
Abstract: In this paper, we present an interprocessor communica-
tion-aware task scheduling algorithm applicable to a multiprocessor
system executing an application with dependent tasks. Our algorithm
takes the application task graph and the architecture graph as inputs,
assigns the tasks to processors and then schedules them. As main the-
oretical contribution, the algorithm we propose reduces the overall
systems energy by (i) reducing the total interprocessor communication
and (ii) executing certain cycles at a lower voltage level. Experimen-
tal results show that by tuning the parameter for communication
awareness, a schedule using our algorithm can reduce upto 80%
interprocessor communication in a complex video/audio application
(compared to a schedule which is only voltage-selection aware) with-
out losing much in the number of cycles executed at lower voltage.

Keywords: low-power scheduling, dynamic voltage scaling

1. Introduction and objectives
Today communicating multiprocessor systems appear in a wide range
of products. Modern embedded systems consist of more than one pro-
cessing elements that heavily communicate with each other. In such a
multiprocessor system, the processing elements can be general-pur-
pose processors, application specific integrated circuits, or field-pro-
grammable gate arrays etc. These processing elements are networked
using USB ports, ethernet, or high-speed serial busses [1] and they
communicate with each other using point-to-point connections or on a
shared bus or some such communication architecture. Such communi-
cating multiprocessor systems are found in a wide range of products
ranging from consumer electronics or peripheral devices attached to
workstations, to automobiles. With the advent of systems-on-chip
(SOCs), future embedded systems may have all the heterogeneous
components (IPs) on a single chip. A new class of on-chip networks is
also emerging as the interconnect of choice for connecting together
these components [2][21]. Such an SOC will also have many IPs com-
municating with each other. Thus communicating multiprocessor sys-
tems appear not only in networked embedded systems but also in
SOCs.

Since these embedded systems run on batteries, maximizing the
battery-life has become one of the chief design drivers. Targeting low-
energy (and low-power) as early as possible in the design process, at
high levels of abstraction is extremely important. Dynamic voltage
scaling [3] and power management [4] are the two main system-level
techniques used to reduce energy consumption of the system.
Dynamic voltage scaling is more effective in saving energy consump-
tion than dynamic power management. As a result, several variable
voltage processors appeared in the market (e.g. Intel's XScale, AMD's
Mobile Athlon and Transmeta's Crusoe processor).

Most of the previous work in voltage scaling algorithms concen-
trates on saving energy of independent tasks running on a single pro-
cessor or dependent tasks running on a single processor. However,

most embedded systems today consist of dependent tasks running on
multiple processors. Therefore we need scheduling algorithms which
are able to save energy by giving maximum opportunity for voltage
scaling in such multiprocessor embedded systems.

Any application running on a multiprocessor system can be mod-
eled in the form of a task graph (Figure 1). These tasks have deadlines
and two types of dependencies on each other: First, the control depen-
dency indicating that one task can not start its execution until another
task has finished. Second, the data dependency in which the output of
one task is used as input by another task. The presence of data depen-
dency implies these tasks communicate with each other. This applica-
tion task graph needs to be implemented on a given set of variable
voltage processors. The problem is then to find a system implementa-
tion that consumes the least amount of energy while satisfying the
imposed deadlines. A practical system implementation has to solve
three main issues: 1) task assignment to processors in the system, 2)
task ordering, and 3) voltage selection.

Task assignment and task ordering, taken together, are referred to
as task scheduling. The total systems energy consumption is depen-
dent on the combined effect of the task schedule and the voltage selec-
tion step. Depending upon the task schedule, the system has different
volume of total interprocessor communication and also different
opportunities for lower voltage selection in the subsequent voltage
selection step. Therefore the task scheduling and the voltage selection
steps can not be treated as independent problems. Instead, they need
to be combined in the effort to minimize the total systems energy; this
is exactly the focus of the present paper.

1.1. Contribution of the paper
Total systems energy has two parts: communication energy and com-
putation energy. The objective of this paper is to propose an algorithm
for task scheduling and voltage selection, foreseeing the total interpro-
cessor communication that the schedule will generate and trying to
reducing it, while taking into account the energy savings that can be
obtained in the subsequent voltage selection step.

Few previous voltage scaling approaches which discuss depen-
dent tasks and multiple processors assume that the task assignment to
processors is already done and then give an algorithm for voltage
selection [7][12]. They try to distribute the slack, the maximum
amount of time by which a task can be slowed down without violating
the timing constraints, in different ways among the tasks. As pointed
out in [8], the task scheduling algorithm has to be voltage selection
aware and try to maximize the possibility of saving computational
energy in the voltage selection step. The limitation of this approach,
however, is that it ignores the interprocessor communication com-
pletely.

Tasks in real-world applications usually have data dependencies
among them. The task assignment phase of the scheduling algorithm
has to consider the penalty in total energy consumed by the system in
assigning two heavily communicating tasks to two different proces-
sors. Real-time systems community has addressed the problem of
minimizing the inter-task communication energy [16][5] for multipro-
cessor system, but their algorithms ignore the 'voltage selection'
awareness, which requires maximizing the slack. This is because their

†This research was supported in part by NSF under grant CCR-00-93104
and MARCO/DARPA Gigascale Silicon Research Center (GSRC).

Communication-Aware Task Scheduling and Voltage
Selection for Total Systems Energy Minimization†

Girish Varatkar Radu Marculescu
Department of Electrical and Computer Engineering

 Carnegie Mellon University
Pittsburgh, PA 15213-3890
{gvv,radum}@ece.cmu.edu

510

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’03, November 11-13, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00.

work is mostly concerned with performance rather than power dissi-
pation.

