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We consider a quantum and classical version multi-party function computation problem with
n players, where players 2, . . . , n need to communicate appropriate information to player 1, so
that a “generalized” inner product function with an appropriate promise can be calculated. The
communication complexity of a protocol is the total number of bits that need to be communicated.
When n is prime and for our chosen function, we exhibit a quantum protocol (with complexity (n−
1) log n bits) and a classical protocol (with complexity (n−1)2(log n2) bits). In the quantum protocol,
the players have access to entangled qudits but the communication is still classical. Furthermore, we
present an integer linear programming formulation for determining a lower bound on the classical
communication complexity. This demonstrates that our quantum protocol is strictly better than
classical protocols.

I. INTRODUCTION

We consider a multi-party function computation sce-
nario in this work. There are a total of n players in the
system numbered 1, 2, . . . , n. Each player observes her
input and players 2, . . . , n (remote parties) communicate
an appropriate number of bits that allows player 1 to fi-
nally compute the value of the function. Clearly, this can
be accomplished if players 2, . . . , n communicate their ac-
tual values but in fact in many cases, the function value
can be computed with much lesser information. Thus, a
natural question is to understand the minimum number
of bits the remote parties need to send to player 1.
Such problems are broadly studied under the umbrella

of communication complexity [1, 2] in the literature. In
this work we consider the zero-error version of this prob-
lem. Our main goal is to understand the advantage that
the availability of quantum entanglement confers on this
problem and comparing it with classical protocols. Such
problems have a long history in the literature [3, 4].
Background: Within quantum communication com-

plexity (QCC) problems, there are three kinds of quan-
tum protocols. In the first kind (introduced by Yao [2])
each player communicates via a quantum channel and the
metric is the number of qubits transmitted. The second
variation assumes that each player can use entanglement
as a free resource but the communication is classical; the
metric is the number of classical bits transmitted. It was
introduced by Cleve and Buhrman [5]. The third kind
is a combination of the first two. It allows free usage
of entanglement and works with quantum communica-
tion. The work of de Wolf [6] shows that, in the two
party case, the latter scenario can be reduced to the first
scenario with a factor of two penalty using teleportation
[7].
Buhrman, Cleve, Wigderson [8] and Cleve, van Dam,

Nielsen and Tapp [9] considered the case of the two
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party function with quantum communication and used
reduction techniques to connect problems in QCC to
other known problems and derived upper/lower bounds
for QCC in this manner. In particular, the second
work showed examples, such as set disjointness function,
where quantum protocols are strictly better than classi-
cal ones. Here, the set-disjointness problem is such that
each player has a set and wants to decide if their intersec-
tion is empty. Buhrman and de Wolf [10] generalized the
two-party ”log rank” lower bound of classical communi-
cation complexity to QCC where quantum protocols use
both shared entanglement and quantum communication.
For other two-party upper/lower bound techniques, see
[11–15].

Related Work: Now we discuss works in multiparty
quantum communication complexity. There are mainly
two kinds of models. The number-in-hand (NIH) model
assumes each player observes only one variable. The
number-on-forehead (NOF) model assumes each player
observes all but one variable. François and Shogo[16]
considered the NIH model with quantum communication
and gave a quantum protocol for a three-party triangle-
finding problem; the formulation considers bounded er-
ror. This has polynomial advantage with respect to any
classical protocol. Here, the triangle-finding problem is
such that the edge set of a graph is distributed over each
user and the task is to find a triangle of the graph.

The results in next two works hold for both NIH and
NOF models. Lee and Schechtman and Shraibman [17]
proved a Grothendieck-type inequality and then derived
a general lower bound of the multiparty QCC for Boolean
function in Yao’s model. Following this work, Briet,
Buhrman, Lee, Vidick [18] showed a similar inequality
of the multiparty XOR game and proved that the dis-
crepancy method lower bounds QCC when the protocol
is of the third kind discussed earlier.

Buhrman, van Dam, Høyer, Tapp [19] considered the
NIH model with shared entanglement and proposed a
three-party problem with a quantum protocol that is bet-
ter than any classical protocol by a constant factor. Fol-
lowing this work, Xue, Li, Zhang, Guo [20] and Galvão
[21] showed similar results under the same function with
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more restrictions. The work most closely related to our
work is by Cleve and Buhrman [5]. This paper considered
the case of three players denoted Alice, Bob and Carol
who have m-bit strings denoted ~x, ~y and ~z respectively.
The strings are such that ~x + ~y + ~z = 1, i.e., their bi-
nary sum is the all-ones vector. The goal is for Alice to
compute

g(x, y, z) =

m
∑

i=

xiyizi.

