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Abstract. We consider systems that are well modelled as networks that
evolve in time, which we call Moving Neighborhood Networks. These models
are relevant in studying cooperative behavior of swarms and other phenomena
where emergent interactions arise from ad hoc networks. In a natural way,
the time-averaged degree distribution gives rise to a scale-free network. Sim-
ulations show that although the network may have many noncommunicating
components, the recent weighted time-averaged communication is sufficient to
yield robust synchronization of chaotic oscillators. In particular, we contend
that such time-varying networks are important to model in the situation where
each agent carries a pathogen (such as a disease) in which the pathogen’s life-
cycle has a natural time-scale which competes with the time-scale of movement
of the agents, and thus with the networks communication channels.

1. Introduction. Network dynamics has become a very important area in non-
linear studies because so many systems of interest have a natural description as a
network. Examples include the internet, power grids, neural networks (both biolog-
ical and other), social interactions, and many more. However, the preponderance of
the work in complex networks does not allow for dynamic network topology [1, 2].
In the literature, one generally finds that either a static network is ‘born’, as in the
small-world (SW) [6] and Erdos-Renyi [4] models, or that a network evolves into
an otherwise static configuration, as is assumed in the Barabasi-Albert model of
scale-free (SF) networks evolution [7]. In epidemic modeling and percolation the-
ory, one considers the problem of certain links being knocked-out, but essentially
as a static problem, since there is no possibility for links to reform within the the-
ory. Fluid Neural Network (FNN) models provide one approach to incorporating
local transient interaction effects into a variety of dynamical systems [15]. In the
recently presented Coupled Map Gas (CMG) model [5], neighborhood coupling of
motile elements, with coupling and state of the elements affecting future evolution
of the system, provides a study of how such schemes support pattern formation
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among the elements. In the work of Stojanovski, Kocarev, et al. [8], on-off time-
varying coupling between two identical oscillators is considered as a synchronization
problem, with the very different from ours assumption that at each period of the
connection, one of the variables is reset in an initial condition changing alteration.
While the results of [8] must therefore be considered not completely related to ours,
it is interesting to point out that in [8], a theorem is proved in which there exists
a fast enough period T such that synchronization is asymptotically stable in the
time-varying coupled case if it is asymptotically stable in the constantly coupled
case. We would also like to point out follow-up work, [9] in which a spatio-temporal
system, which is a ring lattice - a simple type of graph - is similarly controlled by
sporadic coupling with initial condition resetting.

In this paper we consider a simple model that allows network links to follow
their own dynamical evolution rules, which we consider a natural feature of many
organic and technological networks, where autonomous agents meander or diffuse,
and communication between them is an issue of both geography and persistence.
For our concept problem, we focus on social interactions, such as a disease prop-

agating across a network of social contacts. See Fig. 1. A suitable model should
consider the disease life-cycle, which may be just a matter of a few weeks; an epi-
demic ensues only if agents connect within that time window. Thus, with such
expiring messages, what matters is whom we have recently contacted. Said simply,
we are not likely to catch the common cold directly from an old friend, who is sick,
but whom we have not seen in many years and we will not see for more years still,
since the disease runs its entire course in a much shorter time-scale than that of
our contact period. We contend that any model which does not account for time-
varying connections in a natural way cannot properly account for this ubiquitous
concept.

When the time scale for network changes is of nearly the same order as the time
scales of the underlying system dynamics, we believe that network evolution should
be part of the model. Moreover, evolution of the network at these time scales
becomes a key element in understanding the effective connectivity of the network
with respect to these expiring messages. We will study such networks using a model
which we introduce here and which we call moving neighborhood networks (MN).
We then modify the basic MN structure by considering that some social connections
survive even when the local neighborhood has changed, which we call the moving

neighborhood with friends model (MNF).
We evolve (diffuse) positions of agents independently according to a dynamical

system or stochastic process, linking those nodes that are within the same neighbor-
hood. We assume that the system has an ergodic invariant measure, then we prove
that the relative positions of the nodes, and hence their connectivity, is essentially
random, but with a well defined time average degree distribution. Our model de-
parts from CGM in that motion of the agents is independent of the dynamics on the
network. Our focus is the communication characteristic of the evolving network.

