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Abstract

This paper proposes a complete allocation and scheduling
framework, where an MPSoC virtual platform is used to accurately
derive input parameters, validate abstract models of system com-
ponents and assess constraint satisfaction and objective function
optimization. The optimizer implements an efficient and exact ap-
proach to allocation and scheduling based on problem decompo-
sition. The allocation subproblem is solved through Integer Pro-
gramming while the scheduling one through Constraint Program-
ming. The two solvers can interact by means of no-good genera-
tion, thus building an iterative procedure which has been proven to
converge to the optimal solution. Experimental results show signifi-
cant speedups w.r.t. pure IP and CP exact solution strategies as well
as high accuracy with respect to cycle accurate functional simula-
tion. A case study further demostrates the practical viability of our
framework for real-life systems and applications.

1. Introduction

Forthcoming multi-processor System-on-Chip (MPSoC) plat-
forms with dozens of embedded processors will require a new tool
flow for efficient software development and validation. In particu-
lar, the integration of very powerful optimization tools is expected
to overcome the limitations of ad-hoc approaches to the traditional
task-to-architecture mapping problem, and to provide efficient solu-
tions in reasonable time.

The synthesis of system architectures has been extensively
studied in the past. Mapping and scheduling problems on multi-
processor systems have been traditionally modelled as integer lin-
ear programming problems. In general, even though ILP is used as
a convenient modelling formalism, there is consensus on the fact
that pure ILP formulations are suitable only for small problem in-
stances, i.e. task graphs with a reduced number of nodes, because of
their high computational cost. For this reason, heuristic approaches
are widely used, such as genetic algorithms, simulated annealing
and Tabu search[11].

Complete approaches, which compute the optimal solution at the
cost of an increasing computational cost, can be attractive for stat-
ically scheduled systems, where the solution is computed once and
applied throughout the entire lifetime of the system.

This is the case of signal processing and multimedia application.
Pipelining is one common workload allocation policy for increasing
throughput of such applications, and this explains why research ef-
forts have been devoted to extending mapping and scheduling tech-
niques to pipelined task graphs[6].

Moving from these considerations, in this paper we present a
novel framework for allocation and scheduling of pipelined task
graphs on MPSoCs. We target a general template for distributed
memory embedded systems, where each processor has a local
scratch-pad memory for fast and energy-efficient access to program
data. In such systems, the communication architecture is becoming
a critical component for abstract platform modelling. Interaction of

multiple traffic patterns on the system bus causes congestion and
hence unpredictable communication latencies. Neglecting this be-
haviour in high level optimization tools for allocation and schedul-
ing might lead to unacceptable deviations of real performance met-
rics with respect to predicted ones and to the violation of real-time
constraints.

Our framework targets state-of-the-art shared busses for low-end
MPSoCs and is communication-aware in many senses. First, it dis-
criminates among allocation and scheduling solutions based on the
communication cost. Second, a high level model of the bus is de-
rived and working conditions guaranteeing a predictable behaviour
of the system interconnect are identified through accurate functional
simulation. The allocation and scheduling solutions provided by our
framework force the system to work within these conditions, by us-
ing them as constraints for the combinatorial optimization problem.

Our allocation and scheduling framework is based on problem
decomposition and deploys techniques mutuated from the Artifi-
cial Intelligence and the Operations Research community: the al-
location subproblem is solved through Integer Programming while
the scheduling one through Constraint Programming. More inter-
estingly, the two solvers can interact with each other by means of
no-good generation, thus building an iterative procedure which has
been proven to converge producing the optimal solution. Experi-
mental results show significant speedups w.r.t. pure IP and CP solu-
tion strategies.

Finally, we deploy an MPSoC virtual platform to validate
the results of the optimization steps and to more accurately as-
sess constraint satisfaction and objective function optimization. In
multi-processor systems, we believe this validation phase is criti-
cal in order to check modelling assumptions and make sure that
second-order effects and/or modelling approximations do not im-
pair optimizer-predicted performance (e.g., a required through-
put).A GSM-based demonstrator shows the practical viability of our
framework for real-life systems and applications.

2. Previous work

Mapping and scheduling problems on multi-processor systems
have been traditionally modelled as integer linear programming
problems, and addressed by means of IP solvers. An early exam-
ple is represented by the SOS system, which used mixed integer lin-
ear programming technique (MILP) [2]. Partitioning with respect to
timing constraints has been addressed in [3]. A MILP model that
allows to determine a mapping optimizing a trade-off function be-
tween execution time, processor and communication cost is reported
in [4]. An hardware/software co-synthesis algorithm of distributed
real-time systems that optimizes the memory hierarchy (caches)
along with the rest of the architecture is reported in [5].