We note that the communication from Bob and Carol
to Alice is purely classical; however, they can use entan-
glement in a judicious manner. For this particular func-
tion [5] shows that a classical protocol (without entan-
glement) requires three bits of communication, whereas
if the parties share 3m entangled qubits, then two bits of
communication are sufficient.
Main Contributions: In this work we consider a

significant generalization of the original work of [5]. In
particular, we consider a scenario with n players that
observe values that lie in a higher-order finite field, with
a more general promise that is satisfied by the observed
values. As we consider more players and higher-order
finite fields, the techniques used in the original work are
not directly applicable in our setting.
Our work makes the following contributions.

• We demonstrate a quantum protocol that allows
for the function to be computed with (n − 1) logn
bits. We use the quantum Fourier Transform as a
key ingredient in our method.

• On the other hand, we demonstrate a classical
protocol that requires the communication of (n −
1)2(logn2) bits.

• For obtaining a lower bound on the classical com-
munication complexity, we define an appropriate
integer linear programming problem that demon-
strates that our quantum protocol is strictly better
than any classical protocol.

This paper is organized as follows. Section II discusses
the problem formulation and Section III discusses our
quantum protocol. Sections IV and V discuss our classi-
cal protocol and the lower bound on any classical protocol
respectively.

II. PROBLEM FORMULATION

A. Classical/Quantum Communication Scenarios

Let Xi, i = 1, . . . , n and Y denote sets in which the in-
puts and the output lie and f(x, . . . , xn) : X1×· · ·×Xn 7→
Y be a multivariate function. There are n players such
that i-th player is given xi ∈ Xi. The first player (hence-
forth, Alice) receives information from each of the play-
ers and this communication should allow her to compute

f(x1, . . . , xn). The players are not allowed to communi-
cate with each other.
In the classical protocol, players 2 to n communicate to

Alice via classical channels. In the quantum protocol, we
assume that the users have shared entanglement as a free
resource; however, the communication is still classical.
In both scenarios the classical/quantum communication
complexity is the least possible number of classical bits
transmitted such that Alice can compute the function
among all classical/quantum protocols.

B. Generalized Inner Product Function with a
Promise

In this work we consider a specific multivariate func-
tion and the setting where n ≥ 3 (number of players)
is prime. Let Fn denote the finite field of order-n and
[m] , {1, . . . ,m}. The i-th player is given a vector
~xi = [xi

1 . . . x
i
m]T ∈ F

m
n , i.e., each xi

j ∈ Fn. The vec-
tors satisfy the following “promise”: ∀j ∈ [m], the j-th
component of each player’s vector is such that

[x1
j , . . . , x

n
j ]

T ∈ {a[1, . . . , 1]T + b[0, . . . , n− 1]T | a, b ∈ Fn},

i.e., [x1
j , . . . , x

n
j ]

T lies in a two-dimensional vector space

spanned by the basis vectors [1, . . . , 1]T and [0, 1, . . . , n−
1]T . In this case, it can be observed that [x1

j , . . . , x
n
j ]

T

is either a multiple of the all-ones vector (if b = 0) or a
permutation of [0, 1, . . . , n − 1] (if b 6= 0). The function
to be computed is the generalized inner product function
given by

GIP (~x1, . . . , ~xn) =

m
∑

i=1





n
∏

j=1

xj
i



 , (1)

where the operations are over Fn.

III. PROPOSED QUANTUM PROTOCOL

We first discuss the entangled states and unitary trans-
forms will be used in the proposed quantum protocol in
Section IIIA. In Section III B, we discuss the quantum
protocol with a proof of correctness in detail. A word
about notation. In what follows for complex vectors ~u,~v,

〈~u,~v〉 =
∑

i u
†
ivi denotes the usual inner product. On

the other hand if ~u,~v ∈ F
m
n , then 〈~u,~v〉 denotes the inner

product over Fn.

A. Entanglement Resource and Unitary
Transforms Used

a. Shared Entangled States. Consider n isomor-
phic n-dimensional quantum systems, where each
system has a computational basis denoted B =
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Algorithm 1: Proposed Quantum protocol

For i ∈ {1, . . . ,m}, prepare maximally entangled
“shared state” |Φi〉 and distributed corresponding
subsystems to all players.
for player p ∈ {1, . . . n} do

for each i ∈ {1, . . . , m} do
Assume xp

i = j, then player p applies Pj (cf.
(3)) on her part of |Φi〉.
Player p performs QFT on her part of the
shared state.
Player p measures her part of the shared state
in the computational basis, yielding spi ∈ Fn

end for
sp ←

∑m

i=1
spi

Player p sends sp to Alice if p 6= 1
end for
GIP (~x1, . . . , ~xn) =

∑
p
sp.

