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1 Introduction

Many problems arising in interactive and distributive computation share the general frame-

work that a number of processors wish to collaboratively evaluate a Boolean function while

each processor has only partial information. The question of interest is to determine the min-

imum amount of information transfer required under the assumption that each processor has

unlimited computational power and the messages are transferred by a “blackboard”, viewed

by all processors.

One of the most interesting examples is the round-table model, proposed by Chandra, Furst

and Lipton [CFL], involving k players each having a number Xi on his/her forehead; (so that

the i-th player knows all numbers except for Xi). For k = 3, they proved a tight lower bound

for the minimum number of bits to be exchanged to compute the sum of Xi’s. For general k,

the lower bounds were further improved by Babai, Nisan and Szegedy [BNS] who gave a lower

bound of Ω(m2−k) for computing some explicit functions on k strings m-bits each.

When only two players are involved, it is just the usual model for communication complex-

ity, which was first proposed by Yao [Y1] and has been studied extensively by many researchers

[HMT, LS, MS, PS, Th]. In this paper we consider the following model generalizing both the

round-table model and Yao’s model:

A number of players wish to cooperatively determine a Boolean function
f(x1, . . . , xk) which accepts k inputs each m bits long. Suppose each player
knows at most t inputs. The question of interest is to minimize the number
of bits Ck,t(f) to be exchanged in order to compute f .

To determine the communication complexity Ck,t(f) could be a difficult problem for a gen-

eral function f . The main thrust of this paper is to demonstrate the relation of communication

complexity to several hypergraph properties. Consequently, lower bounds for Ck,t can then be

established. These hypergraph properties arise in the study of random-like graph properties,

so called quasi-random.

1This paper has appeared in SIAM J. Discrete Math. 6 (1993), 110-123
2Bell Communications Research, Morristown, NJ 07960.
3Visitor, DIMACS center, Rutgers University, P.O. Box 1179–Busch Campus, Piscataway, NJ 08855
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Quasi-randomness was first introduced in [CGW] by showing a large number of disparate

graph properties are mutually equivalent in the sense that any graph satisfying one of the

properties must of necessity satisfy all of them. More recently, in [C] it was shown that several

equivalence classes Ai form a hierarchy of classes of properties for k-uniform hypergraphs (or

k-graphs, for short) and for Boolean functions with k input arguments (also called k-functions).

The quasi-random class Ak, introduced in [CG1], consists of graph properties such as : “For

any fixed s ≥ 2k all k-graphs on s vertices appear almost equally often as induced subgraph

of G.” On the other hand, in A0 there is the property that the number of edges in G is

approximately the same as the number of non-edges in G. The detailed description of the

equivalence classes Ai and the hierarchy

A0 ⊃ A1 ⊃ · · · ⊃ Ak

will be described in Section 2.

Among various properties in the equivalence class Ai, there are two interesting invariants–

the i-discrepancy and the i-deviation (see Section 2 for definition). Intuitively, the i-deviation

provides a quantitative indication as to how much the graph deviates from random graphs.

Discrepancy is useful in various contexts, in particular, corresponding to various statistical

tests arising in complexity analysis. Roughly speaking, discrepancy is a “global” property

that is often hard to compute, while deviation is a “local” property that is easy to compute.

The quasi-randomness results imply that the i-discrepancy of a function is small if and only

if its i-deviation is small. Furthermore, the i-discrepancy can be used to characterize the

communication complexity Ck,i. Using the results of [BNS], this further leads to explicit

construction of functions fk,t with communication complexity Ck,t lower bounded by Ω(mc−t).

One of the consequences is a simple proof of the lower bound of Ω(m2−k) on the communication

complexity of the “generalized inner product” function as described in Section 3.

The communication complexity Ck,t corresponds in a natural way to the complexity of a

t-head Turing machine that computes Boolean functions with k inputs (as discussed in Section

3). As an immediate consequence, lower bounds for time-space tradeoffs can be obtained. We

prove that for any fixed t, any (t − 1)-head TM computing the function fk,t on m-bit strings

requires a time-space tradeoff of TS ≥ Ω(m2).

Discrepancy can also be interpreted in terms of a game of switches and lights (also discussed

in Section 3). Apart from being interesting in its own right, this interpretation yields an short

proof that the communication complexity Ck,i of a random k-function f is at least (k−i+1)
2 m.