Pipelining is a well known workload allocation policy in the sig-
nal processing domain. An overview of algorithms for scheduling
pipelined task graphs is presented in [6]. ILP formulations as well
as heuristic algorithms are traditionally employed. In [7] a retiminig
heuristic is used to implement pipelined scheduling, while simu-
lated annealing is used in [8]. The work in [9] is based on Con-
straint Logic Programming to represent system synthesis problem,
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and leverages a set of finite domain variables and constraints im-
posed on these variables. Pipelined execution of a set of periodic ac-
tivities is also addressed in [10], for the case where tasks have dead-
lines larger than their periods.

The complexity of pure ILP formulations for general task graphs
has led to the deployment of heuristic approaches. A compara-
tive study of well-known heuristic search techniques (genetic algo-
rithms, simulated annealing and tabu search) is reported in [11]. Un-
fortunately, busses are implicit in the architecture, unlike in [12]. A
scalability analysis of these algorithms for large real-time systems is
introduced in [13]. Many heuristic scheduling algorithms are vari-
ants and extensions of list scheduling [14]. In general, scheduling
tables list all schedules for different condition combinations in the
task graph, and are therefore not suitable for control-intensive appli-
cations.

Constraint Logic Programming is an alternative approach to Inte-
ger Programming for solving combinatorial optimization problems
[15]. Both techniques can claim individual successes but practical
experience indicates that neither approach dominates the other in
terms of computational performance. The development of a hybrid
CP-IP solver that captures the best features of both would appear to
offer scope for improved overall performance. However, the issue of
communication between different modelling paradigms arises. One
method is inherited from the Operations Research and is known as
Benders Decomposition [22]: it has been proven to converge pro-
ducing the optimal solution. There are a number of papers using
Benders Decomposition in a CP setting[16][17][18][19].

In the context of MPSoCs, our approach leverages a decompo-
sition of the mapping problem into two related sub-problems: (i)
mapping of tasks to processors and of memory slots to storage de-
vices and (ii) scheduling of tasks in time on their execution units.
We tackle the mapping sub-problem with IP and the scheduling one
with CP. The interaction is regulated by no-good generation and the
process has been proven to converge to the optimal solution[24].
Our problem formulation will be compared with the most widely
used traditional approaches, namely CP and IP modelling the entire
mapping and scheduling problem as a whole, and the significant cut
down on search time is showed. Moreover, in contrast to most pre-
vious work, the results of the optimization framework and its mod-
elling assumptions are validated by means of functional simulation.

3. Target Architecture

The target architecture for our mapping strategy is a general tem-
plate for a message-oriented distributed memory architecture. The
specific implementation of this paradigm only changes the anno-
tated values in the application task graph (cost for communication
and execution times), which is an input to our framework. How-
ever, the allocation and scheduling methodology is not affected by
specific design choices. The only requirements we pose on the ar-
chitecture are the support for message exchange between the com-
putation tiles, the availability of local memory devices and of re-
mote (i.e., non-local to the tiles) storage devices for those program
data that cannot be stored in local memories. This latter device can
be a unified memory with partitions associated with each proces-
sor or a separate private memory for each processor core. We de-
ployed the simulation model of an instance of this architectural tem-
plate in order to prove the viability of our approach (see Fig. 1). The
computation tiles are supposed to be homogeneous and consist of
ARM7 cores (including instruction and data caches) and of tightly
coupled software-controlled scratch-pad memories for fast access
to program operands and for storing input data. We used an AMBA
AHB bus as system interconnect. In our implementation, hardware
and software support for efficient messaging are provided.

Messages can be directly moved between scratch-pad memories.
Finally, each processor core has a private on-chip memory, which

can be accessed only by gaining bus ownership.
The software support is provided by a real-time operating sys-

tem called RTEMS [25] and by a set of high-level APIs to sup-
port message passing on the scracth-pad based distributed memory
architecture[20].

Figure 1. Message-oriented distributed memory architec-
ture.

