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Abstract

We present parallel and sequential dense QR factorization algorithms
that are optimized to avoid communication. Some of these are novel,
and some extend earlier work. Communication includes both messages
between processors (in the parallel case), and data movement between
slow and fast memory (in either the sequential or parallel cases).

Our first algorithm, Tall Skinny QR (TSQR), factors m × n matrices
in a one-dimensional (1-D) block cyclic row layout, storing the Q factor
(if desired) implicitly as a tree of blocks of Householder reflectors. TSQR
is optimized for matrices with many more rows than columns (hence the
name). In the parallel case, TSQR requires no more than the minimum
number of messages Θ(log P ) between P processors. In the sequential
case, TSQR transfers 2mn + o(mn) words between slow and fast mem-
ory, which is the theoretical lower bound, and performs Θ(mn/W ) block
reads and writes (as a function of the fast memory size W ), which is
within a constant factor of the theoretical lower bound. In contrast, the
conventional parallel algorithm as implemented in ScaLAPACK requires
Θ(n log P ) messages, a factor of n times more, and the analogous sequen-
tial algorithm transfers Θ(mn2) words between slow and fast memory, also
a factor of n times more. TSQR only uses orthogonal transforms, so it is
just as stable as standard Householder QR. Both parallel and sequential
performance results show that TSQR outperforms competing methods.

Our second algorithm, CAQR (Communication-Avoiding QR), factors
general rectangular matrices distributed in a two-dimensional block cyclic
layout. It invokes TSQR for each block column factorization, which both
remove a latency bottleneck in ScaLAPACK’s current parallel approach,
and both bandwidth and latency bottlenecks in ScaLAPACK’s out-of-core
QR factorization. CAQR achieves modeled speedups of 2.1× on an IBM
POWER5 cluster, 3.0× on a future petascale machine, and 3.8× on the
Grid.
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1 Introduction

We present communication-avoiding parallel and sequential algorithms for the
QR factorization of dense matrices. The algorithms, which we call “Commun-
ication-Avoiding QR” (CAQR) in common, are based on reformulations of the
QR factorization. They feature a decrease in the number of messages exchanged
between processors (in the parallel case) and additionally the volume of data
moved between different levels of the memory hierarchy (in the sequential case)
during the factorization, at the cost of some redundant computations. This
design is motivated by the exponentially growing gaps between floating-point
arithmetic rate, bandwidth, and latency, for many different storage devices and
networks on modern high-performance computers (see e.g., Graham et al. [20]).

General CAQR operates on dense matrices stored in a two-dimensional (2-
D) block cyclic layout. It exploits what we call “Tall Skinny QR” (TSQR) for
block column factorizations. TSQR takes its name from the “tall and skinny”
input matrices for which it is optimized. Such matrices have a number of rows
m which is much larger than the number of columns n. TSQR assumes they are
stored in a 1-D block cyclic row layout. The algorithm works by reorganizing
the QR decomposition to work like a reduction, executed on a tree. In this case,
though, each reduction step is a local QR factorization. The tree’s shape is a
tuning parameter that makes the algorithm broadly applicable. For example,
in the sequential case, a “flat tree” (linear chain) achieves the minimum total
volume of data transferred and number of messages sent between levels of the
memory hierarchy, for any sequential QR factorization of a matrix in that layout,
or indeed in any layout. In the parallel distributed-memory case, TSQR on a
binary tree minimizes the number of messages for any parallel QR factorization
of a matrix in that layout, and has about the same message volume as the
usual algorithm. We summarize our performance models of TSQR and CAQR
in Tables 1 resp. 2. An important characteristic of TSQR is that it only uses
orthogonal transformations, so it has the same accuracy of the QR factorization
implemented in ScaLAPACK.

Parallel Sequential
TSQR ScaLAPACK TSQR ScaLAPACK

# messages log(P ) 2n log(P ) 2mn

W
Θ

“

`

mn

W

´2
”

# words n
2

2
log(P ) n

2

2
log(P ) 2mn 2mn + m

3
n
2

W2

# flops 2mn
2

P
+ 2

3
n3 log(P ) 2mn

2

P
+ n

2

2
log(P ) 2mn2 2mn2 − 2

3
n3

Table 1: Performance models of the TSQR and ScaLAPACK QR factorizations
on an m × n matrix with P processors (in the parallel case) or a fast memory
size of W floating-point words (in the sequential case). Units of message volume
are number of floating-point words. In the parallel case, everything (messages,
words, and flops) is counted along the critical path.

TSQR is also useful as a stand-alone algorithm. Parallel or out-of-DRAM
QR factorizations of tall and skinny matrices in block (cyclic) row format arise in
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Parallel Sequential
TSQR ScaLAPACK TSQR ScaLAPACK

# messages 3
2

√
P log P 3

2
n log P Θ

“

n
3

W3/2

”

Θ
“

n
4

W2

”

# words n2 log P
√

P

3n
2 log(P )

4
√

P
Θ

“

n
3

W1/2

”

n
5

W2

# flops Θ(n3 log P

P
) Θ

“

n
3

P

”

2n3 + 2n
3

√

P

4
3
n3

Table 2: Performance models of CAQR on a square n × n matrix in a 2-D
block layout on a grid of

√
P ×

√
P processors (in the parallel case) or a fast

memory size of W floating-point words (in the sequential case). In the parallel
case, everything (messages, words, and flops) is counted along the critical path.
Block size for the models in this table is n/

√
P by n/

√
P . For the performance

model when using square blocks of any dimension, refer to Equation (A 17) in
Appendix E.

many different applications. Highly overdetermined least squares problems are
a natural application, as well as certain Krylov subspace methods. See Section
3 for details. The usual QR factorization algorithms for these problems either
minimize communication as we do but are not stable (because they use the
normal equations, forming Q = AR−1 where R is the Cholesky factor of AT A),
or are stable but communicate more (such as the usual Householder-based fac-
torization, which is implemented in ScaLAPACK). TSQR, which we describe in
more detail in later sections, both minimizes communication and is stable. See
Section 10 for a discussion of the stability of various orthogonalization methods.

The tree-based QR idea itself is not novel (see for example, [10, 23, 38, 40]),
but we have a number of optimizations and generalizations:

• Our algorithm can perform almost all its floating-point operations using
any fast sequential QR factorization routine. In particular, we can achieve
significant speedups by invoking Elmroth and Gustavson’s recursive QR
(see [15, 16]).

• We apply TSQR to the parallel factorization of arbitrary rectangular ma-
trices in a two-dimensional block cyclic layout.

• We adapt TSQR to work on general reduction trees. This flexibility
lets schedulers overlap communication and computation, and minimize
communication for more complicated and realistic computers with multi-
ple levels of parallelism and memory hierarchy (e.g., a system with disk,
DRAM, and cache on multiple boards each containing one or more multi-
core chips of different clock speeds, along with compute accelerator hard-
ware like GPUs).

• We prove in the case of a 1-D block layout that both our parallel and
sequential algorithms minimize bandwidth and latency costs. We make
the same conjecture, with supporting arguments, for the case of a 2-D
block layout.
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We note that the Q factor is represented as a tree of smaller Q factors, which
differs from the traditional layout. Many previous authors did not explain in
detail how to apply a stored TSQR Q factor, quite possibly because this is
not needed for solving least squares problems. Adjoining the right-hand side(s)
to the matrix A, and taking the QR factorization of the result, requires only
the R factor. Previous authors discuss this optimization. However, many of
our applications require storing and working with the implicit representation
of the Q factor. Furthermore, applying this implicit representation has nearly
the same performance model as constructing an explicit Q factor with the same
dimensions as A.

The rest of this report is organized as follows. Section 2 lists terms and
abbreviations that we use throughout the report. Section 3 gives our motivations
for (re-)discovering and expanding upon TSQR, and developing CAQR. After
that, we begin the exposition of TSQR (the block column QR factorization) by
demonstrating its matrix algebra informally in Section 4. Section 5 illustrates
how TSQR is actually a reduction, introduces corresponding terminology, and
discusses some design choices. After that, Section 6 shows how to save flops and
storage and improve performance on the local QR factorizations in TSQR. We
summarize our machine model in Section 7, and describe the TSQR algorithm
and its performance model in Section 8. Section 9 includes performance models
of competing “tall skinny” QR factorization algorithms, and Section 10 briefly
compares their numerical stability. Discussion of the tall skinny case ends with
Section 12, which gives parallel and sequential performance results for TSQR.
We describe machines of interest for our TSQR experiments and models in
Section 11, and show parallel and sequential benchmark results for TSQR and
other QR factorization algorithms in Section 12.

Section 13 begins our description of the general 2-D block cyclic QR fac-
torization algorithm CAQR. We construct performance models of CAQR and
ScaLAPACK’s QR factorization routine in Section 14. Then, we use these mod-
els to predict performance on a variety of realistic parallel machines in Section
15.

We conclude the main body of our work with two sections of theoretical
lower bounds. Section 16 presents actual and conjectured lower bounds on the
amount of communication a parallel or sequential Householder- or Givens-based
QR factorization must perform. It shows that TSQR is optimal, and argues that
CAQR is optimal as well. Section 17 cites lower bounds on the critical path
length for a parallel QR factorization based on Householder reflections or Givens
rotations. Both TSQR and CAQR attain these bounds.

The various Appendices present the algebra of our performance models in
great detail.

2 List of terms and abbreviations

alpha-beta model A simple model for communication time, involving a la-
tency parameter α and an inverse bandwidth parameter β: the time to
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transfer a single message containing n words is α + βn.

CAQR Communication-Avoiding QR – a parallel and/or explicitly swapping
QR factorization algorithm, intended for input matrices of general shape.
Invokes TSQR for panel factorizations.

CholeskyQR A fast but numerically unstable QR factorization algorithm for
tall and skinny matrices, based on the Cholesky factorization of AT A.

DGEQRF LAPACK QR factorization routine for general dense matrices of double-
precision floating-point numbers. May or may not exploit shared-memory
parallelism via a multithreaded BLAS implementation.

GPU Graphics processing unit.

Explicitly swapping Refers to algorithms explicitly written to save space in
one level of the memory hierarchy (“fast memory”) by using the next
level (“slow memory”) as swap space. Explicitly swapping algorithms
can solve problems too large to fit in fast memory. Special cases include
out-of-DRAM (a.k.a. out-of-core), out-of-cache (which is a performance
optimization that manages cache space explicitly in the algorithm), and
algorithms written for processors with non-cache-coherent local scratch
memory and global DRAM (such as Cell).

Flash drive A persistent storage device that uses nonvolatile flash memory,
rather than the spinning magnetic disks used in hard drives. These are in-
creasingly being used as replacements for traditional hard disks for certain
applications. Flash drives are a specific kind of solid-state drive (SSD),
which uses solid-state (not liquid, gas, or plasma) electronics with no mov-
ing parts to store data.

Local store A user-managed storage area which functions like a cache (in that
it is smaller and faster than main memory), but has no hardware support
for cache coherency.

Out-of-cache Refers to algorithms explicitly written to save space in cache (or
local store), by using the next larger level of cache (or local store), or main
memory (DRAM), as swap space.

Out-of-DRAM Refers to algorithms explicitly written to save space in main
memory (DRAM), by using disk as swap space. (“Core” used to mean
“main memory,” as main memories were once constructed of many small
solenoid cores.) See explicitly swapping.

PDGEQRF ScaLAPACK parallel QR factorization routine for general dense ma-
trices of double-precision floating-point numbers.

PFDGEQRF ScaLAPACK parallel out-of-core QR factorization routine for general
dense matrices of double-precision floating-point numbers.
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TSQR Tall Skinny QR – our reduction-based QR factorization algorithm, in-
tended for “tall and skinny” input matrices (i.e., those with many more
rows than columns).

3 Motivation for TSQR

3.1 Block iterative methods

Block iterative methods frequently compute the QR factorization of a tall and
skinny dense matrix. This includes algorithms for solving linear systems Ax = B
with multiple right-hand sides (such as variants of GMRES, QMR, or CG
[47, 17, 36]), as well as block iterative eigensolvers (for a summary of such
methods, see [3, 30]). Many of these methods have widely used implementa-
tions, on which a large community of scientists and engineers depends for their
computational tasks. Examples include TRLAN (Thick Restart Lanczos), BLZ-
PACK (Block Lanczos), Anasazi (various block methods), and PRIMME (block
Jacobi-Davidson methods) [49, 33, 28, 2, 39, 44]. Eigenvalue computation is par-
ticularly sensitive to the accuracy of the orthogonalization; two recent papers
suggest that large-scale eigenvalue applications require a stable QR factorization
[24, 29].

3.2 s-step Krylov methods

Recent research has reawakened an interest in alternate formulations of Krylov
subspace methods, called s-step Krylov methods, in which some number s steps
of the algorithm are performed all at once, in order to reduce communication.
Demmel et al. review the existing literature and discuss new advances in this
area [13]. Such a method begins with an n×n matrix A and a starting vector v,
and generates some basis for the Krylov subspace span{v, Av, A2v, . . . , Asv},
using a small number of communication steps that is independent of s. Then,
a QR factorization is used to orthogonalize the basis vectors.

The goal of combining s steps into one is to leverage existing basis generation
algorithms that reduce the number of messages and/or the volume of communi-
cation between different levels of the memory hierarchy and/or different proces-
sors. These algorithms make the resulting number of messages independent of
s, rather than growing with s (as in standard Krylov methods). However, this
means that the QR factorization is now the communications bottleneck, at least
in the parallel case: the current PDGEQRF algorithm in ScaLAPACK takes at
least s log2 P messages (in which P is the number of processors), instead of
log2 P messages for TSQR. Numerical stability considerations limit s, so that it
is essentially a constant with respect to the matrix size m. Furthermore, a sta-
ble QR factorization is necessary in order to restrict the loss of stability caused
by generating s steps of the basis without intermediate orthogonalization. This
is an ideal application for TSQR, and in fact inspired its (re-)discovery.
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3.3 Panel factorization in general QR

Householder QR decompositions of tall and skinny matrices also comprise the
panel factorization step for typical QR factorizations of matrices in a more
general, two-dimensional layout. This includes the current parallel QR code
PDGEQRF in ScaLAPACK, as well as ScaLAPACK’s out-of-DRAM QR factor-
ization PFDGEQRF. Both algorithms use a standard column-based Householder
QR for the panel factorizations, but in the parallel case this is a latency bottle-
neck, and in the out-of-DRAM case it is a bandwidth bottleneck. Replacing the
existing panel factorization with TSQR would reduce this cost by a factor equal
to the number of columns in a panel, thus removing the bottleneck. TSQR
requires more floating-point operations, though some of this computation can
be overlapped with communication. Section 13 will discuss the advantages of
this approach in detail.

4 TSQR matrix algebra

In this section, we illustrate the insight behind the TSQR algorithm. TSQR
uses a reduction-like operation to compute the QR factorization of an m × n
matrix A, stored in a 1-D block row layout.1 We begin with parallel TSQR on
a binary tree of four processors (P = 4), and later show sequential TSQR on a
linear tree with four blocks.

4.1 Parallel TSQR on a binary tree

The basic idea of using a reduction on a binary tree to compute a tall skinny
QR factorization has been rediscovered more than once (see e.g., [10, 38]). We
repeat it here in order to show its generalization to a whole space of algorithms.
First, we decompose the m × n matrix A into four m/4 × n block rows:

A =









A0

A1

A2

A3









.

Then, we independently compute the QR factorization of each block row:









A0

A1

A2

A3









=









Q00R00

Q10R10

Q20R20

Q30R30









.

This is “stage 0” of the computation, hence the second subscript 0 of the Q
and R factors. The first subscript indicates the block index at that stage.

1The ScaLAPACK Users’ Guide has a good explanation of 1-D and 2-D block and block
cyclic layouts of dense matrices [5]. In particular, refer to the section entitled “Details of
Example Program #1.”
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Figure 1: Execution of the parallel TSQR factorization on a binary tree of four
processors. The gray boxes indicate where local QR factorizations take place.
The Q and R factors each have two subscripts: the first is the sequence number
within that stage, and the second is the stage number.

(Abstractly, we use the Fortran convention that the first index changes “more
frequently” than the second index.) Stage 0 operates on the P = 4 leaves of the
tree. We can write this decomposition instead as a block diagonal orthogonal
matrix times a column of blocks:

A =









Q00R00

Q10R10

Q20R20

Q30R30









=









Q00

Q10

Q20

Q30









·









R00

R10

R20

R30









,

although we do not have to store it this way. After this stage 0, there are P = 4
of the R factors. We group them into successive pairs Ri,0 and Ri+1,0, and do
the QR factorizations of grouped pairs in parallel:









R00

R10

R20

R30









=









(

R00

R10

)

(

R20

R30

)









=

(

Q01R01

Q11R11

)

.

As before, we can rewrite the last term as a block diagonal orthogonal matrix
times a column of blocks:

(

Q01R01

Q11R11

)

=

(

Q01

Q11

)

·
(

R01

R11

)

.

This is stage 1, as the second subscript of the Q and R factors indicates. We
iteratively perform stages until there is only one R factor left, which is the root
of the tree:

(

R01

R11

)

= Q02R02.
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Equation (1) shows the whole factorization:

A =









A0

A1

A2

A3









=









Q00

Q10

Q20

Q30









·
(

Q01

Q11

)

· Q02 · R02, (1)

in which the product of the first three matrices has orthogonal columns, since
each of these three matrices does. Note the binary tree structure in the nested
pairs of R factors.

Figure 1 illustrates the binary tree on which the above factorization executes.
Gray boxes highlight where local QR factorizations take place. By “local,” we
refer to a factorization performed by any one processor at one node of the tree;
it may involve one or more than one block row. If we were to compute all
the above Q factors explicitly as square matrices, each of the Qi0 would be
m/P × m/P , and Qij for j > 0 would be 2n × 2n. The final R factor would
be upper triangular and m × n, with m − n rows of zeros. In a “thin QR”
factorization, in which the final Q factor has the same dimensions as A, the
final R factor would be upper triangular and n × n. In practice, we prefer to
store all the local Q factors implicitly until the factorization is complete. In
that case, the implicit representation of Qi0 fits in an m/P ×n lower triangular
matrix, and the implicit representation of Qij (for j > 0) fits in an n × n lower
triangular matrix (due to optimizations that will be discussed in Section 6).

Note that the maximum per-processor memory requirement is max{mn/P, n2+
O(n)}, since any one processor need only factor two n×n upper triangular ma-
trices at once, or a single m/P × n matrix.

4.2 Sequential TSQR on a flat tree

Sequential TSQR uses a similar factorization process, but with a “flat tree” (a
linear chain). It may also handle the leaf nodes of the tree slightly differently,
as we will show below. Again, the basic idea is not new (see e.g., [40, 23]), but
we will show how it fits into the same general framework as the parallel QR
decomposition illustrated above, and also how this generalization expands the
tuning space of QR factorization algorithms.

We start with the same block row decomposition as with parallel TSQR
above:

A =









A0

A1

A2

A3









but begin with a QR factorization of A0, rather than of all the block rows:








A0

A1

A2

A3









=









Q00R00

A1

A2

A3









.
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Figure 2: Execution of the sequential TSQR factorization on a flat tree with
four submatrices. The gray boxes indicate where local QR factorizations take
place The Q and R factors each have two subscripts: the first is the sequence
number for that stage, and the second is the stage number.

This is “stage 0” of the computation, hence the second subscript 0 of the Q and
R factor. We retain the first subscript for generality, though in this example
it is always zero. We can write this decomposition instead as a block diagonal
matrix times a column of blocks:









Q00R00

A1

A2

A3









=









Q00

I
I

I









·









R00

A1

A2

A3









.

We then combine R00 and A1 using a QR factorization:








R00

A1

A2

A3









=









R00

A1

A2

A3









=





Q01R01

A2

A3





This can be rewritten as a block diagonal matrix times a column of blocks:




Q01R01

A2

A3



 =





Q01

I
I



 ·





R01

A2

A3



 .

We continue this process until we run out of Ai factors. The resulting factor-
ization has the following structure:








A0

A1

A2

A3









=









Q00

I
I

I









·





Q01

I
I



·





I
Q02

I



·





I
I

Q03



R30.

(2)
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Here, the Ai blocks are m/P ×n. If we were to compute all the above Q factors
explicitly as square matrices, then Q00 would be m/P ×m/P and Q0j for j > 0
would be 2m/P × 2m/P . The above I factors would be m/P ×m/P . The final
R factor, as in the parallel case, would be upper triangular and m × n, with
m − n rows of zeros. In a “thin QR” factorization, in which the final Q factor
has the same dimensions as A, the final R factor would be upper triangular and
n × n. In practice, we prefer to store all the local Q factors implicitly until the
factorization is complete. In that case, the implicit representation of Q00 fits in
an m/P ×n lower triangular matrix, and the implicit representation of Q0j (for
j > 0) fits in an m/P × n lower triangular matrix as well (due to optimizations
that will be discussed in Section 6).

Figure 2 illustrates the flat tree on which the above factorization executes.
Gray boxes highlight where “local” QR factorizations take place.

The sequential algorithm differs from the parallel one in that it does not
factor the individual blocks of the input matrix A, excepting A0. This is because
in the sequential case, the input matrix has not yet been loaded into working
memory. In the fully parallel case, each block of A resides in some processor’s
working memory. It then pays to factor all the blocks before combining them,
as this reduces the volume of communication (only the triangular R factors
need to be exchanged) and reduces the amount of arithmetic performed at the
next level of the tree. In contrast, the sequential algorithm never writes out the
intermediate R factors, so it does not need to convert the individual Ai into
upper triangular factors. Factoring each Ai separately would require writing
out an additional Q factor for each block of A. It would also add another level
to the tree, corresponding to the first block A0.