In Section 4, we conclude with some open problems and remarks about the relations of

communication complexity to other complexity issues. The quantitative quasi-random classes
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for k-graphs with edge density α and various expansion properties are also mentioned.

2 Quasi-random Classes

2.1 notation

We use
(X

k

)

to denote the set of k-element subsets of a set X of cardinality ≥ k. A k-graph

G = (V,E) consists of a set V = V (G), called the vertices of G, and a subset E = E(G) of

the set
(V

k

)

called the edges of G. Throughout this paper, G denotes a k-graph on n vertices

unless otherwise specified.

For X ⊆ V, G[X] denotes the subgraph of G induced by X, i.e. G[X] =
(

X,E ∩
(X

k

)

)

. Let

H denote an l-graph where l < k and V (H) = V (G). The set E(G,H) of edges of G induced

by H is defined to be:

E(G,H) = {x ∈ E(G) :

(

x

l

)

⊆ E(H)}

For l = 1, the edge set of H is just a subset of V (G) and E(G,H) = E(G[H]). We denote

e(G) =| E(G) | and e(G,H) =| E(G,H) |.

Discrepancy. For i ≥ 2, the i− discrepancy of G, denoted by disci(G), is defined as follows:

disci(G) = max
H:(i−1)−graph

| e(G,H) − e(Ḡ,H) |

| V (G) |k

where Ḡ denotes the complement of G with edge set
{

x ∈
(V

k

)

: x 6∈ E(G)
}

.

We remark that disc2 is often called discrepancy in the literature (see [ES]). disci can be

viewed as a natural generalization of discrepancy.

We let µG :
(V

k

)

→ {−1, 1} denote the edge function of G, i.e. for x ∈
(V

k

)

,

µG(x) =

{

−1 if x ∈ E
1 otherwise

Let V k denote the set of k-tuples (v1, . . . , vk), vi ∈ V , where the v’s are not necessarily distinct.

Let
∏(i)

G : V k+i → {−1, 1} denote the following function of G.

∏(i)
G (u1, . . . , u2i, vi+1, . . . , vk) =

∏

ǫ1

· · ·
∏

ǫi

µG(ǫ1, . . . , ǫi, vi+1, . . . , vk)

where ǫj ∈ {u2j−1, u2j} for j ≤ i. Note that
∏(i)

G is a product of 2i terms each of which is an

edge function. For i = 0, we define
∏0

G = µG.

Deviation. The i − deviation of G, denoted by devi(G), is defined as follows:

devi(G) =
1

nk+i

∑

u1,...uk+i

∏(i)
G (u1, . . . , uk+i)
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Thus devi(G) assumes a value between -1 and 1. (Another interpretation is that nk+i devi is

the difference of the number of “even partial (squashed) octahedrons” and the “odd partial

(squashed) octahedrons” as described in [CG1] and [CG2].)

2.2 quasi-randomness

We will use the following convention. Suppose we have two classes P = P (o(1)) and P ′ =

P ′(o(1)), each with occurrences of the asymptotic o(1) notation. By the implication “P ⇒ P ′”,

we mean that for each ǫ > 0 there is a δ > 0 (a function of ǫ and k but independent of n) such

that if G(n) satisfies P (δ) then it also satisfies P ′(ǫ), provided n > n0(ǫ). Two properties P

and P ′ are said to be equivalent if P ⇒ P ′ and P ′ ⇒ P .

Here we define several classes of properties for k-graphs.

For i = 0 and 1, define the properties

R0 : e(G) − e(Ḡ) = o(nk) where Ḡ denotes the complement of G.

R1 : G is almost regular. That is,

∑

u1,...,uk−1

(

d+(u1, . . . , uk−1) − d−(u1, . . . , uk−1)
)2

= o(nk+1)

where d+(u1, . . . , uk−1) =| {v ∈ V : {u1, . . . , uk−1, v} ∈ E(G)} |, and

d−(u1, . . . , uk−1) =| {v ∈ V : {u1, . . . , uk−1, v} 6∈ E(G)} |.

For i ≥ 2, define

Ri : For every (i − 1)-graph H , e(G,H) − e(Ḡ,H) = o(nk)

In [CG1] it was shown that the property devk(G) = o(1) for a hypergraph G is equivalent

to a number of properties, among which are :

Q : For all k-graphs G′ on 2k vertices, the number of (labelled) occurences

of G′ in G as an induced subgraph is (1 + o(1))n2k2−(2k

k ).