Our approach addresses the generalized scenario and tries to
reduce the total energy consumed by the systems, which consists of
the computation energy using voltage selection awareness and the
interprocessor communication energy using communication aware-
ness in the task assignment.

We emphasize that these two issues are not separate because if a
system implementation minimizes the communication energy only, it
will not necessarily produce the least total system energy solution
because of lost opportunity in voltage scaling. At the same time, an
implementation that minimizes the computation energy only may not
be necessarily the least total systems energy solution because it might
generate a lot of communication energy consumption. Therefore it is
important to combine both these concerns in a single system imple-
mentation algorithm in order to minimize total energy consumption.
1.2. Related work
In recent years, the use of voltage selection to reduce computational
energy has received increased attention. In [14], the authors perform
battery-aware task scheduling for multiprocessor systems by moving
tasks to smoothen the power profile. In [18], the authors describe a
dynamic programming technique for solving the multiple supply volt-
age scheduling problem but they assume that the tasks are already
mapped to processors. Similarly, [11] considers a generalized task
graph with intertask communication and suggests an algorithm for
partitioning and mapping. That algorithm, however, does not try to
minimize the total interprocessor communication volume. More
recently, [8] describes the need for a scheduling algorithm to take into
account the voltage selection awareness. All of the above mentioned
algorithms completely ignore the impact of scheduling on the inter-
processor communication volume.

From a different perspective, in the real-time community, the
basic scheduling problem is to make sure that the tasks always meet
their timing constraints [13]. Most of these algorithms try to balance
the utilizations of the processors in the system and finish the tasks ear-
lier than the deadline [17]. In [16], Hou et al try to minimize the inter-
processor communication by scheduling periodic tasks on a set of
communicating modules but they do not consider the voltage-selec-
tion-awareness in their algorithm.

In this paper, we combine both these concerns in a generalized
task scheduling problem and propose an efficient heuristic to solve it.
As we shall see later, this is very important to minimize the total sys-
tems energy.
1.3. Organization of the paper
Section 2 presents a motivational example for communication aware-
ness in scheduling and its impact on energy. In Section 3, we present
the detailed problem formulation. In Section 4, we describe the sched-
uling algorithm and in Section 5, we show our results using random,
as well as real multimedia system taskgraphs. Finally, we conclude by
summarizing our main contribution.

2. Motivational example
We use the task graph shown in Figure 1 to illustrate the intuition
behind our contribution. Each node in Figure 1 represents a task of the
application and the directed arrows indicate the control dependency. A
directed edge from task Ti to task Tj indicates that Tj can not start
before Ti is finished. The number attached to the edges indicates the
quantity of communication traffic from task Ti to task Tj in terms of
abstract communication unit tokens (e.g. t1 sends 10 units of data to
t3). A deadline next to a task indicates that the task must finish before
the deadline (e.g. task t4 in Figure 1 must finish before 19 time units).
The number inside each task node in Figure 1 indicates the number of
cycles taken by that task for computation. Note that this number is
independent of the processor’s voltage level of operation.

Without loss of generality, we can make the following assump-
tions about the system architecture:
 • The system consists of two identical processors.
 • For each processor, there exist two voltage levels of operation. At
the higher voltage level Vh, we assume the cycle time is one time unit
while at the lower voltage Vl, the cycle time is two time units.
 • The computational energy consumed by a processor at Vh is four
energy units per cycle while at Vl, it is only one energy unit per cycle.
These energy consumption numbers are chosen close to the ratio of
energy consumed by commercial processors [20] at high and low volt-
age levels.
 • The communication energy between the two processors is assumed
to be 0.1 energy units per unit quantity of communication (unit quan-
tity of communication may be bit/byte/packet/token etc. for randomly
generated taskgraphs). Depending upon the choice of this number, the
ratio of communication energy to the total systems energy will vary.
 • The time and energy overheads of voltage level switching are
assumed to be negligible since the switching does not happen very fre-
quently [6].
 • The time taken for interprocessor communication is assumed to be
negligible compared to the computational time.

Under the above assumptions, Figure 2 shows three different system
implementations of the task graph in Figure 1. For each time unit, the
light color indicates the operation of the processor at the low voltage
level while the shaded color indicates the operation at a high voltage
level.

Figure 2 (a) shows the implementation using only communica-
tion-aware task scheduling algorithm followed by equal distribution
of slack among the tasks in voltage selection phase. We point out that
people in the real-time systems community who proposed the commu-
nication-aware scheduling [5] algorithm did not consider the voltage
selection phase since their problem was in a different context (distrib-
uted systems). To make the algorithm applicable to the case of SOCs
and embedded systems, we need to combine it with a voltage selection
algorithm.

Figure 2 (b) shows the implementation using only voltage selec-
tion aware task scheduling and voltage level selection using the algo-
rithm described in [8]. Finally Figure 2 (c) shows the task schedule
obtained using our approach which is both communication and volt-
age selection aware and reduces the total energy of the system.

If we compare the energy consumed by the systems in Figure 2
(a) and Figure 2 (c), we can see that the computational energy con-
sumed in the former is 56 units1, while energy in the latter case is only
47 units. This clearly illustrates the shortcoming of the only communi-
cation-aware task scheduling algorithm to foresee that voltage scaling
is going to follow in the next phase. So the schedule in figure 2 (a)
does not maximize slack, and hence consumes higher computational
energy. The schedule in 2(a) does well in limiting the communication
energy of the system but the total energy consumed by the system is
more in 2(a) than that in 2 (c).

Now comparing the energy consumed by the systems in Figure 2
(b) and Figure 2 (c), we notice that the computational energy con-

1. Number of cycles at Vh (shaded color) * 4 + Number of cycles at Vl (light color) * 1 =
12 * 4 + 8 * 1 = 56 units

Figure 1. Taskgraph for the motivational example.