Note that the maximum per-processor memory requirement is mn/P +
n2/2 + O(n), since only an m/P × n block and an n × n upper triangular
block reside in fast memory at one time. We could save some fast memory by
factoring each Ai block separately before combining it with the next block’s R
factor, as long as each block’s Q and R factors are written back to slow memory
before the next block is loaded. One would then only need to fit no more than
two n×n upper triangular factors in fast memory at once. However, this would
result in more writes, as each R factor (except the last) would need to be written
to slow memory and read back into fact memory, rather than just left in fast
memory for the next step.

In both the parallel and sequential algorithms, a vector or matrix is multi-
plied by Q or QT by using the implicit representation of the Q factor, as shown
in Equation (1) for the parallel case, and Equation (2) for the sequential case.
This is analogous to using the Householder vectors computed by Householder
QR as an implicit representation of the Q factor.

4.3 TSQR on general trees

The above two algorithms are extreme points in a large set of possible QR
factorization methods, parametrized by the tree structure. Our version of TSQR
is novel because it works on any tree. In general, the optimal tree may depend
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Figure 3: Execution of a hybrid parallel / out-of-core TSQR factorization. The
matrix has 16 blocks, and four processors can execute local QR factorizations
simultaneously. The gray boxes indicate where local QR factorizations take
place. We number the blocks of the input matrix A in hexadecimal to save
space (which means that the subscript letter A is the number 1010, but the
non-subscript letter A is a matrix block). The Q and R factors each have two
subscripts: the first is the sequence number for that stage, and the second is
the stage number.
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on both the architecture and the matrix dimensions. This is because TSQR
is a reduction (as we will discuss further in Section 5). Trees of types other
than binary often result in better reduction performance, depending on the
architecture (see e.g., [35]). Throughout this paper, we discuss two examples –
the binary tree and the flat tree – as easy extremes for illustration. We will show
that the binary tree minimizes the number of stages and messages in the parallel
case, and that the flat tree minimizes the number and volume of input matrix
reads and writes in the sequential case. Section 5 shows how to perform TSQR
on any tree. Methods for finding the best tree in the case of TSQR are future
work. Nevertheless, we can identify two regimes in which a “nonstandard” tree
could improve performance significantly: parallel memory-limited CPUs, and
large distributed-memory supercomputers.

The advent of desktop and even laptop multicore processors suggests a re-
vival of parallel out-of-DRAM algorithms, for solving cluster-sized problems
while saving power and avoiding the hassle of debugging on a cluster. TSQR
could execute efficiently on a parallel memory-limited device if a sequential flat
tree were used to bring blocks into memory, and a parallel tree (with a structure
that reflects the multicore memory hierarchy) were used to factor the blocks.
Figure 3 shows an example with 16 blocks executing on four processors, in which
the factorizations are pipelined for maximum utilization of the processors. The
algorithm itself needs no modification, since the tree structure itself encodes the
pipelining. This is, we believe, a novel extension of the parallel out-of-core QR
factorization of Gunter et al. [23], as their method uses ScaLAPACK’s existing
parallel QR (PDGEQRF) to factor the blocks in memory.

TSQR’s choice of tree shape can also be optimized for modern supercomput-
ers. A tree with different branching factors at different levels could naturally
accommodate the heterogeneous communication network of a cluster of multi-
cores. The subtrees at the lowest level may have the same branching factor as
the number of cores per node (or per socket, for a multisocket shared-memory
architecture).

Note that the maximum per-processor memory requirement of all TSQR
variations is bounded above by

qn(n + 1)

2
+

mn

P
,

in which q is the maximum branching factor in the tree.

5 TSQR as a reduction

Section 4 explained the algebra of the TSQR factorization. It outlined how to
reorganize the parallel QR factorization as a tree-structured computation, in
which groups of neighboring processors combine their R factors, perform (pos-
sibly redundant) QR factorizations, and continue the process by communicating
their R factors to the next set of neighbors. Sequential TSQR works in a similar
way, except that communication consists of moving matrix factors between slow
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and fast memory. This tree structure uses the same pattern of communication
found in a reduction or all-reduction. Thus, effective optimization of TSQR
requires understanding these operations.

5.1 Reductions and all-reductions

Reductions and all-reductions are operations that take a collection as input, and
combine the collection using some (ideally) associative function into a single
item. The result is a function of all the items in the input. Usually, one speaks
of (all-) reductions in the parallel case, where ownership of the input collection
is distributed across some number P of processors. A reduction leaves the final
result on exactly one of the P processors; an all-reduction leaves a copy of the
final result on all the processors. See, for example, [22].

In the sequential case, there is an analogous operation. Imagine that there
are P “virtual processors.” To each one is assigned a certain amount of fast
memory. Virtual processors communicate by sending messages via slow memory,
just as the “real processors” in the parallel case communicate via the (relatively
slow) network. Each virtual processor owns a particular subset of the input
data, just as each real processor does in a parallel implementation. A virtual
processor can read any other virtual processor’s subset by reading from slow
memory (this is a “receive”). It can also write some data to slow memory (a
“send”), for another virtual processor to read. We can run programs for this
virtual parallel machine on an actual machine with only one processor and its
associated fast memory by scheduling the virtual processors’ tasks on the real
processor(s) in a way that respects task dependencies. Note that all-reductions
and reductions produce the same result when there is only one actual processor,
because if the final result ends up in fast memory on any of the virtual processors,
it is also in fast memory on the one actual processor.

The “virtual processors” argument may also have practical use when imple-
menting (all-) reductions on clusters of SMPs or vector processors, multicore
out-of-core, or some other combination consisting of tightly-coupled parallel
units with slow communication links between the units. A good mapping of
virtual processors to real processors, along with the right scheduling of the “vir-
tual” algorithm on the real machine, can exploit multiple levels of parallelism
and the memory hierarchy.

5.2 (All-) reduction trees

Reductions and all-reductions are performed on directed trees. In a reduction,
each node represents a processor, and each edge a message passed from one pro-
cessor to another. All-reductions have two different implementation strategies:

• “Reduce-broadcast”: Perform a standard reduction to one processor, fol-
lowed by a broadcast (a reduction run backwards) of the result to all
processors.
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Time
0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Figure 4: Diagram of a parallel butterfly all-reduction on a binary tree of eight
processors. Each arrow represents a message from one processor to another.
Time moves upwards.

• “Butterfly” method, with a communication pattern like that of a fast
Fourier transform.

The butterfly method uses a tree with the following recursive structure:

• Each leaf node corresponds to a single processor.

• Each interior node is an ordered tuple whose members are the node’s
children.

• Each edge from a child to a parent represents a complete exchange of
information between all individual processors at the same positions in the
sibling tuples.

We call the processors that communicate at a particular stage neighbors. For
example, in a a binary tree with eight processors numbered 0 to 7, processors 0
and 1 are neighbors at the first stage, processors 0 and 2 are neighbors at the
second stage, and processors 0 and 4 are neighbors at the third (and final) stage.
At any stage, each neighbor sends its current reduction value to all the other
neighbors. The neighbors combine the values redundantly, and the all-reduction
continues. Figure 4 illustrates this process. The butterfly all-reduction can be
extended to any number of processors, not just powers of two.

The reduce-broadcast implementation requires about twice as many stages
as the butterfly pattern (in the case of a binary tree) and thus as much as
twice the latency. However, it reduces the total number of messages communi-
cated per level of the tree (not just the messages on the critical path). In the
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case of a binary tree, reduce-broadcast requires at most P/2 messages at any
one level, and P log(P )/2 total messages. A butterfly always generates P mes-
sages at every level, and requires P log(P ) total messages. The choice between
reduce-broadcast and butterfly depends on the properties of the communication
network.

5.3 TSQR-specific (all-) reduction requirements

TSQR uses an (all-) reduction communication pattern, but has requirements
that differ from the standard (all-) reduction. For example, if the Q factor is
desired, then TSQR must store intermediate results (the local Q factor from
each level’s computation with neighbors) at interior nodes of the tree. This
requires reifying and preserving the (all-) reduction tree for later invocation
by users. Typical (all-) reduction interfaces, such as those provided by MPI
or OpenMP, do not allow this (see e.g., [22]). They may not even guarantee
that the same tree will be used upon successive invocations of the same (all-)
reduction operation, or that the inputs to a node of the (all-) reduction tree will
always be in the same order.

6 Optimizations for local QR factorizations

Although TSQR achieves its performance gains because it optimizes communi-
cation, the local QR factorizations lie along the critical path of the algorithm.
The parallel cluster benchmark results in Section 12 show that optimizing the lo-
cal QR factorizations can improve performance significantly. In this section, we
outline a few of these optimizations, and hint at how they affect the formulation
of the general CAQR algorithm in Section 13.

6.1 Structured QR factorizations

Many of the inputs to the local QR factorizations have a particular structure.
In the parallel case, they are vertical stacks of n× n upper triangular matrices,
and in the sequential case, at least one of the blocks is upper triangular. In this
section, we show how to modify a standard dense Householder QR factorization
in order to exploit this structure. This can save a factor of 5× flops and (at
least) 3× storage, in the parallel case, and a factor of 2× flops and (up to) 2×
storage in the sequential case. We also show how to perform the trailing matrix
update with these structured QR factorizations, as it will be useful for Section
13.

Suppose that we have two upper triangular matrices R0 and R1, each of size
5 × 5. (The notation here is generic and not meant to correspond to a specific
stage of TSQR. This is extended easily enough to the case of q upper triangular
matrices, for q = 2, 3, . . . .) Then, we can write their vertical concatenation as
follows, in which an x denotes a structural nonzero of the matrix, and empty
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spaces denote zeros:

(

R0

R1

)

=

































x x x x x
x x x x

x x x
x x

x
x x x x x

x x x x
x x x

x x
x

































. (3)

Note that we do not need to store the ones on the diagonal explicitly. The Q
factor effectively overwrites R1 and the R factor overwrites R0.

The approach used for performing the QR factorization of the first block col-
umn affects the storage for the Householder vectors as well as the update of any
trailing matrices that may exist. In general, Householder transformations have
the form I − τjvjv

T
j , in which the Householder vector vi is normalized so that

vi(1) = 1. This means that vi(1) need not be stored explicitly. Furthermore, if
we use structured Householder transformations, we can avoid storing and com-
puting with the zeros in Equation (3). As the Householder vector always has
the same nonzero pattern as the vector from which it is calculated, the nonzero
structure of the Householder vector is trivial to determine.

For a 2n×n rectangular matrix composed of n×n upper triangular matrices,
the i-th Householder vector vi in the QR factorization of the matrix is a vector
of length 2n with nonzeros in entries n + 1 through n + i, a one in entry i, and
zeros elsewhere. If we stack all n Householder vectors into a 2n × n matrix, we
obtain the following representation of the Q factor (not including the τ array of
multipliers):

































1
1

1
1

1
x x x x x

x x x x
x x x

x x
x

































. (4)

Algorithm 1 shows a standard, column-by-column sequential QR factoriza-
tion of the qn × n matrix of upper triangular n × n blocks, using structured
Householder reflectors. To analyze the cost, consider the components:

1. House(w): the cost of this is dominated by finding the norm of the vector
w and scaling it.
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Algorithm 1 Sequential QR factorization of qn × n matrix A, with structure
as in Equation (3)

1: for j = 1 to n do

2: Let Ij be the index set {j, n + 1 : n + j, . . . , (q − 1)n + 1 : (q − 1)n + j}
3: w := A(Ij , j) ⊲ Gather pivot column of A into w
4: [τj , v] := House(w) ⊲ Compute Householder reflection, normalized so

that v(1) = 1
5: X := A(Ij , j + 1 : n) ⊲ Gather from A into X. One would normally

perform the update in place; we use a copy to improve clarity.
6: X := (I − τjvvT )X ⊲ Apply Householder reflection
7: A(Ij \ {j}, j) := v(2 : end) ⊲ Scatter v(2 : end) back into A
8: A(Ij , j + 1 : n) := X ⊲ Scatter X back into A
9: end for

2. Applying a length n Householder reflector, whose vector contains k nonze-
ros, to an n × b matrix A. This is an operation (I − τvvT )A = A −
v(τ(vT A)).

Appendix A counts the arithmetic operations in detail. There, we find that the
total cost is about

2

3
(q − 1)n3

flops, to factor a qn× n matrix (we showed the specific case q = 2 above). The
flop count increases by about a factor of 3× if we ignore the structure of the
inputs.

6.2 BLAS 3 structured Householder QR

Representing the local Q factor as a collection of Householder transforms means
that the local QR factorization is dominated by BLAS 2 operations (dense
matrix-vector products). A number of authors have shown how to reformulate
the standard Householder QR factorization so as to coalesce multiple House-
holder reflectors into a block, so that the factorization is dominated by BLAS 3
operations. For example, Schreiber and Van Loan describe a so-called YT repre-
sentation of a collection of Householder reflectors [42]. BLAS 3 transformations
like this are now standard in LAPACK and ScaLAPACK.

We can adapt these techniques in a straightforward way in order to exploit
the structured Householder vectors depicted in Equation (4). Schreiber and Van
Loan use a slightly different definition of Householder reflectors: ρj = I−2vjv

T
j ,

rather than LAPACK’s ρj = I − τjvjv
T
j . Schreiber and Van Loan’s Y matrix is

the matrix of Householder vectors Y = [v1 v2 . . . vn]; its construction requires
no additional computation as compared with the usual approach. However, the
T matrix must be computed, which increases the flop count by a constant factor.
The cost of computing the T factor for the qn × n factorization above is about
qn3/3. Algorithm 2 shows the resulting computation. Note that the T factor
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Algorithm 2 Computing Y and T in the (Y, T ) representation of a collection
of n Householder reflectors. Modification of an algorithm in [42] so that Pj =
I − τjvjv

T
j .

Require: n Householder reflectors ρj = I − τjvjv
T
j

1: for j = 1 to n do

2: if j = 1 then

3: Y := [v1]
4: T := [−τj ]
5: else

6: z := −τj(T (Y T vj))
7: Y :=

(

Y vj

)

8: T :=

(

T z
0 −τj

)

9: end if

10: end for

Assert: Y and T satisfy ρ1 · ρ2 · . . . ρn = I + Y TY T

requires n(n − 1)/2 additional storage per processor on which the T factor is
required.

6.3 Recursive Householder QR

In Section 12, we show large performance gains obtained by using Elmroth and
Gustavson’s recursive algorithm for the local QR factorizations [16]. The au-
thors themselves observed that their approach works especially well with “tall
thin” matrices, and others have exploited this effect in their applications (see
e.g., [40]). The recursive approach outperforms LAPACK because it makes the
panel factorization a BLAS 3 operation. In LAPACK, the panel QR factoriza-
tion consists only of matrix-vector and vector-vector operations. This suggests
why recursion helps especially well with tall, thin matrices. Elmroth and Gus-
tavson’s basic recursive QR does not perform well when n is large, as the flop
count grows cubically in n, so they opt for a hybrid approach that divides the
matrix into panels of columns, and performs the panel QR factorizations using
the recursive method.

Elmroth and Gustavson use exactly the same representation of the Q factor
as Schreiber and Van Loan [42], so the arguments of the previous section still
apply.

6.4 Trailing matrix update

Section 13 will describe how to use TSQR to factor matrices in general 2-D
layouts. For these layouts, once the current panel (block column) has been
factored, the panels to the right of the current panel cannot be factored until
the transpose of the current panel’s Q factor has been applied to them. This
is called a trailing matrix update. The update lies along the critical path of
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the algorithm, and consumes most of the floating-point operations in general.
This holds regardless of whether the factorization is left-looking, right-looking,
or some hybrid of the two.2 Thus, it’s important to make the updates efficient.

The trailing matrix update consists of a sequence of applications of local QT

factors to groups of “neighboring” trailing matrix blocks. (Section 5 explains
the meaning of the word “neighbor” here.) We now explain how to do one of
these local QT applications. (Do not confuse the local Q factor, which we label
generically as Q, with the entire input matrix’s Q factor.)

Let the number of rows in a block be M , and the number of columns in a
block be N . We assume M ≥ N . Suppose that we want to apply the local QT

factor from the above qN ×N matrix factorization, to two blocks C0 and C1 of
a trailing matrix panel. (This is the case q = 2, which we assume for simplicity.)
We divide each of the Ci into a top part and a bottom part:

Ci =

(

Ci(1 : N, :)
Ci(N + 1 : M, :)

)

=

(

C ′

i

C ′′

i

)

.

Our goal is to perform the operation

(

R0 C ′

0

R1 C ′

1

)

=

(

QR C ′

0

C ′

1

)

= Q ·
(

R Ĉ ′

0

Ĉ ′

1

)

,

in which Q is the local Q factor and R is the local R factor of [R0;R1]. Im-
plicitly, the local Q factor has the dimensions 2M × 2M , as Section 4 explains.
However, it is not stored explicitly, and the implicit operator that is stored has
the dimensions 2N × 2N . We assume that processors P0 and P1 each store a
redundant copy of Q, that processor P2 has C0, and that processor P3 has C1.
We want to apply QT to the matrix

C =

(

C0

C1

)

.

First, note that Q has a specific structure. If stored explicitly, it would have
the form

Q =









U00

IM−N

U01

0M−N

U10

0M−N

U11

IM−N









,

in which the Uij blocks are each N × N . This makes the only nontrivial com-
putation when applying QT the following:

(

Ĉ ′

0

Ĉ ′

1

)

:=

(

UT
00 UT

10

UT
01 UT

11

)

·
(

C ′

0

C ′

1

)

. (5)

We see, in particular, that only the uppermost N rows of each block of the
trailing matrix need to be read or written. Note that it is not necessary to

2For descriptions and illustrations of the difference between left-looking and right-looking
factorizations, see e.g., [14].
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construct the Uij factors explicitly; we need only operate on C ′

0 and C ′

1 with
QT .

If we are using a standard Householder QR factorization (without BLAS
3 optimizations), then computing Equation (5) is straightforward. When one
wishes to exploit structure (as in Section 6.1) and use a local QR factoriza-
tion that exploits BLAS 3 operations (as in Section 6.2), more interesting load
balance issues arise. We will discuss these in the following section.

6.4.1 Trailing matrix update with structured BLAS 3 QR

An interesting attribute of the YT representation is that the T factor can be
constructed using only the Y factor and the τ multipliers. This means that it is
unnecessary to send the T factor for updating the trailing matrix; the receiving
processors can each compute it themselves. However, one cannot compute Y
from T and τ in general.

When the YT representation is used, the update of the trailing matrices
takes the following form:

(

Ĉ0
′

Ĉ1
′

)

:=

(

I −
(

I
Y1

)

· TT

·
(

I
Y1

)T)(C ′

0

C ′

1

)

.

Here, Y1 starts on processor P1, C ′

0 on processor P2, and C ′

1 on processor P3.
The matrix T must be computed from τ and Y1; we can assume that τ is on

processor P1. The updated matrices Ĉ0
′

and Ĉ1
′

are on processors P2 resp. P3.
There are many different ways to perform this parallel update. The data

dependencies impose a directed acyclic graph (DAG) on the flow of data between
processors. One can find the the best way to do the update by realizing an
optimal computation schedule on the DAG. Our performance models can be
used to estimate the cost of a particular schedule.

Here is a straightforward but possibly suboptimal schedule. First, assume
that Y1 and τ have already been sent to P3. Then,

P2’s tasks:

• Send C ′

0 to P3

• Receive W from P3

• Compute Ĉ0
′

= C ′

0 − W

P3’s tasks:

• Compute the T factor and W :=
TT (C ′

0 + Y T
1 C ′

1)

• Send W to P2

• Compute Ĉ1
′

:= C ′

1 − Y1W

However, this leads to some load imbalance, since P3 performs more com-
putation than P2. It does not help to compute T on P0 or P1 before sending it
to P3, because the computation of T lies on the critical path in any case. We
will see in Section 13 that part of this computation can be overlapped with the
communication.
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For q ≥ 2, we can write the update operation as













Ĉ0
′

Ĉ1
′

...
ˆCq−1

′













:=











I −











IN×N

Y1

...
Yq−1











TT
(

IN×N Y T
1 . . . Y T

q−1

)





















C ′

0

C ′

1
...

C ′

q−1











.

If we let
D := C ′

0 + Y T
1 C ′

1 + Y T
2 C ′

2 + · · · + Y T
q−1C

′

q−1

be the “inner product” part of the update operation formulas, then we can
rewrite the update formulas as

Ĉ0
′

:= C ′

0 − TT D,

Ĉ1
′

:= C ′

1 − Y1T
T D,

...

ˆCq−1
′

:= C ′

q−1 − Yq−1T
T D.

As the branching factor q gets larger, the load imbalance becomes less of an
issue. The inner product D should be computed as an all-reduce in which the
processor owning Ci receives Yi and T . Thus, all the processors but one will
have the same computational load.

7 Machine model

7.1 Parallel machine model

Throughout this work, we use the “alpha-beta” or latency-bandwidth model of
communication, in which a message of size n floating-point words takes time α+
βn seconds. The α term represents message latency (seconds per message), and
the β term inverse bandwidth (seconds per floating-point word communicated).
Our algorithms only need to communicate floating-point words, all of the same
size. We make no attempt to model overlap of communication and computation,
but we do mention the possibility of overlap when it exists. Exploiting overlap
could potentially speed up our algorithms (or any algorithm) by a factor of two.

We predict floating-point performance by counting floating-point operations
and multiplying them by γ, the inverse peak floating-point performance, also
known as the floating-point throughput. The quantity γ has units of seconds per
flop (so it can be said to measure the bandwidth of the floating-point hardware).
If we need to distinguish between adds and multiplies on one hand, and divides
on the other, we use γ for the throughput of adds and multiplies, and γd for the
throughput of divides.

