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Communication Contention in Task Scheduling
Oliver Sinnen and Leonel A. Sousa, Senior Member, IEEE

Abstract—Task scheduling is an essential aspect of parallel programming. Most heuristics for this NP-hard problem are based on a

simple system model that assumes fully connected processors and concurrent interprocessor communication. Hence, contention for

communication resources is not considered in task scheduling, yet it has a strong influence on the execution time of a parallel program.

This paper investigates the incorporation of contention awareness into task scheduling. A new system model for task scheduling is

proposed, allowing us to capture both end-point and network contention. To achieve this, the communication network is reflected by a

topology graph for the representation of arbitrary static and dynamic networks. The contention awareness is accomplished by

scheduling the communications, represented by the edges in the task graph, onto the links of the topology graph. Edge scheduling is

theoretically analyzed, including aspects like heterogeneity, routing, and causality. The proposed contention-aware scheduling

preserves the theoretical basis of task scheduling. It is shown how classic list scheduling is easily extended to this more accurate

system model. Experimental results show the significantly improved accuracy and efficiency of the produced schedules.

Index Terms—Parallel processing, concurrent programming, scheduling and task partitioning, communication contention,

heterogeneous system model.

�

1 INTRODUCTION

AN essential aspect of parallel programming is schedul-
ing, which is the spacial and temporal assignment of

the tasks of a program to the processors of the target
system. In task scheduling, the program is represented as a
directed acyclic graph (DAG), where a node represents a
task and an edge is the communication between two tasks.
As the general task scheduling problem is NP-hard [26],
[33], heuristics try to find near optimal solutions (e.g., [2],
[3], [13], [14], [18], [20], [25], [26], [34], [35], [36]).

Most of these heuristics have in common that they employ
a very idealized model of the target parallel system. In this
model, every processor possesses a dedicated communica-
tion subsystem, the processors are fully connected, and all
communications can be performed concurrently.

Intuition suggests that these assumptions are not met on
real parallel systems, which is confirmed by experiments
[23], [28]. An important aspect missed by the model is the
contention for communication resources. If a resource is
occupied by one communication, any other communication
requiring the same resource has to wait until it becomes
available. In turn, the task depending on the delayed
communication is also forced to wait. Thus, conflicts among
communications generally result in a higher overall execu-
tion time.

This paper investigates the incorporation of contention
awareness into task scheduling. In previous attempts, a few
algorithms were proposed that consider network contention
[11], [21], [27], [30] or end-point contention [4], [6], [15], [22].

The new system model for task scheduling proposed in this
paper is capable of capturing both end-point and network
contention. This is achieved with the proposal of a new
graph model for the representation of the system’s network
topology. This new topology graph allows, in contrast to
the undirected graph model of previous approaches, the
reflection of static and dynamic networks of arbitrary,
possibly heterogenous, structure. Further, it also permits
the distinction between different communication link types,
i.e., the distinction between half duplex and full duplex
links and busses.

Based on the topology graph, contention awareness is
achieved by scheduling the edges of the DAG onto the links
of the topology graph. While the idea of this edge
scheduling was already proposed in [27], no theoretical
background has been established so far. This paper
investigates the theoretical background of edge scheduling,
including aspects like heterogeneity, routing, and causality.
It is also analyzed how the division of a message into
packets affects edge scheduling and the consideration of
contention. The proposed contention-aware scheduling
preserves the theoretical basis of task scheduling. While
the topology graph is able to represent complex commu-
nication networks, this complexity is encapsulated within
the topology graph model and not revealed to the edge
scheduling. In particular, classic list scheduling is easily
extended to this more accurate system model. Finally,
experimental results will be presented that show the
significantly improved accuracy and efficiency of the
schedules produced under the new scheduling model.

This paper continues in Section 2 by establishing the
background of classic task scheduling together with the
introduction of the necessary notions and definitions.
Section 3 discusses contention in communication and
reviews previous approaches to achieve an awareness for
it in task scheduling. The new model for the representation
of the target system’s communication network is proposed
in Section 4. Section 5 investigates the key technique to
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achieve contention awareness: edge scheduling. Based on

the network model and edge scheduling, Section 6 dis-

cusses how task scheduling is made sensible for contention

and how list scheduling is adapted. Section 7 presents an

experimental evaluation of the new scheduling model on

real parallel systems and the paper concludes with Section 8.

2 TASK SCHEDULING

In task scheduling, the program to be scheduled is

represented by a directed acyclic graph:

Definition 1 (Directed Acyclic Graph (DAG)). A DAG is a

directed acyclic graphG ¼ ðV;E; w; cÞ representing a program
P. The nodes inV represent the tasks ofP and the edges inE the

communications between the tasks. An edge eij 2 E represents

the communication from node ni to node nj. The positive weight

wðnÞ associated with node n 2 V represents its computation

cost and the nonnegative weight cðeijÞ associated with edge

eij 2 E represents its communication cost.

All instructions or operations of one task are executed in

sequential order and there is no parallelism within a task.

The nodes are strict with respect to both their inputs and

their outputs: that is, a node cannot begin execution until all

its inputs have arrived, and no output is available until the

computation has finished and, at that time, all outputs are

available for communication simultaneously.
The set fnx 2 V : exi 2 Eg of all direct predecessors of ni

is denoted by predðniÞ and the set fnx 2 V : eix 2 Eg of all

direct successors of ni is denoted by succðniÞ. A node n 2 V

without predecessors, predðnÞ ¼ ;, is named source node

and if it is without successors, succðnÞ ¼ ;, it is named sink

node.

2.1 Classic Task Scheduling

Most scheduling algorithms employ a strongly idealized

model of the target parallel system [2], [3], [13], [14], [18],

[20], [25], [34], [35]. This model, which shall be referred to as

the classic model, is defined in the following, including the

generalization towards heterogenous processors:

Definition 2 (Classic System Model). A parallel system

Mclassic ¼ ðP; !Þ consists of a finite set of processors P

connected by a communication network. The processor

heterogeneity, in terms of processing speed, is described by

the execution time function !. This system is dedicated to the

execution of the scheduled program and has the following

properties:

1. Dedicated processor—A processor P 2 P can exe-
cute only one task at a time and the execution is not
preemptive.

2. Zero cost local communication—The cost of
communication between tasks executed on the same
processor, local communication, is negligible and
therefore considered zero.