4. Problem Model

4.1. Task modelling

Our methodology requires the target multi-task application to
be mapped and executed on top of the hardware platform as a
task graph with precedence constraints. In particular, we target
pipelined task graphs, representative of stream-oriented processing
(video graphics pipelines, audio and video streaming, signal pro-
cessing pipelines). A real-time requirement should also be speci-
fied, consisting for instance of a minimum required throughput for
the pipeline of tasks. Tasks are the nodes of the graph and edges
connecting any two node indicate task dependencies. Computation,
storage and communication requirements should be annotated onto
the graph as follows.

The execution time for the tasks may be expressed either in terms
of worst-case or average-case execution time. In this paper, we opt
for average-case analysis, which implies the objective to meet ap-
plication soft-real time requirements. In the experimental results,
we will also investigate how trustworthy our optimizer is in predict-
ing deadline hits or misses with task allocation and schedules gen-
erating only very tight time slacks.

Since we are considering a pipeline of tasks, we will analyze the
system behavior at working rate, that is when all processes are run-
ning or ready to run. To do that, we will schedule several instantia-
tions of the same process. To achieve a working rate configuration,
the number of repetitions of each task must be at least equal to the
number of tasks n; in fact, after n iterations, the pipeline is at work-
ing rate. So, to solve the scheduling problem, we must consider at
least n2 tasks (n iterations for each process), see Figure 2.

Figure 2. Precedence constraints among the activities

Figure 2 depicts the precedence constraints among the tasks.
Taskij represents the j-th repetition of the i-th task of the pipeline.
The horizontal arrows are precedence constraints, while the diago-
nal arrows are communication constraints.

Each task also has 3 kinds of associated memory requirements:
- Program Data: storage locations are required for computation
data and for processor instructions. They can be allocated by the op-
timizer either on the local scratchpad memory or on the remote pri-
vate memory.
- Internal State: when needed, an internal state of the task can be
stored either locally or remotely.
- Communication queues: the task needs communication queues
to store outgoing as well as incoming messages to/from other tasks.
The communicating task might run on the same processor (thus in-
curring a negligible communication cost) or on a remote processor,
which would imply a costly message exchange procedure. In order
to have efficient messaging, we pose the constraint that such com-



munication queues should be stored in local scratch-pad memory
only.

We assume that application tasks start with checking availability
of input data and of room for writing computation results (i.e., if the
output queue has been freed by the downstream task), in an SDF-
like (synchronous dataflow) semantics. Actual input data transfer,
task execution and generation of output data occur only when these
conditions are met. These assumptions simply make the communi-
cation and computation phase of each task atomic, thus avoiding to
schedule communication as a separate task.

4.2. Bus modelling

Whenever predictable performance is needed for time-critical
applications, it is important to avoid high levels of congestion on the
bus, since this makes completion time of bus transactions much less
predictable. Moreover, under a low congestion regime, performance
of state-of-the-art shared busses scales almost in the same way as
that of advanced busses with topology and communication proto-
col enhancements[21]. Finally, when the bus is required a band-
width from concurrent tasks that does not exceed a certain thresh-
old, its behaviour can be abstracted by means of a very simple ad-
ditive model. In other words, the bus delivers an overall bandwidth
that is approximatively equal to the sum of the bandwidth require-
ments of the concurrent tasks that are competing for its use.

This model, provided the working conditions under which it
holds are carefully determined, has some relevant advantages with
respect to the scheduling problem model. First, it allows to deploy a
larger granularity time unit to solve the problem. In fact, real busses
rely on the serialization of bus access requests by re-arbitrating on
a transaction basis. Modelling bus allocation at such a fine granu-
larity would make the scheduling problem overly complex since it
should be modelled as unary resource (i.e., a resource with capac-
ity one). In this case, task execution should be modelled using the
clock cycle as the unit of time and the resulting scheduling model
would contain a huge number of variables. The additive model in-
stead considers the bus as an additive resource, in the sense that
more activities can share bus utilization using a different fraction of
the total bus bandwidth. Figure 3 illustrates this assumption. Note
that the maximum bandwidth is not the real maximum bandwidth
that the bus is physically able to deliver, but the upper threshold be-
yond which the additive model fails to predict the interconnect be-
haviour because of the impact of contention. We will derive it in the
experimental section by means of extensive simulation runs.

Figure 3. Bus allocation in a real system (left) and in our
model (right)

In order to define the fraction of the bus bandwidth absorbed by
each task, we consider the amount of data they have to access from
their private memories and we spread it over its execution time. In
this way we assume that the task is uniformly consuming a fraction
of the bus bandwidth throughout its execution time. This assump-
tion will be validated in presence of different traffic patterns in the
experimental section.