Let s denote a fixed integer and s ≥ 2k.

Q(s) : For all k-graphs G′(s) on s vertices the number of (labelled) occurrences

of G′ in G as an induced subgraph is (1 + o(1))ns2−(s

k).

In [C] the deviation property is further generalized to the following property (denoted Pi)

For i ≥ 0,

Pi : devi(G) = o(1).

The main results of [C] can be summarized in the following two theorems.
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Theorem 1 Properties Pi and Ri are equivalent for i = 0, . . . , k. In particular for i ≥ 2, we

have

(i) disci(G) = max
H:(i−1)−graph

| e(G,H) − e(Ḡ,H) |

| V (G) |k
< (devi(G))1/2i

(ii) devi(G) < 4i (disci(G))1/2i

Theorem 1, in fact, has interesting computational implications. It is easy to see that computing

disci for general G (naively) takes time O(2ni

.nk), since the number of i-graphs is O(2ni

) and

for each i-graph H, computing | e(G,H) − e(Ḡ,H) | takes O(nk) time. On the other hand,

devi can be computed in time O(nk+i) since devi is a sum of nk+i terms, each term in turn

is a product of 2i subterms each of which is an edge function. Thus Theorem 1 leads to

the following conclusion: Although it takes exponential time to compute disci exactly, an

approximation can be obtained by using devi in only polynomial-time. We remark that it

would be of interest if the power 1/2i on the right-hand sides of the inequalities could be

improved.

Theorem 2 Let Ai denote the equivalence class of k-graphs for which Pi holds. Then,

A0 ⊃ A1 ⊃ A2 · · · ⊃ Ak

The family Ai = A
(k)
i of k-graphs is said to be (k, i)-quasi-random, or sometimes i-quasi-

random if there is no confusion. The term, “k-quasi-random” for k-graphs is the same as

“quasi-random” as in previous papers.

Here we describe the constructions of k-graphs Gi, separating class Ai from Ai+1, for it is

used in a later section on lower bounds for communication complexity. Since Pi ⇒ Pi+1 for

any i, we have Ai ⊇ Ai+1. To show Ai ⊃ Ai+1, for i = 0, . . . , k − 1, the idea is to construct

k-graphs Gi with the property that Gi ∈ Ai and Gi 6∈ Ai+1 using quasi-random graphs as the

basic building blocks. In [CG1], two families of quasi-random k-graphs are given, one of which

is the Paley k-graph Pk with V (Pk) = {1, 2, . . . , n} (n is a prime) and µPk
(u1, . . . , uk) = 1 if

and only if u1 + · · · + uk is a quadratic residue modulo n.

For each i, we define the k-graph Gi as follows:

V (Gi) = V (Pi) = V

E(Gi) = {x ∈

(

V

k

)

:|

(

x

i

)

∩ E(Pi) |≡ 0 (mod 2)}

Claim Gi ∈ Ai \ Ai+1

Proof: Part 1 Gi ∈ Ai :

It is shown in [C] (by making use of the character sum inequality of Burgess [B]) that

devi(Gi) = O(n−1/2)
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Therefore Gi satisfies Property Pi and hence is in Ai.

Part 2 Gi 6∈ Ai+1:

Consider the set E(Gi, Pi) of edges of Gi induced by the Paley graph Pi. An edge x is in

E(Gi, Pi) means every i-subset of x has a sum which is a quadratic nonresidue. By definition,

x contains an even number of i-sets each of which has a sum which is quadratic nonresidue.

This can happen only when
(k

i

)

≡ 0 (mod 2). Therefore either E(Gi, Pi) is empty or E(Ḡi, Pi)

is empty. Since k and i are all fixed integers,

| E(Gi, Pi) − E(Ḡi, Pi) | = | E

((

V

k

)

, Pi

)

|

= (1 + o(1))
nk

2(
k

i)

6= o(nk)

Thus Gi 6∈ Ai+1.

We now describe a more general construction of k-functions Gi using any quasi-random graph

in Ak as the basic building block.