3. Communication subsystem—Interprocessor com-
munication is performed by a dedicated communica-
tion subsystem. The processors are not involved in
communication.

4. Concurrent communication—Interprocessor com-
munication in the system is performed concurrently
and there is no contention for communication resources.

5. Fully connected—The communication network is
fully connected. Every processor can communicate
with every other processor via a dedicated identical
communication link.

A schedule of a DAG is the association of a start time and

a processor with every node of the DAG. To describe a

schedule S of a DAG G ¼ ðV;E; w; cÞ on a target system

Mclassic ¼ ðP; !Þ, the following terms are defined: tsðn; P Þ
denotes the start time and !ðn; P Þ the execution time of

node n 2 V on processor P 2 P. Thus, the node’s finish

time is given by tfðn; P Þ ¼ tsðn; P Þ þ !ðn; P Þ: In a homo-

geneous system, the execution time is equivalent to the

computation cost of the node, thus, !ðn; P Þ ¼ wðnÞ. In a

heterogeneous system, the computation cost wðnÞ of node n

describes its average computation cost. The processor to

which n is allocated is denoted by procðnÞ. Further, let

tfðP Þ ¼ maxn2V:procðnÞ¼PftfðnÞg be the processor finish time

of P and let slðSÞ ¼ maxn2VftfðnÞg be the schedule length

(or makespan) of S, assuming minn2VftsðnÞg ¼ 0. The

sequential time is G0s execution time on one processor

(local communication has zero costs) seqðGÞ ¼
P

n2V wðnÞ.
For such a defined schedule to be feasible, the following

two conditions most be fulfilled for all nodes in G:

Condition 1 (Processor Constraint). For any two nodes ni,

nj 2 V,

procðniÞ ¼ procðnjÞ ¼ P ) tfðni; P Þ � tsðnj; P Þ
or tfðnj; P Þ � tsðni; P Þ:

�
ð1Þ

Condition 2 (Precedence Constraint). For ni; nj 2 V,

eij 2 E, P 2 P,

tsðnj; P Þ � tfðeijÞ; ð2Þ

where tfðeijÞ is the edge finish time of the communication

associated with eij.

The earliest time a node nj 2 V can start execution on

processor P 2 P, which is constrained by nj
0s entering

edges (2), is called the Data Ready Time (DRT)

tdrðnj; P Þ ¼ max
eij2E;ni2predðnjÞ

ftfðeijÞg ð3Þ

and, hence,

tsðn; P Þ � tdrðn; P Þ ð4Þ

for all n 2 V. If predðnjÞ ¼ ;, i.e., nj is a source node,

tdrðnjÞ ¼ tdrðnj; P Þ ¼ 0, for all P 2 P. Owing to the system

model, the edge finish time only depends on the finish time

of the origin node and the communication time.

Definition 3 (Edge Finish Time). The edge finish time of eij 2
E is given by

tfðeijÞ ¼ tfðniÞ þ
0 if procðniÞ ¼ procðnjÞ
cðeijÞ otherwise:

�
ð5Þ
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Thus, communication can overlap with the computation

of other nodes (Property 3 of Definition 2), an unlimited

number of communications can be performed at the same

time (Property 4), and communication has the same cost

cðeijÞ, indifferent of the origin and the destination processor

(Property 5), unless communication is local (Property 2).

2.2 Scheduling Heuristics

The scheduling problem is to find a schedule with minimal

length. As this problem is NP-hard [26], [33], many

heuristics have been proposed for its solution. A heuristic

must schedule a node on a processor so that it fulfils all

resource (1) and precedence constraints (2). The following

condition formulates that.

Condition 3 (Scheduling Condition). Let G ¼ ðV;E; w; cÞ be
a DAG and Mclassic ¼ ðP; !Þ be a parallel system. Let ½A;B�,
A;B 2 ½0;1�, be an idle time interval on P 2 P, i.e., an

interval in which no node is executed. A free node n 2 V can

be scheduled on P within ½A;B� if

maxfA; tdrðn; P Þg þ !ðn; P Þ � B: ð6Þ

A free node is a node whose predecessors have already

been scheduled, which is a requisite for the calculation of the

DRT. So, Condition 3 allows node n to be scheduled between

already scheduled nodes (insertion technique) [17], i.e.,

½A;B� ¼ ½tfðnPl
; P Þ; tsðnPlþ1

; P Þ�, or after the finish time of

processor P (end technique) [1], i.e., ½A;B� ¼ ½tfðP Þ;1�.

2.2.1 List Scheduling

The best known scheduling heuristic is list scheduling, e.g.,

[1], as given in Algorithm 1. In this simple, but common,

variant of list scheduling, the nodes are ordered according

to a priority in the first part of the algorithm. The schedule

order of the nodes is important for the schedule length and

many different priority schemes have been proposed [1],

[16], [30], [34]. A common and usually good priority is the

node’s bottom level bl, which is the length of the longest

path leaving the node. Recursively defined, it is

blðniÞ ¼ wðniÞ þ max
nj2succðniÞ

fcðeijÞ þ blðnjÞg: ð7Þ

Algorithm 1. List scheduling.

1: . 1. Part:

2: Sort nodes n 2 V into list L, according to priority scheme

and precedence constraints.

3: . 2. Part:

4: for each n 2 L do

5: Find processor P 2 P that allows earliest finish time of
n.

6: Schedule n on P .

To determine the start time of a node, the earliest interval

½A;B� is searched on each processor that complies with the

scheduling Condition 3, either using the insertion or the end

technique. For the found interval ½A;B�, the start time of

node n is determined as

tsðn; P Þ ¼ maxfA; tdrðn; P Þg: ð8Þ

Node n is scheduled on the processor that allows the
earliest finish time tfðn; P Þ ¼ tsðn; P Þ þ !ðn; P Þ, thereby
integrating the awareness for processor heterogeneity.