{|0〉 , |1〉 , . . . , |n− 1〉}. There are m entangled states
shared among n players. For i ∈ [m], prepare entan-

gled state |Φi〉 := 1/
√
n
∑n−1

k=0 |k . . . k〉. The j-th sub-
system of this entangled state is given to j-th player for
j = 1, . . . , n.

b. Quantum Fourier Transform. Let ω := e
2πi
n de-

note the n-th root of unity. The Quantum Fourier Trans-
form (QFT) is the following unitary map that takes

|j〉 7→ 1√
n

n−1
∑

k=0

ωjk |k〉 , ∀ |j〉 ∈ B. (2)

Let QFT⊗l denote the QFT performed over l isomorphic
systems.
c. Phase Shift Map. For j ∈ Fn, we define

P0 ,

{

|0〉 7→ ω−n−1
2 |0〉

|i〉 7→ |i〉 , i 6= 0.

If j 6= 0, Pj , |i〉 7→ ω− 1
n
(ij mod n) |i〉 . (3)

B. The Quantum Protocol

Next, we introduce the quantum protocol that uses
(n− 1)(logn) bits.

Theorem 1. There exists a quantum protocol for com-
puting GIP (~x1, . . . , ~xn) that uses (n− 1) logn bits.

In our protocol (see Alg. 1), for each i = 1, . . . ,m,
each player p examines xp

i and applies the corresponding
phase shift map to her subsystem of |Φi〉. Following this,
she applies the QFT on each of her symbols and then
measures in the computational basis; this yields spi ∈ Fn

for i = 1, . . . ,m. Player p transmits
∑m

i=1 s
p
i . As players

2 ≤ p ≤ n transmit a symbol from Fn, it is clear that the
total communication in the protocol is (n− 1)(log n).

For showing the proof of correctness of the protocol, we
need the following auxiliary lemma. The proof appears
in Appendix A.

Lemma 1. Let ~α = [1, . . . , 1]T ∈ F
n
n. Then, for each

x ∈ Fn, we have

QFT⊗n





1√
n

n−1
∑

j=0

ω−jx |j · ~α〉



 =
1

n
n
2

∑

~k∈{0,...,n−1}n

a~k |~k〉 .

(4)

Then the amplitude a~k 6= 0 iff
∑n

j=1 kj = x where ~k =

[k1, . . . , kn]
T .

The proof of correctness of the protocol hinges on the
following lemma.

Lemma 2.

n
∑

p=1

spi =

n
∏

p=1

xp
i , for i = 1, . . . ,m. (5)

Proof. The state jointly measured by each player is

QFT⊗n





n−1
∑

j=0

(

⊗n
p=1Px

p

i

) 1√
n
|j · ~α〉



 .

If [x1
i , . . . , x

n
i ]

T = [j, . . . , j]T , then (see Appendix B for
derivation)

P⊗n
j

(

1√
n

n−1
∑

k=0

|k · ~α〉
)

7→ 1√
n

n−1
∑

k=0

ω−kj |k · ~α〉 . (6)

Thus, QFT⊗n( 1√
n

∑n−1
k=0 ω

−kj |k · ~α〉) has non-zero co-

efficients only for states |~k〉 such that
∑n

l=1 kl = j
by Lemma 1. Therefore, the measurement result

[s1i , . . . , s
n
i ]

T must be one of ~k = [k1, . . . , kn]
T s.t.

n
∑

l=1

kl = j
(a)
= jn =

n
∏

p=1

xp
i

where (a) follows from the fact that j ∈ Fn.
Now assume [x1

j , . . . , x
n
j ]

T = a[1, . . . , 1]T +

b[0, 1, . . . , n − 1]T with b 6= 0. We have that (see
Appendix B for derivation)

P0 ⊗ · · · ⊗ Pn−1

(

1√
n

n−1
∑

k=0

|k · ~α〉
)

7→ 1√
n
ω−n−1

2

n−1
∑

k=0

|k · ~α〉

(7)

It follows that

QFT⊗n(
1√
n
ω−n−1

2

n−1
∑

k=0

|k · ~α〉)

=ω−n−1
2 QFT⊗n(

1√
n

n−1
∑

k=0

|k · ~α〉) = 1

n
n
2
ω−n−1

2

∑

~k∈Fn
n

a~k |~k〉 .
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By Lemma 1, a~k 6= 0 iff
∑n

l=1 kl = 0. There-

fore, the measurement result [s1i , . . . , s
n
i ]

T must be ~k =
[k1, . . . , kn]

T such that

n
∑

l=1

kl = 0 =
n−1
∏

j=0

j =
n
∏

p=1

xp
i .