General construction for Gi ∈ Ai \ Ai+1. Note that the proof of Part 2 is quite general–

does not make use of the fact that the basic building block was the Paley k-graph Pk. We show

here that, in fact, any quasi-random graph in Ak serves the purpose as well. (For example,

the family of “even intersection” k-graphs defined in [CG1] is an equally good choice.) First

we need the following definition of the “neighborhood graph” of a k-graph. Given a k-graph

G, the neighborhood graph G(v) of a vertex v is the graph having vertex set G \ {v} and edge

set E(G(v)) =
{

x ∈
( V
k−1

)

: x ∪ {v} ∈ E(G)
}

.

Let Hi be a quasi-random i-graph on n vertices. Then we define the k-graph Gi as follows:

V (Gi) = V (Hi) = V

E(Gi) = {x ∈

(

V

k

)

:|

(

x

i

)

∩ E(Hi) |≡ 0 (mod 2)}

We outline the proof of Gk−1 ∈ Ak−1 \ Ak.

Part 1 Gk−1 ∈ Ak−1 :

As a direct consequence of the definition of a neighborhood graph, we have

devi(G) =
1

n

∑

v∈V

devi(G(v))

For a fixed vertex v, consider the neighborhood graph Gk−1(v) of the k-graph Gk−1. The edge

set of Gk−1(v) can be characterized as follows.

E (Gk−1(v)) = E1 ∪ E2
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where

E1 =
{

y ∈
( V
k−1

)

: y ∈ Hk−1 and E(Hk−1(v)) ∩
( y
k−2

)

≡ 0 (mod 2)
}

and

E2 =
{

y ∈
( V
k−1

)

: y 6∈ Hk−1 and E(Hk−1(v)) ∩
( y
k−2

)

≡ 1 (mod 2)
}

Thus

µGk−1(v) = µHk−1
.µδ(Hk−1(v)) (∗)

where δ(Hk−1(v)) is defined to be :

δ(Hk−1(v)) =

{

y ∈

(

V

k − 1

)

: E(Hk−1(v)) ∩

(

y

k − 2

)

≡ 0 (mod 2)

}

It is not very hard to verify that (∗) implies that

devk−1(Gk−1(v)) = devk−1 (Hk−1)

Thus

devk−1(Gk−1) =
∑

v

devk−1 (Gk−1(v))

n
= o(1), since Hk−1 ∈ Ak−1

This shows Gk−1 ∈ Ak−1.

Part 2 The proof of Gk−1 6∈ Ak is identical to the proof of Part 2 with the Paley graph

construction.

3 Communication Complexity

3.1 Quasi-random classes of functions

A k-function is a function f from V k to {−1, 1}. We note that k-functions can be viewed

as ordered k-graphs and k-graphs can be regarded as symmetric k-functions. In fact, most

known lower bound constructions for k-functions are symmetric and thus can be reduced to

hypergraphs. We shall see in the following that the notions of discrepancy and deviation

extend to k-functions as well. For convenience, we use the same notation (disc and dev) for

discrepancy and deviation of k-functions, and we warn the reader to interpret appropriately

depending on the context. Thus, for example, disc(f) refers to the deviation of a k-function

f , whereas disc(G) stands for that of a k-graph G.

Let I denote a subset of size i of {1, . . . , k} = [k]. For a k-tuple x = (x1, . . . , xk), we define

xI to be an i-tuple (xa1 , . . . , xai
) where a1 < . . . < ai and ai ∈ I.

Discrepancy. Let Hi denote a family of i-functions where i < k and the members of Hi are

indexed by
([k]

i

)

, denoted by hI . We define E(f,Hi) as follows:

E(f,Hi) =
{

x ∈ V k : f(x) = −1 and for every hI ∈ Hi, hI(xI) = −1
}

.

We denote the cardinality of E(f,Hi) by e(f,Hi). The i-discrepancy of f is defined as follows

disci(f) = max
Hi−1

| e(f,Hi−1) − e(−f,Hi−1) |

| V |k
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Deviation. Define
∏(i)

f,I : V k+i → {−1, 1} by

∏(i)
f,I(x1, . . . , xk+i) =

∏

ǫ1

· · ·
∏

ǫk

f(ǫ1, . . . , ǫk)

where ǫj ∈ {xj+m−1, xj+m} if j ∈ I and m =| I ∩ [1, j] |; and ǫj = xi+m if j 6∈ I. The

i-deviation of f is defined to be:

devi(f) = max
I

1

nk+i

∑

x1,...,xk+i

∏(i)
f,I(x1, . . . , xk+i)

where I ranges over all subsets of [k] of size i.