For most of the priority schemes, the complexity of the
first part is OðV logVþEÞ [29]. The complexity of the
second part is OðPðVþEÞÞ (end technique) or OðV2 þPEÞ
(insertion technique) [29].

3 CONTENTION AWARENESS

From Definition 2 of the system model, it is clear that there
is absolutely no consideration of contention for commu-
nication resources in the classic scheduling approach. In the
past, there were some attempts to consider contention in
task scheduling, which shall be discussed in the next
paragraphs. Roughly, contention can be divided into end-
point and network contention.

3.1 End-Point Contention

End-point contention refers to the contention in the
interfaces that connect the processors with the communica-
tion network. Only a limited number of communications
can pass from the processor into the network and from the
network into the processor at one instance in time.

End-point contention has been considered in task
scheduling with the one-port model [4] and with the
parameter g of the LogP model [9]. The one-port model
extends the classic model by associating a communication
port with each processor. In the few scheduling algorithms
based on the LogP model, e.g., [6], [15], [22], the number of
concurrent communications that can leave or enter a
processor is limited, since the time interval between
two consecutive communications must be at least g.

3.2 Network Contention

Network contention is caused by the limited number of
resources within the network. To successfully handle this
kind of contention in scheduling, an accurate model of the
network topology is required. Static networks, i.e., networks
with fixed connections between the units of the system, are
commonly represented as undirected graphs. A vertex
represents a processor and an undirected edge represents a
bidirectional communication link between two processors.

A few scheduling algorithms employed this undirected
topology graph to achieve the awareness of network
contention, e.g., MH (Mapping Heuristic) [11], DLS (Dy-
namic Level Scheduling) [27], and BSA (Bubble Scheduling
and Allocation) [21]. The more realistic view of the network
traffic is gained by DLS and BSA through the scheduling of
the edges of the DAG on the links of the network graph.
This idea of edge scheduling was first proposed in [27],
however, without further details. Edge scheduling has,
thanks to its strong similarity with task scheduling, the
potential to accurately reflect contention in communication.
Therefore, the here proposed approach to contention
awareness is based on the edge scheduling idea.

4 NETWORK MODEL

In this section, a network model for contention-aware task
scheduling is proposed. First, a topology graphmore general

SINNEN AND SOUSA: COMMUNICATION CONTENTION IN TASK SCHEDULING 505



than the undirected graph is proposed, which is capable of
capturing both end-point and network contention.

4.1 Topology Graph

Definition 4 (Topology Graph). The topology of a commu-
nication network is modeled as a graph TG ¼ ðN;P;D;H; bÞ,
whereN is a finite set of vertices,P is a subset ofN,P � N,D
is a finite set of directed edges, and H is a finite set of
hyperedges. A vertex N 2 N is referred to as a network
vertex, of which two types are distinguished: a vertex P 2 P
represents a processor, while a vertex S 2 N, =2 P represents a
switch. A directed edge Dij 2 D represents a directed
communication link from network vertex Ni to network
vertex Nj, Ni;Nj 2 N. A hyperedge H 2 H is a subset of
two or more vertices of N, H � N; jHj > 1, representing a
multidirectional communication link between the network
vertices ofH. For convenience, the union of the two edge setsD
and H is designated the link set L, i.e., L ¼ D [H, and an
element of this set is denoted by L, L 2 L. The nonnegative
weight bðLÞ, associated with a link L 2 L, represents its
relative data rate.

A hyperedge [5] is a generalization of an undirected edge
as it can be incident on more than two vertices. It is
assumed that a switch is ideal, i.e., there is no contention
within the switch. Regarding the routing of a message in the
network, switch and processor vertices are treated identi-
cally—a switch just cannot execute tasks.

The topology graph is an unusual graph in that it
integrates two types of edges—directed and hyperedges.
Thereby, it is able to address the shortcomings of the
undirected graph network model.

Half and full duplex links—Through the introduction of
directed edges, it can be distinguished between half and full
duplex communication links. A hyperedge incident on
two network vertices, i.e., an undirected edge, models a half
duplex link (Fig. 1a), as in the undirected graph. A full
duplex link is represented by two counter directed edges

(Fig. 1b). Even a unidirectional communication link, as
sometimes encountered in ring-based topologies (e.g.,
networks using the SCI (Scalable Coherent Interface)
standard [10]) can be modeled with one directed link in
the corresponding direction.

Buses—A hyperedge is a natural representation of a bus
topology as illustrated in Fig. 1c. In the undirected graph
model, buses are inaccurately reflected by fully connected
networks, e.g., as shown in Fig. 2b. In both representations,
every processor is adjacent to every other vertex. However,
for contention scheduling, the fact that the bus is shared
among all processors is crucial.

Switches—With the introduction of a switch vertex, it is
now possible to represent dynamic networks containing
communication switches. For example, in a binary tree
network, only the leaves are processors and all other
vertices are switches (Fig. 2a).

Another example is a cluster of workstations connected
through the switch of a LAN (Local Area Network) (Fig. 2c).
In the undirected topology graph, such a network must be
represented as fully connected (Fig. 2b). Thus, every
processor has its own link with every other processor,
reducing the modeled impact of (end-point) contention.

Moreover, a switch vertex is utilized to model the
bottleneck caused by the interface that connects a processor
to the network, i.e., end-point contention. Imagine one
processor in a two-dimensional processor mesh, i.e., it has
direct links to four neighbors, whose network interface
limits the number of communications to one at a time.
Deploying a switch, as in Fig. 2d, reflects this situation,
which, for example, is encountered in the Intel Paragon [10].

Heterogeneity—Heterogeneity, in terms of the links’
transfer speeds, is captured by the topology graph through
the association of relative data rates with the links. Of
course, for homogenous systems, the relative data rate is set
to 1 or simply ignored.

