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Abstract—We describe an implementation of the
Communication-Avoiding QR (CAQR) factorization that
runs entirely on a single graphics processor (GPU). We show
that the reduction in memory traffic provided by CAQR allows
us to outperform existing parallel GPU implementations of
QR for a large class of tall-skinny matrices. Other GPU
implementations of QR handle panel factorizations by either
sending the work to a general-purpose processor or using
entirely bandwidth-bound operations, incurring data transfer
overheads. In contrast, our QR is done entirely on the
GPU using compute-bound kernels, meaning performance is
good regardless of the width of the matrix. As a result, we
outperform CULA, a parallel linear algebra library for GPUs
by up to 17x for tall-skinny matrices and Intel’s Math Kernel
Library (MKL) by up to 12x.

We also discuss stationary video background subtraction as a
motivating application. We apply a recent statistical approach,
which requires many iterations of computing the singular value
decomposition of a tall-skinny matrix. Using CAQR as a first
step to getting the singular value decomposition, we are able to
get the answer 3x faster than if we use a traditional bandwidth-
bound GPU QR factorization tuned specifically for that matrix
size, and 30x faster than if we use Intel’s Math Kernel Library
(MKL) singular value decomposition routine on a multicore
CPU.

Keywords-GPGPU; Linear Algebra; QR Decomposition; Ro-
bust PCA;

I. INTRODUCTION

One of the fundamental problems in linear algebra is the

QR decomposition, in which a matrix A is factored into a

product of two matrices Q and R, where Q is orthogonal and

R is upper triangular. The QR decomposition is most well

known as a method for solving linear least squares problems,

and is used commonly across all of dense linear algebra.

In terms of getting good performance, a particularly

challenging case of the QR decomposition is tall-skinny

matrices. These are matrices where the number of rows

is much larger than the number of columns. For example

the ratio of rows to columns can be 3 to 1, 1,000 to 1,

or even 100,000 to 1 in some cases. QR decompositions

of this shape matrix, more than any other, require a large

amount of communication between processors in a parallel

setting. This means that most libraries, when faced with this

problem, employ approaches that are bandwidth-bound and

cannot saturate the floating-point capabilities of processors.

Matrices with these extreme aspect ratios would seem

like a rare case, however they actually occur frequently in

applications of the QR decomposition. The most common

example is linear least squares, which is ubiquitous in nearly

all branches of science and engineering and can be solved

using QR. Least squares matrices may have thousands of

rows representing observations, and only a few tens or

hundreds of columns representing the number of parameters.

Another example is stationary video background subtraction.

This problem can be solved using many QR decompositions

of matrices on the order of 100,000 rows by 100 columns [1].

An even more extreme case of tall-skinny matrices are found

in s-step Krylov methods [2]. These are methods for solving

a linear equation Ax = b by generating an orthogonal

basis for the Krylov sequence {v, Av, A2v, ...Anv} for a

starting vector v. In s-step methods, multiple basis vectors

are generated at once and can be orthogonalized using a QR

factorization. The dimensions of this QR factorization can

be millions of rows by less than ten columns.

These applications demand a high-performance QR rou-

tine. Extracting the foreground from a 10-second surveil-

lance video, for example, can require over a teraflop of

computation [1]. Unfortunately, existing GPU libraries do

not provide good performance for these applications. While

several parallel implementations of QR factorization for

GPUs are currently available [3], [4], [5], they all use

generally the same approach, tuned for large square matrices,

and thus have up to an order of magnitude performace degre-

dation for tall-skinny problems. The loss in performance is

largely due to the communication demands of the tall-skinny

case. We aim to supplement the existing libraries with a QR

solution that performs well over all matrix sizes.

Communication-Avoiding QR (CAQR) is a recent algo-

rithm for solving QR decomposition which is optimal with

regard to the amount of communication performed [6]. This

means that the algorithm minimizes the amount of data that

must be sent between processors in the parallel setting, or

alternatively the amount of data transmitted to and from

global memory. As a result, the CAQR algorithm is a natural

fit for the tall-skinny case where communication is usually

the bottleneck.