For fixed i, we consider the following properties for a k-function:

R̃i : For i ≥ 2, for every family Hi−1 of i − 1-functions

e(f,Hi−1) − e(−f,Hi−1) = o(nk)

P̃i : devi(f) = o(1).

It can be shown that the properties R̃i and P̃i are equivalent. In fact, the analogs of Theorems

1 and 2 for k-functions also hold (see [C]).

3.2 Multiparty communication games

In ([BNS]), Babai, Nisan and Szegedy considered the communication complexity for k-functions

where each of the k players knows exactly k − 1 inputs. Let x = (x1, . . . , xk) denote an input

chosen uniformly over all k-tuples. Then the communication complexity is bounded by log 1
Γ(f)

where

Γ(f) = max
S

(Pr[x ∈ S and f(x) = −1] − Pr[x ∈ S and f(x) = 1])

where S ranges over so-called “cylinder intersections”. The theorem below generalizes the

result of [BNS].

We first extend the notion of “cylinders” and “cylinder intersections” for functions in class

Ai. A subset of S(i−1) of k-tuples is called a cylinder if membership in S(i−1) depends only on

i− 1 coordinates. Thus, based on which i− 1 of the coordinates the k-tuple depends on, there

will be
( k
i−1

)

types of S(i−1) in Ai. Furthermore, a subset of k-tuples is a cylinder intersection

if it can be represented as an intersection of cylinders. Let ∩S(i−1) represent a subset which

is an intersection of all
( k
i−1

)

types of cylinders. We define Γi(f) of f to be

Γi(f) = max
∩S(i−1)

(

Pr[x ∈ ∩S(i−1) and f(x) = −1] − Pr[x ∈ ∩S(i−1) and f(x) = 1]
)

Let I denote the subset of i coordinates that S(i) depends on. Then we have the following

natural correspondence between cylinders S(i) and i-functions hI , for i = 1, . . . , k − 1:

x ∈ S(i) ⇔ hI(xI) = −1

8



and

x ∈ ∩S(i) ⇔ for every hI ∈ Hi, hI(xI) = −1.

This enables us to prove the following.

Theorem 3 For i = 2, . . . , k,

Γi(f) = disci(f)

Ci(f) ≥ log
1

disci(f)

where Ci(f) denotes the communication complexity of f in class Ai

Proof. Since x is chosen uniformly over all 2mk possible k-tuples, we have

Γi(f) = max
∩S(i−1)

(

Pr[x ∈ ∩S(i−1) and f(x) = −1] − Pr[x ∈ ∩S(i−1) and f(x) = 1]
)

= max
∩S(i−1)

1

2mk

[

| {x : x ∈ ∩S(i−1) and f(x) = −1} | − | {x : x ∈ ∩S(i−1) and f(x) = 1} |
]

= max
Hi−1

1

nk
[e(f,Hi−1) − e(−f,Hi−1)]

= disci(f)

The second part of the proof is similar to that of Lemma 2.2 in [BNS]; we include it here

for the sake of completeness. Let P be any valid protocol for the given function f . We denote

by P (x), the value of f(x) as computed by the protocol P . Let N be the number of different

possible strings that may be written on the board by P . We want to prove that N ≥ 1/Γi(f).

With each string s we associate XP,s, the set of inputs for which s gets written on the board

by P . It is not hard to see that XP,s is a cylinder intersection ∩S(i−1).

Let x be chosen uniformly over all k-tuples. Since P is a valid protocol,

|Pr[P (x) = f(x)] − Pr[P (x) 6= f(x)]| = 1

We can estimate the same by summing over different XP,s:

|Pr[P (x) = f(x)] − Pr[P (x) 6= f(x)]|

≤
∑

s

|Pr [P (x) = f(x) and x ∈ XP,s] − Pr [P (x) 6= f(x) and x ∈ XP,s]

where s ranges over all possible strings that may be written.