The topology graph is conservative in that it contains
other simpler models. For example, in a network without
busses, it reduces to a graph without hyperedges (only
directed and undirected edges) or, in a static network, all
network vertices are processors. In particular, the topology
graph is a generalization of the undirected topology graph,
which is given with N ¼ P (no switches), jHj ¼ 28H 2 H

(only undirected edges, i.e., hyperedges with two vertices),
and D ¼ ; (no directed edges).

4.2 Routing

To schedule edges on communication links, it must be
known which links are involved in an interprocessor
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Fig. 1. Representing (a) a half duplex link, (b) a full duplex link, and (c) a

bus with an undirected edge, two counter-directed edges, and a

hyperedge, respectively.

Fig. 2. Networks modeled with the topology graph (P—processor, S—switch). (a) Binary tree network. (b) Fully connected processors. (c) Lan with
switch. (d) Switch used to model network interface bottleneck.



communication and how. Essentially, this is described by
the routing algorithm and policy of the target system’s
network [10], [19], which will be reviewed from the
perspective of edge scheduling in the next paragraphs.

Nonadaptive versus adaptive routing—The contention-
aware scheduling proposed in this paper assumes nonadap-
tive routing. Adaptive routing is seldom used in current
parallel machines [10]. Moreover, it would require a
modeling down to the data packet level in order to
accurately reflect the traffic in the network at every instance
in time.

Switching Strategy—In circuit switching, the path for the
communication is established—by the routing algorithm
—at the beginning of the transfer and all data takes the
same circuit, i.e., route. With packet switching, the message
is split into packets and routing decisions are made
separately for every packet. Since edge scheduling does
not consider the possible division of communications into
packets, circuit switching is assumed.

Store-and-forward versus cut-through routing—In store-
and-forward routing, the data of a communication is stored
at every network station until the entire message, or packet,
has arrived and is subsequently forwarded to the next
station of the route. In cut-through routing, a station
immediately forwards the data to the next station—the
message “cuts through” the station. Store-and-forward
routing has a higher latency than cut-through routing. It
is used in wide area networks and was used in several early
parallel computers, while modern parallel systems employ
cut-through routing, e.g., Cray T3D/T3E, IBM SP-2 [10].
Moreover, systems that use store-and-forward behave
approximately like systems with cut-through routing,
regarding edge scheduling, when the communication is
divided into several packets, as illustrated in Fig. 3. Thus, in
edge scheduling, cut-through routing will be assumed.

Routing delay per hop—With every hop that a message or
packet takes along its route through the network, a delay
might be introduced. This delay is typically very small, e.g.,
Cray T3E has a hop delay of 1 network cycle [10]. For this
reason, the hop delay is neglected for simplicity in edge
scheduling, but it can be included in a straightforward
manner, if necessary.

Routing algorithm—The routing algorithm of the net-
work selects the links through which a communication is
routed. In order to obtain the most accurate results possible,
contention-aware scheduling ought to reflect the routing
algorithm of the target system. Thus, it is proposed to
employ the target system’s own routing algorithm in
contention-aware scheduling. The job of such a routing

algorithm applied to the topology graph is to return an
ordered list of links, the route, utilized by the correspond-
ing interprocessor communication.

Fortunately, using the target system’s own routing
algorithm does not imply that, for every target system, a
different routing algorithm must be implemented in
scheduling. Most parallel computers employ minimal
routing, which means they choose the shortest possible
path, in terms of number of edges, through the network for
every communication. Given the graph-based representa-
tion of the network, finding a shortest path can be
accomplished with a Breadth First Search (BFS) algorithm
[8]. Thus, the BFS can be used as a generic routing algorithm
in the topology graph, which serves, at least, as a good
approximation in many cases.

Although BFS is an algorithm for directed and undir-
ected graphs, it can readily be applied to the topology
graph. The only graph concept used in BFS is that of
adjacency. For a hyperedge, it can be defined as follows:

Definition 5 (Adjacency with Hyperedges). Let H be a
hyperedge. A vertex u 2 H is adjacent to all vertices v 2 H n u
and all vertices v 2 H n u are adjacent to u.

Now, in the topology graph, the total set of all vertices
adjacent to a given vertex u is the union of the adjacent sets
induced by the directed edges and the hyperedges. So, with
this definition of vertex adjacency, the BFS can be applied to
the topology graph without any modification and returns a
shortest path in terms of number of edges.

Complexity—As routing depends on the algorithm of
the target parallel system, there is no general time complex-
ity expression which is valid for all networks. On that
account, the routing complexity shall be denoted gener-
ically by OðroutingÞ. In regular networks, it is usually linear
in the number of network vertices or even of constant time.
For example, in a fully connected network, it is obviously
Oð1Þ, as it is in a network with one central switch (Fig. 2c).
In a topology graph for a mesh network of any dimension, it
is at most linear in the number of processors OðPÞ.
Whenever it is possible to calculate the routes for a given
system once and then to store them, e.g., in a table,
OðroutingÞ is just the complexity of the length of the route.

The BFS used to reflect minimal routing has linear
complexity for directed and undirected graphs, OðVþEÞ
[8]. With the above definition of adjacency with hyperedges,
this result extends directly to the topology graph. Hence, in
the topology graph, BFS’s complexity isOðNþ LÞ. To obtain
this complexity, it is important that every hyperedge is only
considered once and not one time for every incident vertex.
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4.3 Scheduling Network Model

Based on the previous analysis and the proposed topology
graph, the network model is defined as follows:

Definition 6 (Network Model). A communication network of
a parallel system is represented by a topology graph TG ¼
ðN;P;D;H; bÞ (Definition 4). The routing algorithm carried
out on the topology graph is that of the represented network (or
its closest approximation). Further, routing has the following
properties:

1. Nonadaptive,
2. Circuit switching,
3. Cut-through, and
4. No routing delay per hop.

If the represented network employs adaptive routing, the
default behavior is reproduced.

5 EDGE SCHEDULING

In edge scheduling, communication resources are treated
like processors in the sense that only one communication
can be active on each resource at a time. Thus, edges are
scheduled onto the communication links for the time they
occupy them.