In this work we discuss the implementation and perfor-

mance of CAQR for a single graphics processor (GPU). It



is a distinguishing characteristic of our work that the entire

decomposition is performed on the GPU using compute-

bound kernels. Despite their increasing general-purpose ca-

pabilities, it is still a very challenging task to map the

entirety of this particular algorithm to the GPU. In doing

so, however, we are able to leverege the enormous compute

capibility of GPUs while avoiding potentially costly CPU-

GPU transfers in the inner loop of the algorithm. The bene-

fits can most clearly be seen for very skinny matrices where

communication demands are large relative to the amount of

floating-point work. As a result, we can outperform existing

libraries for a large class of tall-skinny matrices. In the more

extreme ratios of rows to columns, such as 1 million by 192,

we saw speedups of up to 17x over linear algebra libraries

parallelized for GPUs. It is important to note that everything

we compare to is parallel. The speedups we show are a result

of using the parallel hardware more efficiently.

We do not directly use available Basic Linear Algebra

Subroutine (BLAS) libraries as a building block. The al-

gorithm requires many hundreds or thousands of small QR

decompositions and other small BLAS and LAPACK [7]

operations to be performed in parallel. This is not currently

supported in the vendor’s BLAS library [8]. Consequently,

we had to do significant low-level tuning of these very small

operations to achieve sufficient performance. We will discuss

and quantify the effect of specific low-level optimizations

that were critical to improving performance. We also high-

light new tradeoffs the GPU introduces, which differ from

previous CAQR work on clusters and multicore architectures

[9] [10].

Finally, we discuss the application of CAQR to station-

ary video background subtraction, which was a motivating

application for this work. Stationary video background sub-

traction can be solved using Robust Principal Component

Analysis (PCA), by formulating the problem as a regular-

ized nuclear norm minimization [1]. In the Robust PCA

algorithm, the video is transformed into a tall-skinny matrix

where each column contains all pixels in a frame, and the

number of columns is equal to the number of frames. In an

iterative process, the matrix is updated by taking its singular

value decomposition (SVD) and thresholding its singular

values. The SVD can be solved using the QR decomposition

as a first step. We will show our CAQR implementation gives

us a significant runtime improvement for this problem.

Several implementations CAQR have been done, as well

as Tall-Skinny QR (TSQR), a building block of CAQR

that deals only with extremely tall-skinny matrices. TSQR

has been applied in distributed memory machines [9] [11]

and grid environments [12] where communication is excep-

tionally expensive. However, previous work in large-scale

distributed environments focuses on different scales and

types of problems than ours. More recently, CAQR was also

applied to multicore machines [10], and resulted in speedups

of up to 12x over Intel’s Math Kernel Library (MKL) at the

time. Note, however, that implementing CAQR on GPUs is

a much different problem than on multi-core and it is likely

that both will be needed in future libraries and applications.

The paper is organized as follows. In Section I we

survey previous algorithms and implementations of the QR

decomposition. Next we discuss the high-level problem of

mapping CAQR to heterogenous systems in Section III. Sec-

tion IV describes the specifics of our GPU implementation

and tuning process. Section V contains our performance

compared to currently available software. In Section VI we

outline our motivating video processing application and the

performance benefits of using CAQR. Section VII draws

conclusions.

II. BACKGROUND ON QR APPROACHES

There are several algorithms to find the QR decomposition

of a matrix. For example, one can use Cholesky QR, the

Gram-Schmidt process, Givens rotations, or Householder

reflectors [13]. It is well-known however that Cholesky QR

and the Gram-Schmidt process are not as numerically stable,

so most general-purpose software for QR uses either Givens

rotations or Householder reflectors. CAQR is a form of the

Householder approach, where the Householder vectors are

broken up in such a way that communication is minimized.

A. Householder QR

Most existing implementations of QR for GPUs have used

the Householder approach, as does LAPACK. One favorable

property of the Householder algorithm is that it can be

organized in such a way that it makes use of BLAS3 (matrix-

matrix) operations. Specifically, the trailing matrix updates

for several Householder vectors can be delayed and done

all at once using matrix-multiply. This allows for higher

arithmetic intensity on machines with a memory hierarchy.

Higher arithmetic intensity then leads to better performance.

This is called blocked Householder QR, because it allows the

updates to the trailing matrix to be blocked in cache. Several

implementations of the blocked Householder approach for

GPUs are currently available [5] [4], or will soon become

available [14]. These are generally all very fast due to the

heavy use of well-optimized matrix-multiply routines [15]

[3].

Figure 1 shows a sketch of one step in the blocked House-

holder algorithm. Here, a panel of some width less than the

total number of columns is factored using the Householder

algorithm with BLAS2 (matrix-vector) operations. Next, a

triangular matrix T is formed from the inner products of

the columns in the panel. Finally, the trailing submatrix

is updated using a matrix-matrix multiply of the panel’s

Householder vectors, T, and the trailing matrix itself. After

the update, the next panel is factored, and so on.