Now, we show that our protocol computes
GIP (~x1, . . . , ~xn) correctly. Since sp =

∑

i s
p
i , by

applying (5), we have that

∑

p

sp =
∑

p

∑

i

spi =
∑

i

∑

p

spi

=
∑

i

n
∏

p=1

xp
i = GIP (~x1, . . . , ~xn).

IV. PROPOSED CLASSICAL PROTOCOL

We now move on to considering purely classical pro-
tocols for our problem, i.e., ones that do not consider
entanglement. At the top-level our classical scheme op-
erates by communicating the “number” of different sym-
bols that exist in within each player’s vector. We show
that this suffices for Alice to recover the function value.
More precisely, let βp

k be the number of “k” values in
the vector of p-th player; recall that player p is assigned
~xp = xp

1 . . . x
p
m. Note

∑n−1
k=0 β

p
k = m.

Theorem 2. There exists a classical protocol for com-
puting GIP (~x1, . . . , ~xn) that uses (n− 1)2(logn2) bits.

In our protocol (see Alg. 2), for each i = 1, . . . , n −
1, each player p transmits βp

k (mod n2). Alice
computes each βp

0 (mod n2) by using the fact that
∑n−1

k=0 β
p
k = m. Finally, Alice computes the value

of the function by using {βp
k (mod n2)|k ∈ Fn, p ∈

[n]} For each player p ∈ {2, . . . , n}, p transmits
{βp

1 (mod n2), . . . , βp
n−1 (mod n2)}. The total number

of bits transmitted is (n − 1)2(logn2). The proof of the
Theorem 2 appears in Appendix C.

V. CLASSICAL COMMUNICATION
COMPLEXITY LOWER BOUND

A. ILP Feasibility Problem for Classical Lower
Bound

We now present a lower bound on the communication
complexity of any classical protocol for our problem. To-
wards this end we pose this as an integer linear program-
ming problem that can be solved numerically.
Suppose, for p ∈ {2, . . . , n}, the p-th player sends sym-

bols (labels) in [lp] := {1, 2, . . . , lp} for some large enough

Algorithm 2: Proposed Classical protocol

for player p ∈ {1, . . . n} do
for each k ∈ Fn do

βp

k ← number of ks in xp
1
. . . xp

m

if p is not Alice and k 6= 0 then
p sends βp

k (mod n2) to Alice
end if

end for
end for
for p ∈ {2, . . . n} do

Alice computes βp
0
(mod n2) by using∑n−1

k=0
βp

k = m.
end for
W ←∑n

p=1

∑n−1

k=1
k · βp

k + n2−n

2
(n− 1)

∑n

p=1
βp
0
(mod n2)

GIP (~x1, . . . , ~xn) = W/n

positive integer lp. Let c ∈ [lp] and define I~xp,c ∈ {0, 1}
to be the indicator that the p-th player sends c when
it has the vector ~xp ∈ F

m
n . As this mapping is unique,

we have
∑

c∈[lp] I~xp,c = 1. Furthermore, for a given set

of vectors ~xp for p ∈ {2, . . . , n} if the p-th player sends
label cp, we have

∏n
p=2 I~xp,cp = 1.

Consider two sets of vectors {~xp ∈ F
m
n |p ∈ {1, . . . , n}},

{~zp ∈ F
m
n |p ∈ {1, . . . , n}}. We denote

(~x1, . . . , ~xn) ∼GIP (~z1, . . . , ~zn)

if the following conditions are satisfied.

1. Both (~x1, . . . , ~xn) and (~z1, . . . , ~zn) satisfy the
promise (cf. Sec. II B).

2. ~x1 = ~z1.

3. GIP (~x1, . . . , ~xn) 6= GIP (~z1, . . . , ~zn).

This definition applies to distinct inputs with the ”same”
Alice vector, but different function evaluations. It can be
seen that for two such distinct inputs, the symbols com-
municated by players 2 to n have to be distinct, otherwise
Alice has no way to decode in a zero-error fashion.

Our proposed ILP works with fixed lp’s and a fixed
value of m. Owing to complexity reasons m cannot be
very large. However, we point out that if the ILP is
infeasible for given lp’s and a m̃, then our lower bound
holds for arbitrary values m ≥ m̃. To see this we note
that our lower bound would continue to hold even if Alice
was provided the values xp

m̃+1, . . . , x
p
m for all players p =

2, . . . , n.