5 5 4t1

t3 t4

10 25

5 1 t5

100
t2

50

Deadline = 19 units5 5 4t1

t3 t4

10 25

5 1 t5

100
t2

50

Deadline = 19 units

511

sumed in both the schedules is the same but the communication
energy consumed in the former is more than that in the latter (10 > 6
units). This is because the scheduling algorithm in 2(b) ignores the
communication in the scheduling phase which is considered in 2 (c).
So the total system energy consumption is lesser for 2 (c). This exam-
ple illustrates the need for the new approach proposed in the paper.

3. Problem formulation
In this section, we formally state the generalized task scheduling
(GTS) problem. Let us consider first a few useful definitions.
Definition 1: An application task graph G(T,E) is a directed graph,
where each vertex represents a computational module of the applica-
tion referred to as a task Ti, . Each task Ti belongs to a class CLj

(), where NCL is the maximum number of different classes
of processors indicating its type depending upon the class of processor
(general-purpose processor, DSP, etc.) on which it will run in the most
efficient manner. For instance, a FFT task can be performed by differ-
ent classes of processors, (e.g. DSP processors, general purpose pro-
cessors or ASICs), but the number of cycles taken by the FFT task on
each type of processor differs widely depending upon the actual class
of processor used. Each task has its computational complexity associ-
ated with it in terms of the average number of cycles NCi,CL required
to execute that task on different classes of processors. Note that the
number of cycles taken by a processor to execute a task depends on the
class of processor on which that task is executed while it is indepen-
dent of the processor speed and its voltage level.

Each directed edge starts from a task Ti and ends on a
task Tj (). The direction from Ti to Tj indicates that the task
Tj can not start before Ti is finished. Each edge Eij has associated with
it Bij, the number of bytes transferred from Ti to Tj. If this number is
greater that zero, then it means that Tj can start only after Ti has fin-
ished and transferred Bij bytes to the processor implementing Tj. Some
of the tasks Ti may also have deadlines dli associated with them. The
Definition 1 thus characterizes the application task graph and defines
the control and data dependencies among the tasks in the application.
Definition 2: The architecture graph L(P,W) is a directed graph,
where each vertex represents a processor Pi (). Each processor
has a class (CLj) associated with it. The class represents the type of the
processor, whether the processor is ASIC or DSP or general-purpose
processor, etc. Each bidirectional edge indicates a commu-
nication link between the two processors Pi and Pj. Each communica-
tion link Wij has associated with it a certain communication speed
(SPij) and a certain communication energy cost per unit communica-
tion volume (ECOMij). The numeric value of ECOMij depends upon
the communication architecture of the system. The communication
energy per unit volume ECOMij has two components. First is the
energy cost of sending signals over the communication link. Second is
the energy cost of storing the data received on the communication link
into a local buffer at the port. For embedded systems with processors
Pi and Pj on board, the value of ECOMij varies depending upon their
positions as the lengths of the wires connecting them changes with
position. For an SOC with multiple processors on a single chip, the
value of ECOMij is due to the energy consumed by the links (typically
in the order of 10 pJ) and the energy consumed in buffering (typically
in the order of 1 pJ/per bit).

Definition 2 characterizes the architecture of the system consist-
ing of the processors and the communication links between them. Pro-
cessors are divided into a finite number of classes, NCL, depending
upon their type as described in Definition 2. Now suppose that each
processor class CLi can have different voltage levels VLj. We denote

the computation energy per unit cycle for a processor of class CLi
operating at voltage level VLj as ECOPCLi,VLj. As we can see, this
computation energy depends upon the class of processor and the volt-
age level. The time and energy overheads in changing the voltage
level from VLi to VLj are denoted as DTij and DEij respectively [15]. A
feasible schedule is defined as follows.
 Definition 3: A feasible schedule FS(G,L) is defined as a map-
ping from the application task graph G to the architecture graph L
such that
 • Each is mapped to a processor such that Pj is in the
set of classes of processors on which Ti can be executed. The tasks are
assigned a start time si.
 • All such that there exists an edge starting from task
Tj to task Ti, finish their execution and finish transferring Bji bytes to
Pi exactly at si or before si, the starting time of task Ti.
 • All the tasks Ti for which deadlines dli are specified finish execution
before their respective deadlines.

Ti T∈

1 j NCL≤ ≤

Eij E∈
Ti Tj, T∈

Pi P∈

Wij W∈

Time
Units

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

P1

P2

 Total energy = Communication + Computation
 59.5 = 3.5 + 56

P1

P2

 Total energy = Communication + Computation
 57 = 10 + 47

P1

P2

 Total energy = Communication + Computation
 53 = 6 + 47

Figure 2 (a) Communication aware scheduling.

Figure 2 (b) Voltage selection aware scheduling.

Figure 2 (c) Proposed scheduling approach.

Figure 2. Different system implementations of taskgraph in Figure 1.

 t2 t3 t5

 t1 t4

 t1 t3

 t2 t5

 t4

 t1 t5

 t2 t3 t4

Ti T∈ Pj P∈

Tj T∈ Eji E∈

512

A feasible schedule characterizes the task assignment to different
processors and the ordering in which the tasks are going to execute on
the processors. It does not consider voltage selection which follows.
Definition 4: Given a feasible schedule FS(G,L), a system implemen-
tation I(G,L) is a cycle accurate schedule of each task Ti, on processor
Pj to which it is mapped to by the feasible schedule FS, after voltage
selection is done for each cycle for all Pj, taking into account the time
overhead for voltage level switching in satisfying all deadline con-
straints and energy overhead in voltage scaling. After I(G,L) is fixed,
the NCi,CLi,VLj indicating the number of cycles for which task Ti is
executed on the processor of class CLi given by mapping FS(G,L) at
voltage level VLj gets fixed.