From Figure 1 we can intuitively understand a short-

coming of the blocked Householder algorithm. For very

wide matrices, a significant portion of the runtime is spent
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Figure 1: Blocked Householder QR

doing matrix-matrix multiply, which is a very efficient use

of hardware given the available high-performance dense

matrix-multiply routines for GPUs [16]. However, if the

matrix is skinny, a greater portion of the runtime is being

spent in the BLAS2 panel factorization, which is not an

efficent use of the hardware because matrix-vector routines

are generally bandwidth-bound. Clever implementations of

blocked Householder for heterogeneus CPU+GPU envoron-

ments can hide this cost by sending the panel factorization

to the CPU and overlapping it with the previous trailing

matrix update, which is performed on the GPU [3]. While

this greatly improves the performance for wide matrices, it

does not eliminate the latency problem for the skinny case.

B. Tall-Skinny QR (TSQR)

The TSQR algorithm reorganizes the factorization of a

tall-skinny matrix (such as a column panel) to minimize

memory accesses [6]. Instead of computing one Householder

vector for each column directly, we divide the tall-skinny

matrix vertically into small blocks, as shown in Figure 2(a).

Next, we factor each block independently using Householder

reflectors. This creates a small Householder representation

of Q, which we call U, and an upper-triangular R for each

block. This is shown in Figure 2(b). We would like to

eliminate all the Rs below the top-most diagonal, so we can

group sets together in a stack and apply the Householder

algorithm to each (possibly exploiting the sparsity pattern),

which is done in Figure 2(c). We can continue to reduce the

Rs with another level as in Figure 2(d). This leaves us with

our final upper triangular matrix R, and a series of small

Us which, if needed, can be used to generate the explicit

orthogonal matrix Q of the factorization.

The TSQR algorithm exposes parallelism. Each block in

the panel can be processed independently by a different

processor. TSQR also allows us to divide the problem into

chunks with a more managable size. If we choose block

sizes that fit in cache, we can achieve significant bandwidth

savings.

(a)! (b)! (c)! (d)!
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Figure 2: Stages of Tall-Skinny QR

In the figure, the Rs were eliminated in a binary tree.

However, this can be done using any tree shape. The

optimal shape can differ depending on the characteristics

of the architecture. For example, on multi-core machines a

binomial tree reduction was used [10], whereas our GPU

approach employs a quad-tree reduction. The motivation

behind this choice will be expanded in Section IV.

C. Communication-Avoiding QR (CAQR)

CAQR is an extension of TSQR for arbitrarily sized

matrices [6]. This time we divide the matrix into a grid

of small blocks. Like blocked Householder, CAQR involves

a panel factorization and a trailing matrix update. The

panel factorization is done using TSQR, shown in Figure

3(a). We must then do the trailing matrix update, which

means applying the QT of the panel to the trailing matrix.

Note that because TSQR works on blocks in the column

panel, the trailing matrix update can begin before the entire

panel is factored. This removes the synchronization in the

standard blocked Householder approach and exposes more

parallelism. Unfortunately, we cannot just use a large matrix-

matrix multiply as we did in blocked Householder. This is

due to the distributed format in which TSQR produces its

Q. Instead, we carry out small updates in each small block

of the trailing submatrix.

There are two types of trailing matrix updates: horizontal

updates and tree updates. Horizontal updates are the easier

case. Here we take the Householder vectors generated from

the first stage of TSQR and apply them horizontally across
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Figure 3: Communication-Avoiding QR

the matrix, shown in Figure 3(b). This operation is very

uniform, and the update of each block in the trailing matrix is

independent. The more challenging update is the tree update.

Here we take the Householder vectors generated during each

level of TSQR’s tree reduction and apply them across the

matrix. This involves mixing small pieces of the trailing

matrix, as shown in Figure 3(c) and (d). The rows of the

trailing matrix that get updated vary with each level of the

reduction tree. This can be challenging on the GPU because

the accesses to the matrix are more irregular and somewhat

sparse.

After the trailing matrix is updated we can move to the

next panel. We must take care to redraw the grid lower by a

number of rows equal to the panel width, reflecting the fact

that the trailing matrix becomes both shorter and narrower

after each step.

III. MAPPING CAQR TO HETEROGENOUS (CPU+GPU)

SYSTEMS

Here we briefly discuss two different options for mapping

CAQR to current heterogeneous systems. We consider a

heterogeneous system containing one or more multi-core

host CPUs with DRAM, a GPU with DRAM, and a physical

link between the two memories. The GPU has more compute

and bandwidth capability generally than the CPUs, whereas

CPUs generally have a larger cache, more ability to exploit

instruction-level parallelism, and are better equipped to

handle irregular computation and data accesses.

