global and local communication problems. Our solution
to these problems represents a generic hierarchical commu-
nication network and distributed memory architecture, as
shown, for example, in Figure 9.

In this paper, we propose solutions for the actual total
memory and communication problem, and not only for
some of its isolated parts, as considered by the published re-
search. Despite the local regularity at the level of a single sub-
matrix, the global communication network complexity quite
quickly increases with the increase of the micro-/macro-
parallelism (see Figure 10(b)). Therefore, to improve the sca-
lability of the communication architectures for demanding
applications, we proposed partitioning techniques which re-
duce the complexity of the global intertile communication.
These techniques are discussed in the following sections.

4.2. Communication and Memory Partitioning Strategies

4.2.1. Communication Partitioning Based on Data Distribu-
tion in Memories. The basic idea of this technique is to
reduce the data distribution related to a subset of node tiles
from all memory tiles to a minimum possible number of
shared memory tiles. This way, the corresponding subset of
the processing tiles to which the node tiles are mapped would
not be required to communicate with all the shared memory
tiles. In consequence, a simpler communication network will
be sufficient to communicate a specific subset of node tiles to
a specific subset of shared memories tiles. This way, the single
global switch can be partitioned into several smaller switches.
A necessary and sufficient condition to be satisfied for this
subset of node tiles sharing a subset of memory tiles is that
this subset of nodes cannot be scheduled together (although
they can be processed in parallel) due to the memory access

Table 3: Data distribution and assignment in the partitioned mem-
ory (Mcv) for an architecture instance with the combined processing
parallelism P(2, 42) both for the CNP and VNP processors.

Check node memory banks (Mcv)

Word M0 M1 M2 M3

w0 s1,4 s1,6 s2,1 s2,7

w1 s3,3 s3,5 s4,2 s4,8

— — — — —

w8 s5,1 s5,7 s6,2 s6,8

w9 s7,4 s7,6 s8,3 s8,5

— — — — —

w16 s9,2 s9,8 s10,3 s10,5

w17 s11,1 s11,7 s12,4 s12,6

— — — — —

w24 s13,3 s13,5 s14,4 s14,6

w25 s15,2 s15,8 s16,1 s16,7

— — — — —

conflict. For example, let us consider an accelerator instance
with 2 tiles, each with a microparallelism of 2, and a par-
ticular memory organization with each node tile data stored
in a vector word of a single-port vector memory or a bank
of a multibank memory (see Figure 12). According to our
data distribution and mapping methodology presented in
Section 3, the data distribution and assignment to different
shared memories is performed in the way to store all the
related data in a minimum number of shared memory tiles,
while ensuring that the data will be accessed without conflict.
The corresponding memory assignment and data mapping
for accelerator instance with 2 tiles each and with micro-
parallelism of 2 is shown in Table 3. The subscripts a and
b in sa,b represent the data related to a particular check
node a and variable node b tiles, respectively. The node
tiles {1,5}, {2,6}, {3,7}, and {4,8} can be scheduled together
(one possible way) as the required data is located in separate
memories. Moreover, all data related to variable nodes {1}
and {5} are stored, respectively, in memories {M0,M3} and
{M1,M2}. This way, both tiles have to communicate with
a subset of shared memories (only 2 in this case), and the
corresponding single global intertile communication net-
work is partitioned into two smaller communication net-
works. Unfortunately, this approach cannot be applied to
the case of high parallelism levels. With the parallelism in-
crease, data have to be distributed into more memory banks
for parallel access. In such a scenario, the intertile commu-
nication is becoming unavoidable.

4.2.2. Communication Partitioning Based on Data Identifica-
tion. With increase of the number of tiles, it becomes im-
possible to avoid the intertile communication using the
technique presented in the previous section. Data have to
be distributed into multiple vector or multi-bank memories
for conflict-free parallel access, and in consequence, a global
interconnect network is required. However, the global switch
complexity increases drastically with the parallelism increase
from moderate to high (see Figure 10(b)). Therefore, rather
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LS-2LS-1

Global switch Global switch

LS-4LS-3

Cluster-1 Cluster-2

Tile-1 Tile-2PE [1–21] PE [22–42]

1 21 1 21· · · 1 21· · ·· · · 1 21· · ·

Figure 12: Data-distribution-based communication partitioning.