A time-varying network presents a time-varying graph Laplacian. Since the
phenomenon of synchronization of oscillators in a network relies on open commu-
nication channels in the network, and since it has been previously shown in the
case of static networks that the spectrum of eigenvalues of the static graph Lapla-
cian plays an essential role in determining synchronization of the graph-coupled
oscillators [14] we develop an analysis using synchronization as a natural probe of
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the time-scale over which a message can traverse the network which is now time-
varying. In particular, if we take the “oscillator” carried by each agent to be their
personal disease life-cycle (say an SIR model for each agent), then it is easy to see
that synchronization as a probe of communication is relevant for these dynamics
with channel competing time-scales. With this in mind, however, we have chosen
chaotic oscillator synchronization as a harder test of our formalism. In our devel-
opment, we generalize the concept of a master stability function [14], and we define
a “moving-average” graph Laplacian. Using the property of synchronization as a
probe of connectivity, we show a most striking feature of such networks is that
while at any fixed time, the network may be fractured into noncommunicating sub-
components, the evolving network allows communication of those messages which
do not expire on time-scales at which a message can find paths between subcom-
ponents; this point is made clear by the fact that MN and MNF networks admit
surprisingly robust synchronization well below the threshold when the network has
a giant component.

We consider two distinct dynamical systems: 1) the dynamical system which gov-
erns the network topology by diffusing agents corresponding to the network nodes,
which we call the network dynamics, and 2) the network of the oscillators which run
at each vertex, with coupling between them moderated by the instantaneous net-
work configuration, which we call the system dynamics. See Fig. 1. The formalism
of master stability function [14] (which assumes a fixed network) must be modified
to consider evolving networks. Synchronization requires sufficient information flow,
so complete paths must appear on time scales relevant to the system dynamics. We
introduce the concept of a moving average Laplacian to quantify the connectivity
associated with a time sensitive message that propagates on a partially connected
but changing network.

2. The Moving Neighborhood Network: Our modeling goal is to capture some
features of evolving social networks. See Fig. 1. Using an analogy of collaborators:
often we work as part of a group at our place of employment, usually dealing with a
small group of people (our neighborhood). People move from one job to another, so
our neighborhood will frequently change, but only a little. However, if we move, our
neighborhood changes significantly; we end up with a completely different group
of coworkers. The time scale of the small changes is of the same order as might
be required to tackle significant problems and therefore are relevant to the overall
productivity of the group.

To capture this dynamic, we associate network nodes with an ensemble of points
evolving under a flow, forming a time dependent network by linking nodes that are
‘close.’ Notationally, let,

ξ̄ = {ξ1, . . . , ξn}, (1)

be a collection of n points in some metric space M. We construct graph Ξ from ξ̄

by associating a vertex with each element of ξ̄. Vertices i and j of Ξ are assigned
to be adjacent (connected by an edge) if,

|ξi − ξj | < r =⇒ i ↔ j, (2)

where r is a parameter that defines the size of a neighborhood. Let,

φt : M 7→ M, (3)
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Figure 1. A charicature depicting N agents which wander er-
godically as an ensemble according to a process Eq. (5). A time-
varying proximity graph results according to Eq. (2), which we call
a (MN) moving neighborhood network. The circles shown repre-
sent ǫ-close approach balls mentioned in Eqs. (2), (29) and (33).
With the ergodic assumption, MN leads to Eq. (31) that the de-
gree distribution is binomial, or asymptotically Poission for many
agents. If furthermore, there is connection “latency,” there results
a scale-free structure as evidenced by Fig. 5. This is what we ar-
gue is a reasonable model to consider propagation of diseases and
other quantities which have their own life-cycle time-scale which
competes with the time-scale with which the agents move.

be the flow of some dynamical system on M. From an initial ensemble,

ξ̄0 = {ξ0
1 , . . . , ξ0

n}, (4)

we define an ensemble trajectory by

ξ̄(t) = Φt(ξ̄
0) = {φt(ξ

0
1), . . . , φt(ξ

0
n)}, (5)

which in turn generates a graph Ξ(t) that precribes a network trajectory. The flow
φt may be governed by any discrete or continuous time diffusive process, either de-
terministic or stochastic. For brevity of presentation, we describe the MN process
by using a deterministic, ergodic map (γ), representative of strobing a continuous
diffusive system. Under suitable choice of γ, most ensembles will distribute ac-
cording to some natural invariant density, ργ , giving a well defined time-average
network character.