When appropriate, we may scale the peak floating-point performance pre-
diction of a particular matrix operation by a factor, in order to account for the
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measured best floating-point performance of local QR factorizations. This gen-
erally gives the advantage to competing algorithms rather than our own, as our
algorithms are designed to perform better when communication is much slower
than arithmetic.

7.2 Sequential machine model

We also apply the alpha-beta model to communication between levels of the
memory hierarchy in the sequential case. We restrict our model to describe
only two levels at one time: fast memory (which is smaller) and slow memory
(which is larger). The terms “fast” and “slow” are always relative. For example,
DRAM may be considered fast if the slow memory is disk, but DRAM may be
considered slow if the fast memory is cache. As in the parallel case, the time
to complete a transfer between two levels is modeled as α + βn. We assume
that user has explicit control over data movement (reads and writes) between
fast and slow memory. This offers an upper bound when control is implicit (as
with caches), and also allows our model as well as our algorithms to extend to
systems like the Cell processor (in which case fast memory is an individual local
store, and slow memory is DRAM).

We assume that the fast memory can hold W floating-point words. For any
QR factorization operating on an m × n matrix, the quantity

mn

W

bounds from below the number of loads from slow memory into fast memory
(as the method must read each entry of the matrix at least once). It is also
a lower bound on the number of stores from fast memory to slow memory (as
we assume that the algorithm must write the computed Q and R factors back
to slow memory). Sometimes we may refer to the block size P . In the case of
TSQR, we usually choose

P =
mn

3W
,

since at most three blocks of size P must be in fast memory at one time when
applying the Q or QT factor in sequential TSQR (see Section 4).

In the sequential case, just as in the parallel case, we assume all memory
transfers are nonoverlapped. Overlapping communication and computation may
provide up to a twofold performance improvement. However, some implemen-
tations may consume fast memory space in order to do buffering correctly. This
matters because the main goal of our sequential algorithms is to control fast
memory usage, often to solve problems that do not fit in fast memory. We usu-
ally want to use as much of fast memory as possible, in order to avoid expensive
transfers to and from slow memory.
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8 TSQR implementation

In this section, we describe the TSQR factorization algorithm in detail. We also
build a performance model of the algorithm, based on the machine model in
Section 7 and the operation counts of the local QR factorizations in Section 6.

8.1 Reductions and all-reductions

In Section 5, we gave a detailed description of (all-)reductions. We did so be-
cause the TSQR factorization is itself an (all-)reduction, in which additional
data (the components of the Q factor) is stored at each node of the (all-
)reduction tree. Applying the Q or QT factor is also a(n) (all-)reduction.

If we implement TSQR with an all-reduction, then we get the final R factor
replicated over all the processors. This is especially useful for Krylov subspace
methods. If we implement TSQR with a reduction, then the final R factor is
stored only on one processor. This avoids redundant computation, and is useful
both for block column factorizations for 2-D block (cyclic) matrix layouts, and
for solving least squares problems when the Q factor is not needed.

8.2 Factorization

We now describe the TSQR factorization for the 1-D block row layout. We
omit the obvious generalization to a 1-D block cyclic row layout. Algorithm
3 shows an implementation of the former, based on an all-reduction. (Note
that running Algorithm 3 on a matrix on a 1-D block cyclic layout still works,
though it performs an implicit block row permutation on the Q factor.) The
procedure computes an R factor which is duplicated over all the processors, and
a Q factor which is stored implicitly in a distributed way. Line 1 makes use of a
block representation of the Q factor: it is stored implicitly as a pair (Yi,0, τi,0),
in which Yi,0 is the unit lower trapezoidal matrix of Householder vectors and
τi,0 are the associated scaling factors. We overwrite the lower trapezoid of Ai

with Yi,0 (not counting the unit part). The matrix Ri,k is stored as an n × n
upper triangular matrix for all stages k.

8.2.1 Performance model

In Appendix D, we develop a performance model for parallel TSQR on a binary
tree. Appendix B does the same for sequential TSQR on a flat tree.

A parallel TSQR factorization on a binary reduction tree performs the fol-
lowing computations along the critical path: One local QR factorization of a
fully dense m/P × n matrix, and log P factorizations, each of a 2n × n matrix
consisting of two n × n upper triangular matrices. The factorization requires
log P messages, each of size n2/2 + O(n).

Sequential TSQR on a flat tree requires 2mn/W messages between fast and
slow memory, and moves a total of 2mn words. It performs about 2mn2 arith-
metic operations.

27



Algorithm 3 TSQR, block row layout

Require: All-reduction tree with height L = log2 P
Require: i ∈ Π: my processor’s index
Require: The m × n matrix A is distributed in a 1-D block row layout over

the processors Π.
Require: Ai is the block of rows belonging to processor i.
1: Compute [Qi,0, Ri,0] := qr(Ai)
2: for k from 1 to log2 P do

3: if I have any neighbors at this level then

4: Send (non-blocking) Ri,k−1 to each neighbor not myself
5: Receive (non-blocking) Rj,k−1 from each neighbor j not myself
6: Wait until the above sends and receives complete ⊲ Note: not a

global barrier.
7: Stack the Rj,k−1 from all neighbors (including my own Ri,k−1), by

order of processor ids, into an array C
8: Compute [Qi,k, Ri,k] := qr(C)
9: else

10: Ri,k := Ri,k−1

11: Qi,k := In×n ⊲ Stored implicitly
12: end if

13: Processor i has an implicit representation of its block column of Qi,k.
The blocks in the block column are n×n each and there are as many
of them as there are neighbors at stage k (including i itself). We
don’t need to compute the blocks explicitly here.

14: end for

Assert: Ri,L is the R factor of A, for all processors i ∈ Π.
Assert: The Q factor is implicitly represented by {Qi,k}: i ∈ Π, k ∈

{0, 1, . . . , L}}.

8.3 Applying Q or QT to vector(s)

Just like Householder QR, TSQR computes an implicit representation of the Q
factor. One need not generate an explicit representation of Q in order to apply
the Q or QT operators to one or more vectors. In fact, generating an explicit Q
matrix requires just as many messages as applying Q or QT . (The performance
model for applying Q or QT is an obvious extension of the factorization perfor-
mance model, so we omit it.) Furthermore, the implicit representation can be
updated or downdated, by using standard techniques (see e.g., [19]) on the local
QR factorizations recursively. The s-step Krylov methods mentioned in Section
3 employ updating and downdating extensively.

In the case of the “thin” Q factor (in which the vector input is of length n),
applying Q involves a kind of broadcast operation (which is the opposite of a
reduction). If the “full” Q factor is desired, then applying Q or QT is a kind
of all-to-all (like the fast Fourier transform). Computing Q ·x runs through the
nodes of the (all-)reduction tree from leaves to root, whereas computing QT · y
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runs from root to leaves.

9 Other “tall skinny” QR algorithms

There are many other algorithms besides TSQR for computing the QR factoriza-
tion of a tall skinny matrix. They differ in terms of performance and accuracy,
and may store the Q factor in different ways that favor certain applications over
others. In this section, we model the performance of the following competitors
to TSQR:

• Four different Gram-Schmidt variants

• CholeskyQR (see [45])

• Householder QR, with a block row layout

Each includes parallel and sequential versions. For Householder QR, we base
our parallel model on the ScaLAPACK routine PDGEQRF, and the sequential
model on the out-of-core ScaLAPACK routine PFDGEQRF (which we assume
is running on just one processor). In the subsequent Section 10, we summarize
the numerical accuracy of these QR factorization methods, and discuss their
suitability for different applications.

In the parallel case, CholeskyQR and TSQR have comparable numbers of
messages and communicate comparable numbers of words, but CholeskyQR
requires a constant factor fewer flops along the critical path. However, the Q
factor computed by TSQR is always numerically orthogonal, whereas the Q
factor computed by CholeskyQR loses orthogonality proportionally to κ2(A)2.
The variants of Gram-Schmidt require at best a factor n more messages than
these two algorithms, and lose orthogonality at best proportionally to κ2(A).

9.1 Gram-Schmidt orthogonalization

Gram-Schmidt has two commonly used variations: “classical” (CGS) and “mod-
ified” (MGS). Both versions have the same floating-point operation count, but
MGS performs them in a different order to improve stability. We will show that
a parallel implementation of MGS uses at best 2n log(P ) messages, in which
P is the number of processors, and a sequential implementation moves at best
m · (mn/W )2 + O(mn) words between fast and slow memory, in which W is
the fast memory capacity. In contrast, parallel TSQR requires only O(log(P ))
messages, and sequential TSQR only moves O(mn) words between fast and slow
memory.

9.1.1 Left- and right-looking

Just like many matrix factorizations, both MGS and CGS come in left-looking
and right-looking variants. To distinguish between the variants, we append “ L”
resp. “ R” to the algorithm name to denote left- resp. right-looking. We show
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all four combinations as Algorithms 4–7. Both right-looking and left-looking
variants loop from left to right over the columns of the matrix A. At iteration
k of this loop, the left-looking version only accesses columns 1 to k inclusive,
whereas the right-looking version only accesses columns k to n inclusive. Thus,
right-looking algorithms require the entire matrix to be available, which forbids
their use when the matrix is to be generated and orthogonalized one column at
a time. (In this case, only left-looking algorithms may be used.) We assume
here that the entire matrix is available at the start of the algorithm.

Right-looking Gram-Schmidt is usually called “row-oriented Gram-Schmidt,”
and by analogy, left-looking Gram-Schmidt is usually called “column-oriented
Gram-Schmidt.” We use the terms “right-looking” resp. “left-looking” for con-
sistency with the other QR factorization algorithms in this paper.

9.1.2 Parallel Gram-Schmidt

MGS L (Algorithm 5) requires about n/4 times more messages than MGS R
(Algorithm 4), since the left-looking algorithm’s data dependencies prevent the
use of matrix-vector products. CGS R (Algorithm 6) requires copying the entire
input matrix; not doing so results in MGS R (Algorithm 4), which is more
numerically stable in any case. Thus, for the parallel case, we favor MGS R and
CGS L for a fair comparison with TSQR.

In the parallel case, all four variants of MGS and CGS listed here require

2mn2

P
+ O

(mn

P

)

arithmetic operations, and involve communicating

n2

2
log(P ) + O(n log(P ))

floating-point words in total. MGS L requires

n2

2
log(P ) + O(n log(P ))

messages, whereas the other versions only need 2n log(P ) messages. Table 3
shows all four performance models.

9.1.3 Sequential Gram-Schmidt

For one-sided factorizations in the out-of-slow-memory regime, left-looking al-
gorithms require fewer writes than their right-looking analogues, and about
as many reads (see e.g., [46]). Thus, it only pays to look at left-looking Gram-
Schmidt. The communication pattern of sequential modified and classical Gram-
Schmidt is close enough to that of sequential Householder QR, that we can an-
alyze the general pattern once. We do this in Appendix F. The optimizations
described in that section apply to Gram-Schmidt. Table 4 shows performance
models for the left-looking Gram-Schmidt variants in the sequential case.
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Parallel algorithm # flops # messages # words

Right-looking MGS 2mn2/P 2n log(P ) n2

2 log(P )

Left-looking MGS 2mn2/P n2

2 log(P ) n2

2 log(P )

Right-looking CGS 2mn2/P 2n log(P ) n2

2 log(P )

Left-looking CGS 2mn2/P 2n log(P ) n2

2 log(P )

Table 3: Arithmetic operation counts, number of messages, and total commu-
nication volume (in number of words transferred) for parallel left-looking and
right-looking variants of CGS and MGS. Reductions are performed using a bi-
nary tree on P processors. Lower-order terms omitted.

Sequential algorithm # flops # messages # words

MGS L 2mn2 1
2

(

mn
W

)2
2mn + m3n2

W 2

CGS L 2mn2 1
2

(

mn
W

)2
2mn + m3n2

W 2

Table 4: Arithmetic operation counts, number of reads and writes, and total
communication volume (in number of words read and written) for sequential
left-looking CGS and MGS. W is the fast memory capacity in number of floating-
point words. Lower-order terms omitted.

9.1.4 Reorthogonalization

One can improve the stability of CGS by reorthogonalizing the vectors. The
simplest way is to make two orthogonalization passes per column, that is, to
orthogonalize the current column against all the previous columns twice. We
call this “CGS2.” This method only makes sense for left-looking Gram-Schmidt,
when there is a clear definition of “previous columns.” Normally one would
orthogonalize the column against all previous columns once, and then use some
orthogonality criterion to decide whether to reorthogonalize the column. As
a result, the performance of CGS2 is data-dependent, so we do not model its
performance here. In the worst case, it can cost twice as much as CGS L. Section
10 discusses the numerical stability of CGS2 and why “twice is enough.”

Algorithm 4 Modified Gram-Schmidt, right-looking

Require: A: m × n matrix with m ≥ n
1: for k = 1 to n do

2: R(k, k) := ‖A(:, k)‖2

3: Q(:, k) := A(:, k)/R(k, k)
4: R(k, k + 1 : n) := Q(:, k)T · A(:, k + 1 : n)
5: A(:, k + 1 : n) := A(:, k + 1 : n) − R(k, k + 1 : n) · Q(:, k)
6: end for
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Algorithm 5 Modified Gram-Schmidt, left-looking

Require: A: m × n matrix with m ≥ n
1: for k = 1 to n do

2: v := A(:, k)
3: for j = 1 to k − 1 do ⊲ Data dependencies hinder vectorization
4: R(j, k) := Q(:, j)T · v ⊲ Change v to A(:, k) to get CGS
5: v := v − R(j, k) · Q(:, j)
6: end for

7: R(k, k) := ‖v‖2

8: Q(:, k) := v/R(k, k)
9: end for

Algorithm 6 Classical Gram-Schmidt, right-looking

Require: A: m × n matrix with m ≥ n
1: V := A ⊲ Not copying A would give us right-looking MGS.
2: for k = 1 to n do

3: R(k, k) := ‖V (:, k)‖2

4: Q(:, k) := V (:, k)/R(k, k)
5: R(k, k + 1 : n) := Q(:, k)T · A(:, k + 1 : n)
6: V (:, k + 1 : n) := V (:, k + 1 : n) − R(k, k + 1 : n) · Q(:, k)
7: end for

9.2 CholeskyQR

CholeskyQR (Algorithm 8) is a QR factorization that requires only one re-
duction [45]. In the parallel case, it requires log2(P ) messages, where P is
the number of processors. In the sequential case, it reads the input matrix only
once. Thus, it is optimal in the same sense that TSQR is optimal. Furthermore,
the reduction operator is matrix-matrix addition rather than a QR factoriza-
tion of a matrix with comparable dimensions, so CholeskyQR should always be
faster than TSQR. Section 12 supports this claim with performance data on a
cluster. Note that in the sequential case, P is the number of blocks, and we
assume conservatively that fast memory must hold 2mn/P words at once (so
that W = 2mn/P ).

Algorithm # flops # messages # words

Parallel CholeskyQR 2mn2

P + n3

3 log(P ) n2

2 log(P )

Sequential CholeskyQR 2mn2 + n3

3
6mn
W 3mn

Table 5: Performance model of the parallel and sequential CholeskyQR factor-
ization. We assume W = 2mn/P in the sequential case, where P is the number
of blocks and W is the number of floating-point words that fit in fast memory.
Lower-order terms omitted. All parallel terms are counted along the critical
path.
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Algorithm 7 Classical Gram-Schmidt, left-looking

Require: A: m × n matrix with m ≥ n
1: for k = 1 to n do

2: R(1 : k − 1, k) := Q(:, 1 : k − 1)T · A(:, k)⊲ This and the next statement
are not vectorized in left-looking MGS.

3: A(:, k) := A(:, k)−R(1 : k − 1, k) ·Q(:, 1 : k − 1)⊲ In the sequential case,
one can coalesce the read of each block of A(:, k) in this statement
with the read of each block of A(:, k) in the next statement.

4: R(k, k) := ‖A(:, k)‖2

5: Q(:, k) := A(:, k)/R(k, k)
6: end for

Algorithm 8 CholeskyQR factorization

Require: A: m × n matrix with m ≥ n
1: W := AT A ⊲ (All-)reduction
2: Compute the Cholesky factorization L · LT of W
3: Q := AL−T

Assert: [Q,LT ] is the QR factorization of A

CholeskyQR begins by computing AT A. In the parallel case, each processor
i computes its component AT

i Ai locally. In the sequential case, this happens
one block at a time. Since this result is a symmetric n×n matrix, the operation
takes only n(n + 1)m/P flops. These local components are then summed using
a(n) (all-)reduction, which can also exploit symmetry. The final operation, the
Cholesky factorization, requires n3/3 + O(n2) flops. (Choosing a more stable
or robust factorization does not improve the accuracy bound, as the accuracy
has already been lost by computing AT A.) Finally, the Q := AL−T operation
costs (1 + n(n − 1))(m/P ) flops per block of A. Table 5 summarizes both the
parallel and sequential performance models. In Section 10, we compare the ac-
curacy of CholeskyQR to that of TSQR and other “tall skinny” QR factorization
algorithms.

9.3 Householder QR

Householder QR uses orthogonal reflectors to reduce a matrix to upper tridi-
agonal form, one column at a time (see e.g., [19]). In the current version of
LAPACK and ScaLAPACK, the reflectors are coalesced into block columns (see
e.g., [42]). This makes trailing matrix updates more efficient, but the panel
factorization is still standard Householder QR, which works one column at a
time. These panel factorizations are an asymptotic latency bottleneck in the
parallel case, especially for tall and skinny matrices. Thus, we model parallel
Householder QR without considering block updates. In contrast, we will see
that operating on blocks of columns can offer asymptotic bandwidth savings in
sequential Householder QR, so it pays to model a block column version.
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Parallel algorithm # flops # messages # words

TSQR 2mn2

P + 2
3n3 log(P ) log(P ) n2

2 log(P )

PDGEQRF 2mn2

P + n2

2 log(P ) 2n log(P ) n2

2 log(P )

MGS R 2mn2

P 2n log(P ) n2

2 log(P )

CGS L 2mn2

P 2n log(P ) n2

2 log(P )

CGS2 4mn2

P 4n log(P ) n2 log(P )

CholeskyQR 2mn2

P + n3

3 log(P ) n2

2 log(P )

Table 6: Performance model of various parallel QR factorization algorithms.
“CGS2” means CGS with one reorthogonalization pass. Lower-order terms
omitted. All parallel terms are counted along the critical path.

9.3.1 Parallel Householder QR

ScaLAPACK’s parallel QR factorization routine, PDGEQRF, uses a right-looking
Householder QR approach [6]. The cost of PDGEQRF depends on how the orig-
inal matrix A is distributed across the processors. For comparison with TSQR,
we assume the same block row layout on P processors.

PDGEQRF computes an explicit representation of the R factor, and an im-
plicit representation of the Q factor as a sequence of Householder reflectors.
The algorithm overwrites the upper triangle of the input matrix with the R fac-
tor. Thus, in our case, the R factor is stored only on processor zero, as long as
m/P ≥ n. We assume m/P ≥ n in order to simplify the performance analysis.

Section 6.2 describes BLAS 3 optimizations for Householder QR. PDGEQRF

exploits these techniques in general, as they accelerate the trailing matrix up-
dates. We do not count floating-point operations for these optimizations here,
since they do nothing to improve the latency bottleneck in the panel factoriza-
tions.

In PDGEQRF, some processors may need to perform fewer flops than other
processors, because the number of rows in the current working column and the
current trailing matrix of A decrease by one with each iteration. With the
assumption that m/P ≥ n, however, all but the first processor must do the
same amount of work at each iteration. In the tall skinny regime, “flops on the
critical path” (which is what we count) is a good approximation of “flops on
each processor.”

Table 6 compares the performance of all the parallel QR factorizations dis-
cussed here. We see that 1-D TSQR and CholeskyQR save both messages and
bandwidth over MGS R and ScaLAPACK’s PDGEQRF, but at the expense of
a higher-order n3 flops term.

9.3.2 Sequential Householder QR

LAPACK Working Note #118 describes an out-of-DRAM QR factorization
PFDGEQRF, which is implemented as an extension of ScaLAPACK [11]. It
uses ScaLAPACK’s parallel QR factorization PDGEQRF to perform the current
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Sequential algorithm # flops # messages # words

TSQR 2mn2 6mn

W
2mn + 3mn

2

W
− n

2

2

PFDGEQRF 2mn2 1
2

`

mn

W

´2
+ O(n) 2mn + m

3
n
2

W2

CholeskyQR 2mn2 + 3mn
2

2W
+ n

3

3
9mn

W
3mn

Table 7: Performance model of various sequential QR factorization algorithms.
PFDGEQRF is our model of ScaLAPACK’s out-of-DRAM QR factorization; W
is the fast memory size. Lower-order terms omitted.

panel factorization in DRAM. Thus, it is able to exploit parallelism. We assume
here, though, that it is running sequentially, since we are only interested in mod-
eling the traffic between slow and fast memory. PFDGEQRF is a left-looking
method, as usual with out-of-DRAM algorithms. The code keeps two panels
in memory: a left panel of fixed width b, and the current panel being factored,
whose width c can expand to fill the available memory. Appendix G describes
the method in more detail, and Algorithm 16 in the Appendix gives an outline
of the code.