Thus

1 ≤
∑

s

|Pr [P (x) = f(x) and x ∈ XP,s] − Pr [P (x) 6= f(x) and x ∈ XP,s]

=
∑

s

Pr [f(x) = 1 and x ∈ XP,s] − Pr [f(x) = −1 and x ∈ XP,s]

≤
∑

s

Γi(f), since XP,s is a cylinder intersection

= NΓi(f)
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This proves

Ci(f) = log N ≥ log

[

1

Γi(f)

]

.

2

We remark that we do not restrict the number of players. Suppose we consider the minimum

number Ck,i(p) of bits required to be exchanged for some p players, each knowing at most

i − 1 inputs of a k-function. It is easy to see that Ck,i(p) = Ck,i(p
′) if p′ > p. Moreover,

Ck,i(p
′′) > Ck,i(p) if p′′ < p.

Fact. For any k-function f , Ci(f) ≤ (k − i + 1)m.

Proof. If (k − i + 1) inputs get written on the board, then some player would know all k

inputs. This could be done, trivially, if a player always writes an input that is not already

present on the board.

Theorem 4 For a random k-function f , Ci(f) ≥ (k−i+1)
2 m.

Proof. For a random k-function f , it is not hard to verify that with probability approaching

1, we have |e(f,H) − e(−f,H)| = O(n(k+i−1)/2) for every (i − 1)-function H and this is best

possible. Using similar methods as in [ESp], this implies,

disci(f) = max
Hi−1

|e(f,Hi−1) − e(−f,Hi−1)|

nk

= O(n(−k+i−1)/2)

= O(2(−k+i−1)m/2)

Hence

Ci(f) = Ω

(

(k − i + 1)

2
m

)

.

In [BNS] examples of functions f with Ck(f) = Ω
(

m
2k

)

are given. Here we give a short

proof for the following “Box-product” of functions.

Box-product of k-functions and Deviation. Let f : V k → {−1, 1} and g : W k → {−1, 1}

be two k-functions. We define f2g : (V × W )k → {−1, 1} to be the following k-function

f2g ((x1, y1), . . . , (xk, yk)) = f(x1, . . . , xk).g(y1, . . . , yk)

It can be shown that (also see [CG2])

devi(f2g) = devi(f).devi(g)

Example 1. Consider the graph G on three vertices v1, v2, v3, with the edges {v1, v2} and

{v2, v3}; let V = {v1, v2, v3} and f denote the edge function of G. It is easy to check that
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dev0(f) = dev1(f) = 1/9. Taking the Box-product of f with itself gives us the function

f ′ = f2f with the properties: dev0(f
′) = dev1(f

′) = 1/81.

Example 2. Consider the following “generalized inner product function” fm, defined on

subsets Si of a set of size m.

fm(S1, . . . , Sk) =

{

1 if S1 ∩ . . . ∩ Sk is even
−1 otherwise

For the special case m = 1, f1, each Si is a singleton or empty. It is easy to verify, by

induction on m, that

fm = f12 · · ·2f1 (m times)

Since devi(f1) = 1 − 2−k−i+1 = c < 1, we readily obtain devi(fm) < cm. In particular,

devk(fm) < cm, where c < 1.

This implies that disck(fm) < cm/2k

. And by Theorem 3,

Ck(fm) ≥ log
1

disck(fm)
= Ω

(

m

2k

)

Therefore, we prove the following.

Theorem 5 The generalized inner product function fm has Ck(fm) = Ω
(

m
2k

)

.

One of the main results in [BNS] is to establish an upper bound for disckfm and thereby

obtain a lower bound for Ck(fm). Independently, an upper bound for disckfm is also proved in

[CG1]. However, both the proofs are more complicated in comparison to the one we described

above. The significance of the Box-product is thus apparent. Starting with a function with

devi < 1, we can construct functions with exponentially small devi by repeatedly considering

Box-product of the original function with itself.

The following result shows that Theorem 5 is an instance in a more general setting.

Theorem 6 There are explicit k-functions f satisfying

Ci(f) = Ω

(

m

2i

)

.

Proof. Recall from Section 2.2, we constructed k-graphs Gi ∈ Ai \ Ai+1 for which

devi(Gi) = O(n−1)

In terms of k-functions, this implies that

devi(fk,i) = O(2−m)

So

disci(fk,i) ≤ (devi)
1/2i

= O(2−m/2i

)

11



This implies Ci(fk,i) = Ω
(

m
2i

)

.