The two questions we want to answer with regard to

CAQR are: where we should do each step of the compu-

tation? Where should we store the data?

A. First option: CPU panel factorization and GPU trailing

matrix update

With this approach, the algorithm proceeds as follows.

A thin panel is sent to the CPU, if necessary, and the CPU

factors the panel using TSQR. The result of the factorization

is sent back to the GPU and used for the trailing matrix

update. Potentially, the CPU could begin factoring the next

panel while the GPU is still busy applying the previous panel

to the trailing matrix.

The main advantage of this approach is that offloading

work to the CPU makes it possible to overlap GPU and

CPU work. This allows you to use the entire system. The

TSQR panel factorization can be a good fit for the CPU

because of the irregular nature of the reduction tree. The

trailing matrix update is regular and can be done efficiently

on the GPU.

One disadvantage of this approach is that in order to

offload work to the CPU we must transfer the data between

CPU and GPU memories. On current systems, this involves

latency that can hurt performance for skinny problems.

Unless we successfully overlap CPU and GPU computation,

sending the panel factorization to the CPU means we cannot

use the superior compute and bandwidth capabilities of the

GPU for these parts of the computation.

B. Second Option: Entire factorization the GPU

With this approach, the entire factorization is done on the

GPU. This includes the TSQR panel factorization and the

trailing matrix updates.

Assuming the matrix is entirely in GPU memory, this

approach eliminates transfer latency. This means that we can

get good performance even on skinny problems. We also can

benefit from the higher compute and bandwidth capability

of the GPU for the panel factorizations.

Unfortunately, this approach is much more difficult to

program. This is first because we cannot reuse existing

tuned CPU libraries. Also, certain parts of the QR algorithm

involve more irregular computations and are therefore more

challenging and less efficient to carry out in the GPU’s

programming and execution models. The pseudocode in

Figure 4, described in the next section, illustrates some of

the irregular operations necessary for a GPU-only approach.

In this work we choose the second option, performing the

entire factorization on the GPU, for the following reason.

Our motivating application is Robust PCA for stationary



video background subtraction. The dimensions of the video

matrices we deal with in this application are on the order of

100,000 tall by 100 wide. For this size problem, the latency

of transferring data to the CPU will have high adverse impact

on performance. During the course of the application, we are

doing many QR decompositions and the video matrix is able

to stay on the GPU. So the cost of initially transferring the

video matrix to GPU memory is easily amortized.

IV. GPU IMPLEMENTATION

In this section we describe implementation details of

our QR decomposition for the GPU. We start with an

overview of the hardware, then give a high-level description

of how the computation is organized. This is followed by

an examination of the key individual kernels and low-level

tradeoffs. Everything here is done using single-precision,

which is adequate for our video application.

A. Hardware Overview

Our target is an NVIDIA C2050 GPU, which is the

version of NVIDIA’s recent Fermi architecture intended for

high-performance computing. This choice of architecture is

motivated by GPUs track record for good performance on

high-throughput numerical computing [16], [17]. Though we

use the C2050, our code can be run on any CUDA-capable

GPU.

The 1.15 GHz C2050 has 14 multiprocessors, each of

which has 32 floating-point units capable of executing one

single-precision FLOP per cycle. In total, the chip is capable

of 1.3 single precision TFLOPs.

Tasks are scheduled on the multiprocessors in units called

thread blocks. Each thread block contains up to 512 threads,

which can synchronize and share data among one another

through a small shared memory. Thread blocks, however, are

assumed to be independent and do not generally synchronize

or communicate during a single parallel task. As an example,

in our application each small block QR decomposition is

done by a different thread block. Within the thread block

there are 64 threads that work together to compute the QR.

There is one large global memory (DRAM) shared by

all multiprocessors. The peak bandwidth to and from global

memory for the C2050 with ECC enabled is 144 GB/sec.

There is a small 768 KB L2 cache shared by all multipro-

cessors. Each multiprocessor has access to 48 KB of shared

memory and 16 KB of L1 cache, which can alternatively

be configured as 48 KB of L1 and 16 KB of shared

memory. The register file is the largest and fastest local

memory available to the processing units. It is 128 KB per

multiprocessor, can be accessed in one or two cycles, and

generally provides enough bandwidth to saturate the floating

point units. Registers are not shared. Any time threads need

to communicate, in a parallel reduction for example, either

shared memory or DRAM must be used.

Foreach panel!