than using a single global switch to provide the intertile
communication, different combinations of several switches
and associated switch sizes should be used to reduce the com-
plexity of the intertile communication. This decomposition
of a single global switch into several much smaller ones can
be achieved by taking advantage of the communication and
computation regularity and hierarchy present in the appli-
cation while considering the individual memory and pro-
cessor tiles. As in the two-level hierarchical communication
network, each one of the memory tiles communicates with
one of the processor tiles at a time through a single global
switch. Therefore, we have to explore the communication
hierarchies and flows at the level of memory banks of a
memory tile and at the level of processor of a processor tile.
More specifically, by analysis of the specific characteristic of
the memory-processor communication patterns, we identify
specific subsets of banks in different memory tiles that simul-
taneously communicate with only specific corresponding
subsets of processors in different processor tiles. In case of
the LDPC codes from our case study, the memory banks
{M1,1,M2,1,M3,1,M4,1} in different memory tiles communi-
cate with a subset of processors {P1,1,P2,1,P3,1,P4,1} in dif-
ferent processor tiles, for the architecture instance shown in
Figure 9. In Ma,b, a represents a memory number and b bank
number, and similarly, in Pa,b, a represents a tile number
and b processor number. Based on the identified patterns,
a corresponding application-specific communication among
the memories and processing tiles is then realized using
several switches of much smaller sizes compared to the size of
the single global switch. Both the number of switches and the
size of each switch are decided by the processing parallelism.
For the architecture instance shown in Figure 9, the required
switch size is 4 (subset of 4 elements), while the required
number of switches is 21 (21 subsets of 4 elements), as shown
in Figure 13. Through this partitioning, the complexity of
the single intertile global switch is much reduced, and the
exploitation of the massive parallelism present in the applica-
tion is possible at a reasonable cost. As we can see from the
experimental results (see Figure 14(a)), much higher gain
can be obtained in throughput due to the much shorter
interconnect delays of the much smaller switches compared
to the nonpartitioned global switch (see Figure 10(b)). The
performance gain for all the accelerator instances as high as
5 times on the cost of a very small area penalty of less than

PE [65−84]

SW-21 (4×4)

PE [43−64]

MEM-2MEM-1 MEM-4MEM-3

LS-2 (21×21)LS-1 (21×21) LS-4 (21×21)LS-3 (21×21)

SW-0 (4×4)

PE [22−42]PE [1−21]

1 21· · ·

· · ·

· · · · · · · · · · · ·

· · · · · · · · · · · ·

1 21· · · 1 21· · · 1 21· · ·

Figure 13: Data-identification-based communication partitioning.

1% is compared to the nonpartitioned two-level hierarchical
communication network. Nevertheless, the communication
network area still dominates the area of processing elements
and memories. Therefore, we introduce one more technique
to further reduce the communication network area, while
preserving the performance.

4.2.3. Usage of the Single-Stage versus Multistage Switches. For
each approach discussed so far, ranging from a flat to a par-
titioned hierarchical two-level communication network, we
can further explore the design tradeoffs regarding communi-
cation architecture by using different kinds of physical switch
networks (e.g., single-stage versus multistage switches).
Moreover, for the two-level hierarchical communication net-
work, the single-stage and multi-stage switches can also be
used in combination. For example, we can utilize single stage
switches for global interconnects and multi-stage switches
for local interconnects or vice versa, and so forth. More-
over, we can apply this approach to the already partitioned
single global switch using one of our earlier introduced par-
titioning approaches or to a nonpartitioned two-level hier-
archical single-global-switch-based network. This enables
us to explore different design tradeoffs regarding perfor-
mance, area, and power consumption and ultimately ensure
a good scalability. The single-stage and multi-stage switches
are differently organized in terms of stages, which in turn re-
sults in different values for physical switch parameters, such
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Figure 14: Area/performance tradeoffs for the data-identification-based communication partitioning shown at (a), and the same partitioned
network when realized using multistage switches shown at (b).

as area and delay. For example, the local intra-tile communi-
cation network of LDPC decoders can be realized using a
single-stage multi-input multiplexer- (MUX-) based shifters
or by multiple simple 2× 1 multiplexers cascaded in multiple
stages (log shifters). Figure 14(b) shows the experimental
results for the area and performance of a partitioned two-
level communication network. The local and global switches
are realized using multi-stage switches. The partitioned two-
level multi-stage (both local and global) communication net-
work outperforms in area the single-stage (both local and
global) realization (see Figures 14(a) and 14(b)). There is a
performance penalty of less than 1% at most, while a sig-
nificant area saving is obtained, as high as 4 times compared
to the case of a partitioned global communication network
with single-stage switches. The communication network
complexity is much reduced, which in turn ensures a better
scalability for the massively parallel multi-processor accel-
erators.