Given the application task graph G and the architecture graph L,
we need to find a system implementation I(G,L) such that the total
energy TE consumed by the system is minimized. The total energy
consumed by the system incorporates the computation energy plus the
communication energy and the energy overhead for switching voltage
levels.
Problem formulation: Using the notations defined above, the
problem can be formulated as to find a system implementation I(G,L)
such that:
min {TE = TECOM + TECOP + TED } (1)
where TECOM is the total communication energy given by

TECOM = for (i, j such that and Ti, Tj are

mapped to Pl, Pm, respectively, s.t. in I(G,L)) (2)
TECOP is the total computation energy given by

TECOP = where (i s.t.) (3)

and TED is the total overhead energy during voltage level switching.

TED= whenever voltage changes from VLi to VLj in I(G,L).(4)

The GTS problem is NP-hard as the number of different possible
schedules increases exponentially with the increasing number tasks.
Hence we propose a heuristic algorithm described in the next section.

4. Task scheduling and voltage selection
Since finding an optimum system implementation I(G,L) consuming
the minimum energy is known to be NP-hard [5] [13], we propose a
heuristic scheduling algorithm which will (1) increase the total slack
and create an opportunity for energy savings by voltage selection and,
at the same time, (2) be interprocessor communication aware and try
to save on interprocessor communication energy.
4.1. Input information
We consider real-time embedded systems with a few processors inter-
acting with each other to execute a certain application (e.g. MPEG
codec, MP3 codec, etc.) We consider that the application is divided
into tasks (e.g. FFT, Variable Length Encoding, etc.) which can be
executed by a certain processor once it receives the necessary input
data and all its parent tasks are finished.

Without loss of generality, we assume all the processors are gen-
eral purpose processors belonging to the same class (i.e. NCL = 1).
This means that for each task Ti the number of cycles NCi is indepen-
dent of the class of the processor on which the task is executed. Also
the number of bytes, Bij, transferred from Ti to Tj is known from pro-
filing the application. This is a standard assumption and such task-
graphs have been used previously in many related works [11][7][5].
The deadlines for the tasks are known from the application require-
ments. The deadlines can be hard deadlines which can not be violated
or soft deadlines which can be stretched within a range. In this paper,
we consider only hard deadlines in the experiments since multimedia

applications have certain hard deadlines. Thus, the relevant informa-
tion for the application task graph G(T,E) defined in Section 3, is
given to the system designer.

We consider that the designer has already selected the set of pro-
cessors and fixed their location and the interconnection between them
for communication. We assume that the processors have point-to-
point connections between them for communication as one example
of a communication architecture. We discuss the impact of choosing
another communication architecture, e.g. a bus-based solution in Sec-
tion 5.3. Since the switching between voltage levels takes place not
very frequently, we can neglect the time overhead and energy over-
head for voltage level switching. Thus the architecture graph L(P,W)
defined in Section 3, is assumed to be provided.
4.2. Design flow overview
Given the application task graph G(T,E) and the architecture graph
L(P,W), our algorithm starts by ignoring interprocessor communica-
tion by setting K, the communication ignorance parameter, equal to
10. The algorithm first performs task scheduling by mapping the tasks
onto processors and deciding their order of execution. Then, in the
next step (Figure 3), voltage selection is performed for each cycle of
all the scheduled tasks by formulating the deadline constraint equa-
tions and solving the ILP problem in order to minimize the total
energy consumption.

After the voltage selection step, the total energy consumed by the sys-
tem can be computed. If the total energy consumption does not satisfy
the battery-life constraint, the value of the parameter K is changed and
the task scheduling and voltage selection steps are iterated until the
battery life constraint is satisfied (Figure 3).The tuning of K can be
done by creating an outer loop which varies the value of K in a suit-
able range (e.g. 0.1 to 10 in steps of 0.1). Since the optimum value of
K that gives the minimum total systems energy is not known theoreti-
cally, the above mentioned outer loop gives the experimentally found
value of K close to the optimum value.
4.3. Task scheduling and voltage selection algorithm
The task scheduling algorithm takes the application task graph and
architecture graph as inputs. The output is a mapping of tasks to dif-
ferent processors and the order in which the tasks will be executed on
these processors so that all the deadlines can be met. We use the basic
framework of the multiprocessor task scheduling algorithm described
in [8] to form an underlying voltage selection aware task scheduling
algorithm. However, we modify the task assignment step to gain com-
munication awareness and reduce interprocessor communication.

The algorithm we propose uses a priority-based ordering and best
fit processor selection as shown in the pseudo-code in Figure 4. The
task Ti’s ready time ri is the time when all its predecessors finish exe-
cution. The priority for each task Ti is calculated from the latest finish
time, the earliest start time of the task (earliest start time of Ti denoted
as esi is the time when Ti is ready and a processor is available).

Suppose there are N processors in the system. The available time
of processor Pj is denoted as aPj and it is updated regularly along with
ri, esi during the scheduling step. The actual starting time of the task Ti
is denoted as si. At each step, the algorithm calculates the priorities of
tasks remaining to be scheduled and decides which task to schedule
next. Then it uses a combination of voltage scheduling and communi-
cation-aware criterion to decide the processor to which the selected

Bij ECOMlm⋅
i j,
∑ TiTj T∈

l m≠

NCi CLi VLj, ,
i
∑ ECOPCLi VLj,⋅ Ti T∈

D
i j,
∑ Eij

Figure 3. The system implementation design flow.

G(T,E)

L(P,W)

Task
Scheduling

Voltage
Selection

Battery life
enough ?