!Do small QRs in panel 

!(factor) 

!Foreach level in tree!

! !Do small QRs in tree!

! !(factor_tree) 

!Apply QT  horizontally!

!across trailing matrix!

!(apply_qt_h) 

!Foreach level in tree!

! !Apply QT  from the tree 

! !across trailing matrix!

! !(apply_qt_tree) 

Figure 4: Host pseudocode for CAQR with a binomial

reduction tree

B. Top-Level Pseudocode

Figure 4 shows pseudocode for our CAQR. Each function

represents a GPU kernel, which is a subroutine that is

performed in parallel over different parts of the matrix. Next

to each kernel call there is a graphic of our matrix showing

how it is divided among thread blocks and which portions

of the matrix are being processed by that kernel. So for

example, the TSQR panel factorization is done in the first

two kernel calls to factor. Once that has completed, the trail-

ing matrix is updated using apply qt h and apply qt tree.

This pseudocode is executed on the host CPU. The CPU

coordinates the GPU’s actions and updates pointers so that

GPU thread blocks know where to look in the matrix.

C. Reduction Tree

The shape of our reduction tree is a function of the block

sizes. For example, if the block size is 64 × 16, each block

produces an R which fits in a 16 × 16 space. When these

Rs are stacked for the next level of the reduction tree, we

can fit 64

16
= 4 of them in each 64 × 16 block. This means

we reduce the height of the panel by a factor of 4 at each

level and the reduction is a quad-tree. The tree reduction

ends when the panel height becomes less than 64, meaning

it can be processed completely in a single thread block.

D. Overview of Kernels

The following four kernels are the building blocks of our

CAQR. The parts of the matrix affected by each kernel are



shown in Figure 4.

1) factor: Perform a QR decomposition of a small block

in fast memory using customized BLAS2 routines. Over-

write the Householder vectors and upper triangular R on

top of the original small input matrix.

2) factor tree: Gather a stack of upper triangular Rs

generated by factor and store them in fast memory. Then

perform a QR decomposition on that small block, as was

done in factor. The shape of the resulting Householder

vectors and R is also a stack of upper triangular matrices, and

thus can overwrite the Rs that were read into fast memory.

3) apply qt h: Apply QT from the Householder vectors

generated in factor horizontally to small blocks across the

trailing matrix. Write back the updated trailing matrix blocks

to the locations from which they were read.

4) apply qt tree: Apply QT from the Householder vec-

tors generated by factor tree during the TSQR reduction

tree to the correct locations in the trailing matrix. To do so,

collect the distributed components of the trailing matrix to

be updated as well as the distributed Householder vectors.

Perform the application of QT , and write back the updated

trailing matrix blocks to the same distributed locations from

which they were read.

Inserting these kernels into the pseudocode in Figure 4

should complete a high-level understanding of our CAQR

implementation.

E. Kernel Tuning

Now we examine an individual kernel so as to understand

the specifics of the data layout and thread-level execution.

Fortunately, all four kernels do the same two core compu-

tations: matrix-vector multiply and rank-1 update. We will

analyze only the simplest of these which is apply qt h.

Suppose we have a set of Householder vectors in shared

memory and a small block A to which we’d like to apply the

vectors. This is equivalent to applying QT , represented by

the Householder vectors, i.e. Q =
�

n

i=1
(I − τiuiu

T

i
); τi =

2

||ui||22
, to the block A. For each Householder vector u we

first compute the matrix-vector product AT
∗u. This is shown

in Figure 5(a). Then we update each element of A with the

scaled outer product of AT
∗ u and u, Figure 5 (b). So the

computation here consists of a reduction sum of each column

of A during the matrix-vector product, and a data-parallel

rank-1 update of A. This is repeated for each Householder

vector.

Two important questions must be answered in our design.

How should we assign threads to computation, and how

do we store the matrix in our fast memories such that it

can be accessed most quickly? During the course of tuning

we tried several different approaches. The main difference

between these lies in how the reductions in the matrix-

vector product are carried out. The following is a description

of each approach to the matrix-vector product, with its

A!

ATu!

u! A!

ATu!

u!

(a)! (b)!

Figure 5: Matrix-vector multiply and rank-1 update. These

two operations make up the core computations in each kernel

corresponding performance for the matrix-vector product

and rank-1 update on 128 × 16 blocks.

1) Shared Memory Parallel Reductions (55 GFLOPS):

The most obvious approach is to store the matrix in the

register file assigning each thread one row. Then reduce each

column one at a time using parallel reductions in shared

memory. This approach is inefficient because many of the

threads sit idle during the consecutive parallel reductions.