3. Simulation: a specific MN network. Consider the following construction:
Let M = T1, the circle, and let

γ(x) := 1.43x − .43
⌊4x⌋

4
mod 1. (6)

This map, chosen primarily for illustrative reasons, has the following characteristics:
(1) it is choatic, (2) transitive on the invariant set [0, 1], (3) uniformly expanding,
(5) with non-uniform invariant density, and (5) is discontinuous (so that a node
may be moved to a distant neighborhood on one iteration). From a random initial
condition for ξ̄, we iterate past the transient phase so that the ensemble resembles
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the invariant density. We then construct the associated network for each iteration
of map γ. Fig 2 shows the network constructed from five successive iterations, using
n = 28 and r = 0.09. Note that from one iteration to the next, the connections
associated with node 1 change very little. The reindexing and redrawing in the
second row makes clear that the network is a neighborhood graph, though not all
neighborhoods contain the same number of nodes. Note that for all but time τ +2,

the graphs have a disconnected component.

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

τ τ + 1 τ + 2 τ + 3 τ + 4 
n = 28, r = 0.09 

node
order 

location
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node
position 

Figure 2. (Color online) An MN simulation using n = 28, r = .09,

and map of (6). Five time steps are shown. The 1st row shows the
network in node index order. The 2nd row is the same network,
with the nodes positioned by ξi ordered to illustrate that they
are neighborhood graphs. The (bold) red portion of the network
shows connections to node 1. The bottom row shows the ensemble
distribution of ξ̄. The relatively small n = 28 was chosen for artistic
reasons (to more easily display the connections).

4. Synchronization of Coupled Oscillators: To explore the implications of an
MN structure, we use synchronicity as a connectivity persistence probe of a network
of n identical chaotic oscillators. We form a time dependant network, described by
graph G(t), consisting of n vertices {vi}, together with the set of ordered pairs of
vertices {(vi, vj)} which defines the edges. The n× n adjacency matrix defines the
edges, Ai,j(t) = 1 if there is an edge (vi, vj) at time t, and = 0 otherwise. The
system of n oscillators is linearly coupled by the network as follows: Let the vector
xi ∈ S = R

p be the state vector for the ith oscillator and express the coupled
system as

ẋi(t) = f(xi(t)) + σ

n
∑

j=1

Lij(t)Kxj(t), (7)

where σ a control parameter, Lij(t) the element of the graph Laplacian,

L(t) = diag (d) − A(t), (8)
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and K specifies which state vector components are actually coupled. If we assume
the network is MN, we have a dynamical system flowing on Mn × Sn. Specifically,
we consider the Rössler attractor with a = 0.165, b = 0.2, c = 10.0, which exhibits a
chaotic attractor with one positive Lyapunov exponent [11]. Coupling the n systems
through the xi variables, the resultant system is given by,

ẋi = −yi − zi − σ
∑n

j=1 Lij(t)xj

ẏi = xi + ayi

żi = b + zi(xi − c).
(9)

Then the question of whether the oscillators will synchronized is reduced to whether
one can find a value for σ such that the synchronization manifold is stable.

5. Known results for static networks. For a fixed network, necessary condi-
tions for synchronization are well described by the approach in [12, 14], summarized
as follows: The graph Laplacian matrix L has n eigenvalues, which we order as,

0 = θ0 ≤ . . . ≤ θn−1 = θmax. (10)

Using linear perturbation analysis, the stability question reduces to a constraint
upon the eigenvalues of Laplacian:

σθi ∈ (α1, α2) ∀i = 1, . . . , n − 1, (11)

where α1, α2 are given by the master stability function (MSF), a property of the
oscillator equations. For σ small, synchronization is unstable if σθ1 < α1; as σ is
increased, instability arises when,

σθmax > α2. (12)

By algebraic manipulation of (11), one can show that if,

θmax

θ1
<

α2

α1
=: β, (13)

then there is some coupling parameter, σs, that will stabilize the synchronized state.
For some networks, no value of σ satisfies (11). In particular, since the multiplicity
of the zero eigenvalue defines the number of completely reducible subcomponents,
if θ1 = 0, the network is not connected, and synchronization is not stable. However,
even when θ1 > 0, if the spread of eigenvalues is too great, then synchronization
may still not be achievable.