Consider the following 0− 1 integer programming fea-
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sibility problem.

min 0

s.t. p ∈ {2, . . . , n}, c ∈ [lp], ~xp ∈ F
m
n ,

I~xp,c ∈ {0, 1},
∑

c∈[lp]

I~xp,c = 1, ∀ ~xp,

∑

c2∈[l2],...,cn∈[ln]

|
n
∏

p=2

I~xp,cp −
n
∏

p=2

I~zp,cp | = 2

for all (~x1, . . . , ~xn) ∼GIP (~z1, . . . , ~zn).

(8)

The infeasibility of the above integer programming prob-
lem corresponds to a lower bound on the classical commu-
nication complexity. The proof of the following theorem
appears in Appendix D.

Theorem 3. There exists a deterministic classical pro-
tocol computing GIP (·) where each player sends at most
lp different labels for p ∈ {2, . . . , n} iff the above integer
programming is feasible.

Remark 1. The above integer program contains con-
straints that involve the product of variables and equality
constraints with sums of absolute values. We show how
these constraints can be linearized in Appendix E. The
entire code for our ILP is available at this online reposi-
tory [22].

B. Numerical experiments

In our numerical experiments, we considered an in-
stance of the ILP involving n = 3 players, namely Alice,
Bob, and Carol. Let m represent the length of each vec-
tor, while [lb], [lc] denote the sets of labels used by Bob
and Carol, with lb, lc as the sizes of these sets. The ex-
perimental results under varying settings of lb, lc,m are
displayed in TABLE I.
In the case where n = 3, we assume that Alice, Bob,

and Carol are given vectors ~x1, ~x2, and ~x3, respectively,
each of length m. The promise (cf. Sec. II B) is equiva-
lent to

~x1
j + ~x2

j + ~x3
j = 0, j = 1, . . . ,m.

It can be observed that swapping the vectors of Bob and
Carol continues to satisfy the promise. Due to this in-
herent symmetry, a protocol with communication lengths

TABLE I. Numerical results.

m lb lc Feasibility
1 1 3 Feasible
3 1 17 Infeasible
2 2 4 Infeasible
3 3 3 Infeasible
2 2 4 Feasible
3 5 5 Feasible

lb = x and lc = y exhibits the same feasibility as one
with lb = y and lc = x. Consequently, we can assume
that lb ≤ lc.

If a classical protocol exists with lb ≥ 4, it follows that
lc ≥ 4. The number of bits transmitted would then be
log(lb) + log(lc) ≥ 2log(4).

Assuming a classical protocol with lb = 1, and given
the infeasibility of the second result, i.e. the case lb =
1, lc = 17, in TABLE I, it must hold that lc ≥ 18.
The number of bits transmitted would then be at least
log(lb) + log(lc) ≥ log(1) + log(18). The ILP is infeasi-
ble for the cases lb = 2, lc = 4 and lb = 3, lc = 3. For
the same reason, a protocol with lb = 2 or lb = 3 neces-
sitates at least log(2) + log(5) or log(3) + log(4) bits of
communication, respectively.

Recalling that our proposed protocol employs 2log(3)
bits of communication, we have that

2log(3) < min{2log(4), log(1) + log(18),

log(3) + log(4), log(2) + log(5)},

which demonstrates a strict separation between our
quantum protocol and any classical protocol.

VI. CONCLUSIONS

We considered the communication complexity problem
of the GIP function with a specific promise. We proposed
a quantum protocol utilizing (n−1)log(n) bits and a clas-
sical protocol employing (n − 1)2(logn2) bits. By estab-
lishing a connection between the integer linear program-
ming feasibility problem and the existence of a classical
protocol with a particular communication complexity, we
were able to provide numerical evidence supporting the
quantum advantage in our model’s communication com-
plexity.

It would be interesting to analytically investigate the
quantum advantage in the asymptotic limit when n in-
creases.
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Appendix A: Proof of Lemma 1

Recall that

~α = [1, . . . , 1]T .
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The action of QFT⊗n on 1√
n

∑n−1
j=0 ω−xj |j · ~α〉 is

1

n
n
2

∑

~k∈Fn
n

a~k |~k〉 = QFT⊗n





1√
n

n−1
∑

j=0

ω−xj |j · ~α〉





=
1

n
n
2

∑

~k∈Fn
n





1√
n

n−1
∑

j=0

ω−xj · ω〈~k,j·~α〉



 |~k〉 .

Write ~k = [k1, . . . , kn]
T . Therefore,

a~k =
1√
n

n−1
∑

j=0

ω−xj · ω〈~k,j·~α〉 =
1√
n

n−1
∑

j=0

ω−xj+j
∑n

l=1 kl .

When ~k satisfies
∑n

l=1 kl = x, we have that a~k =
√
n 6= 0.