Remark. One of the important questions is to find communication complexity lower bounds

that do not decrease exponentially in k for some explicit k-function. This would improve results

[BNS] on pseudorandom sequences, time-space tradeoffs for multi-head Turing machines, and

length-width tradeoffs for oblivious branching programs. Improving the relation (Theorem 1)

between disci and devi would be significant for the same reason.

3.3 Application to Turing machines

Let f be a k-function. Under our general communication model, we have the following analog

of the result of Babai et al [BNS] for the time-space tradeoff of Turing machines and we omit

the proofs here.

Lemma 1 Any i-head Turing machine that computes a k-function f from the following input:

< x1 > ∗ ∗ ∗∗ < x2 > ∗ ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗ < xk >

(where ∗ ∗ ∗∗ means l spaces on the input tape) requires a time-space tradeoff of TS ≥

lCi+1(f)/i.

And hence

Theorem 7 For any fixed i, any i-head Turing machine computing the k-function fk,i requires

a time-space tradeoff of TS ≥ Ω(m2).

3.4 Discrepancy and the switching lights model

There is yet another interpretation for disci in terms of the switching lights model, first de-

scribed in [Sp] for the two dimensional case. The game consists of an n × n array A of lights

and 2n switches, one for each row xi and column yj. Each switch when thrown changes each

light in its line from off to on or from on to off. The difference is defined as the absolute

value of the number of lights on minus the number of lights off ranging over all possible set-

tings of the switches. Given an initial configuration, the object is to maximize the difference.

Mathematical formulation of this problem shows that maximizing this difference corresponds

to computing the discrepancy (the Γ function) in the multiparty communication model in a

sense made precise in the theorem below.

Consider a k-dimensional array of nk lights. Imagine each switch controlling an i-dimensional

hyperplane of ni lights; i.e. each switch when thrown changes each light in the particular hy-

perplane from off to on or from on to off. There are (i + 1)nk−i such switches and the aim is

to maximize the difference between the number of lights on and off. We denote this by Di
k.

12



Thus, in k-dimensions, we formulate k−1 discrepancy problems associated with the switching

game.

In 3-dimensions we have two problems: D2
3 and D1

3. The distinction is that each switch

controls a plane of lights in one case and a line of lights in the other. Intuitively, we would

expect D1
3 to be higher than D2

3, and the intuition is right. The mathematical formulation of

this case (D2
3) is as follows.

Let the array of n3 lights be represented by A(ijk) = ±1, for i, j, k = 1, . . . , n. Thus 1

represents a light on and −1 a light off. Further we let xi, yj, zk represent the 3n switches.

“Throwing” a switch xi corresponds to setting xi = −1. Given an initial setting of A(i, j, k) =

±1 we define the discrepancy of A to be

D(A) = max
xi,yj ,zk=±1

A(i, j, k) · xiyjzk

i.e. the maximum difference between the number of lights on and off that one can obtain by

throwing the switches. Further we define

D2
3 = min

A
max
xiyjzk

A(i, j, k)xiyjzk

to be the maximum ranging over all possible initial configurations of A. The case Di
k for

general i have a similar mathematical formulation.

The following theorem establishes the equivalence between Di
k and the “discrepancy” Γi

in the context of multiparty communication complexity. Firstly, we associate with a given

k–input function f , the k–dimensional array Af of size 2m × · · · × 2m where

Af (i1, . . . , ik) = f(x1 = i1, . . . , xk = ik)

Thus we are assuming (without loss of generality) that each input xj ranges from 1 to 2m. We

then have the following:

Theorem 8

Γi(f(m)) =
1

2mk
Dk−i

k (Af )

Proof. Basically, the number of inputs each player knows corresponds to the number of coor-

dinates required to specify a switch, and the possible bit sequences by the players correspond

to the switch settings. We describe the proof for i = k − 1. The general case is quite similar

and will be omitted. It is not difficult to see that Γk−1 can be rewritten as follows (see [BNS]).