Yes

No

Done

Tune Sched-
ule (vary K)

513

 Table 1. Trend in communication volume and number of cycles executed at low voltage for random taskgraphs.

 communication awareness increases

Taskset Number of
Tasks

Number of
Arcs

K = 0.1 K = 1 K = 10
Total inter-

processor traffic
Number of

slowed cycles
Total inter-

processor traffic
 Number of

slowed cycles
Total inter-

processor traffic
 Number of slowed

cycles
R1 11 12 33196 46 33196 46 44583 46
R2 15 21 14540 270 35441 522 109582 584
R3 17 25 34104 328 90926 452 151918 736
R4 21 32 41372 85 99529 339 243693 760
R5 24 36 62753 97 84934 373 255506 856

least priority task will be mapped to. The main idea behind the first
step of task ordering is to schedule a task with smaller lfti, latest finish
time, before another one with greater lfti. This is reflected in the prior-
ity PRIi definition in the form of lfti term in it as can be seen in Figure
4. Now, in the second step, in order to maximize energy savings
opportunity in the voltage selection step, we must maximize the over-
all slack of the system. The main idea behind this is to minimize the
slack given to some processors so that the slack on all other remaining
processors is maximized. Therefore in the mapping step, the lowest
priority task is assigned to a processor that was busy just before that
task was released.

We add the communication awareness in the second step of map-
ping of the lowest priority task to the appropriate processor in the
form of communication criterion (Step 2 in Figure 4). We set initially
the communication ignorance parameter K to a high value (e.g. K=10)
and then iteratively tune this parameter as shown in Figure 3. In the
task ordering phase, whenever a task Ti is being mapped, we are sure
that all its parent tasks, Tj s.t. are already mapped to proces-
sors and they have finished their execution. Therefore, we can calcu-
late the total increase in the communication traffic that the mapping of
Ti to Pj will generate by adding the traffic between parents of Ti that
are mapped on a different processor than Pj and Ti (see Figure 5). We
also know the number of edges which will contribute to this increase
in traffic. So we can calculate the increase in the communication traf-
fic per edge and compare it with K multiplied by the average traffic
per edge for the whole application task graph.

For example in Figure 1, the average traffic per edge is
((100+50+25+10)/4 = 185/4 = 46.25) communication units (which
can be bits/bytes/packets/tokens etc.) for the task graph. In Figure
2(c), when P1 is finished with executing T1 and at the same time, P2 is
finished with executing T2, the communication criterion takes into
account the fact that scheduling T3 on P1 will add 100 units per edge
of communication traffic (since there is single edge between P1 and
P2) to the system implementation. This is greater than the average
traffic per edge (46.25 units) multiplied by K (assuming K=1). There-
fore the communication criterion changes its mapping to P2. The com-
munication aware criterion can be written in the form of pseudocode
as shown in Figure 5.

K is the tunable parameter; the lower the value of K, the more is
the communication awareness. As shown in Figure 3, we can vary the
value of K in an outer tuning loop to find the system implementation
with lower total systems energy. When the value of K is high, the sys-
tem implementation is only voltage selection aware and results in a
schedule as given by algorithm discussed in [8]. As we start reducing
the value of K, the implementation becomes more and more commu-
nication aware and reduces both the communication and computation
energy. The optimal value of K varies for different taskgraph inputs
and the outer loop can be used to give the system implementation with
lower total energy consumption. We do not claim this to be the abso-
lutely optimal solution with lowest possible total energy consumption,

but it is certainly better than the previously proposed approaches. It
remains an open research direction to find the truly optimum K.

If communication criterion described in Figure 5 detects that the
particular mapping of Ti to Pj is causing lot of interprocessor commu-
nication, we change the mapping of Ti to Pk. Pk is selected to be the
processor to which the heaviest communicating parent of Ti was
mapped to. In the case of figure 2(c), there is only one other processor
P2. This is the maximum that we can reduce the interprocessor com-
munication and at the same time keep the algorithm to find new map-
ping simple. We take care to check that the deadline constraints are
satisfied in the new mapping. The algorithm for finding the new map-
ping is described in Figure 6.

Eji E∈

Figure 4. The proposed task scheduling algorithm.

 Step 1: // Task order selection: For each task Ti,
Calculate lfti = min (dli, lftj - NCi s.t. and)
Calculate esi = max (ri, min (aPj s.t. <N+1))
Calculate PRIi = lfti + esi
Select Ti with the smallest PRIi

 Step 2:// Best-fit processor selection (Voltage scheduling aware)
1. if aPj= ri, select Pj, map Ti to Pj
 if (communication criterion) // see Figure 5
 si = ri = aPj, aPj = si + NCi
 else
 Find-new-mapping // see Figure 6
2. else Map Ti to Pj, such that aPj < ri and aPj > aPk for every

aPk < ri, // Pj is the processor available at the latest
time just before ri

 if (communication criterion) // map Ti to Pj
 si = ri = aPj,
 aPj = si + NCi
 else
 Find-new-mapping
3. else // all processors are busy at release time of task Ti
 Map Ti to Pj, if , //Pj is the earliest

available processor after ri
 if (communication criterion) // map Ti to Pj
 si = aPj , aPj = si + NCi
 else
 Find-new-mapping

i∀ Eij E∈
j∀

k j≠()

aPj aPk≤ k j≠()∀

 Index of symbols:
lfti = latest finish time of task Ti, dli = deadline time of Ti,
NCi = number of cycles of Ti esi = earliest start time of Ti,
ri = release time of Ti, aPi = available time of processor Pi,
PRIi = priority of task Ti, si = start time of Ti,

514

After task scheduling is done, the tasks are mapped to processors
and the order in which they will execute is determined. There are dif-
ferent ways by which the slack can be distributed among the tasks
[12][8]. We choose the approach described in [8] which is known to
work better. Using this approach, we select the voltage levels for the
cycles in the tasks by formulating the ILP problem to minimize the
total energy. We use IBM optimization solutions and library
OSLSSLV available from [9] to solve the ILP problem.