Otherwise, since −x +
∑n

l=1 kl 6= 0 and n being prime,

1−ωn(−x+
∑

n
l=1 kl) = 0 and 1−ω−x+

∑
n
l=1 kl 6= 0. We have

1√
n

n−1
∑

j=0

ω−xj+j
∑n

l=1 kl =
1√
n

n−1
∑

j=0

ω(−x+
∑n

l=1 kl)j

=
1√
n

1− ωn(−x+
∑

n
l=1 kl)

1− ω−x+
∑

n
l=1 kl

= 0.

Appendix B: Derivation of equation (6) and
equation (7)

We derive equation (6) by considering two cases. The
first case is that [x1

i , . . . , x
n
i ]

T = [0, . . . , 0]T . Then, we
have

P⊗n
0

(

1√
n

n−1
∑

k=0

|k · ~α〉
)

7→ 1√
n
ω−n(n−1)

2 |0 · ~α〉

+
1√
n

n−1
∑

k=1

|k · ~α〉 = 1√
n

n−1
∑

k=0

|k · ~α〉 = 1√
n

n−1
∑

k=0

ω−k·0 |k · ~α〉 .

(B1)

The second case is that [x1
i , . . . , x

n
i ]

T = [j, . . . , j]T with
j 6= 0. Then, we have

P⊗n
j

(

1√
n

n−1
∑

k=0

|k · ~α〉
)

7→ 1√
n

n−1
∑

k=0

ω−n( 1
n
(kj mod n)) |k · ~α〉

=
1√
n

n−1
∑

k=0

ω−kj |k · ~α〉

(B2)

where the last equality holds since ω−kj = ω−(kj mod n).
Thus, in this case collectively, we can express the joint
state after phase-shifting as 1√

n

∑n−1
k=0 ω

−kj |k · ~α〉.
Now we derive equation (7). Assume [x1

j , . . . , x
n
j ]

T =

a[1, . . . , 1]T +b[0, 1, . . . , n−1]T with b 6= 0. If a and b 6= 0,
then a + b · i ∈ Fn is distinct for each i ∈ {0, . . . , n}.

It can be observed that a[1, . . . , 1] + b[0, . . . , n − 1] is
a permutation of [0, . . . , n − 1], so it suffices to discuss
[x1

i , . . . , x
p
i ]

T = [0, . . . , n− 1]T by symmetry. Thus,

P0 ⊗ · · · ⊗ Pn−1

(

1√
n

n−1
∑

k=0

|k · ~α〉
)

7→

1√
n
ω−n−1

2 |0 · ~α〉+ 1√
n

n−1
∑

k=1

ω−∑n−1
j=0

1
n
(kj mod n) |k · ~α〉

(a)
=

1√
n
ω−n−1

2 |0 · ~α〉+ 1√
n

n−1
∑

k=1

ω− 1
n
(
∑n−1

j=0 j) |k · ~α〉

=
1√
n
ω−n−1

2 |0 · ~α〉+ 1√
n

n−1
∑

k=1

ω− 1
n
[n(n−1)

2 ] |k · ~α〉

=
1√
n
ω−n−1

2

n−1
∑

k=0

|k · ~α〉

where (a) follows from the fact that {kj mod n|j ∈
{0, . . . , n− 1}} = {0, . . . , n− 1} for k 6= 0. It follows that

QFT⊗n

(

1√
n
ω−n−1

2

n−1
∑

k=0

|k · ~α〉
)

=
1√
n
ω−n−1

2 QFT⊗n

(

n−1
∑

k=0

|k · ~α〉
)

=
1√
n
ω−n−1

2

∑

~k∈Fn
n

a~k |~k〉 .

Appendix C: Proof of Theorem 2

For a, b ∈ Fn, we define Ma,b = {i ∈
[m]|[x1

i , . . . , x
n
i ]

T = a[1, . . . , 1]T + b[0, 1, . . . , n− 1]T } and
ma,b = |Ma,b|. Since the promise is that, for each
i ∈ {1, . . . ,m}, there exists a, b ∈ Fn s.t. [x1

i , . . . , x
n
i ]

T =
a[1, . . . , 1]T + b[0, 1, . . . , n − 1]T ∈ F

n
n, we have that

{Ma,b|a, b ∈ Fn} forms a partition of the set {1, . . . ,m}.
When i ∈ Ma,0, i.e. [x1

i , . . . , x
n
i ]

T = a[1, . . . , 1]T , we
have

n
∏

p=1

xp
i = an = a. (C1)

Otherwise, we have i ∈ Ma,b for some b 6= 0, so
a[1, . . . , 1]T + b[0, . . . , n− 1]T . Then,

n
∏

p=1

xp
i =

n−1
∏

i=0

(a+ i · b) = 0. (C2)

By (C1) and (C2), if i ∈ Ma,b, then
∏n

p=1 x
p
i = δ0b · a.