The PFDGEQRF algorithm performs

2mn2 − 2n3

3
+ O(mn).

floating-point arithmetic operations, just like any sequential Householder QR
factorization. It transfers a total of about

2mn +
m3n2

W 2

floating-point words between slow and fast memory, and accesses slow memory
(counting both reads and writes) about

1

2

(mn

W

)2

+ O(n)

times. In contrast, sequential TSQR only requires 6mn/W slow memory ac-
cesses and only transfers

2mn +
3mn2

W
− n(n + 1)

2

words between slow and fast memory.
Table 7 compares the performance of the sequential QR factorizations dis-

cussed in this section, including our modeled version of PFDGEQRF.

10 Numerical stability of TSQR and other QR
factorizations

In the previous section, we modeled the performance of various QR factorization
algorithms for tall and skinny matrices on a block row layout. Our models show
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that CholeskyQR should have better performance than all the other methods.
However, numerical accuracy is also an important consideration for many users.
For example, in CholeskyQR, the loss of orthogonality of the computed Q factor
depends quadratically on the condition number of the input matrix (see Table
8). This is because computing the Gram matrix AT A squares the condition
number of A. One can avoid this stability loss by computing and storing AT A
in doubled precision. However, this doubles the communication volume. It also
increases the cost of arithmetic operations by a hardware-dependent factor.

Algorithm ‖I − QT Q‖2 bound Assumption on κ(A) Reference(s)
Householder QR O(ε) None [19]
TSQR O(ε) None [19]
CGS2 O(ε) O(εκ(A)) < 1 [1, 27]
MGS O(εκ(A)) None [4]
CholeskyQR O(εκ(A)2) None [45]
CGS O(εκ(A)n−1) None [27, 43]

Table 8: Upper bounds on deviation from orthogonality of the Q factor from
various QR algorithms. Machine precision is ε. “Assumption on κ(A)” refers to
any constraints which κ(A) must satisfy in order for the bound in the previous
column to hold.

Unlike CholeskyQR, CGS, or MGS, Householder QR is unconditionally sta-
ble. That is, the computed Q factors are always orthogonal to machine precision,
regardless of the properties of the input matrix [19]. This also holds for TSQR,
because the algorithm is composed entirely of no more than P Householder QR
factorizations, in which P is the number of input blocks. Each of these fac-
torizations is itself unconditionally stable. In contrast, the orthogonality of the
Q factor computed by CGS, MGS, or CholeskyQR depends on the condition
number of the input matrix. Reorthogonalization in MGS and CGS can make
the computed Q factor orthogonal to machine precision, but only if the input
matrix A is numerically full rank, i.e., if O(εκ(A)) < 1. Reorthogonalization
also doubles the cost of the algorithm.

However, sometimes some loss of accuracy can be tolerated, either to im-
prove performance, or for the algorithm to have a desirable property. For ex-
ample, in some cases the input vectors are sufficiently well-conditioned to allow
using CholeskyQR, and the accuracy of the orthogonalization is not so impor-
tant. Another example is GMRES. Its backward stability was proven first for
Householder QR orthogonalization, and only later for modified Gram-Schmidt
orthogonalization [21]. Users traditionally prefer the latter formulation, mainly
because the Householder QR version requires about twice as many floating-point
operations (as the Q matrix must be computed explicitly). Another reason is
that most GMRES descriptions make the vectors available for orthogonalization
one at a time, rather than all at once, as Householder QR would require (see
e.g., [48]). (Demmel et al. review existing techniques and present new meth-
ods for rearranging GMRES and other Krylov subspace methods for use with
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Householder QR and TSQR [13].)
We care about stability for two reasons. First, an important application

of TSQR is the orthogonalization of basis vectors in Krylov methods. When
using Krylov methods to compute eigenvalues of large, ill-conditioned matrices,
the whole solver can fail to converge or have a considerably slower convergence
when the orthogonality of the Ritz vectors is poor [24, 29]. Second, we will use
TSQR in Section 13 as the panel factorization in a QR decomposition algorithm
for matrices of general shape. Users who ask for a QR factorization generally
expect it to be numerically stable. This is because of their experience with
Householder QR, which does more work than LU or Cholesky, but produces
more accurate results. Users who are not willing to spend this additional work
already favor faster but less stable algorithms.

Table 8 summarizes known upper bounds on the deviation from orthogo-
nality ‖I − QT Q‖2 of the computed Q factor, as a function of the machine
precision ε and the input matrix’s two-norm condition number κ(A), for vari-
ous QR factorization algorithms. Except for CGS, all these bounds are sharp.
Smoktunowicz et al. demonstrate a matrix satisfying O(εκ(A)2) < 1 for which
‖I − QT Q‖2 is not O(εκ(A)2), but as far as we know, no matrix has yet been
found for which the ‖I − QT Q‖2 is O(εκ(A)n−1) bound is sharp [43].

In the table, “CGS2” refers to classical Gram-Schmidt with one reorthogo-
nalization pass. A single reorthgonalization pass suffices to make the Q factor
orthogonal to machine precision, as long as the input matrix is numerically
full rank, i.e., if O(εκ(A)) < 1. This is the source of Kahan’s maxim, “Twice
is enough” [37]: the accuracy reaches its theoretical best after one reorthogo-
nalization pass (see also [1]), and further reorthogonalizations do not improve
orthogonality. However, TSQR needs only half as many messages to do just as
well as CGS2. In terms of communication, TSQR’s stability comes for free.

11 Platforms of interest for TSQR experiments
and models

11.1 A large, but composable tuning space

TSQR is not a single algorithm, but a space of possible algorithms. It encom-
passes all possible reduction tree shapes, including:

1. Binary (to minimize number of messages in the parallel case)

2. Flat (to minimize communication volume in the sequential case)

3. Hybrid (to account for network topology, and/or to balance bandwidth
demands with maximum parallelism)

as well as all possible ways to perform the local QR factorizations, including:

1. (Possibly multithreaded) standard LAPACK (DGEQRF)
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2. An existing parallel QR factorization, such as ScaLAPACK’s PDGEQRF

3. A “divide-and-conquer” QR factorization (e.g., [15])

4. Recursive (invoke another form of TSQR)

Choosing the right combination of parameters can help minimize communication
between any or all of the levels of the memory hierarchy, from cache and shared-
memory bus, to DRAM and local disk, to parallel filesystem and distributed-
memory network interconnects, to wide-area networks.

The huge tuning space makes it a challenge to pick the right platforms for
experiments. Luckily, TSQR’s hierarchical structure makes tunings composable.
For example, once we have a good choice of parameters for TSQR on a single
multicore node, we don’t need to change them when we tune TSQR for a cluster
of these nodes. From the cluster perspective, it’s as if the performance of the
individual nodes improved. This means that we can benchmark TSQR on a
small, carefully chosen set of scenarios, with confidence that they represent
many platforms of interest.

11.2 Platforms of interest

Here we survey a wide variety of interesting platforms for TSQR, and explain
the key features of each that we will distill into a small collection of experiments.

11.2.1 Single-node parallel, and explicitly swapping

The “cluster of shared-memory parallel (SMP) nodes” continues to provide a
good price-performance point for many large-scale applications. This alone
would justify optimizing the single-node case. Perhaps more importantly, the
“multicore revolution” seeks to push traditionally HPC applications into wider
markets, which favor the single-node workstation or even the laptop over the ex-
pensive, power-hungry, space-consuming, difficult-to-maintain cluster. A large
and expanding class of users may never run their jobs on a cluster.

Multicore SMPs can help reduce communication costs, but cannot elimi-
nate them. TSQR can exploit locality by sizing individual subproblems to fit
within any level of the memory hierarchy. This gives programmers explicit con-
trol over management of communication between levels, much like a traditional
“out-of-core” algorithm.3 TSQR’s hierarchical structure makes explicit swap
management easy; it’s just another form of communication. It gives us an opti-
mized implementation for “free” on platforms like Cell or GPUs, which require
explicitly moving data into separate storage areas for processing. Also, it lets
us easily and efficiently solve problems too large to fit in DRAM. This seems

3We avoid this label because it’s an anachronism (“core” refers to main system memory,
constructed of solenoids rather than transistors or DRAM), and because people now easily
confuse “core” with “processing unit” (in the sense of “multicore”). We prefer the more
precise term explicitly swapping, or “out-of-X” for a memory hierarchy level X. For example,
“out-of-DRAM” means using a disk, flash drive, or other storage device as swap space for
problems too large to solve in DRAM.
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like an old-fashioned issue, since an individual node nowadays can accommo-
date as much as 16 GB of DRAM. Explicitly swapping variants of libraries like
ScaLAPACK tend to be ill-maintained, due to lack of interest. However, we pre-
dict a resurgence of interest in explicitly-swapping algorithms, for the following
reasons:

• Single-node workstations will become more popular than multinode clus-
ters, as the number of cores per node increases.

• The amount of DRAM per node cannot scale linearly with the number of
cores per node, because of DRAM’s power requirements. Trying to scale
DRAM will wipe out the power savings promised by multicore parallelism.

• The rise to prominence of mobile computing – e.g., more laptops than
desktops were sold in U.S. retail in 2006 – drives increasing concern for
total-system power use.

• Most operating systems do not treat “virtual memory” as another level
of the memory hierarchy. Default and recommended configurations for
Linux, Windows XP, Solaris, and AIX on modern machines assign only
1–3 times as much swap space as DRAM, so it’s not accurate to think of
DRAM as a cache for disk. Few operating systems expand swap space
on demand, and expanding it manually generally requires administrative
access to the machine. It’s better for security and usability to ask applica-
tions to adapt to the machine settings, rather than force users to change
their machine for their applications.

• Unexpected use of virtual memory swap space generally slows down ap-
plications by orders of magnitude. HPC programmers running batch jobs
consider this a performance problem serious enough to warrant terminat-
ing the job early and sizing down the problem. Users of interactive systems
typically experience large (and often frustrating) delays in whole-system
responsiveness when extensive swapping occurs.

• In practice, a single application need not consume all memory in order to
trigger the virtual memory system to swap extensively.

• Explicitly swapping software does not stress the OS’s virtual memory sys-
tem, and can control the amount of memory and disk bandwidth resources
that it uses.

• Alternate storage media such as solid-state drives offer more bandwidth
than traditional magnetic hard disks. Typical hard disk read or write
bandwidth as of this work’s publication date is around 60 MB/s, whereas
Samsung announced in May 2008 the upcoming release of a 256 GB capac-
ity solid-state drive with 200 MB/s read bandwidth and 160 MB/s write
bandwidth [32]. Solid-state drives are finding increasing use in mobile de-
vices and laptops, due to their lower power requirements. This will make
out-of-DRAM applications more attractive by widening any bandwidth
bottlenecks.
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11.2.2 Distributed-memory machines

Avoiding communication is a performance-enhancing strategy for distributed-
memory architectures as well. TSQR can improve performance on traditional
clusters as well as other networked systems, such as grid and perhaps even
volunteer computing. Avoiding communication also makes improving network
reliability less of a performance burden, as software-based reliability schemes
use some combination of redundant and/or longer messages. Many distributed-
memory supercomputers have high-performance parallel filesystems, which in-
crease the bandwidth available for out-of-DRAM TSQR. This enables reducing
per-node memory requirements without increasing the number of nodes needed
to solve the problem.

11.3 Pruning the platform space

For single-node platforms, we think it pays to investigate both problems that fit
in DRAM (perhaps with explicit cache management), and problems too large to
fit in DRAM, that call for explicit swapping to a local disk. High-performance
parallel filesystems offer potentially much more bandwidth, but we chose not to
use them for our experiments for the following reasons:

• Lack of availability of a single-node machine with exclusive access to a
parallel filesystem

• On clusters, parallel filesystems are usually shared among all cluster users,
which would make it difficult to collect repeatable timings.

For multinode benchmarks, we opted for traditional clusters rather than vol-
unteer computing, due to the difficulty of obtaining repeatable timings in the
latter case.

11.4 Platforms for experiments

We selected the following experiments as characteristic of the space of platforms:

• Single node, sequential, out-of-DRAM, and

• Distributed memory, in-DRAM on each node.

We ran sequential TSQR on a laptop with a single PowerPC CPU. It repre-
sents the embedded and mobile space, with its tighter power and heat require-
ments. Details of the platform are as follows:

• Single-core PowerPC G4 (1.5 GHz)

• 512 KB of L2 cache

• 512 MB of DRAM on a 167 MHz bus

• One Fujitsu MHT2080AH 80 HB hard drive (5400 RPM)
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• MacOS X 10.4.11

• GNU C Compiler (gcc), version 4.0.1

• vecLib (Apple’s optimized dense linear algebra library), version 3.2.2

We ran parallel TSQR on the following distributed-memory machines:

1. Pentium III cluster (“Beowulf”)

• Operated by the University of Colorado at Denver and the Health
Sciences Center

• 35 dual-socket 900 MHz Pentium III nodes with Dolphin interconnect

• Floating-point rate: 900 Mflop/s per processor, peak

• Network latency: less than 2.7 µs, benchmarked4

• Network bandwidth: 350 MB/s, benchmarked upper bound

2. IBM BlueGene/L (“Frost”)

• Operated by the National Center for Atmospheric Research

• One BlueGene/L rack with 1024 700 MHz compute CPUs

• Floating-point rate: 2.8 Gflop/s per processor, peak

• Network5 latency: 1.5 µs, hardware

• Network one-way bandwidth: 350 MB/s, hardware

11.5 Platforms for performance models

In Section 15, we estimate performance of CAQR, our QR factorization algo-
rithm on a 2-D matrix layout, on three different parallel machines: an existing
IBM POWER5 cluster with a total of 888 processors (“IBM POWER5”), a
future proposed petascale machine with 8192 processors (“Peta”), and a collec-
tion of 128 processors linked together by the internet (“Grid”). Here are the
parameters we use in our models for the three parallel machines:

• IBM POWER5

– 888 processors

– Floating-point rate: 7.6 Gflop/s per processor, peak

– Network latency: 5 µs

– Network bandwidth: 3.2 GB/s

• Peta

4See http://www.dolphinics.com/products/benchmarks.html.
5The BlueGene/L has two separate networks – a torus for nearest-neighbor communication

and a tree for collectives. The latency and bandwidth figures here are for the collectives
network.
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– 8192 processors

– Floating-point rate: 500 Gflop/s per processor, peak

– Network latency: 10 µs

– Network bandwidth: 4 GB/s

• Grid

– 128 processors

– Floating-point rate: 10 Tflop/s, peak

– Network latency: 0.1 s

– Network bandwidth: 0.32 GB/s

Peta is our projection of a future high-performance computing cluster, and Grid
is our projection of a collection of geographically separated high-performance
clusters, linked over a TeraGrid-like backbone. Each “processor” of Peta may
itself be a parallel multicore node, but we consider it as a single fast sequential
processor for the sake of our model. Similarly, each “processor” of Grid is itself
a cluster, but we consider it as a single very fast sequential processor.

12 TSQR performance results

12.1 Scenarios used in experiments

Previous work covers some parts of the tuning space mentioned in Section 11.3.
Gunter et al. implemented an out-of-DRAM version of TSQR on a flat tree, and
used ScaLAPACK’s QR factorization PDGEQRF to factor in-DRAM blocks in
parallel [23]. Pothen and Raghavan [38] and Cunha et al. [10] both bench-
marked parallel TSQR using a binary tree on a distributed-memory cluster,
and implemented the local QR factorizations with a single-threaded version of
DGEQRF. All these researchers observed significant performance improvements
over previous QR factorization algorithms.

We chose to run two sets of experiments. The first set covers the out-of-
DRAM case on a single CPU. The second set is like the parallel experiments of
previous authors in that it uses a binary tree on a distributed-memory cluster,
but it improves on their approach by using a better local QR factorization (the
divide-and-conquer approach – see [16]).

12.2 Sequential out-of-DRAM tests

We developed an out-of-DRAM version of TSQR that uses a flat reduction tree.
It invokes the system vendor’s native BLAS and LAPACK libraries. Thus,
it can exploit a multithreaded BLAS on a machine with multiple CPUs, but
the parallelism is limited to operations on a single block of the matrix. We
used standard POSIX blocking file operations, and made no attempt to overlap
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communication and computation. Exploiting overlap could at best double the
performance.

We ran sequential tests on a laptop with a single PowerPC CPU, as described
in Section 11.4. In our experiments, we first used both out-of-DRAM TSQR
and standard LAPACK QR to factor a collection of matrices that use only
slightly more than half of the total DRAM for the factorization. This was so
that we could collect comparison timings. Then, we ran only out-of-DRAM
TSQR on matrices too large to fit in DRAM or swap space, so that an out-of-
DRAM algorithm is necessary to solve the problem at all. For the latter timings,
we extrapolated the standard LAPACK QR timings up to the larger problem
sizes, in order to estimate the runtime if memory were unbounded. LAPACK’s
QR factorization swaps so much for out-of-DRAM problem sizes that its actual
runtimes are many times larger than these extrapolated unbounded-memory
runtime estimates. As mentioned in Section 11.2, once an in-DRAM algorithm
begins swapping, it becomes so much slower that most users prefer to abort
the computation and try solving a smaller problem. No attempt to optimize by
overlapping communication and computation was made.

We used the following power law for the extrapolation:

t = A1bm
A2nA3 ,

in which t is the time spent in computation, b is the number of input matrix
blocks, m is the number of rows per block, and n is the number of columns in
the matrix. After taking logarithms of both sides, we performed a least squares
fit of log(A1), A2, and A3. The value of A2 was 1, as expected. The value of
A3 was about 1.6. This is less than 2 as expected, given that increasing the
number of columns increases the computational intensity and thus the potential
for exploitation of locality (a BLAS 3 effect). We expect around two digits of
accuracy in the parameters, which in themselves are not as interesting as the
extrapolated runtimes; the parameter values mainly serve as a sanity check.

12.2.1 Results

Figure 5 shows the measured in-DRAM results on the laptop platform, and
Figure 6 shows the (measured TSQR, extrapolated LAPACK) out-of-DRAM
results on the same platform. In these figures, the number of blocks used, as
well as the number of elements in the input matrix (and thus the total volume
of communication), is the same for each group of five bars. We only varied the
number of blocks and the number of columns in the matrix. For each graph, the
total number of rows in the matrix is constant for all groups of bars. Note that
we have not tried to overlap I/O and computation in this implementation. The
trends in Figure 5 suggest that the extrapolation is reasonable: TSQR takes
about twice as much time for computation as does standard LAPACK QR, and
the fraction of time spent in I/O is reasonable and decreases with problem size.

TSQR assumes that the matrix starts and ends on disk, whereas LAPACK
starts and ends in DRAM. Thus, to compare the two, one could also estimate
LAPACK performance with infinite DRAM but where the data starts and ends
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Figure 5: Runtimes (in seconds) of out-of-DRAM TSQR and standard QR (LA-
PACK’s DGEQRF) on a single-processor laptop. All data is measured. We limit
memory usage to 256 MB, which is half of the laptop’s total system memory, so that
we can collect performance data for DGEQRF. The graphs show different choices of
block dimensions and number of blocks. The top of the blue bar is the benchmarked
total runtime for DGEQRF, the top of the green bar is the benchmarked compute time
for TSQR, and the top of the brown bar is the benchmarked total time for TSQR.
Thus the height of the brown bar alone is the I/O time. Note that LAPACK starts
and ends in DRAM, and TSQR starts and ends on disk.
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Figure 6: Measured runtime (in seconds) of out-of-DRAM TSQR, compared against
extrapolated runtime (in seconds) of standard QR (LAPACK’s DGEQRF) on a single-
processor laptop. We use the data in Figure 5 to construct a power-law performance
extrapolation. The graphs show different choices of block dimensions and number of
blocks. The top of the blue bar is the extrapolated total runtime for DGEQRF, the
top of the green bar is the benchmarked compute time for TSQR, and the top of the
brown bar is the benchmarked total time for TSQR. Thus the height of the brown bar
alone is the I/O time. Note that LAPACK starts and ends in DRAM (if it could fit
in DRAM), and TSQR starts and ends on disk.
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# procs CholeskyQR TSQR CGS MGS TSQR ScaLAPACK
(DGEQR3) (DGEQRF)

1 1.02 4.14 3.73 7.17 9.68 12.63
2 0.99 4.00 6.41 12.56 15.71 19.88
4 0.92 3.35 6.62 12.78 16.07 19.59
8 0.92 2.86 6.87 12.89 11.41 17.85
16 1.00 2.56 7.48 13.02 9.75 17.29
32 1.32 2.82 8.37 13.84 8.15 16.95
64 1.88 5.96 15.46 13.84 9.46 17.74

Table 9: Runtime in seconds of various parallel QR factorizations on the Beowulf
machine. The total number of rows m = 100000 and the ratio ⌈n/

√
P ⌉ = 50

(with P being the number of processors) were kept constant as P varied from
1 to 64. This illustrates weak scaling with respect to the square of the number
of columns n in the matrix, which is of interest because the number of floating-
point operations in sequential QR is Θ(mn2). If an algorithm scales perfectly,
then all the numbers in that algorithm’s column should be constant. Both the
Q and R factors were computed explicitly; in particular, for those codes which
form an implicit representation of Q, the conversion to an explicit representation
was included in the runtime measurement.

on disk. The height of the reddish-brown bars in Figures 5 and 6 is the I/O
time for TSQR, which can be used to estimate the LAPACK I/O time. Add
this to the blue bar (the LAPACK compute time) to estimate the runtime when
the LAPACK QR routine must load the matrix from disk and store the results
back to disk.

12.2.2 Conclusions

The main purpose of our out-of-DRAM code is not to outperform existing in-
DRAM algorithms, but to be able to solve classes of problems which the existing
algorithms cannot solve. The above graphs show that the penalty of an explicitly
swapping approach is about 2x, which is small enough to warrant its practical
use. This holds even for problems with a relatively low computational intensity,
such as when the input matrix has very few columns. Furthermore, picking the
number of columns sufficiently large may allow complete overlap of file I/O by
computation.