5. Experimental results and discussion
In order to verify the impact of interprocessor communication energy
on scheduling, we implement the above framework and perform
experiments on random tasksets generated using TGFF [10]. We also
evaluate the framework on different architecture configurations by
varying the number of processors in the system. To evaluate the poten-
tial of our algorithm in real applications, we apply this algorithm to a
generic MultiMedia System (MMS) and discuss the results of the
experiments.
5.1. Experiments on random taskgraphs
First we perform experiments on a system with only two processors
and two different voltage levels, a high voltage at Vh and a low voltage
at Vl. For simplicity, we assume that the cycle time at Vh is 1 time unit
while at Vl it is only 2 time units. In these taskgraphs, the number of
cycles taken by each task as well as intertask communication traffic
volume are randomly generated. We vary the communication aware-
ness parameter K in Figure 5 and observe the effect on total interpro-
cessor communication volume and number of slowed down cycles
executed at low voltage level. The scheduling algorithm described in
Figure 4 takes a few seconds to run to completion for all the task
graphs we considered in our experiments. The time taken by the algo-
rithm increases linearly as the number of tasks and the number of arcs
in the graph increase. The results are tabulated in Table 1.

We expect that when K is high (K =10), the communication
awareness criterion in Figure 5 almost always returns true and the
scheduling algorithm works only on minimizing the energy from volt-

age selection awareness perspective by maximizing the total slack.
Therefore this column has maximum interprocessor communication
volume due to lowest communication awareness and at the same time
maximum number of cycles executed at low voltage. As we decrease
K (K=1 in Table 1), the scheduling algorithm becomes more interpro-
cessor communication energy aware and so, the mapping is done in
such a way that the interprocessor communication volume decreases
compared to the case with higher K. Therefore we expect the interpro-
cessor communication volume to decrease in this case. If we set K
very low (K =0.1), the scheduling tries to minimize the communica-
tion volume further more limiting the slack considerations. Therefore
the communication volume is the minimum among the three cases,
but it also has fewer cycles executed at low voltage level. This con-
firms to the trade-off between the interprocessor communication
energy and the processor computation energy for different schedules.
We can clearly see the expected trend in the communication volume
and number of slowed down cycles as discussed above in the results
for the random taskgraphs generated using TGFF listed in Table 1.

The graphs shown in Figure 7 show the expected trend in total inter-
processor communication volume (in number of units from the ran-
domly generated taskgraphs) and the total number of cycles executed
at low voltage. We can see from the interprocessor communication
volume graph, that as value of K is reduced, the total communication
volume decreases. The reduction is much more as the number of tasks
increases as is the case of R5 compared to R1. At the same time, the
number of cycles executed at lower voltage also decreases.

In order to evaluate the effectiveness of the algorithm in different
system architecture configurations, we evaluate the communication
volume and the number of slowed down cycles by varying number of
processors. The results of these experiments are tabulated in Table 2.
(R6-R8 are benchmarks of similar complexity as R1-R5 in Table 1.)

Figure 5. The proposed communication-awareness criterion.

 Map Ti to Pj
// Communication criterion starts
count = 0

 s.t. and
Add_traffic += Bki
count += 1

Add_traffic_per_edge = Add_traffic / count
Avg_traffic_per_edge = / Total number of edges
if (Add_traffic_per_edge > K * Avg_traffic_per_edge)

return false
else

return true

k∀ Eki E∈ map Ti() map Tk()≠

Bik∑

Figure 6. Find-new-mapping.

 Map Ti to Pj
// Communication criterion returns false, Find-new-mapping starts
Find k’ such that Bk’i = max (Bki) and
if (aP(map(Tk’)) > ri and aP(map(Tk’)) + NCi < lfti)

map (Ti) = map(Tk’)
else if

map (Ti) = map(Tk’)

map Ti() map Tk()≠

aP map Tk'()() ri≤

Figure 7. Trends in total interprocessor communication volume and
number of cycles executed at lower voltage for random graphs.

0

50000

100000

150000

200000

250000

300000

R1 R2 R3 R4 R5
Different Random Taskgraphs
(R1, R2,…, R5 described in Table 1)

Total Interprocessor Communication Volume

K=0.1

K=1

K=10

0

50000

100000

150000

200000

250000

300000

R1 R2 R3 R4 R5
Different Random Taskgraphs
(R1, R2,…, R5 described in Table 1)

Total Interprocessor Communication Volume

K=0.1

K=1

K=10

0
100
200
300
400
500
600
700
800
900

Number of Cycles at Low Voltage

K=0.1

K=1

K=10

Different Random Taskgraphs
(R1, R2,…, R5 described in Table 1)

R1 R2 R3 R4 R5
0

100
200
300
400
500
600
700
800
900

Number of Cycles at Low Voltage

K=0.1

K=1

K=10

K=0.1

K=1

K=10

Different Random Taskgraphs
(R1, R2,…, R5 described in Table 1)

R1 R2 R3 R4 R5

515

We notice that as the number of processors (NP in Table 2) increases,
the total interprocessor communication volume does not necessarily
show a monotonic trend. The number of cycles executed at the lower
voltage level also does not increase much because the schedule does
not distribute the tasks equally among processors and so some proces-
sors are not executing any task most of the time. We can observe this
trend in the results tabulated in Table 2.
5.2. Experiments on MultiMedia System taskgraphs
In subsection 5.1, we have observed the effectiveness of our proposed
technique in reducing the total interprocessor communication volume
by tuning the parameter K in the algorithm. Now we need to assess
the impact of reducing the interprocessor communication volume on
the total systems energy. The number of computation cycles and the
number of bytes transferred in a random taskgraph may not be useful
to calculate the computation and communication energies, respec-
tively. This is because the proportion of the number of cycles and
number of bytes of communication in a random taskgraph may never
correspond to that in any real application taskgraph. For this reason,
we need to compare the communication energy with the computation
energy for a real system taskgraph rather than a random taskgraph.