LetG ¼ ðV;E; w; cÞbe aDAGandTG ¼ ðN;P;D;H; bÞ be
a communication network according to Definition 6. Then,

tsðe; LÞ denotes the start time of edge e 2 E on link L 2 L

ðL ¼ D [HÞ. The communication time of e on L is &ðe; LÞ ¼
cðeÞ
bðLÞ and the finish timeof eonL is tfðe; LÞ ¼ tsðe; LÞ þ &ðe; LÞ.

As links might have heterogenous data rates (Def-
inition 4), the communication time is a function of the edge
e and the link L. Accordingly, the edge cost cðeÞ is now
interpreted as the average time the communication repre-
sented by e occupies a link of L for its transfer. Like a
processor (Condition 1), a link is exclusively occupied by
one edge.

Condition 4 (Link Constraint). For any two edges e; f 2 E
scheduled on link L 2 L,

tfðe; LÞ � tsðf; LÞ or tfðf; LÞ � tsðe; LÞ: ð9Þ

Despite its similarity with task scheduling, edge sche-
duling differs in one important aspect. In general, a
communication route between two processors consists of
more than one link. An edge is scheduled on each link of the
route, while a node is only scheduled on one processor
(with the exception of the node duplication technique [18]).

5.1 Scheduling Edge on Route

Let TG ¼ ðN;P;D;H; bÞ be a communication network. For
any two distinct processors Psrc and Pdst, Psrc; Pdst 2 P, the
routing algorithm of TG returns a route R 2 TG from Psrc to
Pdst in the form of an ordered list of linksR ¼ hL1; L2; . . . ; Lli,
Li 2 L for i ¼ 1; . . . ; l.

Note that the route only depends on the source and the
destination processor of a communication due to the
network model’s property of nonadaptive routing (Defini-
tion 6). As the network model also supposes circuit
switching, the entire communication is transmitted on the
established route. An edge using this route is scheduled on

each of its links, whereby data traverses the links in the
order of the route.

Condition 4 (Causality). Let G ¼ ðV;E; w; cÞ be a DAG. For
the start and finish times of edge e 2 E on the links of the route
R ¼ hL1; L2; . . . ; Lli, R 2 TG,

tfðe; Lk�1Þ � tfðe; LkÞ ð10Þ

tsðe; L1Þ � tsðe; LkÞ ð11Þ

for 1 < k � l.

Inequality (10) of the causality condition reflects the fact

that communication does not finish earlier on a link than on

the link’s predecessor. For homogenous links, (11) is

implicitly fulfilled by (10), but, for heterogenous links, this

condition is important, as will be seen below.

The edge scheduling must further comply with the other

routing properties of the network model in Definition 6,

namely, the cut-through routing and the neglect of hop

delays. Together, these two properties signify that all links of

the route are utilized simultaneously. Hence, an edge must

be scheduled at the same time on every used link (Fig. 4).

Edge scheduling has to be more sophisticated when

contention comes into play, i.e., when a communication

meets other communications along the route. Two different

approaches must be examined for the determination of the

scheduling times on a route with contention. Consider the

same example as in Fig. 4, with the modification that link L2

is occupied with the communication of another edge, say

exy, at the time e is scheduled.

5.1.1 Nonaligned Approach

One solution to the scheduling of e is depicted in Fig. 5a. On

link L2, e is delayed until the link is available, thus,

tsðe; L2Þ ¼ tfðexy; L2Þ. To adhere to the causality condition, e

is also delayed on link L3; it cannot finish on the last edge

until it has finished on the previous edge, i.e., tsðe; L3Þ ¼
tsðe; L2Þ and tfðe; L3Þ ¼ tfðe; L2Þ. On L1, e is scheduled at

the same time as without contention (Fig. 4). This approach

shall be referred to as nonaligned.

5.1.2 Aligned Approach

Alternatively, e can be scheduled later on all links, i.e., it

starts on all links after edge exy finishes on link L2,

tsðe; L1Þ ¼ tsðe; L2Þ ¼ tsðe; L3Þ ¼ tfðexy; L2Þ, even on the first

L1. At first, this aligned scheduling of the edges, illustrated

in Fig. 5b, seems to better reflect cut-through routing, where

communication takes place on all involved links at the same
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time. Scheduling the edge at different times, as done in the

first approach (Fig. 5a), seems to imply the storage of at

least parts of the communication at the network vertices,

i.e., a behavior similar to store-and-forward routing.

5.1.3 Packet View

However, communication in parallel systems is packet-

based and the real process of the message transfer is better

illustrated by the Gantt chart of Fig. 5c. Each of the

symbolized packets performs cut-through routing and link

L2 is shared among both edges.
Even though edge scheduling does not reflect the

division into packets, the packet view of the situation in

Fig. 5c illustrates that the nonaligned scheduling (Fig. 5a)

can be interpreted as a message-based view of the situation

in Fig. 5c. Nonaligned scheduling holds an accurate view of

the communication time spent in the network. The

communication lasts from the start of edge e on the first

link L1 until it finishes on link L3, exactly the same time

interval as in the packet view of Fig. 5c. In contrast, aligned

scheduling delays the start of the e on the first link L1 and,

therefore, does not reflect the same delay within the

network as in the packet view. In both approaches, the

total occupation time of the links is identical to the packet

view, even though it is approximated as an indivisible

communication. Moreover, scheduling the edges aligned on

a route is more difficult to implement and likely to produce

many idle time slots on the links.
In conclusion, the nonaligned approach appears to better

reflect the behavior of communication networks and its

utilization in edge scheduling is proposed. This is also true

for heterogenous links, as shown in the following.

5.1.4 Heterogenous Links

Fig. 6a illustrates again the scheduling of an edge on
three links, whereby link L2 is now twice as fast as the other
links (bðL2Þ ¼ 2bðL1Þ ¼ 2bðL3Þ). Due to the causality condi-
tion, e cannot finish earlier on L2 than on L1 and, therefore,
the start of e on L2 is delayed accordingly. As above, this
delay seems to suggest a storage between the first and the
second link, but, in fact, it is the best approximation of the
real, packet-based communication illustrated in Fig. 6b.
This also explains why e starts and finishes on L3 at the
same times as on L1, which is realistic since a faster link on
the route obviously should not retard the communication.
Thus, the causality condition ensures a realistic scheduling
of the edge in this example.