Γk−1(f(m)) = max
φ1,...,φk

|E [f(x1, . . . , xk)φ1(x1, . . . , xk) · · · φk(x1, . . . , xk)] |

13



where the expectation is over all possible 2mk choices of x1, . . . , xk, and the maximum is taken

over all functions φj : ({0, 1}m)k → {0, 1} such that φj does not depend on xj . (Intuitively,

φj corresponds to possible messages communicated by player Pi.) Thus

Γk−1(f(m)) =
1

2mk
max

φ1,...,φk

|
∑

x1

· · ·
∑

xk

[f(x1, . . . , xk)φ1(x1, . . . , xk) · · · φk(x1, . . . , xk)] |

Whereas discrepancy of Af in the switching game is defined as

D1
k(Af ) = max

si1
,...,sik

2m
∑

i1=1

· · ·
2m
∑

ik=1

A(i1, . . . , ik)si1 · · · sik

where the switch sij : {1, . . . , 2m}k → {0, 1} depends on all but index ij . It is now easy to see

that the functions φj correspond to the switches sij .

Thus Γk−1(f(m)) =
1

2mk
D1

k(Af ) 2

The following theorem appears in [ESp] in the form of a result on a hypergraph-coloring

problem.

Theorem 9 There exist arrays A of nk lights such that

Di
k(A) ≤ c(k, i)n(k+i−1)/2

where c(k, i) is an explicit constant depending on k and i.

Proof. The proof is straight forward using the probabilistic method, and can be found in

[T].

Remark 1. Theorem 7 shows that for a random k-function f , disci(f) = O
(

n(k+i−1)/2
)

.

Thus this yields a simple proof of

Ci(f) ≥ log
(

n(k+i−1)/2
)

= log
(

2(k+i−1)m/2
)

=
(k + i − 1)

2
m.

Remark 2. Note that Theorem 9 guarantees the existence of an array A such that Di
k(A) ≤

cn(2k−i)/2. Can we, in fact, construct such an array? The question is open for k > 2. For

k = 2 it is known that an n × n Hadamard matrix H works! That is,

D1
2(H) ≤ n3/2

However, it is not clear how to generalize the notion of Hadamard matrices for the case of

k > 2. Apart from being an interesting derandomization question by itself, this has the follow-

ing implications. In view of Theorem 8, upper bounds on Di
k yield, in turn, upper bounds on
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Γi, and further give lower bounds on the communication complexity of multiparty protocols.

Thus, making Theorem 5.1 constructive seems to be an interesting open problem.

Remark 3. The inequality in Theorem 7 is the best possible. That is, given any arbitrary

initial configuration for the array of lights, one can set the switches such that the maximum

difference is Ω(n(k+i−1)/2). In fact, the random configuration achieves the bound which can

be proved by generalizing the result in [ESp]. In fact, the method of conditional expectations

can be used in derandomizing the algorithm and a sequential as well as a parallel algorithm is

described in [T] to achieve the optimal setting of the switches.

4 Problems and Remarks

In addition to various problems that were mentioned in previous sections, many problems and

directions remain to be explored. It would be of interest to establish relations and connec-

tions with other complexity problems. For example, an interesting relation between circuit

complexity and quasi-randomness has been demonstrated through some recent work of Hastad

and Goldmann [HG]. Using the results of [BNS], Hastad and Goldmann show that (inter alia),

evaluating the generalized inner product function on k + 1 inputs by a depth 3 unweighted

threshold circuit with bottom fanin at most k would require size 2Ω(n/k4k). One way to im-

prove these lower bounds is to come up with explicit hypergraphs or k-functions with smaller

discrepancy or higher communication complexity.

Although we deal with hypergraphs with the edge density 1/2, the results can easily be

generalized to hypergraphs or functions with any fixed edge density α, for 0 < α < 1. For

a function f from V k to {−1, 1}, we define fα(x) = 1 − α if f(x) = −1 and fα(x) = −α if

f(x) = 1. In [C], devifα, discifα and the class Ai,α are defined analogous to devi, disci, and

Ai. In particular, the 2-discrepancy disc2,α is described as follows:

disc2,α(f) = max
X⊆V

e(f,X) − α | X |k

| X |k

where e(f,X) =| {x ∈
(X

k

)

: f(x) = −1} |. Suppose we choose α to be e(f,X) =| {x ∈
(V

k

)

: f(x) = −1} | / | V |k (which can be viewed as the density of “ordered” hyper-edges).

Then disc2,α(f) associates with the maximum quantity that the number of ordered-edges in a

subset X can differ from the average. If we can use dev2,α to (upper) bound disc2,α(f), then

we can (lower) bound the number of edges leaving X from every X ⊆ V and thus assert the

expanding property of the hypergraphs.
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