Another important effect of the bus additive model is that task
execution times will not be stretched as an effect of busy waiting
on bus transaction completion. Once the execution time of a task is
characterized in a congestion free regime, it will be only marginally
affected by the presence of competing bus access patterns, in the do-
main where the additive model holds.

4.3. Problem Decomposition and No-Good Genera-
tion

The problem of allocating and scheduling task graphs is a
scheduling problem with alternative resource (i.e., processors and
storage devices). Tasks should be scheduled in time subject to real
time constraints, precedence constraints, and capacity constraints on
all unary and cumulative resources. As a whole, the problem is ex-
tremely difficult to solve. For this reason, the leading edge tech-
niques for solving combinatorial optimization problems, namely In-
teger Programming (IP) and Constraint Programming (CP), fail to
solve even small problem instances.

From a different perspective, the problem decomposes into two
(interdependent) problems: the allocation of tasks to processors and
of the memory slots required by each task to the proper memory de-
vice, and the scheduling problem with static resource allocation. The
first problem is better solved with IP, while for the second CP is the
technique of choice.

The critical issue is now how to make the two problems interact.
We solve them separately, the allocation problem first (called mas-
ter problem), and the scheduling problem (called subproblem) later.
The master is solved to optimality and its solution passed to the sub-
problem solver. If the solution is feasible, then the overall problem is
solved to optimality. If, instead, the master solution cannot be com-
pleted by the subproblem solver, a no-good is generated and added
to the model of the master problem, roughly stating that the solu-
tion passed should not be recomputed again (it becomes infeasible),
and a new optimal solution is found for the master problem respect-
ing the (set of) no-good(s) generated so far.

4.4. Allocation Problem Model

Given an input pipelined task graph, the allocation problem con-
sists of allocating n tasks to m processors, such that the total amount
of memory allocated to the tasks, for each processor, does not ex-
ceed the size of the local scratch-pad.

The only simplifying assumption that we make is that the remote
private memories are of unlimited size. In the worst case assump-
tion of extremely large program data, this might require to consider
the increased access cost to off-chip memories and the efficiency of
a memory controller. The problem objective function is the mini-
mization of the amount of data transferred on the bus. We model the
problem as an integer program and we consider four decision vari-
ables in the model: Tij , taking value 1 if task i executes on proces-
sor j, 0 otherwise; Yij , taking value 1 if task i allocates the program
data on the scratchpad memory of processor j, 0 otherwise; Zij ,
taking value 1 if task i allocates the internal state on the scratch-
pad memory of processor j, 0 otherwise; Xij , taking value 1 if task
i executes on processor j and task i + 1 does not, 0 otherwise.

The constraints we introduce in the model are:

m
X

j=1

Tij = 1, ∀i ∈ 1 . . . n (1)

Tij + Ti+1j + Xij − 2Kij = 0 , ∀i , ∀j (2)
X

i∈S

Duri > RT ⇒
X

i∈S

Tij ≤ |S| − 1 ∀j (3)

Constraints (1) state that each process can execute only on one pro-
cessor, while constraints (2) state that Xij can be equal to 1 iff
Tij 6= Ti+1j , that is, iff task i and task i + 1 execute on differ-
ent processors. Kij are integer binary variables that enforce the sum
Tij + Ti+1j + Xij to be equal either to 0 or 2. Constraints (3) pre-
vent the solver to allocate a set of consecutive tasks whose execu-
tion times sum exceeds the real time requirement (RT) to the same
processor. (3) are relaxations of the sub-problem added to the mas-
ter problem to avoid the generation of trivially infeasible assign-
ments where all tasks are packed into the minimal number of pro-
cessors in so far as memory constraints allow. The use of a relax-
ation in the master problem is well known and widely used in prac-
tice and helps in producing better solutions.

We add to the problem the constraints stating that Tij = 0 ⇒
Yij = 0, Zij = 0 meaning that if a processor j is not assigned to a



task i neither its program data nor the internal state can be stored in
the local memory of processor j.