6. Numerical explorations of MN behavior: Consider a system of n = 100
agents wandering on the chaotic attractor of the Duffing equation,

q′′ = q − q3 − .02q′ + 3 sin t,

whose driven frequency is commensurate with the natural frequency of the Rössler
system, ω ≈ 1. We construct an MN network based on that system by assuming
network coupling between node i and node j if their separation in phase space (R2)
is less than r. A Rössler system is associated with each node, and the oscillators are
x-coupled in accordance with the evolving network. When we set r = 1.1, we find
that the ratio λmax

λ1

is almost always greater than β, and there are even short time
periods when the network is not connected. With the Rössler systems starting from
a random initial condition, Fig 3 shows a plot of xi(t) for the coupled system, which
shows that despite the weak instantaneous spatial connectivity of the network, the
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oscillators synchronize. The bold curve illustrates the systems’s approach to the
synchronization state by graphing

∆(t) =
1

n

n
∑

i=1

|xi(t) − x̄(t)| + |yi(t) − ȳ(t)| + |zi(t) − z̄(t)|,

where,

(x̄(t), ȳ(t), z̄(t)) =
1

n

n
∑

i=1

(xi(t), yi(t), zi(t)), (14)

estimates the synchronization manifold. The exponential decay of ∆(t) seems to
indicate asymptotic stability of the synchronized state. Our interpretation is that
the rapidly changing laplacian allows for a temporal connectivity that augments the
spatial to allow sufficient communication between nodes to support synchronization.
Results are similar for other ergodic systems used to control agent flow, such as γ(x)
in Eq. (6).
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Figure 3. (Color online) MN Network with n = 100 nodes, r =
1.1, and coupling constant σ = .2. The agents wander according
to the chaotic Duffing equation, q′′ = q − q3 − .02q′ + 3 sin t. The
x-coordinate of each oscillator is plotted vs. time. The bold line
is ∆, providing an estimated deviation from the synchronization
manifold.

7. Analysis and conjectures: The simulations show that although the synchro-
nized state may be linearly unstable at each instant, the MN network can still
synchronize. The instantaneous interpretation is that an ensemble of conditions
near the manifold is expanding in at least one direction, but is generally contract-
ing in many other directions. When the network reconfigures, the expanding and
contracting directions change, so points in the ensemble that were being pushed
away at one instant may be contracted a short time later. If there is sufficient
volume contraction and change in orientation of the stable and unstable subspaces,
the MN network can achieve asymptotic stability. In the following paragraph, we
give some mathematical basis of the above by considering a simple linear system
which is analagous to the variational equation of the synchronization manifold.

Consider the n dimensional initial value problem

ż = A(t)z, z(0) = z0, (15)
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where,

A(t) =
∑

i

χ[iT,(i+1)T ](t)Ai, (16)

is a piecewise constant matrix, i an integer, and T constant. For narrative simplicity
here, assume Ai is a diagonal matrix,

Ai = diag {λi1, . . . , λin}. (17)

Since diagonal matrices commute, we may write the time tk = Tk solution to (15)
as

z(tk) = e
R tk
0

A(τ)dτz0 = e(A0+···+Ak−1)T z0. (18)

The fundamental solution matrix is diagonal with entries,

λj = esjk , (19)

with,

sjk =
k−1
∑

i=0

λijT, (20)

and each j can be associated with a coordinate direction in, Rn. Stability of the
origin is ensured if sjk is bounded above for all j and k. If in addition, sjk → −∞,

then the origin is asymptotically stable. Suppose the Ai’s are chosen ergodically
from a distribution such that for all i,

tr(Ai) =

k−1
∑

j=0

λij < ǫ < 0. (21)

Moreover, assume that the positive and negative eigenvalues are distributed ergod-
ically along the diagonal elements of Ai. Then the time average (over i) must be
the same as the spacial average (over j) of the eigenvalues, which implies that with
probability 1, sjk is bounded above and,

sjk → −∞. (22)

Since,

det(Φ(t2, t1)) = e
R

t

0
tr(A(τ))dτ < 1, (23)

we have that the system is volume contracting.

8. Assessing connectivity. Numerical simulations of the MN model indicate that
synchronization can occur even when the network fails criteria of (11) at every in-

stant in time. Apparently, the temporal mixing creates an average connectedness
that allows the network to support synchronization. A logical conjecture is that
connectivy could be assessed by examining the long-time average of the Laplacian
of the network graph. If we assume ergodicity of the network dynamics, the long-
time average of the laplacian is simply a scalar multiple of the Laplacian associated
with a complete graph (all nodes connected), regardless of the size of the neigh-
borhood and the mixing rate. It is known [13] that if the coupling is all to all,
then synchronization can be stabilized. However, we can find instances with small
neighborhoods and/or slow mixing such that there is no value of coupling constant
which stabilizes the synchronization manifold. Therefore, we conclude that nei-
ther the instaneous nor the long time average Laplacian can accurately capture the
connectivity of the MN network.