4.3. Experimental Results Discussion and Comparison. We
conducted a series of experiments for IEEE 802.15.3c LDPC
codes with different micro-/macroarchitecture parallelism
combinations to explore the numerous complex design
tradeoffs, specifically, in relation to the memory and commu-
nication architecture. We performed our experiments for the
1/2 rate IEEE 802.15.3c LDPC code with code length 672, as-
suming a high data precision of 8 bits for communication
and 10 iterations per frame. Most of the more specific
results of our experiments are discussed in the previous

sections to illustrate the memory and communication design
approaches. However, the overall view and general conclu-
sions are not less important. The fully flat communication
scheme can only be used for the low-end applications,
because its complexity explodes for the moderate and high
parallelism levels, as shown in Figure 15. Moreover, for
the moderate parallelism levels, the two-level hierarchical
communication network performs well. It delivers large
area savings and performance gains for all the accelerator
instances, as high as 25 times in area and as high as 12
times in performance. Unfortunately, it shows nonscalable
behavior for the massively parallel multi-processor cases,
represented in green color in Figure 15. To ensure a much
better scalability of the communication architectures for
the high-end multiprocessors, our combined partitioning
techniques are required. Although there is a performance
gain for all the accelerator instances and as high as 5 times,
there is an area penalty of less than 1% compared to the non-
partitioned two-level hierarchical communication network,
represented in blue color in Figure 15. Therefore, multi-stage
and single-stage switch combinations are adequately used
in the implementation of the communication architectures
to preserve the performance level while reducing the area.
The multi-stage/single-stage switch combination approach
results in a low performance penalty of less than 1% at most,
while offering a significant area savings as high as 4 times.

An interesting observation is that independent of the
two-level hierarchical communication network partitioned
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or not, the application of different combinations of single-
stage and multi-stage realization to local and global switches
always results in a superior scalability in one design dimen-
sion or in the other design dimension. Our experiments on
different switch combinations show that the highest per-
formance is achieved for the single-stage global switch and
the multi-stage local switches, while for the lowest area,
the multi-stage realizations are required for both the global
and local switches. The same sort of behavior can be ob-
served for the two-level nonpartitioned communication net-
work, when the single and multi-stage switch combinations
are applied. The results of our experiments show that a
partitioned two-level communication network is the most
promising one; it improves the scalability of communica-
tion architecture in all design dimensions with excellent
tradeoffs. In general, for all the architectures having a
low parallelism at both levels and for all communication
architectures, both the performance and area scale linearly.
This trend is clearly visible (see Figure 15) for the combined
parallelism of up to 84 for architecture instances such as
{P(1, 84),P(2, 42),P(4, 21)}. For the higher parallelism levels
beyond these points, the flat networks do not scale, but
the simple hierarchical communication networks scale to
some extent for the moderate parallelism levels, but much
worse for slightly higher parallelism levels, and they saturate
at the massively parallel micro-/macroarchitectures such as
P(4, 168). The partitioning techniques with multi-stage and
single-stage switch combinations are necessary to ensure the
scalability for high-parallelism levels with many complex
design tradeoffs that have to be taken into account depending
on the actual requirements of the application. For example,
the hierarchical data-identification-based partitioning with
single/multi-stage switch combination provides almost as
high as 5 Gbps of throughput with much smaller area com-
pared to the other two-level partitioned single-/multi-stage
switch combinations.

For high-performance applications, a state-of-the-art
partially parallel LDPC architecture is proposed by Liu and
Shi [36]. The architecture exploits partially parallel micro-
architecture for CNP and fully parallel microarchitecture for
VNP with the macroarchitecture parallelism of 84 for each
kind of processors (CNP and VNP). To make a fair com-
parison of this architecture to architectures constructed by
our method, we assumed a standard set of parameters
(IEEE 802.15.3c code, code length (672 bits), code rate (7/8),
number of iterations (10), and data width (8 bits)). We then
implemented the architecture proposed in [36] and our
architectures in the same technology (TSMC 90 nm LPHP
standard Cell Library) using our DSE and synthesis tool
called multiprocessor accelerator explorer (MPA-explorer).
The throughput achieved by the architecture proposed in
[36] is limited to 1 Gbps due to the long delays of the flat
multiplexer- and demultiplexer-based interconnects scheme
exploited in [36]. Our architecture with the same processing
parallelism implemented using our MPA-explorer achieves
1.94 times higher throughput, 1.43 times lower area, and
almost the same power consumption compared to the archi-
tecture proposed in [36]. The architecture generated by our
tool incorporates a hierarchical partitioned network instead
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Figure 15: Combined results representing interconnect parameters
for various processing parallelism.

of the flat multiplexer, and demultiplexer-based interconnect
scheme proposed in [36]. This is the main reason for almost
the twice higher throughput by almost 50% lower area of the
LDPC decoder architecture generated by our MPA-explorer.
Most of the architectures proposed in the literature [22–26]
are low-throughput architectures and correspond to the first
point, the tuple P(1, 21), in the results in Figures 10 and 14.