2) Shared Memory Serial Reductions (168 GFLOPS):

The 128 × 16 matrix is originally stored in column major

order, so we put it into shared memory to reduce it serially.

The advantage of this approach is that it gives us near

optimal thread utilization for the reduction.

3) Register File Serial Reductions (194 GFLOPS): Store

the matrix entirely in the register file. Instead of distributing

the data to each thread by row, distribute it cyclically

among the threads, as shown in Figure 6. Notice that each

thread’s data is located in a single column. This means that

each thread can do a serial reduction over its part of the

matrix and write only the result into shared memory for

parallel reduction. This minimizes traffic in and out of shared

memory, which helps performance.

4) Register File Serial Reductions + Transpose (388

GFLOPS): The register file serial reduction (Approach 2)

can be improved if the block is already stored in transposed

form. Instead of doing a small transpose in each thread

block, this transpose can be done as a preprocessing step.

This is beneficial because these kernels are called many

times on the same block of the matrix. This is not a transpose

of the entire matrix. We only need to transpose each panel

from column major to row major. Unfortunately this means

that the factorization is done out of place, as an in-place

transpose is difficult for non-square matrices.



A!

0 1 2 

9 10 11 

9 10 11 . . . 

. . . 

3 4 5 6 7 

0 1 2 3 4 5 6 7 

. . . 

Figure 6: In approaches 2 and 4, the matrix is stored in the

register file and distributed among threads in this manner.

All data owned by a thread belongs to the same column.

F. Autotuning Block Size

In the previous section we showed how changing the data

layout and reduction technique could improve performance.

After commiting to a data layout, we can write scripts to

test many different block sizes and choose the best.

Our block size is fundamentally limited by our shared

memory size and/or register file size. We must however de-

cide what the shape of the block should be. The apply qt h

kernel gets better performance when the block width is

wider. This is for several reasons. First, since the number of

FLOPs performed in the Householder algorithm is O(mn2),
we get far higher arithmetic intensity, i.e. FLOPs/byte, by

increasing the width n, than we do by increasing the height

m. Secondly, the wider the block is the more parallelism

there is in each matrix-vector product. If the block width

were equal to the number of threads, for example, then the

matrix-vector product could be done entirely using efficient

serial reductions.

However, the Householder vector u must be communi-

cated to every thread. If the block is so wide that each

thread owns an entire column, then each thread must read the

entire u vector from shared memory. The optimal solution

is somewhere between the two extremes. The performance

of each block size is shown in Figure 7. Our best overall

performance comes from using 128 × 16 blocks. For the

apply qt h kernel we are able to get 388 GFLOPS.

G. Tuning Summary

Through our tuning process we were able to improve

the performance of apply qt h, our main kernel, from 55

GFLOPS to 388 GFLOPS using low-level tuning. The main

focus was optimizing the matrix-vector product and rank-1

update that is at the core of the Householder QR algorithm.

The most important tuning optimization was to avoid shared

memory and L1 cache in favor of the register file. Also,

Figure 7: Performance for various choices of block size in

single precision GFLOPS.

choosing the right block size was critical in achieving good

performance.

V. PERFORMANCE

We compare our performance against common commer-

cially available and open source software for both GPU

and multicore. Below we describe the software to which

we compare and the details of the hardware platforms. Our

code is optimized for tall-skinny matrices, so we will focus

mostly on this case. All FLOPs are single precision.

A. Software

1) Intel Math Kernel Library (MKL): MKL contains

BLAS, LAPACK, and various other common functions

tuned specifically for Intel’s processors. In our comparison

we use version 10.2.2.025, and link to the multithreaded

library.

2) MAGMA: Matrix Algebra on GPU and Multicore

Architectures (MAGMA) is an open source dense linear

algebra library for heterogeneous CPU+GPU systems. It

is developed by the Innovative Computing Laboratory at

the University of Tennessee. Version 1.0 is used in this

comparison.

3) CULA: CULA is a library of LAPACK routines for

GPUs [5]. It is a commercial library, made by EM Photonics.

Since CULA source is not available, we do not know exactly

how they implement their QR. However, the performance

of the QR routine across different square matrix sizes is



Figure 8: Speedup vs. SGEQRF from popular linear algebra libraries on a range of different matrix sizes. The dashed line

is a crossover point, to the right of which the libraries outperform our QR.

very similar to the performance of a previous blocked

Householder approach by Volkov et al.[3]. For this reason,

we will not separately report the performance of CULA and

Volkov.