12.3 Parallel cluster tests

We also have results from a parallel MPI implementation of TSQR on a binary
tree. Rather than LAPACK’s DGEQRF, the code uses a custom local QR factor-
ization, DGEQR3, based on the recursive approach of Elmroth and Gustavson
[16]. Tests show that DGEQR3 consistently outperforms LAPACK’s DGEQRF

by a large margin for matrix dimensions of interest.
We ran our experiments on two platforms: a Pentium III cluster (“Beowulf”)
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# procs CholeskyQR TSQR CGS MGS TSQR ScaLAPACK
(DGEQR3) (DGEQRF)

1 0.45 3.43 3.61 7.13 7.07 7.26
2 0.47 4.02 7.11 14.04 11.59 13.95
4 0.47 4.29 6.09 12.09 13.94 13.74
8 0.50 4.30 7.53 15.06 14.21 14.05
16 0.54 4.33 7.79 15.04 14.66 14.94
32 0.52 4.42 7.85 15.38 14.95 15.01
64 0.65 4.45 7.96 15.46 14.66 15.33

Table 10: Runtime in seconds of various parallel QR factorizations on the Be-
owulf machine, illustrating weak scaling with respect to the total number of
rows m in the matrix. The ratio ⌈m/P ⌉ = 100000 and the total number of
columns n = 50 were kept constant as the number of processors P varied from 1
to 64. If an algorithm scales perfectly, then all the numbers in that algorithm’s
column should be constant. For those algorithms which compute an implicit
representation of the Q factor, that representation was left implicit.

# procs TSQR ScaLAPACK
(DGEQR3) (DGEQRF) (PDGEQRF) (PDGEQR2)

32 690 276 172 206
64 666 274 172 206
128 662 316 196 232
256 610 322 184 218

Table 11: Performance per processor (Mflop / s / (# processors)) on a 106 × 50
matrix, on the Frost machine. This metric illustrates strong scaling (constant
problem size, but number of processors increases). If an algorithm scales per-
fectly, than all the numbers in that algorithm’s column should be constant.
DGEQR3 is a recursive local QR factorization, and DGEQRF LAPACK’s stan-
dard local QR factorization.
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and on a BlueGene/L (“Frost”), both described in detail in Section 11.4. The
experiments compare many different implementations of a parallel QR factor-
ization. “CholeskyQR” first computes the product AT A using a reduction, then
performs a QR factorization of the product. It is less stable than TSQR, as it
squares the condition number of the original input matrix (see Table 8 in Sec-
tion 10 for a stability comparison of various QR factorization methods). TSQR
was tested both with the recursive local QR factorization DGEQR3, and the
standard LAPACK routine DGEQRF. Both CGS and MGS were timed.

12.3.1 Results

Tables 9 and 10 show the results of two different performance experiments on
the Pentium III cluster. In the first of these, the total number of rows m =
100000 and the ratio ⌈n/

√
P ⌉ = 50 (with P being the number of processors)

were kept constant as P varied from 1 to 64. This was meant to illustrate
weak scaling with respect to n2 (the square of the number of columns in the
matrix), which is of interest because the number of floating-point operations in
sequential QR is Θ(mn2). If an algorithm scales perfectly, then all the numbers
in that algorithm’s column should be constant. Both the Q and R factors
were computed explicitly; in particular, for those codes which form an implicit
representation of Q, the conversion to an explicit representation was included
in the runtime measurement. The results show that TSQR scales better than
CGS or MGS, and significantly outperforms ScaLAPACK’s QR. Also, using the
recursive local QR in TSQR, rather than LAPACK’s QR, more than doubles
performance. CholeskyQR gets the best performance of all the algorithms, but
at the expense of significant loss of orthogonality.

Table 10 shows the results of the second set of experiments on the Pentium
III cluster. In these experiments, the ratio ⌈m/P ⌉ = 100000 and the total
number of columns n = 50 were kept constant as the number of processors P
varied from 1 to 64. This was meant to illustrate weak scaling with respect
to the total number of rows m in the matrix. If an algorithm scales perfectly,
then all the numbers in that algorithm’s column should be constant. Unlike in
the previous set of experiments, for those algorithms which compute an implicit
representation of the Q factor, that representation was left implicit. The results
show that TSQR scales well. In particular, when using TSQR with the recursive
local QR factorization, there is almost no performance penalty for moving from
one processor to two, unlike with CGS, MGS, and ScaLAPACK’s QR. Again,
the recursive local QR significantly improves TSQR performance; here it is the
main factor in making TSQR perform better than ScaLAPACK’s QR.

Table 11 shows the results of the third set of experiments, which was per-
formed on the BlueGene/L cluster “Frost.” These data show performance per
processor (Mflop / s / (number of processors)) on a matrix of constant di-
mensions 106 × 50, as the number of processors was increased. This illustrates
strong scaling. If an algorithm scales perfectly, than all the numbers in that al-
gorithm’s column should be constant. Two different versions of ScaLAPACK’s
QR factorization were used: PDGEQR2 is the textbook Householder QR panel
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factorization, and PDGEQRF is the blocked version which tries to coalesce mul-
tiple trailing matrix updates into one. The results again show that TSQR scales
at least as well as ScaLAPACK’s QR factorization, which unlike TSQR is pre-
sumably highly tuned on this platform. Furthermore, using the recursive local
QR factorization with TSQR makes its performance competitive with that of
ScaLAPACK.

12.3.2 Conclusions

Both the Pentium III and BlueGene/L platforms have relatively slow proces-
sors with a relatively low-latency interconnect. TSQR was optimized for the
opposite case of fast processors and expensive communication. Nevertheless,
TSQR outperforms ScaLAPACK’s QR by 6.8× on 16 processors (and 3.5×
on 64 processors) on the Pentium III cluster, and successfully competes with
ScaLAPACK’s QR on the BlueGene/L machine.

13 Parallel 2-D QR factorization

The CAQR (“Communication Avoiding QR”) algorithm uses TSQR to perform
a parallel QR factorization of a dense matrix A on a two-dimensional grid of
processors P = Pr × Pc. The m× n matrix (with m ≥ n) is distributed using a
2-D block cyclic layout over the processor grid, with blocks of dimension b × b.
We assume that all the blocks have the same size; we can always pad the input
matrix with zero rows and columns to ensure this is possible. For a detailed
description of the 2-D block cyclic layout of a dense matrix, please refer to [5],
in particular to the section entitled “Details of Example Program #1.” There
is also an analogous sequential version of CAQR, which we describe in detail in
Appendix C.

CAQR is based on TSQR in order to minimize communication. At each
step of the factorization, TSQR is used to factor a panel of columns, and the
resulting Householder vectors are applied to the rest of the matrix. As we will
show, the block column QR factorization as performed in PDGEQRF is the
latency bottleneck of the current ScaLAPACK QR algorithm. Replacing this
block column factorization with TSQR, and adapting the rest of the algorithm to
work with TSQR’s representation of the panel Q factors, removes the bottleneck.
We use the reduction-to-one-processor variant of TSQR, as the panel’s R factor
need only be stored on one processor (the pivot block’s processor).

CAQR is defined inductively. We assume that the first j−1 iterations of the
CAQR algorithm have been performed. That is, j − 1 panels of width b have
been factored and the trailing matrix has been updated. The active matrix
at step j (that is, the part of the matrix which needs to be worked on) is of
dimension

(m − (j − 1)b) × (n − (j − 1)b) = mj × nj .

Figure 7 shows the execution of the QR factorization. For the sake of sim-
plicity, we suppose that processors 0, . . . , Pr − 1 lie in the column of processes
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Figure 7: Step j of the QR factorization algorithm. First, the current panel of
width b, consisting of the blocks B0, B1, . . . , Bp−1, is factorized using TSQR.
Here, p is the number of blocks in the current panel. Second, the trailing
matrix, consisting of the blocks C0, C1, . . . , Cp−1, is updated. The matrix
elements above the current panel and the trailing matrix belong to the R factor
and will not be modified further by the QR factorization.

that hold the current panel j. The mj ×b matrix B represents the current panel
j. The mj × (nj − b) matrix C is the trailing matrix that needs to be updated
after the TSQR factorization of B. For each processor p, we refer to the first b
rows of its first block row of B and C as Bp and Cp respectively.

We first introduce some notation to help us refer to different parts of a binary
TSQR reduction tree.

• level(i, k) =
⌊

i
2k

⌋

denotes the node at level k of the reduction tree which
is assigned to a set of processors that includes processor i. The initial
stage of the reduction, with no communication, is k = 0.

• first proc(i, k) = 2klevel(i, k) is the index of the “first” processor asso-
ciated with the node level(i, k) at stage k of the reduction tree. In a
reduction (not an all-reduction), it receives the messages from its neigh-
bors and performs the local computation.

• target(i, k) = first proc(i, k) + (i + 2k−1) mod 2k is the index of the
processor with which processor i exchanges data at level k of the butterfly
all-reduction algorithm.

• target first proc(i, k) = target(first proc(i, k)) = first proc(i, k)+2k−1

is the index of the processor with which first proc(i, k) exchanges data
in an all-reduction at level k, or the index of the processor which sends its
data to first proc(i, k) in a reduction at level k.

Algorithm 9 outlines the j-th iteration of the QR decomposition. First, the
block column j is factored using TSQR. We assume for ease of exposition that
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TSQR is performed using a binary tree. After the block column factorization
is complete, the matrices Cp are updated as follows. The update corresponding
to the QR factorization at the leaves of the TSQR tree is performed locally on
every processor. The updates corresponding to the upper levels of the TSQR
tree are performed between groups of neighboring trailing matrix processors as
described in Section 6.4. Note that only one of the trailing matrix processors
in each neighbor group continues to be involved in successive trailing matrix
updates. This allows overlap of computation and communication, as the un-
involved processors can finish their computations in parallel with successive
reduction stages.

We see that CAQR consists of n
b TSQR factorizations involving Pr processors

each, and n/b − 1 applications of the resulting Householder vectors. Table
12 expresses the performance model over a rectangular grid of processors. A
detailed derivation of the model is given in Appendix E.

Parallel CAQR

# messages 3n
b

log(Pr) + 2n
b

log(Pc)

# words

„

bn
2

+ n2

Pc

«

log(Pr) +

 

mn−n2/2
Pr

+ 2n

!

log(Pc)

# flops
2n2(3m−n)

3P
+ bn2

2Pc
+

3bn(m−n/2)
Pr

+

 

4b2n
3

+
n2(3b+5)

2Pc

!

log(Pr) − b2n
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mn−n2/2

Pr
+ bn

2
(log(Pr) − 1)

ScaLAPACK’s PDGEQRF
# messages 3n log(Pr) + 2n

b
log(Pc)

# words

„

n2

Pc
+ bn

«

log(Pr) +

 

mn−n2/2
Pr

+ bn
2

!

log(Pc)

# flops

„

2n2

3P
(3m − n) + bn2

2Pc
+ 1

Pr

„

3bn
“

m −

n
2

”

−

b2n
3

««

# divisions n
Pr

“

m −

n
2

”

Table 12: Performance models of parallel CAQR and ScaLAPACK’s PDGEQRF

when factoring an m × n matrix, distributed in a 2-D block cyclic layout on
a Pr × Pc grid of processors with square b × b blocks. All terms are counted
along the critical path. In this table only, “flops” only includes floating-point
additions and multiplications, not floating-point divisions. Some lower-order
terms are omitted. We generally assume m ≥ n.

The parallelization of the computation is represented by the number of mul-
tiplies and adds and by the number of divides, in Table 12. We discuss first
the parallelization of multiplies and adds. The first term represents mainly the
parallelization of the local Householder update corresponding to the leaves of
the TSQR tree (the matrix matrix multiplication in step 3 of Algorithm 9). The
second term corresponds to forming the Tp0 matrices for the local Householder
update in step 3 of the algorithm. The third term represents the QR factor-
ization of a panel of width b that corresponds to the leaves of the TSQR tree
(part of step 1) and part of the local rank-b update (triangular matrix matrix
multiplication) in step 3 of the algorithm.

The fourth term in the number of multiplies and adds represents the re-
dundant computation introduced by the TSQR formulation. In this term, the
number of flops performed for computing the QR factorization of two upper
triangular matrices at each node of the TSQR tree is (2/3)nb2 log(Pr) (step 1).
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The number of flops in step (4.a) is given by (2/3)nb2 log(Pr). The number of
flops performed during the Householder updates issued by each QR factorization
of two upper triangular matrices is n2(3b + 5)/(2Pc) log(Pr).

The runtime estimation in Table 12 does not take into account the overlap
of computation and communication in steps (4.a) and (4.b) or the overlap in
steps (4.d) and (4.e). Suppose that at each step of the QR factorization, the
condition

α + β
b(nj − b)

Pc
> γb(b + 1)

nj − b

Pc

is fulfilled. This is the case for example when β/γ > b+1. Then the fourth non-
division flops term that accounts for the redundant computation is decreased
by n2(b + 1) log(Pr)/Pc, about a factor of 3.

The execution time for a square matrix (m = n), on a square grid of pro-
cessors (Pr = Pc =

√
P ) and with more lower order terms ignored, simplifies

to:

TPar. CAQR(n, n,
√

P ,
√

P ) = γ

(

4n3

3P
+

3n2b

4
√

P
log(P )

)

+β
3n2

4
√

(P )
log(P )+α

5n

2b
log(P ).

(6)
We will compare CAQR with the standard QR factorization algorithm im-

plemented in ScaLAPACK in Section 14. Our models assume that the QR
factorization does not use a look-ahead technique during the right-looking fac-
torization. With the look-ahead right-looking approach, the communications are
pipelined from left to right. At each step of factorization, we would model the
latency cost of the broadcast within rows of processors as 2 instead of log(Pc).

14 Comparison of ScaLAPACK’s QR and CAQR

Here, we compare the standard QR factorization algorithm implemented in
ScaLAPACK and the new proposed CAQR approach. We suppose that we
decompose a m × n matrix with m ≥ n which is distributed block cyclically
over a Pr by Pc grid of processors, where Pr × Pc = P . The two-dimensional
block cyclic distribution uses square blocks of dimension b × b. Equation (7)
represents the runtime estimation of ScaLAPACK’s QR, in which we assume
that there is no attempt to pipeline communications from left to right and some
lower order terms are omitted.

TSC(m,n, Pr, Pc) =
[

2
3P n2(3m − n) + n2b

2Pc
+ 1

Pr (3(b + 1)n(m − n
2 ) − nb

(

b
3 + 1.5

)

]

γ+

+ 1
Pr

(

mn − n2

2

)

γd+

+ log Pr

[

3n
(

1 + 1
b

)

α +
(

n2

Pc
+ n(b + 2)

)

β
]
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+ log Pc

[

2n
b α +

(

1
Pr

(

mn − n2

2

)

+ nb
2

)

β
]

(7)
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When Pr = Pc =
√

P and m = n, and ignoring more lower-order terms, Equa-
tion (7) simplifies to

TSC(n, n,
√

P ,
√

P ) =
4

3

n3

P
γ +

3

4
log P

n2

√
P

β +

(

3

2
+

5

2b

)

n log Pα (8)

Consider Equation (7). The latency term we want to eliminate is 3n log Prα,
which comes from the QR factorization of a panel of width b (PDGEQR2 rou-
tine). This involves first the computation of a Householder vector v spread over
Pr processors (DGEBS2D and PDNRM2, which use a tree to broadcast and com-
pute a vector norm). Second, a Householder update is performed (PDLARF) by
applying I − τvvT to the rest of the columns in the panel. It calls DGSUM2D

in particular, which uses a tree to combine partial sums from a processor col-
umn. In other words, the potential ScaLAPACK latency bottleneck is entirely
in factoring a block column.

Comparing the CAQR performance model in Equation (6) with Equation
(7) shows that CAQR overcomes PDGEQRF’s latency bottleneck at the cost
of some redundant computation. It performs a larger number of floating-point
operations, given mainly by the lower order terms:

γ

(

4b2n

3
+

n2(3b + 5)

2Pc

)

log Pr + γd
nb

2
(log(Pr) − 1).

15 CAQR performance estimation

We use the performance model developed in the previous section to estimate the
performance of parallel CAQR on three computational systems, IBM POWER5,
Peta, and Grid, and compare it to ScaLAPACK’s parallel QR factorization
routine PDGEQRF. Peta is a model of a petascale machine with 8100 processors,
and Grid is a model of 128 machines connected over the internet. Each processor
in Peta and Grid can be itself a parallel machine, but our models consider the
parallelism only between these parallel machines.

We expect CAQR to outperform ScaLAPACK, in part because it uses a
faster algorithm for performing most of the computation of each panel factor-
ization (DGEQR3 vs. DGEQRF), and in part because it reduces the latency cost.
Our performance model uses the same time per floating-point operation for both
CAQR and PDGEQRF. Hence our model evaluates the improvement due only
to reducing the latency cost.

We evaluate the performance using matrices of size n × n, distributed over
a Pr ×Pc grid of P processors using a 2D block cyclic distribution, with square
blocks of size b×b. For each machine we estimate the best performance of CAQR
and PDGEQRF for a given problem size n and a given number of processors P ,
by finding the optimal values for the block size b and the shape of the grid
Pr × Pc in the allowed ranges. The matrix size n is varied in the range 103,
103.5, 104, . . . , 107.5. The block size b is varied in the range 1, 5, 10, . . . , 50, 60,
. . . , min(200,m/Pr, n/Pc). The number of processors is varied from 1 to the

53



largest power of 2 smaller than pmax, in which pmax is the maximum number
of processors available in the system. The values for Pr and Pc are also chosen
to be powers of two.

We describe now the parameters used for the three parallel machines. The
available memory on each processor is given in units of 8-byte (IEEE 754 double-
precision floating-point) words. When we evaluate the model, we set the γ value
in the model so that the modeled floating-point rate is 80% of the machine’s
peak rate, so as to capture realistic performance on the local QR factorizations.
This estimate favors ScaLAPACK rather than CAQR, as ScaLAPACK requires
more communication and CAQR more floating-point operations. The inverse
network bandwidth β has units of seconds per word. The bandwidth for Grid
is estimated to be the Teragrid backbone bandwidth of 40 GB/sec divided by
pmax.

• IBM POWER5: pmax = 888, peak flop rate is 7.6 Gflop/s, mem = 5·108

words, α = 5 · 10−6 s, β = 2.5 · 10−9 s/word (1/β = 400 Mword/s = 3.2
GB/s).

• Peta: pmax = 8192, peak flop rate is 500 Gflop/s, mem = 62.5·109 words,
α = 10−5 s, β = 2 · 10−9 s/word (1/β = 500 Mword/s = 4 GB/s).

• Grid: pmax = 128, peak flop rate is 10 Tflop/s, mem = 1014 words,
α = 10−1 s, β = 25 · 10−9 s/word (1/β = 40 Mword/s = .32 GB/s).

There are 13 plots shown for each parallel machine. The first three plots
display for specific n and P values our models of

• the best speedup obtained by CAQR, with respect to the runtime using
the fewest number of processors with enough memory to hold the matrix
(which may be more than one processor),

• the best speedup obtained by PDGEQRF, computed similarly, and

• the ratio of PDGEQRF runtime to CAQR runtime.

The next ten plots are divided in two groups of five. The first group presents per-
formance results for CAQR and the second group presents performance results
for PDGEQRF. The first two plots of each group of five display the correspond-
ing optimal values of b and Pr obtained for each combination of n and P . (Since
Pc = P/Pr, we need not specify Pc explicitly.) The last 3 plots of each group of
5 give the computation time to total time ratio, the latency time to total time
ratio, and the bandwidth time to total time ratio.

The white regions in the plots signify that the problem needed too much
memory with respect to the memory available on the machine. Note that in our
performance models, the block size b has no meaning on one processor, because
there is no communication, and the term 4n3/(3P ) dominates the computation.
Thus, for one processor, we set the optimal value of b to 1 as a default.

CAQR leads to significant improvements with respect to PDGEQRF when
the latency represents an important fraction of the total time, as for example
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when a small matrix is computed on a large number of processors. On IBM
POWER5, the best improvement is predicted for the smallest matrix in our
test set (n = 103), when CAQR will outperform PDGEQRF by a factor of 9.7
on 512 processors. On Peta, the best improvement is a factor of 22.9, obtained
for n = 104 and P = 8192. On Grid, the best improvement is obtained for one
of the largest matrix in our test set m = n = 106.5, where CAQR outperforms
PDGEQRF by a factor of 5.3 on 128 processors.

15.1 Performance prediction on IBM POWER5

Figures 8, 9, and 10 depict modeled performance on the IBM POWER 5 system.
CAQR has the same estimated performance as PDGEQRF when the computa-
tion dominates the total time. But it outperforms PDGEQRF when the fraction
of time spent in communication due to latency becomes significant. The best
improvements are obtained for smaller n and larger P , as displayed in Figure
8(c), the bottom right corner. For the smallest matrix in our test set (n = 103),
we predict that CAQR will outperform PDGEQRF by a factor of 9.7 on 512
processors. As shown in Figure 10(d), for this matrix, the communication dom-
inates the runtime of PDGEQRF, with a fraction of 0.9 spent in latency. For
CAQR, the time spent in latency is reduced to a fraction of 0.5 of the total time
from 0.9 for PDGEQRF, and the time spent in computation is a fraction of 0.3
of the total time. This is illustrated in Figures 9(c) and 9(d).