The objective function is the minimization of the total amount of
data transferred on the bus. Using the decision variables described
above, we have a contribution respectively when: Tij = 1, Yij = 0;
Tij = 1, Zij = 0; Xij = 1. Therefore, the objective is to minimize:

n
X

i=1

m
X

j=1

`

Memi(Tij − Yij) + 2 × Statei(Tij − Zij) +

+(DataiXij)/2
´

(4)

where memi, statei and datai are coefficients representing the
amount of data used by task i to store respectively the program data,
the internal state and the communication queue.

4.5. Scheduling problem model
Once tasks have been allocated to the processors, we need to

schedule process execution. As introduced in section 4.1, we sched-
ule at least n2 tasks. In the CP model, we split each task Taskij

in Figure 2 in different activities: the computation activity Aij , pre-
ceded by the input data reading activity Inij , and possibly preceded
by the internal state reading activity RSij and followed by the in-
ternal state writing activity WSij .

The precedence constraints among the activities introduced in
the model are:

Ai,j−1 ≺ Inij , ∀ i, j (5)
Inij � Aij , ∀ i, j (6)

Inij � RSij , ∀ i, j (7)
Ai−1,j ≺ Inij , ∀ i, j (8)

RSij � Aij , ∀ i, j (9)
Aij � WSij , ∀ i, j (10)

Ai+1,j−1 ≺ Inij , ∀ i, j (11)
Ai,j−1 ≺ Aij , ∀ i, j (12)

where the symbol ≺ means that the activity on the left should
precede the activity on the right, and the symbol � means that the
activity on the right must start as soon as the execution of the activity
on the left ends: i.e., Inij ≺ Aij means Start Inij +Dur Inij ≤
Start Aij , and RSij � Aij means Start RSij + Dur RSij =
Start Aij .

Constraints (5) state that each task iteration can start reading the
communication queue only after the end of its previous iteration.
Constraints (6) state that each task must read the communication
queue just before the execution, or, if exists, just before the inter-
nal state reading (7); for each task, only the appropriate one among
constraints (6) and (7) will be introduced in the model. Constraints
(8) state that each task can read the data in the communication queue
only when the previous task has generated them. Constraints (9) and
(10) state that each task must read the internal state just before the
execution and write it just after. Constraints (11) state that each task
can read the communication queue only if the previous iteration of
the following task has ended; in other words, a task can read the
communication queue only if the following task is ready to read, in
its turn, its communication queue. Constraints (12) state that the it-
erations of each task must execute in order.

Furthermore, we introduced the real time requirement con-
straints (13), whose relaxation is used in the allocation problem
model. Each task must execute at least once for each time period
RT .

Start(Aij) − Start(Ai,j−1) ≤ RT , ∀ i, j (13)

As explained above, the bus is modelled as an additive resource,
therefore the constraint is posed that the sum of the bus bandwidth
requirements of concurrently executing tasks on different processors
does not exceed the upper threshold. This upper bound was experi-
mentally characterized and set to 50% of the maximum bandwidth
the AMBA bus can physically deliver.

Finally, when finding a schedule for a given allocation turns out
to be infeasible, a no-good is generated in the form of a linear con-
straint and passed to the IP solver. The constraint prevents the cur-
rent solution to be re-computed again.

4.6. Computational efficiency

To validate the strength of our approach, we now compare the re-
sults obtained using this model (Hybrid in the following) with re-
sults obtained using only a CP or IP model to solve the overall prob-
lem. Actually, since the first experiments showed that both CP and
IP approaches are not able to find a solution, except for the easi-
est instances, within 15 minutes, we simplified these models remov-
ing some variables and constraints. In CP, we fixed the activities ex-
ecution time not considering the execution time variability due to
remote memory accesses, therefore we do not consider the Inij ,
RSij and WSij activities, including them statically in the activi-
ties Aij . In IP, we do not consider all the variables and constraints
involving the bus: we do not model the bus resource and we there-
fore suppose that each activity can access data whenever it is neces-
sary.

We generated a large variety of problems, varying both the num-
ber of tasks and processors. All the results presented are the mean
over a set of 10 problems for each task or processor number. All
problems considered have a solution. Experiments were performed
on a 2GHz Pentium 4 with 512 Mb RAM. We used ILOG CPLEX
8.1 and ILOG Solver 5.3 as solving tools.