The next example demonstrates the importance of (11) of
the causality condition for heterogeneous links. Consider
the same example as before, now with the last link slower
than the two others (bðL3Þ ¼ bðL1Þ=2 ¼ bðL2Þ=4), illustrated
in Fig. 6c. Without (11), e could start earlier on L3 than on
L1, it only had to finish not earlier than on L2. Evidently, the
principle of causality would be violated. Due to the lower
data rate of L3, the correct behavior, as shown in Fig. 6c, is
not implicitly enforced by (10) as in all other examples.
Notice that the communication is not delayed by the
contention on L2, because even without it, e could not start
earlier on L3. This is a realistic reflection of the behavior of a
real network, where a fast link (L2) can compensate
contention in relation to slower links on the route.

5.2 The Edge Scheduling

The nonaligned approach allows the determination of the
start and finish time successively for each link on the route.
On the first link, the edge’s scheduling is only constrained
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by the finish time of its origin node on the source processor
of the communication. On all subsequent links, the edge has
to comply with the causality condition. As for the
scheduling of the nodes (Condition 3), a scheduling
condition can be formulated that integrates both the
insertion and end technique (Section 2.2).

Condition 6 (Edge Scheduling Condition). Let G ¼
ðV;E; w; cÞ be a DAG, TG ¼ ðN;P;D;H; bÞ be a commu-
nication network, and R ¼ hL1; L2; . . . ; Lli be the route for the
communication of edge eij 2 E, ni; nj 2 V. Let ½A;B�,
A;B 2 ½0;1�, be an idle time interval on Lk, 1 � k � l, i.e.,
an interval in which no other edge is transferred on Lk. Edge
eij can be scheduled on Lk within ½A;B� if

B�A � &ðeij; LkÞ ð12Þ

B � tfðniÞ þ &ðeij; LkÞ if k ¼ 1
maxftfðeij; Lk�1Þ; tsðeij; L1Þ þ &ðeij; LkÞg if k > 1:

�

ð13Þ

Condition 6 ensures that the time interval is large
enough for eij ((12)). On the first link (k ¼ 1), eij

0s
scheduling is only constrained by the finish time of its
origin node ni on the source processor of the communica-
tion. On all subsequent links (k > 1), the scheduling of eij
has to comply with the causality condition (Condition 5).

A time interval, obeying the above condition, can be
searched successively for each of the links on the route,
using either the end or the insertion technique. For a given
idle time interval ½A;B� on Lk, adhering to Condition 6, the
start time of eij on Lk is determined as

tsðeij; LkÞ ¼
maxfA; tfðniÞg if k ¼ 1

maxfA; tfðeij; Lk�1Þ � &ðeij; LkÞ; tsðeij; L1Þg if k > 1:

� ð14Þ

So, edge eij is scheduled as early within the idle interval as
the causality condition or the finish time of the origin node
admits. This corresponds exactly to the nonaligned
approach discussed in Section 5.1.

6 CONTENTION AWARE SCHEDULING

First of all, the new, more realistic target system model for
contention-aware task scheduling is defined:

Definition 7 (Target Parallel System—Contention Model).
A target parallel system MTG ¼ ðTG; !Þ consists of a set of
possibly heterogenous processors P connected by the commu-
nication network TG ¼ ðN;P;D;H; bÞ, according to Defini-
tion 6. The processor heterogeneity, in terms of processing
speed, is described by the execution time function !. This
system has the Properties 1 to 3 of the classic model of
Definition 2.

Two of the classic model’s properties are substituted by
the detailed network model: concurrent communication
(Property 4) and a fully connected network topology
(Property 5). With the abandonment of the assumption of
concurrent communication, task scheduling must consider
the contention for communication resources. For this

purpose, edge scheduling is employed. The integration of
edge scheduling into task scheduling is relatively easy, due
to the careful formulation of the scheduling problem in
Section 2.1. It is only necessary to redefine the edge finish
time (Definition 3).

Definition 8 (Edge Finish Time—Contention Model). Let
G ¼ ðV;E; w; cÞ be a DAG and MTG ¼ ððN;P;D;H; bÞ; !Þ
a parallel system. Let R ¼ hL1; L2; . . . ; Lli be the route for the
communication of eij 2 E, ni; nj 2 V, if procðniÞ 6¼ procðnjÞ.
The finish time of eij is

tfðeijÞ ¼
tfðniÞ if procðniÞ ¼ procðnjÞ
tfðeij; LlÞ otherwise:

�
ð15Þ

So, the edge’s (global) finish time is its finish time on the

last link on the route, unless the communication occurs

betweennodes scheduledon the sameprocessor (Property 2),

where it remains the finish time of the origin node. The

scheduling of the nodes is not concernedwith the internals of

edge scheduling. Everything that is relevant to node

scheduling is encapsulated in the finish time of an edge.

Task scheduling becomes contention-aware, since the

finish time of an edge depends on the contention for the

communication links. This is illustrated in Fig. 7, where

edge eAB and, in turn, node B are delayed due to contention

on the link L. A scheduling algorithm “sees” the contention

through the later DRT’s of the nodes.

Without contention, the new model behaves like the

classic model, i.e., the time the edge spends in the network

corresponds exactly to the communication delay in the

classic model. Therefore, the edge weight in a DAG for the

contention model can remain identical to the edge weight in

a DAG for the classic model. Hence, the new system model

has no impact on the creation of the DAG.
Scheduling under the new contention model remains an

NP-hard problem.

Theorem 1 (NP-Completeness—Contention Model). Let
G ¼ ðV;E; w; cÞ be a DAG and MTG ¼ ððN;P;D;H; bÞ; !Þ
a parallel system. The decision problem C-SCHED(G, MTG),
associated with the scheduling problem is as follows: Is there a
schedule S for G on MTG with length slðSÞ � T; T 2 OQþ?
C-SCHED(G, MTG) is NP-complete.