Another performance comparison consists in determining the improvement
obtained by taking the best performance independently for CAQR and PDGEQRF,
when varying the number of processors from 1 to 512. For n = 103, the best per-
formance for CAQR is obtained when using P = 512 and the best performance
for PDGEQRF is obtained for P = 64. This leads to a speedup of more than 3
for CAQR compared to PDGEQRF. For any fixed n, we can take the number
of processors P for which PDGEQRF would perform the best, and measure the
speedup of CAQR over PDGEQRF using that number of processors. We do this
in Table 13, which shows that CAQR always is at least as fast as PDGEQRF,
and often significantly faster (up to 3× faster in some cases).

Figure 8 shows that CAQR should scale well, with a speedup of 351 on 512
processors when m = n = 104. A speedup of 116 with respect to the parallel
time on 4 processors (the fewest number of processors with enough memory to
hold the matrix) is predicted for m = n = 104.5 on 512 processors. In these
cases, CAQR is estimated to outperform PDGEQRF by factors of 2.1 and 1.2,
respectively.

Figures 9(b) and 10(b) show that PDGEQRF has a smaller value for optimal
Pr than CAQR. This trend is more significant in the bottom left corner of Figure
10(b), where the optimal value of Pr for PDGEQRF is 1. This corresponds to
a 1D block column cyclic layout. In other words, PDGEQRF runs faster by
reducing the 3n log Pr term of the latency cost of Equation (7) by choosing a
small Pr. PDGEQRF also tends to have a better performance for a smaller block
size than CAQR, as displayed in Figures 9(a) and 10(a). The optimal block size
b varies from 1 to 15 for PDGEQRF, and from 1 to 30 for CAQR.
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(a) Speedup CAQR (b) Speedup PDGEQRF

(c) Comparison

Figure 8: Performance prediction comparing CAQR and PDGEQRF on IBM
POWER5.

log10 n Best log2 P for PDGEQRF CAQR speedup
3.0 6 2.1
3.5 8 3.0
4.0 9 2.1
4.5 9 1.2
5.0 9 1.0
5.5 9 1.0

Table 13: Estimated runtime of PDGEQRF divided by estimated runtime of
CAQR on a square n × n matrix, on the IBM POWER5 platform, for those
values of P (number of processors) for which PDGEQRF performs the best for
that problem size.
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(a) Optimal b (b) Optimal Pr

(c) Fraction of time in computation (d) Fraction of time in latency

(e) Fraction of time in bandwidth

Figure 9: Performance prediction for CAQR on IBM POWER5.
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(a) Optimal b (b) Optimal Pr

(c) Fraction of time in computation (d) Fraction of time in latency

(e) Fraction of time in bandwidth

Figure 10: Performance prediction for PDGEQRF on IBM POWER5.
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15.2 Performance prediction on Peta

Figures 11, 12, and 13 show our performance estimates of CAQR and PDGEQRF

on the Petascale machine. The estimated division of time between computation,
latency, and bandwidth for PDGEQRF is illustrated in Figures 13(c), 13(d), and
13(e). In the upper left corner of these figures, the computation dominates the
total time, while in the right bottom corner the latency dominates the total
time. In the narrow band between these two regions, which goes from the left
bottom corner to the right upper corner, the bandwidth dominates the time.
CAQR decreases the latency cost, as can be seen in Figures 12(c), 12(d), and
12(e). There are fewer test cases for which the latency dominates the time
(the right bottom corner of Figure 12(d)). This shows that CAQR is expected
to be effective in decreasing the latency cost. The left upper region where
the computation dominates the time is about the same for both algorithms.
Hence for CAQR there are more test cases for which the bandwidth term is an
important fraction of the total time.

Note also in Figures 13(b) and 12(b) that optimal Pr has smaller values
for PDGEQRF than for CAQR. There is an interesting regularity in the value
of optimal Pr for CAQR. CAQR is expected to have its best performance for
(almost) square grids.

As can be seen in Figure 11(a), CAQR is expected to show good scalability
for large matrices. For example, for n = 105.5, a speedup of 1431, measured
with respect to the time on 2 processors, is obtained on 8192 processors. For
n = 106.4 a speedup of 166, measured with respect to the time on 32 processors,
is obtained on 8192 processors.

CAQR leads to more significant improvements when the latency represents
an important fraction of the total time. This corresponds to the right bottom
corner of Figure 11(c). The best improvement is a factor of 22.9, obtained for
n = 104 and P = 8192. The speedup of the best CAQR compared to the best
PDGEQRF for n = 104 when using at most P = 8192 processors is larger than
8, which is still an important improvement. The best performance of CAQR
is obtained for P = 4096 processors and the best performance of PDGEQRF is
obtained for P = 16 processors.

Useful improvements are also obtained for larger matrices. For n = 106,
CAQR outperforms PDGEQRF by a factor of 1.4. When the computation dom-
inates the parallel time, there is no benefit from using CAQR. However, CAQR
is never slower. For any fixed n, we can take the number of processors P for
which PDGEQRF would perform the best, and measure the speedup of CAQR
over PDGEQRF using that number of processors. We do this in Table 14, which
shows that CAQR always is at least as fast as PDGEQRF, and often significantly
faster (up to 7.4× faster in some cases).

15.3 Performance prediction on Grid

The performance estimation obtained by CAQR and PDGEQRF on the Grid is
displayed in Figures 14, 15, and 16. For small values of n both algorithms do
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(a) Speedup CAQR (b) Speedup PDGEQRF

(c) Comparison

Figure 11: Performance prediction comparing CAQR and PDGEQRF on Peta.

log10 n Best log2 P for PDGEQRF CAQR speedup
3.0 1 1
3.5 2–3 1.1–1.5
4.0 4–5 1.7–2.5
4.5 7–10 2.7–6.6
5.0 11–13 4.1–7.4
5.5 13 3.0
6.0 13 1.4

Table 14: Estimated runtime of PDGEQRF divided by estimated runtime of
CAQR on a square n × n matrix, on the Peta platform, for those values of P
(number of processors) for which PDGEQRF performs the best for that problem
size.
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(a) Optimal b (b) Optimal Pr

(c) Fraction of time in computation (d) Fraction of time in latency

(e) Fraction of time in bandwidth

Figure 12: Performance prediction for CAQR on Peta.
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(a) Optimal b (b) Optimal Pr

(c) Fraction of time in computation (d) Fraction of time in latency

(e) Fraction of time in bandwidth

Figure 13: Performance prediction for PDGEQRF on Peta.
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not obtain any speedup, even on small number of processors. Hence we discuss
performance results for values of n bigger than 105.

As displayed in Figures 15(a) and 16(a), the optimal block size for both
algorithms is very often 200, the largest value in the allowed range. The opti-
mal value of Pr for PDGEQRF is equal to 1 for most of the test cases (Figure
16(b)), while CAQR tends to prefer a square grid (Figure 15(b)). This suggests
that CAQR can successfully exploit parallelism within block columns, unlike
PDGEQRF.

As can be seen in Figures 16(c), 16(d), and 16(e), for small matrices, commu-
nication latency dominates the total runtime of PDGEQRF. For large matrices
and smaller numbers of processors, computation dominates the runtime. For the
test cases situated in the band going from the bottom left corner to the upper
right corner, bandwidth costs dominate the runtime. The model of PDGEQRF

suggests that the best way to decrease the latency cost with this algorithm is to
use, in most test cases, a block column cyclic distribution (the layout obtained
when Pr = 1). In this case the bandwidth cost becomes significant.

The division of time between computation, latency, and bandwidth has a
similar pattern for CAQR, as shown in Figures 15(c), 15(d), and 15(e). However,
unlike PDGEQRF, CAQR has as optimal grid shape a square or almost square
grid of processors, which suggests that CAQR is more scalable.

The best improvement is obtained for one of the largest matrix in our test
set m = n = 106.5, where CAQR outperforms PDGEQRF by a factor of 5.3 on
128 processors. The speedup obtained by the best CAQR compared to the best
PDGEQRF is larger than 4, and the best performance is obtained by CAQR
on 128 processors, while the best performance of PDGEQRF is obtained on 32
processors.

CAQR is predicted to obtain reasonable speedups for large problems on the
Grid, as displayed in Figure 14(a). For example, for n = 107 we note a speedup
of 33.4 on 128 processors measured with respect to 2 processors. This represents
an improvement of 1.6 over PDGEQRF. For the largest matrix in the test set,
n = 107.5, we note a speedup of 6.6 on 128 processors, measured with respect
to 16 processors. This is an improvement of 3.8 with respect to PDGEQRF.

As with the last model, for any fixed n, we can take the number of processors
P for which PDGEQRF would perform the best, and measure the speedup of
CAQR over PDGEQRF using that number of processors. We do this in Table
15, which shows that CAQR always is at least as fast as PDGEQRF, and often
significantly faster (up to 3.8× faster in some cases).

16 Lower bounds on communication

In this section, we review known lower bounds on communication for parallel
and sequential matrix-matrix multiplication of matrices stored in 1-D and 2-D
block cyclic layouts. In Section 16.6, we will justify our conjecture that these
bounds also apply to certain one-sided matrix factorizations (including LU and
QR) of an m × n matrix A. We begin with 1-D layouts in Section 16.4, and
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(a) Speedup CAQR (b) Speedup PDGEQRF

(c) Comparison

Figure 14: Performance prediction comparing CAQR and PDGEQRF on Grid.

log10 n Best log2 P for PDGEQRF CAQR speedup
6.0 3 1.4
6.5 5 2.4
7.0 7 3.8
7.5 7 1.6

Table 15: Estimated runtime of PDGEQRF divided by estimated runtime of
CAQR on a square n × n matrix, on the Grid platform, for those values of P
(number of processors) for which PDGEQRF performs the best for that problem
size.
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(a) Optimal b (b) Optimal Pr

(c) Fraction of time in computation (d) Fraction of time in latency

(e) Fraction of time in bandwidth

Figure 15: Performance prediction for CAQR on Grid.
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(a) Optimal b (b) Optimal Pr

(c) Fraction of time in computation (d) Fraction of time in latency

(e) Fraction of time in bandwidth

Figure 16: Performance prediction for PDGEQRF on Grid.
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follow with 2-D layouts, which are more extensively studied in the literature.

16.1 Assumptions

The matrix multiplication results only allow commutative and associative re-
orderings of the standard O(n3) algorithm:

Cij = Cij +
∑

k

AikBkj .

Alternate algorithms, such as Strassen’s, are not permitted.
In the parallel case, we assume that each processor has a local memory

of a fixed size W . The bounds govern the number of words that must be
transferred between each processor’s local memories, given any desired initial
data distribution. We do not consider the cost of this initial distribution.

In the sequential case, the bounds govern the number of floating-point words
transferred between slow and fast memory, given that fast memory has a fixed
size W . We generally assume, unlike some authors we cite, that no part of the
input matrix resides in fast memory at the start of the computation.

For the 1-D layouts, we can assume a block layout (only one block per
processor) without loss of generality, as an implicit row permutation reduces
block cyclic layouts to block layouts. We also generally assume that the blocks
have at least as many rows as columns (i.e., m/P ≥ n).

16.2 Prior work

Hong and Kung first developed a lower bound on the number of floating-point
words moved between slow and fast memory for sequential matrix multiplication
[26]. Others continued this work. Irony et al. simplified the proof and extended
these bounds to include a continuum of parallel matrix distributions [25]. The
latter work uses a proof technique which we conjecture could be extended to
cover a variety of one-sided dense matrix factorizations, all of which require
multiplying submatrices of the same magnitude as the matrix. These include
both LU and QR. The bounds are known to hold for LU, as matrix-matrix
multiplication can be reduced to LU using the following standard reduction:





I 0 −B
A I 0
0 0 I



 =





I
A I
0 0 I









I 0 −B
I A · B

I



 . (9)

Extending the bound to QR factorization is an open problem, as far as we know,
but it is reasonable to conjecture that the same bound holds.

16.3 From bandwidth to latency

Given a lower bound on the number of words transferred, we can use the (lo-
cal resp. fast) memory capacity W to derive a lower bound on the number of
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messages, in both the parallel and sequential cases. This is because the best an
algorithm can do in terms of the number of messages is to fill up its local resp.
fast memory before it performs another message. So we can take any “inverse
bandwidth” lower bound and divide it by W to get a “latency” lower bound.

16.4 1-D layouts

16.4.1 Sequential

In the sequential case, the m×n matrix A must be read from slow memory into
fast memory at least once, if we assume that fast memory is empty at the start
of the computation. Thus, the number of words transferred Bseq,1-D(m,n,W )
satisfies

Bseq,1-D(m,n,W ) ≥ mn. (10)

(If we instead assume that fast memory may already contain part of the matrix,
then the lower bound is mn−W .) The same reasoning as in Section 16.3 shows
that the number of slow memory reads Lseq,1-D(m,n,W ) (the latency term)
satisfies

Lseq,1-D(m,n,W ) ≥ mn/W. (11)

16.4.2 Parallel

In the parallel case, we prefer for 1-D layouts to distinguish between the mini-
mum number of messages per processor, and the number of messages along the
critical path. For example, one can perform a reduction linearly, so that each
processor only sends one message to the next processor. This requires P − 1
messages along the critical path, but only one message per processor. A lower
bound on the minimum number of sends or receives performed by any processor
is also a lower bound on the number of messages along the critical path. The
latter is more difficult to analyze for 2-D layouts, so we only look at the critical
path for 1-D layouts. By the usual argument that any nontrivial function of data
distributed across P processors requires at least log2 P messages to compute,
the critical path length C1-D(m,n, P ) satisfies

C1-D(m,n, P ) ≥ log2 P. (12)

This is also the number of messages required per processor along the critical
path.

We make a conjecture about the bandwidth requirements of parallel House-
holder or Givens QR, based on the similar operation C := AT · A. Any one
processor must communicate at least n2/2 + O(n) words with any other pro-
cessor in order to complete this reduction operation. It seems reasonable that
any one processor in a Householder or Givens QR factorization must transfer
at least this many words between processors. This gives us a conjectured lower
bound of

Bpar,1-D(m,n, P ) ≥ n2 + O(n) (13)

on the number of words Bpar(m,n, P ) sent and received by any one processor.
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16.5 2-D layouts

16.5.1 Bandwidth

Irony et al. present the following lower bound on the number of words communi-
cated between processors in parallel matrix-matrix multiplication, and between
slow and fast memory in sequential matrix-matrix multiplication. Let A and
B be the two square n × n matrices to be multiplied. If this operation uses
O(n2/P ) words of memory per processor, then at least one processor must send
or receive

Bpar,2-D(m,n, P ) = Ω

(

n2

√
P

)

(14)

words. In the sequential case, if fast memory can contain W words,6 then the
number of floating-point words Bseq,2-D(m,n,W ) moved between slow and fast
memory satisfies

Bseq,2-D(m,n,W ) ≥ n3

2
√

2W 1/2
, (15)

if we assume that fast memory contains no part of the input matrix at the start
of the computation.

16.5.2 Latency

In the sequential case, the total number of messages Lseq,2-D(m,n,W ) can be no
better than the above bandwidth bound, divided by the fast memory capacity
W . This gives a lower bound of

Lseq,2-D(m,n,W ) ≥ n3

2
√

2W 1/2
(16)

messages. The same reasoning applies to the parallel case: since any one proces-
sor can hold at most W words, and one processor must send or receive Ω(n2/

√
P )

words, then that processor must send

Lpar,2-D(m,n, P ) = Ω(
√

P ) (17)

messages.

16.6 Extension to QR

Extending the above bounds to QR factorization is future work. It is straight-
forward to reduce matrix-matrix multiplication to Cholesky, but a reduction of
Cholesky to QR is not immediately obvious. We could proceed as in Irony et al.,
by showing that the DAG of computations in the QR factorization implies the
same communication bounds as in matrix-matrix multiplication. Alternately,

6Note that we use W to denote the fast memory size, whereas Irony et al. use W to denote
that number of “elementary multiplications” performed per processor, and use M to denote
the fast memory size.
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we could try to demonstrate that any one-sided matrix factorization which uses
a certain number of sufficiently large matrix-matrix multiplications internally
must satisfy the matrix-matrix multiplication communication lower bounds. For
the purposes of this paper, however, we assume in the 2-D case that the lower
bounds on communication in matrix-matrix multiplication apply to QR up to
a constant factor.

17 Lower bounds on parallelism

We base this paper on the premise that communication costs matter more than
computation costs. Many authors developed parallel algorithms and bounds
based on a PRAM model, which assumes that communication is essentially
free. Their bounds are nevertheless of interest because they provide fundamental
limits to the amount of parallelism that can be extracted, regardless of the cost
of communication.

A number of authors have developed parallel QR factorization methods
based on Givens rotations (see e.g., [41, 34, 8]). Givens rotations are a good
model for a large class of QR factorizations, including those based on House-
holder reflections. This is because all such algorithms have a similar dataflow
graph (see e.g., [31]), and are all based on orthogonal linear transformations (so
they are numerically stable). Furthermore, these bounds also apply to methods
that perform block Givens rotations, if we consider each block as an “element”
of a block matrix.

17.1 Minimum critical path length

Cosnard, Muller, and Robert proved lower bounds on the critical path length
Opt(m,n) of any parallel QR algorithm of an m × n matrix based on Givens
rotations [7]. They assume any number of processors, any communication net-
work, and any initial data distribution; in the extreme case, there many be mn
processors, each with one element of the matrix. In their class of algorithms, a
single step consists of computing one Givens rotation and zeroing out one ma-
trix entry. Their first result concerns matrices for which limm,n→∞ m/n2 = 0.
This includes the case when m = n. Then the minimum critical path length is

2n + o(n). (18)

A second complexity result is obtained for the case when m → ∞ and n is fixed
– that is, “tall skinny” matrices. Then, the minimum critical path length is

log2 m + (n − 1) log2 (log2 m) + o (log2 (log2 m)) . (19)

The above bounds apply to 1-D and 2-D block (cyclic) layouts if we consider
each “row” as a block row, and each “column” as a block column. One step
in the computation involves computing one block Givens rotation and applying
it (i.e., either updating or eliminating the current block). Then, Equation (18)
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shows in the case of a square matrix that the critical path length is twice the
number of block columns. (This makes sense, because the current panel must
be factored, and the trailing matrix must be updated using the current panel
factorization; these are two dependent steps.) In the case of a tall skinny matrix
in a 1-D block row layout, Equation (19) shows that the critical path length is
log2(m/P ), in which P is the number of processors. (The (n − 1) log2 (log2 m)
term does not contribute, because there is only one block column, so we can say
that n = 1.)

17.2 Householder or Givens QR is P-complete

Leoncini et al. show that any QR factorization based on Householder reductions
or Givens rotations is P-complete [31]. This means that if there exists an algo-
rithm that can solve this problem using a number of processors polynomial in
the number of matrix entries, in a number of steps polynomial in the logarithm
of the number of matrix entries (“polylogarithmic”), then all tractable problems
for a sequential computer (the set P) can be solved in parallel in polylogarithmic
time, given a polynomial number of processors (the set NC). This “P equals NC”
conclusion is considered unlikely, much as “P equals NP” is considered unlikely.

Note that one could compute the QR factorization of a matrix A by multiply-
ing AT ·A, computing the Cholesky factorization R ·RT of the result, and then
performing Q := AR−1. We describe this method (“CholeskyQR”) in detail in
Section 9. Csanky shows arithmetic NC algorithms for inverting matrices and
solving linear systems, and matrix-matrix multiplication also has an arithmetic
NC algorithm [9]. Thus, we could construct a version of CholeskyQR that is
in arithmetic NC. However, this method is highly inaccurate in floating-point
arithmetic. Not only is CholeskyQR itself inaccurate (see Section 10), Demmel
observes that Csanky’s arithmetic NC linear solver is so unstable that it loses
all significant digits when inverting 3In×n in IEEE 754 double-precision arith-
metic, for n ≥ 60 [12]. As far as we know, there exists no stable, practical QR
factorization that is in arithmetic NC.

Appendix

A Structured local Householder QR flop counts

Here, we summarize floating-point operation counts for local structured House-
holder QR factorizations of various matrices of interest. We count operations for
both the factorization, and for applying the resulting implicitly represented Q or
QT factor to a dense matrix. We omit counts for BLAS 3 variants of structured
Householder QR factorizations, as these variants require more floating-point op-
erations. Presumably, the use of a BLAS 3 variant indicates that small constant
factors and lower-order terms in the arithmetic operation count matter less to
performance than exploiting locality.
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A.1 General formula

A.1.1 Factorization

Algorithm 1 in Section 6.1 shows a column-by-column Householder QR factor-
ization of the qn × n matrix of upper triangular n × n blocks, using structured
Householder reflectors. We can generalize this to an m × n matrix A with a
different nonzero pattern, as long as the trailing matrix updates do not create
nonzeros below the diagonal in the trailing matrix. This is true for all the matrix
structures encountered in the local QR factorizations in this report. A number
of authors discuss how to predict fill in general sparse QR factorizations; see,
for example, [18].

The factorization proceeds column-by-column, starting from the left. For
each column, two operations are performed: computing the Householder reflec-
tor for that column, and updating the trailing matrix. The cost of computing
the Householder vector of a column A(j, j : m) is dominated by finding the norm
of A(j, j : m) and scaling it. If this part of the column contains kj nonzeros,
this comprises about 4kj flops, not counting comparisons. We assume here that
the factorization never creates nonzeros in the trailing matrix; a necessary (but
not sufficient) condition on kj is that it is nondecreasing in j.

The trailing matrix update involves applying a length m−j +1 Householder
reflector, whose vector contains kj nonzeros, to the m−j+1×cj trailing matrix
Cj . The operation has the following form:

(I − τvjv
T
j )Cj = Cj − vj(τj(v

T Cj)),

in which vj is the vector associated with the Householder reflector. The first step
vT

j Cj costs 2cjkj flops, as we do not need to compute with the zero elements of
vj . The result is a 1×cj row vector and in general dense, so scaling it by τj costs
cj flops. The outer product with vj then costs cjkj flops, and finally updating
the matrix Cj costs cjkj flops (one for each nonzero in the outer product). The
total is 4cjkj + cj .