In figures 4 we compare the algorithms search time for problems
with a different number of tasks and processors respectively. Times
are expressed in seconds and the y-axis has a logarithmic scale.
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Figure 4. Comparison between algorithms search times for
different task number (left) and for different processor num-
ber (right)
Although CP and IP deal with a simpler problem model, we can

see that these algorithms are not comparable with Hybrid, except
when the number of tasks and processors is low; this is due to the
fact that the problem instance is very easy to be solved, and Hy-
brid looses time creating and solving two models. As soon as the
number of tasks and/or processors grows, IP and CP performances
worsen and their search times become orders of magnitude higher
w.r.t. Hybrid. Furthermore, we considered in the figures only in-
stances where the algorithms are able to find the optimal solution
within 15 minutes, and, for problems with 6 tasks or 3 processors
and more, IP and CP can find the solution only in the 50% or less
of the cases, while Hybrid can solve 100% of the instances. In ad-
dition, We can see that Hybrid search time scales up linearly in the
logarithmic scale.

We also measured the number of times the solver iterates be-
tween the master and the sub-problem. We found that, due to the
limited size of the local memories and to the relaxation of the sub-
problem added to the master, the solver iterates 1 or 2 times. Re-
moving the relaxation, it iterates up to 15 times. This result gives ev-
idence that, in a Benders decomposition based approach, it is very
important to introduce a relaxation of the sub-problem in the mas-
ter, and that the relaxation we use is very effective even if very sim-
ple.

5. Methodology
Our approach consists of using a virtual platform to pre-

characterize the input task set, to simulate the allocation and
scheduling solutions provided by the optimizer and to detect de-
viations of measured performance metrics with respect to predicted
ones.

For each task in the input graph we need to extract the follow-
ing information: bus bandwidth requirement for reading input data
in case the producer runs on a different processor, time for reading
input data if the producer runs on the same processor, task execution



time with program data in scratch-pad memory, task execution over-
head due to cache misses when program data resides in remote pri-
vate memory. For each pipelined task graph, this information can be
collected with 2+N simulation runs on the MPARM simulator[23],
where N is the number of tasks. Recall that this is done once for all.
We model task communication and computation separately to bet-
ter account for their requirement on bus utilization, although from a
practical viewpoint they are part of the same atomic task. The ini-
tial communication phase consumes a bus bandwidth which is de-
termined by the hardware support for data transfer (DMA engines
or not) and by the bus protocol efficiency (latency for a single read
transaction). The computation part of the task instead consumes an
average bandwidth defined by the ratio of program data size (in case
of remote mapping) and execution time. We use the virtual platform
also to calibrate the bus additive model, specifying the range where
such model holds. For an AMBA bus, we found that tasks should not
concurrently ask for more than 50% of the theoretical bandwidth the
bus can provide (400 MByte/sec with 1 wait state memories), oth-
erwise congestion causes a bandwidth delivery which does not keep
up with the requirements.

The input task parameters are then fed to the optimization frame-
work, which provides optimal allocation of tasks and memory loca-
tions to processor and storage devices respectively, and a feasible
schedule for the tasks meeting the real-time requirements of the ap-
plication. Two options are feasible at this point. First, the optimizer
uses the conservative maximum bus bandwidth indicated by the vir-
tual platform, and derives solutions that will be accurately repro-
duced on the virtual platform, if modelling assumptions are correct.
Second, the optimizer uses a higher bandwidth than specified, in or-
der to improve bus utilization, and the virtual platform is used to as-
sess the accuracy of the optimization step (e.g., constraint satisfac-
tion, validation of execution and data transfer times). If the accuracy
is not satisfactory, a new iteration of the procedure will allow to pro-
gressively decrease the maximum bandwidth until the desired level
of accuracy is reached with the simulator.

6. Experimental Results
We have performed three kinds of experiments, namely (i) val-

idation and calibration of the bus additive model, (ii) measurement
of deviations of simulated throughput from theoretically derived one
for a large number of problem instances, (iii) showing the viability
of the proposed approach by means of a GSM-based demonstrator.

6.1. Validation of the bus additive model
The intuitive meaning of the bus additive model is illustrated

by the experiment of Fig.5(A). An increasing number of AMBA-
compliant uniform traffic generators, consuming each 10% of the
maximum theoretical bandwidth (400 MByte/sec), have been con-
nected to the bus, and the resulting real bandwidth provided by the
bus measured in the virtual platform. It can be clearly observed
that the delivered bandwidth keeps up with the requested one un-
til the sum of the requirements amounts to 60% of the maximum
theoretical bandwidth. If the communication requirements exceed
the threshold, as a side effect we observe an increase of the execu-
tion times of running tasks with respect to those measured without
bus contention, as depicted in Fig.5(B). For this experiment, syn-
thetic tasks running on each processor have been employed. The
60% bandwidth threshold value corresponds to an execution time
variation of about 2% due to longer bus transactions.