Proof. This proof is the adapted proof of the NP-complete-
ness of scheduling under the one-port model [4]. First, it
is argued that C-SCHED belongs to NP, then, it is shown
that C-SCHED is NP-hard by reducing the well-known
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NP-complete problem 2-PARTITION [12] in polynomial
time to C-SCHED. The 2-PARTITION problem is: Given l
positive integer numbers fa1; a2; . . . ; alg, is there a subset
I of indices such that

P
i2I ai ¼

P
i=2I ai?

Clearly, for any given solution S of C-SCHED, it can
be verified in polynomial time that S is feasible and
slðSÞ � T , hence, C-SCHED 2 NP.

From an arbitrary instance of 2-PARTITION fa1;
a2; . . . ; alg, an instance of C-SCHED is constructed in the
following way: Let M ¼ max1�i�l ai, m ¼ min1�i�l ai, and

2U ¼
Pl

i¼1 ai (if the sum is odd, there is no solution to

the instance of 2-PARTITION).
DAG G—The constructed DAG G is a fork-graph as

illustrated in Fig. 8a. It consists of one parent node n0 and
N child nodes n1; n2; . . . ; nN , hence, jVj ¼ N þ 1 nodes,
where N ¼ lþ 3. There is an edge ei directed from n0 to
every childnodeni,1 � i � N . Theweights assigned to the
nodes are

. wðn0Þ ¼ 1andwðniÞ ¼ 10ðM þ ai þ 1Þ for1 � i � l.

. wðnlþ1Þ ¼ wðnlþ2Þ ¼ wðnlþ3Þ ¼ wmin, with wmin ¼
10ðM þmÞ þ 1. Hence, to the last three children,
the same minimal weight is assigned. Note that
wmin < wðniÞ < 2wmin for 1 � i � l, as can be ver-
ified straightforwardly.

The weight of each edge equals the weight of its
destination node: cðeiÞ ¼ wðniÞ for 1 � i � lþ 3.

Target system MTG—The constructed target system
MTG ¼ ððN;P;D;H; bÞ; !Þ, illustrated in Fig. 8b, consists
of jPj ¼ N þ 1 identical processors (i.e., !ðn; P Þ ¼ wðnÞ),
i.e., the number of processors is practically unlimited, as
more processors than nodes can never be used. Each
processor Pi is connected to a central switch S through a
half duplex link Li, which is represented by an
undirected edge (a hyperedge incident on two vertices:
Li ¼ Hi ¼ fPi; Sg). Hence, N ¼ S [P, D ¼ ;, H ¼
fL0; L1; . . . ; LNg, and, as all links are identical, bðLiÞ ¼
1 for 0 � i � N .

Time bound T—The time bound is set to

T ¼ 1

2

Xl

i¼1

wðniÞ þ 2wmin þ wðn0Þ

¼ 5nðM þ 1Þ þ 10U þ 20ðM þmÞ þ 3:

Clearly, the construction of the instance of C-SCHED is
polynomial in the size of the instance of 2-PARTITION.

It is now shown how a schedule is derived for C-
SCHED from an instance fa1; a2; . . . ; alg that admits a
solution to 2-PARTITION: Let I be a subset of indices
such that U ¼

P
i2I ai ¼

P
i=2I ai:

. Node n0, all nodes ni, i 2 I, and nlþ1 and nlþ2 are
allocated to processor P0. Obviously, P0

0s finish
time is exactly tfðP0Þ ¼ T . Each other node is
assigned to a distinct processor other than P0.

. The outgoing edges ei from P0 are scheduled on
L0 in increasing index order; in particular, elþ3 is
the last edge scheduled on L0.

. The processor, say Pj, on which nlþ3 is executed,
receives elþ3 at time step

wðn0Þ þ
X
i=2I

cðeiÞ þ cðelþ3Þ ¼ wðn0Þ þ
X
i=2I

wðeiÞ þ wmin

since elþ3 is the only edge on Lj, hence it

finishes on Lj at the same time as on L0.

Processor Pj finishes execution at time step

tfðPjÞ ¼ wðn0Þ þ
P

i=2I wðeiÞ þ 2wmin ¼ T .
. All other processors terminate their execution

earlier because they receive their communication
not later than wðn0Þ þ

P
i=2I wðeiÞ and their execu-

tion time wðniÞ is smaller than 2wmin.

Thus, a feasible schedule was derived whose schedule
length matches the time bound T , hence it is a solution to
the constructed C-SCHED instance.

Conversely, assume that the instance of C-SCHED
admits a solution given by the feasible schedule S with
slðSÞ � T . The processor to which n0 is scheduled shall be
referred to as P0. Let J ¼ fi; 1 � i � lþ 3 : procðniÞ ¼ P0g
be the index set of all other nodes, besides n0, scheduled
on P0. Thus, P0 terminates execution not earlier than
A ¼ wðn0Þ þ

P
i2J wðniÞ. All nodes ni =2 J are scheduled

on processors other than P0. Let nlast, procðnlastÞ 6¼ P0, be
the node receiving the last communication from P0. The
finish time of the processor executing nlast is not earlier
than B ¼ wðn0Þ þ

P
1�i�lþ3;i=2J cðeiÞ þ wlast. Since slðSÞ �

T , maxðA;BÞ � T . As

AþB ¼ 2wðn0Þ þ
X

1�i�lþ3

wðniÞ þ wlast ¼ 2T þ wlast � wmin;

wlast ¼ wmin and, hence, A ¼ B ¼ T . Now, since A ¼ B,

also A � B mod 10, thus—due to the choice of the node

and edge weights—exactly two nodes with indices from

flþ 1; lþ 2; lþ 3g must be executed on P0, i.e., these

indices are in J. To conclude, let I be equal to J minus

these two indices to obtain a solution to 2-PARTITION. tu
This proof showed weak NP-completeness [12] of C-

SCHED. It seems possible to prove strong NP-completeness

by reducing from 3-PARTITION [12], and we are working

on this proof.

