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Welfare maximization in combinatorial auctions

Problem: m items are to be sold to n agents,
with monotone valuation functions vi : 2M → R+

How do we allocate the items, so that
1 The total welfare obtained by the agents is close to optimal
2 The algorithm uses polynomial computation/communication
3 Agents are motivated to reveal their true preferences

NOT IN THIS PAPER
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Submodular functions

Submodularity = property of diminishing returns.

Let the marginal value of element j be fS(j) = f (S + j)− f (S).

j

S

T
Definition: f is submodular, if
j cannot add more value to T than S.

fS(j) ≥ fT (j)
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Fractionally subadditive (XOS) functions

Fact
Submodular Functions ⊂ Fractionally Subadditive = XOS Functions

T
Definition: f is fractionally subadditive,

if f (T ) ≤
∑
αi f (Si)

whenever 1T ≤
∑
αi1Si .S1,S2, . . .

Definition: f is an XOS function,
if f is a maximum over linear functions: f (S) = maxi

∑
j∈S cij
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Oracle models

Input access issue:
each valuation carries an exponential amount of information!

1 Resort to a class of valuations with compact representation
2 Use an oracle model: algorithm can ask certain types of queries

value query: What is your value for set S?
demand query: Which set would you buy under prices p1, . . . ,pm?

What an algorithm can achieve may depend on the oracle model:
For XOS valuations with demand queries, there is a
(1− 1/e)-approximation [Feige ’06]

For XOS valuations with value queries, there is no approximation
better than

√
m [Mirrokni-Schapira-V. ’08]
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The main question in this paper

What are the limits on approximation in combinatorial auctions,
regardless of the oracle model?

(for oracle models where queries are asked separately about each valuation)

Two approaches:
Communication complexity: What is the amount of information the
agents have to communicate with the algorithm (or each other) to
achieve a good outcome? [Nisan-Segal ’01]
NP-hardness for simple valuations: What can we achieve if each
valuation has nonzero value only for constantly many items?
[Feige ’06]

Both lower bounds imply hardness for any "reasonable" oracle model
as above.
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Welfare maximization in CA: state of the art

Valuations Submodular XOS

Approximation with
value queries 1− 1/e [V ’08] m−1/2

[DNS ’05]

Hardness with
value queries 1− 1/e + ε [KLMM ’05] m−1/2+ε

[MSV ’08]

Approximation with
demand queries 1− 1/e + 10−5

[FV ’06] 1− 1/e [F ’06]

Communication
hardness 1− 1/m [DS ’06] 1− 1/e + ε [DS ’06]

NP-hardness for
simple valuations 1− ε [FV ’06] 1− 1/e + ε [FV ’06]

Open question: [Nisan-Segal ’01]
Is it possible to achieve a PTAS for submodular valuations with
polynomial communication?
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value queries 1− 1/e [V ’08] m−1/2

[DNS ’05]

Hardness with
value queries 1− 1/e + ε [KLMM ’05] m−1/2+ε

[MSV ’08]

Approximation with
demand queries 1− 1/e + 10−5

[FV ’06] 1− 1/e [F ’06]

Communication
hardness 1− 1/(2e) + ε 1− 1/e + ε [DS ’06]

NP-hardness for
simple valuations 1− 1/(2e) + ε 1− 1/e + ε [FV ’06]

New result: [Dobzinski, V.]
Any (1− 1

2e + ε)-approximation submodular valuations would
(a) require exponential communication,
(b) imply P = NP, even for simple submodular valuations.
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How do we prove this?

Recall the analysis of communication complexity for XOS valuations
[Nisan ’02], [Dobzinski-Schapira ’06]:

a1 a2 a3 a4

Multiparty Set Disjointness [Alon-Matias-Szegedy ’96]

strings ai ∈ {0,1}r

v1 v2 v3 v4

Combinatorial Auction

valuations vi : 2M → R+

r relevant partitions of M

YES case: all strings share a bit = 1
⇒ there is a partition where all players get a Good Set
NO case: no two strings share a bit = 1
⇒ in every partition, most players get a Bad Set
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New construction of submodular functions

Crucial step: How to define a function which is "high" on Good Sets
and "low" on Bad Sets? Easy with XOS: v(S) = maxF∈F |S ∩ F |.

How do we do it with submodular functions?
Idea: Think of the continuous version of submodularity,

F : [0,1]m → R,
∂2F
∂xi∂xj

≤ 0.

B(A1)

B(A2)

B(A3)

B(A4)

Start with a basic function F (x).
Modify this function in disjoint regions B(A) around Good Sets A,
so that F (1A) gets increased for each Good Set A.
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Construction more specifically

Partitions are chosen so that for any two Good Sets, |A ∩ A′| ≤ b.
Call x ∈ [0,1]M "close to A", if x(A)− x(A) > b.
Lemma: x can be close to at most one Good Set A.

A1

A2

S Example: b = 1, x = 1S

So we can define B(A) as the region of all points close to A
⇒ B(A) are disjoint for different Good Sets A.
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Finishing the construction

Define disjoint regions B(A) for Good Sets A:

B(A1)

B(A2)

B(A3)

B(A4)

Start with a basic function F (x) = 1− (1− a
∑m

i=1 xi)
2.

For each Good Set A, define a modified function
FA(x) = 1−

(
1− a(2

∑
i∈A xi − b)

)
+

(
1− a(2

∑
i /∈A xi + b)

)
+
.

FA connects seamlessly to F at the boundary of BA.

Careful tuning of parameters:
The gap between YES/NO instances is 1− 1/(2e) + ε.

Dobzinski-Vondrák Communication in Combinatorial auctions 11 / 12



Finishing the construction

Define disjoint regions B(A) for Good Sets A:

B(A1)

B(A2)

B(A3)

B(A4)

Start with a basic function F (x) = 1− (1− a
∑m

i=1 xi)
2.

For each Good Set A, define a modified function
FA(x) = 1−

(
1− a(2

∑
i∈A xi − b)

)
+

(
1− a(2

∑
i /∈A xi + b)

)
+
.

FA connects seamlessly to F at the boundary of BA.

Careful tuning of parameters:
The gap between YES/NO instances is 1− 1/(2e) + ε.

Dobzinski-Vondrák Communication in Combinatorial auctions 11 / 12



Finishing the construction

Define disjoint regions B(A) for Good Sets A:

B(A1)

B(A2)

B(A3)

B(A4)

Start with a basic function F (x) = 1− (1− a
∑m

i=1 xi)
2.

For each Good Set A, define a modified function
FA(x) = 1−

(
1− a(2

∑
i∈A xi − b)

)
+

(
1− a(2

∑
i /∈A xi + b)

)
+
.

FA connects seamlessly to F at the boundary of BA.

Careful tuning of parameters:
The gap between YES/NO instances is 1− 1/(2e) + ε.

Dobzinski-Vondrák Communication in Combinatorial auctions 11 / 12



Conclusions

We give the first communication complexity result ruling out a
PTAS for submodular combinatorial auctions, in any oracle model.
For the demand oracle model, we narrow the gap to

[1− 1/e + 10−5,1− 1/(2e)].

We prove similar results for CPP and Max-Min Allocation.

Open questions:
What is the optimal approximation for submodular combinatorial
auctions:

1 In the demand oracle model?
2 Bounded only by communication complexity?

Can we prove stronger communication complexity results for
truthful mechanisms for combinatorial auctions?
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