We apply our algorithm to schedule the tasks in a generic MMS.
The MMS we consider is an integrated video/audio system consisting
of a H263 video/MP3 audio encoder pair (ENC in Table 3) and an
H263 video/MP3 audio decoder pair (DEC). We partition these appli-
cations into 40 distinct tasks. We insert monitors in the C++ code and
profile the intertask communication, as well as the number of cycles
taken by each task. We experiment with three different video clips
(akiyo, foreman, toybox) and two different MP3 clips (wawa and
beyond). Using the profiled information in the application task graph,
we schedule the task graph on a system with two ARM 11 processors.
The interprocessor communication energy for these processors is 20
pJ/bit assuming these processors are placed adjacent to each other.
The computation energy is 40 pJ/cycle at higher voltage and 13.3 pJ/
cycle at lower voltage [19]. The interprocessor communication
energy is estimated to be 20 pJ/bit1. We assume that the data commu-
nicated over a link will be stored in local registers at the port of the

processor for a few cycles (we assume 10 cycles in general) before it
is stored in a local memory bank of the processor or used by the com-
putation unit for computation. We evaluated the register energy con-
sumption metrics using Spice. The register buffer energy for storing
the data is found to be 0.75 pJ/bit.

The interprocessor communication volume and the number of
slowed down cycles executed at low voltage are tabulated in Table 3.
From the table, we can see that for encoding say akiyo video clip
using H263 encoder together with encoding wawa audio clip using
MP3 audio encoder (row ENC_akiyo/wawa in Table 3), as we decrease
K in our algorithm from 10 to 0.1, the task scheduling on the proces-
sors changes in such a way that the interprocessor communication
volume decreases considerably from 333190 to 87600 (almost 70%
decrease!). Of course, this decreases the interprocessor communica-
tion energy. The side-effect of the varying schedule is that the slack
exploitation for lowering voltage levels and saving energy decreases.
As we can see, the number of cycles executed at low voltage
decreases (by almost 10%) and causes increase in the computation
energy.

The impact of these variations on the total system energy can be
seen in Figure 8. We can see that for K=10, the communication is
totally ignored in making the scheduling decisions. For example, for
the akiyo video clip encoded using the MMS encoder, the interproces-
sor communication energy is approximately 60% of the total systems
energy for K=10. This results in higher total systems energy for K=10
than other schedules for smaller values of K. For K=0.1, the interpro-
cessor communication energy is reduced to only 30% of the total sys-
tems energy and this schedule reduces the total systems energy. The
optimal value of K for which the systems energy is minimized is
found by tuning K as shown in the design flow in Figure 3. Thus we
can conclude that the proposed system implementation approach
reduces the total interprocessor energy.
5.3. Practical system implementation considerations
In products which implement such complex multimedia systems, the
software code for the application is given to the system designer. The
better the algorithm implemented in the software in terms of account-
ing for the hardware features of the processor on which it is going to
implement, the lesser is the number of cycles it will take. The amount
of computational energy savings that can be achieved by the voltage
selection, is limited by the software. The interprocessor communica-
tion energy that can be saved depends upon the interprocessor com-
munication volume as well as the communication energy cost per unit
communication volume for the communication link Wlm denoted as
ECOMlm. The total communication energy is given by TECOM =

 (recall (2) from Section 3). We try to reduce the

interprocessor communication volume which corresponds to reducing
. So TECOM can be further reduced by placing the processors

Task
set

NP=2 NP=3 NP=4 NP=5

Total
commun
ication

Slowed
cycles

Total
communi

cation

Slowed
cycles

Total
commun
ication

Slowed
cycles

Total
communi

cation

Slowed
cycles

R6 135875 849 143145 1007 143145 1021 143145 1021

R7 136785 942 151323 999 158593 999 158593 999

R8 72270 701 64518 925 81783 925 81783 925

Table 2. The impact of varying the number of processors

1. Communication energy per bit is estimated approximately from ARM documentation
[19] and using formula E=1/2 * V2 * (Width of metal wire) * (Length of metal wire) *
X(capacitance parameter from TSMC data sheet) = 20 pJ/bit.

Bij ECOMlm⋅
i j,
∑

Bij
i j,
∑

 Table 3. Trend in communication volume and number of cycles executed at low voltage for MMS taskgraphs.
MMS Taskset

(video/audio) clip
Number
of Tasks

Number
of Arcs

K = 0.1 K = 1 K = 10
Total inter-

processor traffic
Number of

slowed cycles
Total inter-

processor traffic
 Number of

slowed cycles
Total inter-

processor traffic
 Number of

slowed cycles
ENC_akiyo/wawa 24 27 87600 19215 103790 19215 333190 21740

ENC_foreman/wawa 24 27 38190 22913 51712 28314 219212 25033
ENC_toybox/wawa 24 27 38190 13237 55954 12795 209000 20710
DEC_akiyo/beyond 16 17 724 11687 14854 17687 82123 20544

DEC_foreman/beyond 16 17 724 9092 14854 15107 80795 15274
DEC_toybox/beyond 16 17 14774 3226 14774 3226 80715 5864

communication awareness increases

516

communicating the most close to each other so that ECOMlm corre-
sponding to the large Bij will also be reduced.