B. Hardware

Our test platform is the Dirac GPU cluster at the National

Energy Research Scientific Computing Center (NERSC)

[18]. One node consists of dual-socket quad-core Intel 5530

processors, 8 cores total, running at 2.4 GHz connected over

PCI-express to an NVIDIA C2050 (Fermi) GPU. The GPU

has ECC enabled, so its effective bandwidth is reduced to

144 GB/s.

C. Performance vs. Matrix Width

Figure 8 shows the performance of our single-precision

CAQR code for a range of matrix sizes compared to

MAGMA, CULA, and MKL. Each point in the chart rep-

resents a different matrix size. The points on the left are

skinnier matrices, such as those found in robust background

subtraction, and the points on the far right are square matri-

ces. Our CAQR implementation is tuned for the tall-skinny

matrices. As a result, we see large speedups compared to

other linear algebra libraries for this case. The operation

being performed is a single precision QR factorization

defined by the LAPACK SGEQRF routine. This routine

doesn’t return Q explicitly, instead it returns an intermediate

representation that can later be used to retreive or apply

Q. Though not shown on the graph, retreiving Q explicitly

(SORGQR) using CAQR is just as efficient as factoring the

matrix. All preprocessing (e.g. transpose) done for CAQR is

included in these runtimes. For all GPU routines, the matrix

is assumed to begin on the GPU. The initial data transfer

from CPU to GPU is not counted.

The absolute performance numbers in single precision

GFLOPS are shown in Figure 9. In this case we consider a

matrix with a fixed height of 8192 and varying width from 64

to 8192. The crossover point, where CAQR becomes slower

than the best best GPU libraries, is around 4000 columns

wide. This suggests an autotuning framework for QR where

a different algorithm may be chosen depending on the matrix

size.

D. Very Skinny Matrices

In the case of extremely tall-skinny matrices, such as those

found in our video processing application, we see up to

17x speedups vs. GPU libraries and 12x vs. MKL. Table I

shows the performance on extremely tall-skinny matrices for

CAQR, MAGMA, CULA, and MKL. Another application

where matrices like these appear is communication-avoiding

linear solvers, when vectors must be orthoganalized period-

ically [2].
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Figure 9: Performance on matrices with 8192 rows and

varying numbers of columns. For the tall-skinny case CAQR

performs best

Performance (SP FLOPS)

CAQR MAGMA CULA MKL

M
at

ri
x

S
iz

e

1k x 192 39.6 5.01 2.99 3.12

10k x 192 111 18.7 9.67 16.9

50k x 192 174 20.8 9.42 22.8

100k x 192 180 18.8 8.90 21.4

500k x 192 194 12.4 8.40 17.8

1M x 192 195 11.4 7.79 16.5

Table I: Performance in single precision GFLOPS for very

tall-skinny matrices.

VI. APPLICATION: ROBUST PCA FOR SURVELLIANCE

VIDEO BACKGROUND SUBTRACTION

The motivating application for this work is stationary

video background subtraction using a recent statistical al-

gorithm for Robust Principal Component Analysis (PCA)

[1]. This section will present specifics of the application,

how it uses the QR decomposition, and the performance of

the application using ours and other QR implementations.

A. Robust PCA

Principal Component Analysis is a widely used method

for data analysis. The goal is to find the best low rank

approximation of a given matrix, as judged by minimization

of the difference between the original matrix and the low

rank approximation. However, the classical method is not

robust to large sparse errors. In Robust PCA, a matrix M is

decomposed as the sum of a low rank component L0 and a

sparse component S0. S0 is allowed to have entries that are

large in absolute value, as long as they are sparse.

Figure 10: Sample output of Robust PCA for stationary

video background subtraction

M = L0 + S0

The problem is solved using �1 regularized nuclear norm

minimization. Minimizing the nuclear norm, the sum of the

singular values, of L0 enforces low-rank. Meanwhile, the

�1 norm of S0 enforces sparsity. Minimizing a weighted

combination of these two penalty functions with linear

constraints is convex.

An application of Robust PCA is stationary video back-

ground subtraction. A survellience video is transformed into

a tall-skinny matrix where each column contains all pixels in

a frame, and the number of columns is equal to the number

of frames. The low-rank component of this matrix is the

background and the sparse component is the people walking

in the foreground. To give a better idea of the problem being

solved, Figure 10 shows a sample of the output of the Robust

PCA code.

B. SVD using QR

The main computation in Robust PCA is a singular value

decomposition (SVD) of the tall-skinny video matrix. In the

SVD of the video matrix, the top singular values, those that

have a strong presence of every frame of the video, are

usually associated with the background.