Define

1((x1
i , . . . , x

n
i ),Ma,b) =

{

1, i ∈ Ma,b

0, otherwise,

i.e. it is the indicator of i ∈ Ma,b. Since {Ma,b | a, b ∈ Fn}
is a partition of the set [m], i ∈ Ma,b for exactly one
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choice of (a, b). It follows that

n
∏

p=1

xp
i = δ0b ·a =

n−1
∑

a,b=0

δ0b ·a·1((x1
i , . . . , x

n
i ),Ma,b). (C3)

We have

m
∑

i=1

n
∏

p=1

xp
i

(*)
=

m
∑

i=1

n−1
∑

a,b=0

a · δ0b · 1((x1
i , . . . , x

n
i ),Ma,b)

=

n−1
∑

a,b=0

m
∑

i=1

a · δ0b · 1((x1
i , . . . , x

n
i ),Ma,b)

=

n−1
∑

a,b=0

a · δ0b ·ma,b =

n−1
∑

a=0

a ·ma,0 (mod n).

(C4)

Here, (*) follows from (C3). Our next step is to show
∑n−1

a=0 ama,0 = W/n (mod n); W is defined in Alg. 2.

Suppose i ∈ Ma,b, then (x1
i , . . . , x

n
i ) = a(1, . . . , 1) +

b(0, . . . , n− 1). For pth player, a + (p − 1)b is the value
of its ith coordinate of his vector ~xp. For a fixed k ∈ Fn,
the set of (a, b) s.t. a + (p − 1)b = k is {(k, 0), (k + p −
1,−1), (k+2p−2,−2), . . . , (k+(n−1)(p−1),−(n−1)}.
It follows that ∀p ∈ {1, . . . , n}, k ∈ Fn,

βp
k =

n−1
∑

i=0

mk+i(p−1),−i. (C5)

Consider
∑n−1

i=0

∑n
p=1 mk+i(p−1),−i. When i = 0,

mk+i(p−1),−i is counted n times. Denote S =

{(0, 0), . . . , (n − 1, 0)}. For arbitrary [x, y]T ∈ F
2
n − S,

the equation

[

k + i(p− 1)
−i

]

=

[

x
y

]

has a unique solution

given by

{

i = −y,

p = y−x+k
y

.
Then, we have

F
2
n−S = {(k+i(p−1),−i)|p ∈ {1, . . . , n}, i ∈ {1, . . . , n−1}}.

Therefore, when i 6= 0, mk+i(p−1),−i is counted exactly
once. It follows that

n
∑

p=1

n−1
∑

i=0

mk+i(p−1),−i

=

n
∑

p=1

n−1
∑

i=1

mk+i(p−1),−i +

n
∑

p=1

mk+0(p−1),0

=
∑

a,b∈F2
n−S

ma,b + n ·mk,0.

(C6)

Now we have

n
∑

p=1

n−1
∑

k=1

k · βp
k

(C5)
=

n−1
∑

k=1

k
n
∑

p=1

n−1
∑

i=0

mk+i·(p−1),−i

(C6)
=

n−1
∑

k=1

k
[

∑

a,b∈F2
n−S

ma,b + n ·mk,0

]

=
n2 − n

2

∑

a,b∈F2
n−S

ma,b + n

n−1
∑

k=1

k ·mk,0

and that

n
∑

p=1

βp
0

(C5)
=

n
∑

p=1

n−1
∑

i=0

mi·(p−1),−i

(C6)
=

∑

a,b∈F2
n−S

ma,b + n ·m0,0.

Note n > 2 is prime, so n−1 is divisible by 2. It follows
that

W =

n
∑

p=1

n−1
∑

k=1

k · βp
k +

n2 − n

2
· (n− 1)

n
∑

p=1

βp
0

=
n2 − n

2

∑

a,b∈F2
n−S

ma,b + n

n−1
∑

k=1

k ·mk,0

+
n2 − n

2
· (n− 1)

[

∑

a,b∈F2
n−S

ma,b + n ·m0,0

]

=n

n−1
∑

k=1

k ·mk,0 + n2 · (n− 1)

2

∑

a,b∈F2
n−S

ma,b

+ n2 · (n− 1)2

2
·m0,0

=n
n−1
∑

k=0

k ·mk,0 (mod n2).

Divide both sides by n and we get W/n =
∑n−1

k=1 kmk,0 (mod n). Now we are done because of (C4).