However, the threshold value also depends on the ratio of band-
width requirements of the tasks concurrently trying to access the
bus. Contrarily to Fig.5(A), where each processor consumes the
same fraction of bus bandwidth, Fig.6(A) shows the deviations of of-
fered versus required bandwidth for competing tasks with different
bus bandwidth requirements. Configurations with different number
of processors are explored, and numbers on the x-axys show the per-
centage of maximum theoretical bandwidth required by each task. It
can be observed that the most significant deviations arise when one
task starts draining most of the bandwidth, thus creating a strong in-
terference with all other access patterns. The presence of such com-
munication hotspots suggests that the maximum cumulative band-
width requirement which still stimulates an additive behaviour of

Figure 5. (A) Implications of the bus additive model; (B)
Execution time variation.

Figure 6. (A) Bus additive model for different ratios of
bandwidth requirements among competing tasks for bus ac-
cess; (B) Probability of throughput differences.

the bus is lower than the one computed before, and amounts to about
50% of the theoretical maximum bandwidth. We have also tried to
reproduce Fig.6(A) with different burstiness of the generated traf-
fic. Results are not reported here since the measured upper thresh-
olds for the additive models are more conservative than those ob-
tained with single transfers.

6.2. Validation of allocation and scheduling solu-
tions

We have deployed the virtual platform to implement the alloca-
tions and schedules generated by the optimizer, and we have mea-
sured deviations of the simulated throughput from the predicted one
for 50 problem instances.A synthetic benchmark has been used for
this experiment, allowing to change system and application param-



Figure 7. (A) Conservative performance predictions of the
optimizer; (B) GSM case study.

eters (local memory size, execution times, data size, etc.). We want
to make sure that modelling approximations are not such to sig-
nificantly impact the accuracy of optimizer results with respect to
real-life systems. The results of the validation phase are reported in
Fig.6(B), which shows the probability for throughput differences.
The average difference between measured and predicted values is
4.7%, with 0.08 standard deviation. This confirms the high level of
accuracy achieved by the developed optimization framework.

Fig.7(A) shows that our optimizer is not only accurate within
acceptable limits, but also conservative in predicting system per-
formance, and this is very important for meeting real-time re-
quirements. For a given problem instance, the plot compares the
throughput provided by the optimizer with the simulated one for
the same allocations and schedules. The range of throughputs has
been spanned by progressively making the real-time constraint of
the solver tighter. This latter provides an allocation and a schedule
that are able to guarantee an entire range of throughput constraints.
If a lower throughput is required, than the configuration found by
the solver changes. Moving from one configuration to another cor-
responds to increasing steps on the x-axys. At each new point, the
simulated throughput is reported as well, and it is showed to pro-
vide a conservative throughput with respect to the predicted one,
within the accuracy limits found above.

6.3. Application to GSM
The GSM application has been used to prove the viability of

our approach. The source code has been parallelized into 6 pipeline
stages, and each task has been pre-characterized by the virtual plat-
form to provide parameters of task models to the optimizer. Such in-
formation, together with the results of the optimization run, are re-
ported in Fig.7(B). Note that the optimizer makes use of 3 out of the
4 available processors, since it tries to minimize the cost of com-
munication while meeting hardware and software constraints. The
required throughput in this case was 1 frame/10ms, largely within
the minimun GSM requirements. The obtained throughput was 1.35
frames/ms, even more conservative. As already seen, the simula-
tion gave a better throughput than the predicted one, with a differ-
ence of 4.1%. The table also shows that program data has been al-
located in scratch-pad memory for Tasks 1,2 and 6 since they have
smaller communication queues. Schedules for this problem instance
are trivial. The time taken by the optimizer to come to a solution was
0.1 seconds.

7. Conclusions
We target allocation and scheduling of pipelined stream-oriented

applications on top of distributed memory architectures with sup-

port for messaging. We tackle the complexity of the problem by
means of decomposition and no-good generation, and prove the in-
creased computational efficiency of this approach with respect to
traditional ones. Moreover, we deploy a virtual platform for validat-
ing the optimization process and to check modelling assumptions,
showing a very high level of accuracy. Finally, we show the viabil-
ity of our approach by means of a GSM-based demonstrator.
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