Instead of trying to do a large SVD on the GPU, we use

the following well known technique for tall-skinny matrices

to reduce the bulk of the work to a QR decomposition. First

A is decomposed into Q ∗ R. Then we find the SVD of R,

which is cheap because R is an n × n matrix and done on

the CPU using MKL. Next, we can multiply the orthogonal

matrices Q ∗ U to get the left singular vectors of A.

A = Q ∗ R

= Q ∗

�

U ∗ Σ ∗ V T
�

= (Q ∗ U) ∗ Σ ∗ V T

= U �
∗ Σ ∗ V T

C. Robust PCA Algorithm

The algorithm for Robust PCA tries to minimize the rank

of L0 and enforce sparsity on S0. It does so with an iterative

alternating-directions method [19]. The flowchart for the

algorithm is shown in Figure 11. The algorithm thresholds
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Figure 11: Flowchart of the alternating-directions algorithm

for solving Robust PCA

(sets to zero) the smallest singular values of L0 in order

to make it low rank. Next, a shrinkage operation (pushing

the values of the matrix towards zero) is done on S0 to

enforce sparsity. The vast majority of the runtime is spent

in the singular value threshold, specifically the SVD of the

L0 matrix.

D. Performance using CAQR

We have three different versions of Robust PCA for

video background subtraction. The first uses entirely a CPU

(Intel Core i7 2.6 GHz), and relies on multithreaded MKL

version 10.2.5.035 for the SVD as well as other basic BLAS

routines. The second is done entirely on the GPU (GTX480),

except for the small SVD of R which is done on the CPU,

and uses our BLAS2 QR decomposition that was specifically

designed and tuned for tall-skinny matrices. Finally, there is

a version which also runs on the GPU and uses our CAQR.

Our benchmark video comes from the ViSOR surveillance

video database [20]. We extract 100 frames for processing.

Each frame is 288 pixels tall by 384 pixels wide, which is

a total of 110,592 pixels per frame. This means the matrix

dimensions are 110,592 by 100. The problem technically

takes over 500 iterations to converge, however the solution

begins to look good earlier than that. The quality of

solution, and therefore number of iterations required, seems

to depend on the application. We therefore report the

number of iterations per second that each implementation

is able to complete. All computation is done in single

precision.

SVD type Number of Iterations/Sec.

MKL SVD (4 cores) 0.9

BLAS2 QR (GTX480) 8.7

CAQR (GTX480) 27.0

Table II: Performance of various Robust PCA implementa-

tions

Table II shows moving from the CPU-only code to our

BLAS2 GPU code results in a 9.6x speedup. This mostly

reflects the fact that the GPU has much higher bandwidth

and compute power than our CPU, and that the MKL SVD

function may not be optimized for the tall-skinny case.

However, we see an additional speedup of about 3x when

using CAQR as compared to the BLAS2 QR. Even though

the QR itself is sped up by more than a factor of 3, we

only get 3x in the application overall due to Ahmdal’s law.

Overall our GPU solution gives us a 30x speedup over

the original CPU code using MKL, reducing the time to

solve the problem completely from over nine minutes to 17

seconds, making this approach feasible for latency-critical

applications [21].

VII. CONCLUSION

In this paper we described a high-performance imple-

mentation of Communication-Avoiding QR Decomposition

entirely on a single GPU using compute-bound kernels. The

main advantage of our approach over the traditional blocked

Householder algorithm is that it can handle tall-skinny

matrices without relying on bandwidth-bound BLAS2 panel

factorizations or potentially high-latency GPU-CPU trans-

fers.

We showed low-level implementation choices that allowed

us to achieve good performance on the GPU. The best

performance for our kernels came from using the register

file as much as possible and arranging the data in transposed

form so as to minimize necessary communication between

threads. Our tuning improved the performance of the most

heavily-used kernel from 55 GFLOPS to 337 GFLOPS.

Our CAQR code outperformed leading parallel CPU and

GPU libraries for tall-skinny matrices up to roughly 4000

columns wide and 8192 rows tall. In more extreme ratios

of rows to columns, such as 1 million by 192, we saw

speedups of up to 17x over GPU linear algebra libraries.

Note that these extreme cases were motivated by practical

applications.

Finally, we applied the CAQR code to Robust PCA for

stationary video background subtraction. We showed that

using CAQR we could achieve a 3x speedup over our best

BLAS2 QR tuned specifically for the tall-skinny case, and

a 30x speedup over a CPU implementation using MKL’s

parallel SVD.
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