Summing up, the above-discussed memory and com-
munication architecture design approaches, when applied in
combination, ensure scalability of the memory and com-
munication architecture for the massively parallel multi-pro-
cessor hardware accelerators and exploration of the complex
design tradeoffs. This reconfirms once more the fact that
without having a quality-driven model-based design ap-
proach, such complex design tradeoffs for massively parallel
multiprocessors cannot be adequately explored in a reason-
able time.

5. Conclusion

In the former sections, we discussed the communication and
memory architecture design issues of the massively paral-
lel multi-processor accelerators necessary to realize the re-
quired ultrahigh throughput of the highly demanding mod-
ern applications. Our discussion was focused on the commu-
nication and memory bandwidth and scalability issues. We
demonstrated that in the massively parallel hardware multi-
processors, the memory and communication influence on
both the throughput and circuit area dominates the pro-
cessors influence, and the communication and memory
design are strictly interrelated. Therefore, communication
and memory architecture design is one of the major as-
pects of our new accelerator design methodology. We
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demonstrated that the traditionally used simple flat com-
munication architectures and multi-port memories do not
scale well with increase of the accelerator parallelism. In con-
sequence, they are not adequate for the massively parallel
accelerators. We proposed to design the application-specific
hierarchical partitioned organizations of the communication
architectures and vectorized memories exploiting the re-
gularity and hierarchy of the actual information flows of a
given application. This drastically improves the scalability.
In particular, we demonstrated that for the moderate para-
llelism levels, the two-level architectures with several small
global communication-free clusters or a single global cluster
perform well, with performance gains as high as 12 times and
area savings as high as 25 times compared to the flat com-
munication scheme. However, for the high parallelism
levels, only the partitioned hierarchical approach ensures
the scalability regarding performance with gains as high as
5 times and a small area penalty of less than 1% com-
pared to the nonpartitioned two-level hierarchical commu-
nication network. To further increase the performance or
eliminate the area penalty, the multi-stage and single-
stage switch combinations can be employed for local and
global switches of the two-level partitioned communication
network, resulting in area saving as high as 4 times. Regarding
the memory design, the partitioned vectorized shared (single
port) memories seem to be the most promising for the massi-
vely parallel hardware multiprocessors. To guarantee the re-
quired memory and communication bandwidth and achieve
the communication and memory scalability in the whole
considered performance range, we incorporated all the dis-
cussed in this paper strategies of communication architec-
ture synthesis, as well as of memory partitioning, data dis-
tribution, and related data mapping into our multi-processor
accelerator design method and related automated architec-
ture exploration framework. Using this framework we per-
formed a large set of experiments including all the exper-
iments referred to in this paper. The experiments demon-
strated that our quality-driven model-based accelerator
design method, and specifically its memory and communi-
cation synthesis techniques discussed in this paper, are ade-
quate for the hardware multi-processor design for modern
highly demanding applications.
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[32] L. Jóźwiak, “Quality-driven design in the system-on-a-chip
era: why and how?” Journal of Systems Architecture, vol. 47, no.
3-4, pp. 201–224, 2001.

[33] H. Zhong, T. Zhang, and E. F. Haratsch, “VLSI design of high-
rate quasi-cyclic LDPC codes for magnetic recording channel,”
in Proceedings of the IEEE 2006 Custom Integrated Circuits
Conference (CICC ’06), pp. 325–328, September 2006.

[34] X. Y. Shih, C. Z. Zhan, C. H. Lin, and A. Y. Wu, “An 8.29 mm2
52 mW multi-mode LDPC decoder design for mobile WiMAX
system in 0.13 µm CMOS process,” IEEE Journal of Solid-State
Circuits, vol. 43, no. 3, Article ID 4456789, pp. 672–683, 2008.

[35] K. Zhang, X. Huang, and Z. Wang, “High-throughput layered
decoder implementation for quasi-cyclic LDPC codes,” IEEE
Journal on Selected Areas in Communications, vol. 27, no. 6, pp.
985–994, 2009.

[36] L. Liu and C. J. R. Shi, “Sliced message passing: high through-
put overlapped decoding of high-rate low-density parity-
check codes,” IEEE Transactions on Circuits and Systems I, vol.
55, no. 11, pp. 3697–3710, 2008.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation 

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