We conjecture that the inability for some networks to synchronize can be viewed
as a lack of information carrying capacity within the network. A reasonable first
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guess is to assume that the information decays exponentially in time. We propose
that an appropriate quantification of the average connectiviy is given by the Mov-

ing Average Laplacian, which we introduce here and define as the solution to
the matrix initial value problem,

Ċ(t) = L(t) − ηC(t), C(0) = L(0), (24)

where the coefficient η allows for variation of time scale within the system. Essen-
tially, C(t) is exponentially decaying to the current state of the network. We solve
(24) to write

C(t) = e−ηt

(

C(0) +

∫ t

0

eητL(τ)dτ

)

. (25)

Since we are primarily interested in systems where the time scale of network evo-
lution is commensurate with the time scale of the dynamics on the network, we
generically assume η = 1.

Our desire with the Moving Average Laplacian, C(t), is to describe the connec-
tivity in a way that accounts for the temporal mixing. C(t) has the property that
if the mixing of the nodes is very slow compared to the system dynamics, its value
will be nearly the same as the instantaneous connectivity, approximately equiva-
lent to a sequence of fixed networks. However, if the mixing is very fast relative
to system dynamics, then C(t) will approximate the long time average, and the
network connectivity is as if the network were complete. These asymptotic proper-
ties are consistent with intuition. We offer the moving average Laplacian, with its
time-scale weight η, as the essential mathematical object in our study, and the use
of synchronization as a probe of connectivity is meant to naturally illustrate this
assertion, through the role of its spectrum.

Our definition of Moving Average Laplacian is indepedent of the particular sys-
tem dynamics operating on the network, with the goal of describing the connectivity
of moving networks without regard to specific application. To illustrate that there
is some utility in this definition, we revisit our probe of connectivity — synchro-
nization of chaotic oscillators. Since the instantaneous network has the property
that,

λmax

λ1
> β, (26)

there is no value of σ that will allow us to satisfy the criteria of (11). At issue,
then, is how does one choose a value for the coupling constant?

Consider the following naive approach: we estimate,

λ∗

1 = E[λ1(C(t))], (27)

and,

λ∗

max = E[λmax(C(t))], (28)

and then use λ∗

1 and λ∗

max with (11) to determine an appropriate choice for σ to
achieve stable synchronization on a particular MN network. To examine the utility
of this approach, we investigated four MN systems, two with the Duffing nodes
moving at normal speed, and two with the nodes moving three times faster than
normal. We define synchronization exponent, ν, to be the average slope on the graph
of ln ∆(t) for a small perturbation from the synchronized state. We examine ν as a
function of coupling constant, where a negative value for ν represents an exponential
approach to the synchronization manifold. We illustrate the results in Fig 4. For
each curve, the bolded region shows those values of σ for which the Moving Average
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Laplacian predicts a stable manifold. We note that the stability property in this
range has been correctly predicted, but that the estimate is conservative, in the
sense that the synchronization may remain stable for coupling values far outside
that range.
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Figure 4. (Color online) Graphs of synchronization exponent ν

as a function of σ. All systems used n = 100 nodes. Curve (a):
r = 1.2, network an normal speed. Curve (b): r = 1.1, network
at normal speed. Curve (c): r = 1.1, network at 3x speed. Curve
(d): r = .75, network at 3x speed. The bold region on each curve
indicates those values of σ for which the Moving Average Laplacian
predicts a stable manifold.

We should not expect that the Moving Average Laplacian would provide precise
criteria for synchronization, because our “naive” approach is fundamentally in error.
The MSF approach to analysis of a network is derived based on a fixed network,
whereas C(t) still represents an evolving network. (We note that for curve (d) of
Fig 4, the approach gave a very conservative estimate, which coincides with the
fact that the behavior of that system is most dependent upon the mixing of the
system, since the network with r = .75 generally has more than three disconnected
components.) We recognize that there are techniques that should allow precise
analysis of the synchronization behavior of MN networks, which will, of necessity,
be significantly more complicated than the MSF. However, our goal with the Moving
Average Laplacian was not to predict synchronization, but rather to quantify the
connectivity. Because we were able to exploit this quantification to aid in choosing
a stabilizing coupling parameter leads us to believe that the quantification may
have utility in other areas of network analysis that rely on the spectrum of the
laplacian, and that further investigation is warranted.
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9. Time-Average Scale-Free Network. The main thrust of this modeling effort
is to show that it is useful to consider evolving networks. The underlying time aver-
age degree distribution remains very flexible, including possibility of the scale-free
distribution seen so frequently in many applications, [1, 2]. The basic MN network
generates a binomial degree distribution, seen easily as follows. The probability

p(x, ǫ) ≡
= P (agent-j at position y at least ǫ-close to agent-i, at x : y ∈ Bǫ(x))