When factoring an m×n matrix, cj = n−j. The total number of arithmetic
operations for the factorization is therefore

n
∑

j=1

4(n − j)kj + 4kj + (n − j) flops. (A 1)

A.1.2 Applying implicit Q or QT factor

Applying Q or QT to an m × c matrix is like performing n trailing matrix
updates, except that the trailing matrix size c stays constant. This gives us an
arithmetic operation count of

n
∑

j=1

(4ckj + 4kj + c) (A 2)
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flops. In the case that the original m × n matrix A was fully dense, we have
kj = m − j + 1 and thus the arithmetic operation count is

4(c + 1)mn − 2(c + 1)n2 + O(mn) + O(cn).

A.2 Special cases of interest

A.2.1 One block – sequential TSQR

The first step of sequential TSQR involves factoring a single m/P × n input
block. This is the special case of a full matrix, whose flop count is

2mn2

P
− 2n3

3
+

n2

2
+ O(mn/P ).

A.2.2 Two blocks – sequential TSQR

For a 2m/P ×n factorization with the top m/P ×n block upper triangular and
the lower block full, we have kj = 1+m/P , and thus the flop count of the local
QR factorization is

2mn2

P
+

2mn

P
+ O(n2).

For the case m = n, this specializes to kj = 1 + n and thus the flop count is

2n3

P
+

5

2
n2 + O

(

2n2

P

)

.

Thus, the structured approach requires only about half the flops of standard
Householder QR on the same 2m/P × n matrix.

A.2.3 Two or more blocks – parallel TSQR

For two m/P × n upper triangular blocks grouped to form a 2m/P × n matrix,
we have kj = 1 + j and therefore the flop count is

2

3
n3 + O(n2).

Note that the flop count is independent of m in this case. We can generalize
this to some number q ≥ 2 of the m/P × n upper triangular blocks, which is
useful for performing TSQR with tree structures other than binary. Here, q
is the branching factor of a node in the tree. In that case, we obtain obtain
kj = 1 + (q − 1)j and therefore the flop count is

2

3
(q − 1)n3 − 2

3
n3 + O(qn2).

Without the structured Householder optimization, this would be 2mn2/P −
2n3/3 + O(n2) + O(qmn/P ) flops. In the case m = n, the optimization saves
2/3 of the arithmetic operations required by the standard approach.
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B Sequential TSQR performance model

B.1 Factorization

We now derive the performance model for sequential TSQR. Assume that the
matrix is m×n and divided into P row blocks, with m/P ≥ n. We assume read
and write bandwidth are the same, and equal to 1/β. For simplicity of analysis,
we assume no overlapping of computation and communication; overlap could
potentially provide another twofold speedup. Sequential TSQR first performs
one local QR factorization of the topmost m/P × n block alone, at the cost of

• about 2mn2

P flops,

• one read from secondary memory of size mn/P , and

• one write to secondary memory, containing both the implicitly represented
Q factor (of size mn/P − n(n + 1)/2), and the τ array (of size n).

Then it does P − 1 local QR factorizations of two m/P ×n blocks grouped into
a 2m/P ×n block. In each of these local QR factorizations, the upper m/P ×n
block is upper triangular, and the lower block is a full matrix. This totals to

• about 2(P−1)mn2

P flops,

• P − 1 reads of size mn
P each, and

• P − 1 writes to secondary memory, each containing both an implicitly
represented Q factor (of size mn

p ), and the τ array (of size n).

The resulting modeled runtime is

TSeq. TSQR(m,n, P ) = α2P + β(2mn + nP − n(n + 1)/2) + γ2mn2. (A 3)

Suppose that fast memory can only hold W words of data for sequential
TSQR. The TSQR factorization requires holding two blocks of the matrix in
fast memory at once, and applying Q or QT requires holding three blocks in
fast memory at once. Thus, we need to choose P such that P ≥ 3mn

W . Naturally
we must assume W ≥ n, and can also assume W < mn. We take P = 3mn/W
so as to maximize the block size, and obtain a modeled runtime of

TSeq. TSQR(m,n,W ) = α
6mn

W
+β

(

2mn +
3mn2

W
− n(n + 1)

2

)

+γ2mn2. (A 4)

If we can overlap communication and computation, and if we assume that we can
always hide latency, then this formula tells us how much memory bandwidth is
needed to keep the floating-point units busy. This would require the bandwidth
term above to be no less than the floating-point term, and therefore, that

β

(

1 +
3n

2W
− n + 1

4m

)

≥ γn.
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The terms inside the parentheses on the left side are all 1 or less than 1 in most
cases. Comparing β with γ is an expression of machine balance; here we see
that sequential TSQR only requires a modest machine balance of β ≥ γn in
order to cover bandwidth costs.

B.2 Applying Q or QT

The Q and QT cases are distinguished only by the order of operations. Suppose
we are applying Q or QT to the dense m× c matrix C. The top block row of C
receives both a one-block update (Q0 resp. QT

0 is applied to it) and a two-block
update (involving both Q0 and Q1), whereas the remaining block rows of C
each receive only a two-block update.

The number of arithmetic operations is the same (modulo lower-order terms)
as the number of flops in sequential TSQR itself. However, the communication
pattern is different. The m× c matrix C must be read from secondary memory,
and the m × c result (QC resp. QT C) written to disk. Each of these reads
or writes involves an m/P × n block. Furthermore, the Q factors and their
associated τ arrays must be read from secondary memory. This makes the total
latency cost α3P and the total bandwidth cost β(2mc + Pn(n + 1)/2 + Pn).

C Sequential CAQR performance model

C.1 Conventions and notation

Sequential CAQR operates on an m × n matrix, stored in a Pr × Pc 2-D block
layout. We do not model a fully general block cyclic layout, as it is only helpful in
the parallel case for load balancing. We assume without loss of generality that Pr

evenly divides m and Pc evenly divides n. The dimensions of a single block of the
matrix are therefore M ×N , in which M = m/Pr and N = n/Pc. Furthermore,
let P = Pr ·Pc be the number of blocks (not the number of processors, as in the
parallel case – here we only use one processor). Our convention is to use capital
letters for quantities related to blocks and the block layout, and lowercase letters
for quantities related to the whole matrix independent of a particular layout.

We assume that fast memory has a capacity of W floating-point words for
direct use by the algorithms in this section. We neglect the additional space
needed for workspace and bookkeeping.

C.2 Factorization outline

Algorithms 10 and 11 outline left-looking resp. right-looking variants of the
sequential CAQR factorization. We will analyze both in this section, so as to
pick the optimal approach in terms of communication. Both require the same
number of floating-point operations, so it suffices to pick one when counting
those (we choose the right-looking algorithm, as it is more intuitive). Note
that we cannot merely assume that the algorithms perform the same number of
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floating-point operations as a standard sequential Householder QR factorization,
because CAQR uses different panel factorization and update methods.

C.3 Fast memory usage

The factorization operates on at most three blocks in fast memory at one time.
The blocks are of size M × N , so the block size is m/Pr × n/Pc = mn/P . We
maximize fast memory usage by taking W = 3mn/P .

C.4 Total arithmetic operations

Sequential CAQR is not merely a reordering of standard Householder QR, but
actually performs different operations. Thus, we expect the floating-point oper-
ation count to be different from standard Householder QR. Both left-looking and
right-looking sequential CAQR perform the same floating-point operations, just
in a different order, so it suffices to count flops for the left-looking factorization.
The total flop count is

Pc
∑

J=1

(

2(m − J ∗ (m/Pr) + m/Pr)(n/Pc)
2 + 2(n/Pc)

3(Pc − J) + 2(m/Pr)(n/Pc)
2(2(Pr − J + 1)(Pc − J))

)

,

which sums to

4mn2 − n3

P 2
c

− 2mn2

Pc
+

n3

Pc
+

3mn2

Pr
− mn2

P
− 2mn2Pc

Pr
. (A 5)

In the case that m = n (i.e., the matrix is square) and Pr = Pc =
√

P , this
reduces to

2m3 +
2m3

√
P

± O

(

2m3

P

)

flops. The standard Householder QR algorithm requires 2m3 flops. If we let
fast memory capacity be W floating-point words, and assume that at most three
M ×M blocks of the matrix must fit in fast memory at once, then we can take
P = 3m2/W . We then see that sequential CAQR performs about

1 +

√
W√
3m

times more flops than the standard method. We must have
√

W ≤ m and
thus sequential CAQR does no more than about 60% more flops than the usual
Householder QR factorization. Indeed, often fast memory is large enough to
hold more than one column or row of the matrix, and thus

√
W ≤ √

m.

C.5 Communication requirements

Here, we count the total volume and number of block read and write operations
in both the left- and right-looking versions of sequential CAQR. Making a fair
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count requires defining these two variants more precisely. For the right-looking
algorithm, one can choose to sweep either in row order or in column order over
the trailing matrix. The column-order option saves loads of the input matrix
(as most input blocks of the trailing matrix are updated twice), whereas the
row-order option saves loads of the current panel. Both save the same number
of block I/O operations. We choose the column-order option in order to save
bandwidth, as the input matrix blocks are larger than the Q factor blocks.
Algorithm 12 shows the column-order right-looking factorization in more detail.

Figure 17: A possible reordering of the current panel updates in the left-looking
sequential QR factorization. A number K on the left represents a block of a
panel’s Q factor, and a number on the right (attached to the “current panel”)
represents an update of a current panel block by the correspondingly numbered
Q factor block. The ordering of the numbers is one possible ordering of updates.
Note that the Q panels must be applied to the current panel in a way that re-
spects left-to-right dependencies on a horizontal level. For example, the update
represented by block 2 on the left must precede updates by blocks 3, 4, and 6.
Blocks with no components on the same horizontal level are independent and
can be reordered freely with respect to one another.

Left-looking sequential CAQR uses all but the last block of the current panel
twice during updates. By expanding the number of current panel blocks held
in fast memory and reordering the updates, one can increase reuse of current
panel blocks. Figure 17 illustrates one possible reordering. We retain the usual
ordering, however, so as to restrict the number of blocks in fast memory to three
at once. Algorithm 13 shows the left-looking factorization in more detail.

For standard Householder QR, a left-looking factorization saves bandwidth
in the out-of-DRAM regime. D’Azevedo et al. took the left-looking approach in
their out-of-DRAM ScaLAPACK QR code, for example [11]. Sequential CAQR
follows a different communication pattern, however, so we need not expect that
a left-looking factorization saves communication. In fact, both our right-looking
and left-looking approaches have about the same bandwidth requirements.
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C.5.1 Right-looking communication

Communication volume The column-order right-looking algorithm requires
the following communication volume:

Pc
∑

J=1

(

2(Pr − J + 1)MN − (Pr − J + 1)N(N − 3)/2 + N +

Pc
∑

K=J+1

(

3MN − N(N − 1)/2 +

Pr
∑

L=J+1

(3MN − N(

If we compute this sum and substitute M → m/Pr, N → n/Pc, Pr− > P/Pc,
and P− > 3mn/W , we obtain a mess of positive and negative terms. We can
neglect the negative terms in terms of asymptotic performance, since they come
the upper triangle of the matrix. The positive terms in the sum are

7n

4
+

mn

2
+

3mnPc

2
+

n2Pc

12
+

9mn2

4W
+

9mn2

4PcW
+

P 2
c W

6
.

Of these, the most significant term is

3mnPc/2.

It subsumes n2Pc/2, as long as m ≥ n. We see from this that as Pc grows, so do
the bandwidth requirements. In the case of a square matrix on a square block
layout (i.e., Pc =

√
P and m = n), the most significant term in the whole sum

(including negative terms) is
n3

4
√

3
√

W
. (A 6)

Thus, sequential CAQR achieves the lower bound of Ω(n3/
√

W ) conjectured in
Section 16.

Number of block transfers The column-oriented right-looking algorithm
reads and writes a total of

Pc
∑

J=1

(

2(Pr − J + 1) +

Pc
∑

K=J+1

(

3 +

Pr
∑

L=J+1

(3)

))

.

blocks between fast and slow memory. This sums to

P 2
c

2
− P 3

c

2
+

P

2
+ 3

P 2
c Pr

2
=

P

2
+

3PPc

2
+

P 2
c

2
− P 3

c

2

block transfers. If we substitute M → m/Pr, N → n/Pc, Pr− > P/Pc, and
P− > 3mn/W , we obtain

3mn

2W
+

9mnPc

2W
+

P 2
c

2
− P 3

c

2
.

The most significant term is
9mnPc

2W
.
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In the case that m = n and Pc = P , all the positive terms together reduce to

3
√

3n3

2W 3/2
+

3n2

W
,

which shows that left-looking sequential CAQR satisfies the lower bound of
Ω(n3/W 3/2) conjectured in Section 16.

C.5.2 Left-looking communication

The left-looking version of sequential CAQR has the following communication
volume:

Pc
∑

J=1

(

2(Pr − J + 1)MN − (Pr − J + 1)
N(N − 1)

2
− N2 +

J−1
∑

K=1

(

−N2 +

Pr
∑

L=K+1

(

3MN − N(N − 3)

2

)

))

.

If we compute this sum and substitute M → m/Pr, N → n/Pc, Pr− > P/Pc,
and P− > 3mn/W , we obtain a mess of positive and negative terms. We can
neglect the negative terms in terms of asymptotic performance, since they come
the upper triangle of the matrix. The positive terms in the sum are

n/2 + mn/2 + 3mnPc/2 + n2Pc/2 + 9mn2/4W + PcW.

Of these, the most significant term is

3mnPc/2.

It subsumes n2Pc/2, as long as m ≥ n. We see from this that as Pc grows, so do
the bandwidth requirements. In the case of a square matrix on a square block
layout (i.e., Pc =

√
P and m = n), we achieve the lower bound of Ω(n3/

√
W )

conjectured in Section 16.

Number of block transfers Left-looking sequential CAQR performs the
following number of block transfers between fast and slow memory:

Pc
∑

J=1

(

2(Pr − J + 1) +

J−1
∑

K=1

(

Pr
∑

L=K

3

))

.

This sums to
3mn

2W
+

9mnPc

2W
+

P 2
c

2
− P 3

c

2

block transfers, which is exactly the same as in the column-oriented right-looking
variant.

C.6 Applying Q or QT

Applying the Q or QT factor from sequential CAQR has almost the same cost
as factoring the matrix. One need only subtract out the cost of the panel
factorizations.
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D Parallel TSQR performance model

We now derive the performance model for parallel TSQR on a binary tree of
P processors. We restrict our performance analysis to the block row, reduction
based Algorithm 3. The all-reduction-based version has the same number of
flops on the critical path (the root process of the reduction tree), but it requires
2q parallel messages per level of the tree on a q-ary tree, instead of just q − 1
parallel messages to the parent node at that level in the case of a reduction. For
simplicity we assume that the number of processors P is a power of 2: P = 2L−1

with L = log2 p.
Section 6 describes how to optimize the local QR factorizations, and Ap-

pendix A counts the number of arithmetic operations for these optimized local
factorizations. We use the structured Householder reflectors discussed in Sec-
tion 6.1, but do not include the BLAS 3 reformulation of structured Householder
reflectors in Section 6.2.

D.1 Factorization

A parallel TSQR factorization on a binary reduction tree performs the following
computations along the critical path: One local QR factorization of a fully

dense m/P ×n matrix, at cost 2mn2/P − n3

3 +O(mn/P ) flops, and and log(P )
factorizations of a 2n×n matrix consisting of two n×n upper triangular matrices,
at cost 2n3/3 + O(n2) flops per factorization. The factorization requires log(P )
messages, each of size n(n + 1)/2.

E Parallel CAQR performance model

In this section, we model the performance the parallel CAQR algorithm de-
scribed in Section 13. Parallel CAQR operates on an m × n matrix A, stored
in a Pr × Pc 2-D block layout. We do not model a fully general block cyclic
layout here, for simplicity. Assume that Pr evenly divides m and Pc evenly
divides n. We introduce some notation in this section to simplify counting: let
the dimensions of a single block of the matrix be M × N , so that M = m/Pr

and N = n/Pc. Our convention here is to use capital letters for quantities re-
lated to blocks, and lowercase letters for quantities related to the whole matrix
independent of a particular layout.

E.1 Factorization

First, we count the number of floating point arithmetic operations that CAQR
performs along the critical path. We compute first the cost of computing the
QR factorization using Householder transformations of a m×n matrix A (using
DGEQR2). The cost of computing the jth Householder vector is given by the
cost of computing its Euclidian norm and then by scaling the vector. This
involves 3(m − j + 1) flops and (m − j + 1) divides. The cost of updating the
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trailing A(j : m, j +1 : n) matrix by I − τvjv
T
j is 4(n− j)(m− j +1). The total

number of flops is:

3

n
∑

j=1

(m − j + 1) + 4

n−1
∑

j=1

(n − j)(m − j + 1) = 2mn2 − 2n3

3
+ mn +

n2

2
+

n

3
≈ 2mn2 − 2n3

3

The total number of divides is around mn − n2/2.
The Householder update of a matrix (I − Y TT Y T )C, where Y is a m × n

unit lower trapezoidal matrix of Householder vectors and C is a m × q matrix,
can be expressed as:

C =

(

C0

C1

)

=

(

I −
(

Y0

Y1

)

· TT

·
(

Y0

Y1

)T
)

(

C0

C1

)

in which Y0 is a n × n unit lower triangular matrix and Y1 is a rectangular
matrix. The total number of flops is around qn(4m − n − 1) ≈ qn(4m − n).
We described in Section 6.4 how to perform the trailing matrix update. The
breakdown of the number of flops in each step is:

• W = Y T
0 C0 → n(n − 1)q flops.

• W = W + Y T
1 C1 → 2n(m − n)q flops.

• W = TT W → n2q flops.

• C0 = C0 − Y0W → n2q flops.

• C1 = C1 − Y1W → 2n(m − n)q flops.

We consider now the computation of the upper triangular matrix T used in
the (I − Y TY T ) representation of the Householder vectors (DLARFT routine).
This consists of n transformations of the form (I − τviv

T
i ). Consider Y , a m×n

unit lower trapezoidal matrix of Householder vectors. The matrix T is an upper
triangular matrix of dimension n×n that is obtained in n steps. At step j, the
first j − 1 columns of T are formed. The j-th column is obtained as follows:

T (1 : j, 1 : j) =

(

T (1 : j − 1, 1 : j − 1) −τT (1 : j − 1, 1 : j − 1)Y T (:, 1 : j − 1)vj)
τ

)

in which vj is the jth Householder vector of length m−j+1. This is obtained by
computing first w = −τY T (:, 1 : j−1)vj (matrix vector multiply of 2(j−1)(m−
j +1) flops ) followed by the computation T (1 : j−1, j) = T (1 : j−1, 1 : j−1)w
(triangular matrix vector multiplication of (j − 1)2 flops). The total cost of
forming T is:

mn2 − n3

3
− mn +

n2

2
− n

6
≈ mn2 − n3

3
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The new QR factorization algorithm also performs Householder updates of
the form

C =

(

C0

C1

)

=

(

I −
(

I
Y1

)

· TT

·
(

I
Y1

)T
)

(

C0

C1

)

in which Y1 is a n × n upper triangular matrix and C is a 2n × q matrix.
The total number of flops is 3n2q + 6nq. The following outlines the number
of floating-point operations corresponding to each operation performed during
this update:

• W = Y T
1 C1 → n(n + 1)q flops.

• W = W + C0 → nq flops.

• W = TT W → n(n + 1)q flops.

• C0 = C0 − W → nq flops.

• C1 = C1 − Y1W → n(n + 2)q flops.

Forming the upper triangular matrix T used in the above Householder up-
date corresponds now to computing −τT (1 : j − 1, 1 : j − 1)Y T

1 (1 : j − 1, 1 :
j−1)vj(n+1 : n+j). vj is the jth Householder vector composed of 1 in position
j and nonzeros in positions n + 1, . . . n + j + 1. First w = −τY T

1 (1 : j − 1, 1 :
j − 1)vj(n + 1 : 2n) is computed (triangular matrix vector multiply of j(j − 1)
flops), followed by T (1 : j − 1, j) = T (1 : j − 1, 1 : j − 1)w (triangular matrix
vector multiplication of (j − 1)2 flops). The total number of flops is

n
∑

j=1

j(j − 1) +

n
∑

j=1

(j − 1)2 ≈ 2
n3

3
(A 7)

We are now ready to estimate the time of CAQR.

1. The column of processes that holds panel j computes a TSQR factorization
of this panel. The Householder vectors are stored in a tree as described
in Section 8.

[

2b2mj

Pr
+

2b3

3
(log Pr − 1)

]

γ+

[

mjb

Pr
+

b2

2
(log Pr − 1)

]

γd+log Prα+
b2

2
log Prβ

(A 8)

2. Each processor p that belongs to the column of processes holding panel j
broadcasts along its row of processors the mj/Pr × b rectangular matrix
that holds the two sets of Householder vectors. Processor p also broadcasts
two arrays of size b each, containing the Householder factors τp.

2 log Pcα +

(

mjb

Pr
+ 2b

)

log Pcβ (A 9)
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3. Each processor in the same row template as processor p, 0 ≤ i < Pr, forms
Tp0 (first two terms in the number of flops) and updates its local trailing
matrix C using Tp0 and Yp0 (last term in the number of flops). (This
computation involves all processors and there is no communication.)