The architecture graph L(P,W) shown in Section 3 corresponds
to the communication architecture for the processors. In our experi-
ments we consider the point-to-point communication architecture.
This can also be a network-on-chip type of architecture in which the
adjacent processors have a direct link for communication between
them. Instead, if we have a bus-based communication architecture,
Elm will be the same for all processors. This is because when any
two processors Pl and Pm are communicating over a bus, irrespec-
tive of their physical proximity, the whole bus is switched. In that
case, reducing TECOM amounts to reducing total interprocessor
communication volume. But in the case of bus-based communica-
tion, the time overlap of communication also comes into picture
and then, the feasible schedule has to consider the impact of bus
arbitration scheme on the scheduling and subsequently on the total
system performance and energy. This will lead to additional trade-
offs in performance and total system energy. This can be the future
work for the communication aware scheduling which points out the
importance of reducing the interprocessor communication volume
in the task scheduling step itself and evaluates it in comparison with
the computation energy reduction.

6. Conclusion
In this paper, we first motivate the need to take into account the
interprocessor communication volume in order to minimize the
total system energy during the task scheduling phase. We then for-
mally state the generalized task scheduling problem and suggest a
heuristic approach which tries to reduce the interprocessor commu-
nication volume and, at the same time, increase the total available

slack for voltage scaling. Experimental results with random and
real multimedia system taskgraphs show that by tuning the parame-
ter for communication awareness, we can vary the impact of task
scheduling on total interprocessor communication volume. We can
further extend this framework to integrate processor placement and
communication architecture exploration.

References

Figure 8. Total systems energy trends for MMS Encoder and MMS
Decoder for three different clips.

MMS Encoder Total Energy

MMS Decoder Total Energy

0

2000

4000

6000

8000

10000

12000

14000

Energy
in nJ

K=0.1 K=1 K=10 K=0.1 K=1 K=10 K=0.1 K=1 K=10
akiyo foreman toybox

Computation Energy
Communication Energy

0

2000

4000

6000

8000

10000

12000

14000

Energy
in nJ

K=0.1 K=1 K=10 K=0.1 K=1 K=10 K=0.1 K=1 K=10
akiyo foreman toybox

Computation Energy
Communication Energy

Energy

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

in nJ

K=0.1 K=1 K=10 K=0.1 K=1 K=10 K=0.1 K=1 K=10

akiyo foreman toybox

Computation Energy
Communication Energy

Energy

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

in nJ

K=0.1 K=1 K=10 K=0.1 K=1 K=10 K=0.1 K=1 K=10

akiyo foreman toybox

Computation Energy
Communication Energy

[1] J. Liu et al, "Communication Speed Selection for Embedded
Systems with Networked Voltage-Scalable Processors,"
Proc.CODES 2002, USA.

[2] W. Dally, B. Towles, "Route Packets, Not Wires: On-chip
Interconnection Networks," Proc. DAC, Las Vegas, NV, June
2001.

[3] A. Chandrakasan, R. Broderson, “Low Power Digital CMOS
Design,” Kluwer Academic Publishers, 1995.

[4] L. Benini et al, "A Survey of Design Techniques for System-level
Dynamic Power Management," IEEE Trans. on VLSI Systems,
June 2000.

[5] C. M. Krishna, K. G. Shin, “Real-time Systems,” WCB/McGraw-
Hill, 1997.

[6] N. Namgoong, M. Yu, and T. Meng, "A High-efficiency Variable-
voltage CMOS Dynamic DC-DC Switching Regulator," Proc.
ISSCC, 1997.

[7] J. Luo, N. Jha, "Power-conscious Joint Scheduling of Periodic
Task graphs and Aperiodic Tasks in Distributed Real-time
Embedded Systems," Proc. ICCAD, San Jose, CA, Nov. 2000.

[8] Y. Zhang, X. Hu, and D. Chen, "Task Scheduling and Voltage
Selection for Energy Minimization ," Proc. DAC, New Orleans,
LA, June 2002.

[9] http://www-3.ibm.com/software/data/bi/osl/features/lp-sol.html
[10] http://helsinki.ee.Princeton.Edu/dickrp/tgff
[11] J-M. Chang, M. Pedram, ”Codex-dp: Co-design of

Communicating Systems Using Dynamic Programming,” IEEE
Trans. on CAD, July 2000.

[12] F. Gruian, K. Kuchcinsky, “LEneS: task scheduling for low-
energy systems using variable supply voltage processors,” Proc.
ASP-DAC, 2001.

[13] H. El-Rewini et al, ”Task Scheduling in Multiprocessor Systems,”
IEEE Computer, Dec.1995.

[14] J. Luo, N. K. Jha, “Battery-aware static scheduling for distributed
real-time embedded systems,” Proc. DAC, Las Vegas, NV, June
2001.

[15] B. C. Mochocki, X. Hu, ”A Realistic Variable Voltage Scheduling
Model for Real-Time Applications,” Proc. ICCAD, San Jose, CA,
Nov. 2002.

[16] C. J. Hou et al, ”Allocation of periodic task modules with
precedence and deadline constraints in distributed real-time
systems,” IEEE Trans. on Computers, Dec. 1997.

[17] P. D. Hong et al, ”Scheduling of DSP programs onto
multiprocessors for maximum throughput,” IEEE Trans. on
Signal Processing, June 1993.

[18] J. M. Chang, M. Pedram, ”Energy minimization using multiple
supply voltages,” IEEE Trans. on VLSI Systems, Dec. 1997.

[19] http://www.arm.com/armtech/ARM11
[20] http://www.transmeta.com/technology/specifications/index.html
[21] A. Jantsch and H. Tenhunen (Eds.), ”Networks on Chip,” Kluwer

Academic Publishers, 2003.

517