=

∫

Bǫ(x)

dµ(y), (29)

(by assuming the network has the ergodic invariant measure µ(x)). The ‘long-run’
probability that i and j coincide to within ǫ is

p(ǫ) =

∫

p(x, ǫ)dµ(x), (30)

where p ≡ p(ǫ) is a function of ǫ, as above. Therefore, the time-average degree
distribution of MN is the binomial,

Pp(ǫ)(k) =

(

n

k

)

pk(1 − p)n−k, (31)

which is asymptotically Poisson for n >> 1, or p << 1.
A time-averaged scale-free network requires a substantially heavier tail than the

basic MN model. Thus motivated, and also considering that social connections,
once formed, have certain persistence or memory, we model that some agents “stay
in touch,” continuing to communicate for some period after they are no longer
neighbors. We formulate the following modification to MN, which we call Moving
Network with Friends, or MNF: To each agent we associate a random “gregarious
factor,”

gi = U(0, 1). (32)

As with MN, a new link is made between agents i and j whenever,

|xi − xj | < ǫ. (33)

However, once formed, we introduce latency as follows: At each time step T after

|xi − xj | > ǫ, (34)

we break the link i ↔ j iff a uniform random,

q = U(0, 1), (35)

variable satisfies,

q > F (gj , gi) = 1 −√
gjgj , (36)

where there is tremendous freedom in choosing F depending upon the application,
but we have chosen a specific form as matter of example here. The exponential
latency creates the power-law tail in the degree distribution, as shown in Fig. 5.
The early rise left of the maximum follows since our model still forms connections
according to the binomial distribution of MN, but now they are broken more slowly.
For large k, we find empirically that,

P (k) ∼ k−α with α ≈ 2. (37)

An MNF, since it provides additional connectivity, has more robust synchronization
properties than an MN network with the same neighborhood size, r.
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Figure 5. Either exponential latency (a) or exponential neigh-
borhood size (b) can generate scale-free average distributions.

It easy to formulate other MN-type models which produce a scale free structure,
and we mention one more which we find sufficiently applicable. One can model
that some nodes are “friendlier” than others by defining the neighborhood of node
i to be of size ri, where ri need not be the same for every node. An power-law
distribution of ri would also generate a time-average scale-free network.

10. Conclusions and Direction: In many real processes in which information
propagation in ad hoc networks (such as disease spread, where the infective infor-
mation may survive within an agent on the order of just weeks), the recent network
connections play a crucial role in the dynamic behavior of the system. Thus we
have been motivated to study time-evolving networks, which may more accurately
describe the relevant dynamics. Our MN and MNF models provide a first attempt
at developing such models, basing the network upon diffusing agents communicat-
ing within geographic neighborhoods and with established “friends.” The numerical
simulations in this paper show that global patterns (synchronization) are possible
in these models, even when the network is spatially disconnected. We are develop-
ing a rigorous analysis of the moving average Laplacian to support our empirical
work on how it captures the connectivity of evolving networks. Under the very gen-
eral assumptions of ergodic network dynamics of the agents movements, we have
proven the concept of an average degree distribution, and we have further shown
that adding natural latency to network connectionism leads to the widely observed
phenomenon of scale-free degree distribution, but now in a time-averaged sense,
which is our new concept. We expect these models to widely provide insight into
relevant issues regarding swarming, flocking and other physical and technological
ad hoc cooperative and emergent behavior, particularly if one expects the flock to
act in some fashion that achieves a goal separate from the coordinated movement.
We believe the basic MN model can also be useful to understand the related control
theoretic issue [16] of observability and controllability in the situation where agents
are trying to coordinate some control action which is a fast moving process, but
the communications channels are themselves time-varying; this is still open and
important area of control systems in ad hoc networking.

EMB was supported by the National Science Foundation DMS-0071314. Portions
of this paper may be used by JDS as part of a doctoral dissertation.
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