[

b2 mj

Pr
− b3

3
+ b

nj − b

Pc

(

4
mj

Pr
− b

)]

γ (A 10)

4. for k = 1 to log Pr do

Processors that lie in the same row as processor p, where 0 ≤ p < Pr

equals first proc(p, k) or target first proc(p, k) perform:

(a) Processors in the same template row as target first proc(p, k) form
locally Tlevel(p,k),k. They also compute local pieces of W = Y T

level(p,k),kCtarget first proc(p,k),
leaving the results distributed. This computation is overlapped with
the communication in (4b).

[

2b3

3
+ b(b + 1)

nj − b

Pc

]

γ (A 11)

(b) Each processor in the same row of the grid as first proc(p, k) sends
to the processor in the same column and belonging to the row of
target first proc(p, k) the local pieces of Cfirst proc(p,k).

α +
b(nj − b)

Pc
β (A 12)

(c) Processors in the same template row as target first proc(p, k) com-
pute local pieces of
W = TT

level(p,k),k

(

Cfirst proc(p,k) + W
)

.

b(b + 2)
nj − b

Pc
γ (A 13)

(d) Each processor in the same template row as target first proc(p, k)
sends to the processor in the same column and belonging to the row
template of first proc(p, k) the local pieces of W .

α +
b(nj − b)

Pc
β (A 14)

(e) Processors in the same template row as first proc(p, k) complete
locally the rank-b update Cfirst proc(p,k) = Cfirst proc(p,k)−W (num-
ber of flops in Equation A 15). Processors in the same template
row as target first proc(p, k) complete locally the rank-b update
Ctarget first proc(p,k) = Ctarget first proc(p,k) − Ylevel(p,k),kW (number
of flops in Equation A 16). The latter computation is overlapped
with the communication in (4d).
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b
nj − b

Pc
γ (A 15)

b(b + 2)
nj − b

Pc
γ (A 16)

end for

We can express the total computation time over a rectangular grid of pro-
cessors T (m,n, Pr, Pc) as a sum over the number of iterations of the previously
presented steps. The number of messages is n/b(3 log Pr +2 log Pc). The volume
of communication is:

n/b
∑

j=1

(

b2

2
log Pr +

mjb

Pr
log Pc + 2b log Pc +

2b(nj − b)

Pc
log Pr

)

=

(

nb

2
+

n2

Pc

)

log Pr +

(

2n +
mn − n2/2

Pr

)

log Pc

The total number of flops corresponding to each step is given by:

∑n/b
j=1(A 8) ≈ 2nmb−n2b+nb2

Pr
+ 2b2n

3 (log Pr − 1)
∑n/b

j=1(A 10) ≈ 1
P

(

2mn2 − 2
3n3
)

+ 1
Pr

(

mnb + nb2

2 − n2b
2

)

+ n2b
2Pc

− b2n
3

∑n/b
j=1(A 11) ≈

(

2b2n
3 + n2(b+1)

2Pc

)

log Pr
∑n/b

j=1(A 13) ≈ n2(b+2)
2Pc

log Pr
∑n/b

j=1(A 15) ≈ n2

2Pc
log Pr

∑n/b
j=1(A 16) ≈ n2(b+2)

2Pc
log Pr

The total computation time of parallel CAQR can be estimated as:

TPar. CAQR(m,n, Pr, Pc) =
[

2
3P n2(3m − n) + n2b

2Pc
+ 1

Pr
3bn

(

m − n
2

)

+
(

4b2n
3 + n2(3b+5)

2Pc

)

log Pr − b2n
]

γ+

+
[

1
Pr

(

mn − n2

2

)

+ nb
2 (log Pr − 1)

]

γd+

+ log Pr

[

3n
b α +

(

nb
2 + n2

Pc

)

β
]

+

+ log Pc

[

2n
b α +

(

1
Pr

(

mn − n2

2

)

+ 2n
)

β
]

(A 17)

F Sequential left-looking panel factorization

F.1 A common communication pattern

Many sequential QR factorization algorithms of interest share a common com-
munication pattern. They are left-looking panel factorizations that keep two
panels in fast memory: a left panel of width b, and the current panel being
updated, of width c. For each current panel, the methods sweep from left to
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right over the left panels, updating the current panel with each left panel in
turn. They then factor the current panel and continue. If we model this com-
munication pattern once, we can then get models for all such methods, just by
filling in floating-point operation counts for each. We can do this both for the
factorization and for applying the Q or QT factor, since the method for applying
a Q or QT factor looks much like the factorization used to compute that factor.

We base this communication model on the out-of-DRAM QR factorization
PFDGEQRF described in LAPACK Working Note #118 [11], in which standard
Householder QR is used for the panel factorization. However, other “column-
by-column” methods, such as Gram-Schmidt orthogonalization, may be used
for the panel factorization without changing the model. This is because both
the left panel and the current panel are in fast memory, so neither the current
panel update nor the current panel factorization contribute to communication.
(Hence, this unified model only applies in the sequential case, unless each pro-
cessor contains an entire panel.)

Algorithm 14 gives an outline of the communication pattern for the factor-
ization, without cleanup for cases in which c does not evenly divide n or b does
not evenly divide the current column index minus one. This cleanup code does
not contribute significantly to our performance model. The algorithm transfers
a total of about

2mn +
mn2

2c2

floating-point words between slow and fast memory. Thus, keeping b fixed and
making c as large as possible optimizes for a bandwidth-limited regime. Making
b > 1 can also provide some BLAS 3 benefits, but this does not contribute to
our performance model.

Algorithm 15 outlines the communication pattern for applying the full QT

factor to an n× r dense matrix. We assume this matrix might be large enough
not to fit entirely in fast memory. Applying Q instead of QT merely changes
the order of iteration over the Householder reflectors, and does not change the
performance model, so we can restrict ourselves to applying QT without loss of
generality.

F.2 Fast memory capacity

We assume that fast memory has a capacity of W floating-point words for direct
use by the algorithms in this section. We neglect the additional space needed
for workspace and bookkeeping.

F.3 Factorization

F.3.1 Fast memory usage

The factorization uses at most (b + c)m words of fast memory at once. In
order to maximize the amount of fast memory used, we take (b + c)m = W .
The parameter b is typically a small constant chosen to increase the BLAS
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3 efficiency, whereas one generally chooses c to fill the available fast memory.
Thus, we may simplify the analysis by taking b = 1 and c ≈ W/m. Note that
we must have W ≥ 2m in order to be able to factor the matrix at all.

An important quantity to consider is mn/W . This is the theoretical lower
bound on the number of reads from slow memory (it is a latency term). It also
bounds from below the number of slow memory writes, assuming that we use
the usual representation of the Q factor as a collection of dense Householder re-
flectors, and the usual representation of the R factor as a dense upper triangular
matrix.

F.3.2 Number of words transferred

Algorithm 14 transfers about

n
c
∑

j=1



2c (m − cj + 1) +

j−1
b
∑

k=1

b (m − bk + 1) − bk(bk + 1)

2



 (A 18)

floating-point words between slow and fast memory. If we take b = 1 and assume
m ≥ n, the most significant terms of the sum are

2mn +
mn2

2c2
.

The lower bound on the number of words read and written is 2mn (the entire
matrix must be read and written). If we let c = W/m (as an approximation for
the case b = 1), we get a total of

2mn +
m3n2

W 2

words transferred between slow and fast memory. Since W ≥ 2m, we must read
2mn + mn2/4 words in the worst case. Note that 2mn is a lower bound (the
matrix must be read from slow memory, and the results written back to slow
memory).

F.3.3 Number of slow memory accesses

The total number of slow memory accesses performed by Algorithm 14 is about

n
c
∑

j=1



2 +

j−1
b
∑

k=1

1



 = 2
n

c
− n

2bc
+

n2

2bc2
. (A 19)

If we take b = 1 and let c = W/m, this comes out to

3nW

m
+

m2n2

2W 2
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accesses. We can see what this means by factoring out mn/W , which is the
theoretical lower bound on the number of reads from slow memory (a latency
term):

mn

W

(

3W 2

m2
+

mn

2W

)

= Θ

(

(mn

W

)2
)

.

This shows that any sequential QR factorization with the above communication
pattern is a factor of mn/W away from being optimal with respect to the number
of slow memory reads.

F.4 Applying QT

F.4.1 Fast memory usage

Applying Q or QT uses at most bm+ cn words of fast memory at once. In order
to maximize the amount of fast memory used, we take bm+ cn = W . Note that
this is different from the factorization, in case m 6= n. A lower bound on the
number of reads from slow memory (a latency term) is mn/W + nr/W .

F.4.2 Number of words transferred

When we read the Q factor, we only have to read the lower trapezoid of the
matrix Q into fast memory. If we neglect this and assume we have to read all
mn entries of Q, then the algorithm must transfer about

r/c
∑

j=1



2cn +

cj/b
∑

k=1

bm



 ≈ mr2

2c
+ 2nr

words between slow and fast memory. The number of loads saved by not reading
the upper triangle of Q is about

r/c
∑

j=1

cj/b
∑

k=1

b2

2
=

r2

4c

words, which is a lower-order term that we will neglect. The b parameter does
not contribute significantly, so we can set b = 1 and c ≈ W/m, to get a total of
about

mn

W
· r2

2

words transferred between slow and fast memory.

F.4.3 Number of slow memory accesses

The total number of data transfers between slow and fast memory is about

r/c
∑

j=1



2 +

cj/b
∑

k=1

1



 =
2r

c
+

r2

b
.
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We see that b, the panel width of Q, affects latency much more than c, the panel
width of B. In contrast, c affects bandwidth requirements much more than b.
If we set b = 1 and c ≈ W/m, we get

2mr

W
+ r2.

G Sequential Householder QR

G.1 Factorization

LAPACK Working Note #118 describes an out-of-DRAM QR factorization
PFDGEQRF, which is implemented as an extension of ScaLAPACK [11]. It
uses ScaLAPACK’s parallel QR factorization PDGEQRF to perform the current
panel factorization in DRAM. Thus, it is able to exploit parallelism, either on a
single shared-memory node or within a cluster (assuming a shared filesystem).
It can also take advantage of the features of parallel filesystems for block reads
and writes. In our performance analysis here, we assume that all operations in
fast memory run sequentially, and also that the connection to slow memory is
sequential.

PFDGEQRF is a left-looking method, as usual with out-of-DRAM algo-
rithms. The code keeps two panels in fast memory: a left panel of fixed width
b, and the current panel being factored, whose width c can expand to fill the
available memory. Algorithm 16 gives an outline of the code, without cleanup
for cases in which c does not evenly divide n or b does not evenly divide the
current column index minus one. Algorithm 17 near the end of this section
illustrates this “border cleanup” in detail, though we do not need this level of
detail in order to model the performance of PFDGEQRF.

This sequential Householder QR code has the communication pattern de-
scribed in Section F. This means that the latency and bandwidth performance
models can be found in that section, and thus we need only count floating-point
operations. In fact, the flop count is exactly the same as the usual sequential
Householder QR algorithm, namely

2mn2 − 2n3

3
+ O(mn).

PFDGEQRF merely performs the flops in a different order. Choosing c as large
as possible optimizes bandwidth requirements, whereas increasing b reduces the
number of reads.

G.2 Applying Q or QT

Section F.4 describes the communication pattern of applying the full Q or QT

factor computed using the above factorization to an n × r matrix B. The
floating-point operation count is about 2mnr.
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[4] Å. Björck, Solving linear least squares problems by Gram-Schmidt orthog-
onalization, BIT, 7 (1967), pp. 1–21.

[5] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,

I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet,

K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK Users’
Guide, SIAM, Philadelphia, PA, USA, May 1997.

[6] J. Choi, J. J. Dongarra, S. Ostrouchov, A. P. Petitet, D. W.

Walker, and R. C. Whaley, LAWN 80: the design and implementation
of the ScaLAPACK LU, QR, and Cholesky factorization routines, LAPACK
Working Note UT-CS-94-246, Oak Ridge National Laboratory, Sept. 1994.

[7] M. Cosnard, J.-M. Muller, and Y. Robert, Parallel QR Decomposi-
tion of a Rectangular Matrix, Numer. Math., 48 (1986), pp. 239–249.

[8] M. Cosnard and Y. Robert, Complexite de la factorisation QR en
parallele, C.R. Acad. Sci., 297 (1983), pp. 549–552.

[9] L. Csanky, Fast parallel matrix inversion algorithms, SIAM J. Comput.,
5 (1976), pp. 618–623.

[10] R. D. da Cunha, D. Becker, and J. C. Patterson, New parallel
(rank-revealing) QR factorization algorithms, in Euro-Par 2002. Parallel
Processing: Eighth International Euro-Par Conference, Paderborn, Ger-
many, August 27–30, 2002, 2002.

[11] E. F. D’Azevedo and J. J. Dongarra, The design and implementation
of the parallel out-of-core ScaLAPACK LU, QR, and Cholesky factorization
routines, LAPACK Working Note 118 CS-97-247, University of Tennessee,
Knoxville, Jan. 1997.

[12] J. Demmel, Trading off parallelism and numerical stability, Tech. Rep.
UT-CS-92-179, University of Tennessee, June 1992. LAPACK Working
Note #53.

89



[13] J. Demmel and M. Hoemmen, Communication-avoiding Krylov subspace
methods, tech. rep., University of California Berkeley, Department of Elec-
trical Engineering and Computer Science, in preparation.

[14] J. J. Dongarra, S. Hammarling, and D. W. Walker, Key concepts
for parallel out-of-core LU factorization, Scientific Programming, 5 (1996),
pp. 173–184.

[15] E. Elmroth and F. Gustavson, New serial and parallel recursive QR
factorization algorithms for SMP systems, in Applied Parallel Computing.
Large Scale Scientific and Industrial Problems., B. K. et al., ed., vol. 1541
of Lecture Notes in Computer Science, Springer, 1998, pp. 120–128.

[16] , Applying recursion to serial and parallel QR factorization leads to
better performance, IBM Journal of Research and Development, 44 (2000),
pp. 605–624.

[17] R. W. Freund and M. Malhotra, A block QMR algorithm for non-
Hermitian linear systems with multiple right-hand sides, Linear Algebra
and its Applications, 254 (1997), pp. 119–157. Proceedings of the Fifth Con-
ference of the International Linear Algebra Society (Atlanta, GA, 1995).

[18] J. R. Gilbert and E. G. Ng, Predicting structure in nonsymmetric
sparse matrix factorization, Tech. Rep. ORNL/TM-12205, Oak Ridge Na-
tional Laboratory, 1992.

[19] G. H. Golub and C. F. V. Loan, Matrix Computations, The Johns
Hopkins University Press, Baltimore, MD, USA, third ed., 1996.

[20] S. L. Graham, M. Snir, and e. Cynthia A. Patterson, Getting Up To
Speed: The Future Of Supercomputing, National Academies Press, Wash-
ington, D.C., USA, 2005.
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de grande taille sur multiprocesseur, Ph.D. dissertation, Université de
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Algorithm 9 CAQR: j-th step

Require: Steps 1 to j − 1 of CAQR have been completed.
1: The column of processors that holds panel j computes a TSQR factorization

of this panel. The Householder vectors are stored in a tree-like structure
as described in Section 8.

2: Each processor p that belongs to the column of processes holding panel j
broadcasts along its row of processors the mj/Pr × b rectangular matrix
that holds the two sets of Householder vectors. Processor p also broad-
casts two arrays of size b each, containing the Householder multipliers
τp.

3: Each processor in the same process row as processor p, 0 ≤ p < Pr, forms
Tp0 and updates its local trailing matrix C using Tp0 and Yp0. (This
computation involves all processors.)

4: for k = 1 to log Pr, the processors that lie in the same row as processor
p, where 0 ≤ p < Pr equals first proc(p, k) or target first proc(p, k),
respectively. do

5: Processors in the same process row as target first proc(p, k) form
Tlevel(p,k),k locally. They also compute local pieces of W =
Y T

level(p,k),kCtarget first proc(p,k), leaving the results distributed. This
computation is overlapped with the communication in Line 6.

6: Each processor in the same process row as first proc(p, k) sends to the
processor in the same column and belonging to the row of processors
of target first proc(p, k) the local pieces of Cfirst proc(p,k).

7: Processors in the same process row as target first proc(p, k) compute
local pieces of

W = TT
level(p,k),k

(

Cfirst proc(p,k) + W
)

.

8: Each processor in the same process row as target first proc(p, k) sends
to the processor in the same column and belonging to the process
row of first proc(p, k) the local pieces of W .

9: Processors in the same process row as first proc(p, k) and
target first proc(p, k) each complete the rank-b updates
Cfirst proc(p,k) := Cfirst proc(p,k) − W and Ctarget first proc(p,k) :=
Ctarget first proc(p,k)−Ylevel(p,k),k ·W locally. The latter computation
is overlapped with the communication in Line 8.

10: end for

Algorithm 10 Outline of left-looking sequential CAQR factorization

1: for J = 1 to Pc do

2: for K = 1 to J − 1 do

3: Update blocks K : Pr of the current panel, using panel K
4: end for

5: Factor blocks J : Pr of the current panel
6: end for
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Algorithm 11 Outline of right-looking sequential CAQR factorization

1: for J = 1 to Pc do

2: Factor the current panel (blocks J to Pr)
3: Update blocks J : Pr×J +1 : Pc of the trailing matrix, using the current

panel
4: end for

Algorithm 12 Column-order right-looking sequential CAQR factorization

1: for J = 1 to Pc do

2: Factor the current panel: Pr−J +1 reads of each M×N block of A. One
write of the first block’s Q factor (size MN − N(N − 1)/2). Pr − J
writes of the remaining Q factors (each of size MN − N(N − 3)/2).

3: for K = J + 1 : Pc do ⊲ Update trailing matrix
4: Load first Q block (size MN − N(N − 1)/2) of panel J
5: Load block AKK (size MN)
6: Apply first Q block to AKK

7: for L = J + 1 : Pr do

8: Load current Q block (size MN − N(N − 3)/2) of panel J
9: Load block ALK (size MN)

10: Apply current Q block to [AL−1,K ;ALK ]
11: Store block AL−1,K (size MN)
12: end for

13: Store block APr,K (size MN)
14: end for

15: end for

Algorithm 13 Left-looking sequential CAQR factorization

1: for J = 1 to Pc do

2: for K = 1 to J − 1 do ⊲ Loop across previously factored panels
3: Load first Q block (size MN − N(N − 1)/2) of panel K
4: Load block AKJ (size MN) ⊲ Current panel’s index is J
5: Apply first Q block to AKJ

6: for L = K + 1 to Pr do ⊲ Loop over blocks K + 1 : Pr of current
panel

7: Load current Q block (size MN − N(N − 3)/2) of panel K
8: Load block ALJ (size MN)
9: Apply current Q block to [AL−1,J ;ALJ ]

10: Store block AL−1,J (size MN)
11: end for

12: Store block APr,J (size MN)
13: end for

14: Factor blocks J : Pr of the current panel: Pr − J + 1 reads of each
M × N block of A. One write of the first block’s Q factor (size
MN −N(N − 1)/2). Pr − J writes of the remaining Q factors (each
of size MN − N(N − 3)/2).

15: end for

94



Algorithm 14 Sequential left-looking QR factorization

1: for j = 1 to n − c step c do

2: Read current panel (columns j : j + c − 1)
3: for k = 1 to j − 1 step b do

4: Read left panel (columns k : k + b − 1)
5: Apply left panel to current panel
6: end for

7: Factor and write current panel
8: end for

[1]

Algorithm 15 Applying QT from Algorithm 14 to n × r matrix B

1: for j = 1 to r − c step c do

2: Read current panel of B (columns j : j + c − 1)
3: for k = 1 to j − 1 step b do

4: Read left panel of Q (columns k : k + b − 1)
5: Apply left panel to current panel
6: end for

7: Write current panel of B
8: end for

[1]

Algorithm 16 Outline of ScaLAPACK out-of-DRAM QR factorization
(PFDGEQRF)

1: for j = 1 to n − c step c do

2: Read current panel (columns j : j + c − 1)
3: for k = 1 to j − 1 step b do

4: Read left panel (columns k : k + b − 1)
5: Apply left panel to current panel
6: end for

7: Factor and write current panel
8: end for

[1]
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Algorithm 17 More detailed outline of ScaLAPACK out-of-DRAM House-
holder QR factorization (PFDGEQRF), with border cleanup

1: for j = 1 to
(

⌊n
c ⌋ − 1

)

c + 1 step c do

2: Read current panel (columns j : j + c − 1, rows 1 : m)
3: for k = 1 to

(

⌊ j−1
b ⌋ − 1

)

b + 1, step b do

4: Read left panel (columns k : k + b − 1, lower trapezoid, starting at
row k)

5: Apply left panel to rows k : m of current panel
6: end for

7: k := ⌊ j−1
b ⌋b + 1

8: Read left panel (columns k : j − 1, lower trapezoid, starting at row k)
9: Apply left panel to rows k : m of current panel

10: Factor current panel (rows 1 : m)
11: Write current panel (rows 1 : m)
12: end for

13: j := ⌊n
c ⌋c + 1

14: Read current panel (columns j : n, rows 1 : m)
15: for k = 1 to

(

⌊ j−1
b ⌋ − 1

)

b + 1, step b do

16: Read left panel (columns k : k + b − 1, lower trapezoid, starting at row
k)

17: Apply left panel to rows k : m of current panel
18: end for

19: k := ⌊ j−1
b ⌋b + 1

20: Read left panel (columns k : j − 1, lower trapezoid, starting at row k)
21: Apply left panel to current panel
22: Factor current panel (rows 1 : m)
23: Write current panel (rows 1 : m)
[1]
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