Appendix D: Proof of theorem 3

Suppose we have a protocol that computes the function
with zero-error. Our protocol is deterministic, so, for
each ~xp ∈ F

m
n , it is associated exactly one label ĉ s.t.

p-th player sends ĉ if his vector is ~xp. We set I~xp,ĉ = 1
and I~xp,c = 0 for all c 6= ĉ. Therefore, I~xp,c ∈ {0, 1} and
∑

c∈[l] I~xp,c = 1 are satisfied for all choice of ~xp, c.

Next, suppose we have that (~x1, . . . , ~xn) ∼GIP

(~z1, . . . , ~zn). Furthermore, assume that the p-th player
sends sp/tp for ~xp/~zp for p = 2, . . . , n. This implies that
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∏n
p=2 I~xp,sp = 1 and that

∏n
p=2 I~zp,tp = 1. In addition,

note that ∃ p such that sp 6= tp as for these sequences,
the symbols transmitted from users 2, . . . , n have to be
distinct.
Thus we have

1 = |
n
∏

p=2

I~xp,sp −
n
∏

p=2

I~zp,sp | = |
n
∏

p=2

I~xp,tp −
n
∏

p=2

I~zp,tp |

and consequently

∑

c2∈[l2],...,cn∈[ln]

|
n
∏

p=2

I~xp,cp −
n
∏

p=2

I~zp,cp | =

|
n
∏

p=2

I~xp,ŝp −
n
∏

p=2

I~zp,ŝp |+ |
n
∏

p=2

I~xp,t̂p −
n
∏

p=2

I~zp,t̂p | = 2.

Therefore, the third constraint is satisfied.
Conversely, if we have {I~xp,c|~xp ∈ F

m
n , c ∈ [lp]} that

satisfy the constraints of the ILP, then we construct a
classical protocol as follows. Suppose p-th player has
vector ~xp for p ∈ {1, . . . , n}. Since there exists exactly
one sp ∈ [lp] s.t. Ixp,sp = 1, then p sends sp to Alice for
p ∈ {2, . . . , n}. When Alice receives the symbols sp, p =
2, . . . , n from the other players she picks arbitrary {~yp ∈
F
m
n }ni=2 s.t. (~x

1, ~y2, . . . , ~yn) satisfies the promise and ∀p ∈
{2, . . . , n}, I~yp,sp = 1.Then she outputs f(~x1, ~y2, . . . , ~yn).
In what follows we show that

GIP (~x1, ~y2, . . . , ~yn) = GIP (~x1, ~x2, . . . , ~xn).

To see this assume otherwise. Then, we have
GIP (~x1, ~y2, . . . , ~yn) 6= GIP (~x1, ~x2, . . . , ~xn). It follows
that

(~x1, ~x2, . . . , ~xn) ∼GIP (~x1, ~y2, . . . , ~yn).

Because of the third constraint, we have that

∑

c2,...,cn∈[l]

|
n
∏

p=2

I~xp,cp −
n
∏

p=2

I~yp,cp | = 2.

However, we have that I~xi,si = I~yi,si = 1 for all i ∈
{2, . . . , n}. By the first and second constraint, we have

that I~xi,ci = I~yi,ci = 0 for all i ∈ {2, . . . , n} and ci 6= si.
Therefore,

∑

c2,...,cn∈[l]

|
n
∏

p=2

I~xp,cp −
n
∏

p=2

I~yp,cp | = 0.

This gives the desired contradiction.

Appendix E: Linearizing constraints in the integer
programming problem

The problem of the optimization problem (8) is that
the third constraint has multiple absolute value and prod-
ucts of variables. Here we transform the constraints and
add extra variable in (8) to get the desired ILP.
Our first step is to introduce auxiliary 0-1 variables

that correspond to the product of other 0-1 variables. For

instance, it can be verified that we can set
∏k

i=1 xi = x′

as follows.

x′ ≤ xi, for i = 1, . . . , k (E1)

x′ ≥
k
∑

i=1

xi − (k − 1). (E2)

As a first step we introduce such auxiliary variable for
all terms that involve products of our indicator function
in (8).
Following this step, we are left with handling con-

straints that involve sums of absolute values of differ-
ences. For this step we show how to replace each ab-
solute value difference by another auxiliary variable. In
particular, we can replace |x− y| by z as follows.

|x− y| = |x− y|2

= x2 + y2 − 2xy

= x+ y − 2xy

where the last step follows from the fact that the vari-
ables are of type 0 − 1. The product term 2xy can be
linearized as described previously. Following these steps,
all constraints in the integer programming problem are
linear.
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