6.1 List Scheduling

In order to adapt list scheduling to the contention model,

two of its aspects must be modified: the determination of

the DRT and the scheduling of a node. Having a contention-

aware list scheduling is crucial, due to list scheduling’s

significant role in task scheduling and allows to transform

many of the existing heuristics into contention-aware

algorithms. Moreover, the following discussion also serves

as an example on how to adapt a scheduling algorithm to

the new contention model. For example, in [28], the BSA
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algorithm was easily adapted to the contention-aware
scheduling proposed in this document.

Under the contention model, the scheduling of a node
must also include the scheduling of its incoming edges on
the communication links. Thus, line 6 of Algorithm 1 must
be performed as outlined in Algorithm 2. For each entering
edge eij 2 predðnjÞ of nj, the route is determined and eij is
scheduled on it as described in Section 5.2. Only after that,
when the finish times of all entering edges of nj are known,
node nj

0s DRT can be determined and it can be scheduled
on the processor.

Algorithm 2. Scheduling of a free node nj on processor P in

contention model.

for each ni 2 predðnjÞ in a definite order do
if procðniÞ 6¼ P then

determine route R ¼ hL1; L2; . . . ; Lli from procðniÞ to P

schedule eij on R

schedule nj on P

To find the processor that allows the earliest finish time
of a node, this procedure must be performed tentatively for
every processor (line 5 of Algorithm 1). So, after determin-
ing the finish time of nj on a processor, the incoming edges
are removed from the links before the procedure is repeated
on the next processor. This is necessary to obtain the correct
view of the communication times of the edges.

The scheduling order of the edges is relevant for the
DRT’s of their destination nodes. For this reason,
Algorithm 2 requires a definite processing order of the
edges (for-loop). For example, the edges might be
processed in the order of their indices. Of course, an
attempt can be undertaken to find an order that positively
influences the DRTs of the destination nodes and, thereby,
the schedule length. For example, the edges can be ordered
according to the start time of their origin nodes or by the
size of the communication.

The complexity of list scheduling under the contention
model increases slightly compared to the classic model
(Section 2.2.1), owing to the different calculation of the DRT.
The calculation of the DRT involves now the routing and
scheduling of an edge which is OðroutingÞ (Section 4.2).
Thus, the complexity of the second part of contention-aware
list scheduling is OðPðVþEOðroutingÞÞÞ with the end
technique. Using the insertion technique has a complexity
of OðV2 þPE2OðroutingÞÞ as the calculation of an edge’s
start time changes from Oð1Þ to OðE), since there are at most
OðEÞ edges on each link.

Various node priority schemes for the first part of
contention-aware list scheduling are analyzed and com-
pared in [30], among which the bottom level provides the
best results.

7 EXPERIMENTAL RESULTS

This section presents experiments that analyze many
aspects of the proposed contention-aware scheduling. The
objective is to investigate the accuracy and the efficiency of
the new model compared to the classic model. For this
purpose, an experimental evaluation on real parallel
systems is required. Such an evaluation was extensively

performed in [28] and this section presents the major

results.

7.1 Methodology

The experimental methodology [31] begins with the

common procedure of scheduling algorithm comparisons:

A large set of DAGs is scheduled by different heuristics on

various target systems. In the next step, code is generated

that corresponds to the DAGs and their schedules. This

code is then executed on real parallel systems. Let ptðSÞ be
the execution time—the parallel time—of the code gener-

ated for schedule S and DAG G ¼ ðV;E; w; cÞ on a target

system. The accuracy of S is the ratio of the real execution

time on the parallel system to the schedule length, i.e., the

estimated execution time accðSÞ ¼ ptðSÞ
slðSÞ . The speedup of S is

the ratio of sequential time to execution time supðSÞ ¼
seqðGÞ
ptðSÞ . Finally, the efficiency of S is the ratio of speedup to

processor number effðSÞ ¼ supðSÞ
jPj ¼ seqðGÞ

ptðSÞ�jPj .

7.1.1 Workload

The workload for the experiments are randomly generated

graphs, as are common for analyzing scheduling algo-

rithms, e.g., [3], [13], [20]. Three parameters are varied to

generate large sets of random graphs: the number of nodes

(v), the average number of edges per node, i.e., the average

in-degree or the average out-degree (they are identical) of a

node (���), and the communication to computation ratio

(CCR ¼
P

e2E cðeÞP
n2VwðnÞ

).

7.1.2 Scheduling Algorithms

For the analysis of the classic and the contention model, one

scheduling algorithm is considered under each model. For

both models, list scheduling using the end technique is

employed. Under the classic model, the nodes are ordered

according to their bottom levels ((7)). For the contention

model, the node priority scheme of the contention-aware

DLS algorithm [27] (Section 3.2) was chosen. The priority of

a node nj is given by blwðnjÞ þmaxeij2E;ni2predðnjÞ cðeijÞ,
where blw is the bottom level excluding the edge weights,

i.e., communication costs. Later experiments showed that

the bottom-level produces better results also under the

contention model [30].
For evaluating the scheduling accuracy, the actual

performance of the algorithms, in terms of produced

schedule lengths, is irrelevant. Scheduling is accurate if

the schedule length is a good approximation of the

execution time.

7.1.3 Code Generation

Code is generated using the C language and MPI (Message

Passing Interface [24]). The code generated for each node is

an active wait for the time corresponding to its weight. Each

remotely transferred edge translates into a send command

on the origin processor and a receive command on the

destination processor. The amount of data to be transferred,

which depends on the communication capabilities of the

target system, corresponds to the weight cðeÞ of the

corresponding edge.
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7.1.4 Target Systems

The three employed target systems cover a wide spectrum

of parallel architectures (Table 1): BOBCAT—a PC cluster

[32], Sun E3500 (Sun Enterprise 3500)—a shared memory

SMP system [10], and T3E (Cray T3E)—a massively parallel

system [7].

In the contention-aware algorithm, the topologies of the

target systems are modeled as follows: BOBCAT is

represented by a fully connected network because the

utilized Ethernet switch can handle communications con-

flict free. As Sun E3500’s communication network is

essentially a bus, it is presented by one hyperedge. The

T3E is modeled as fully connected and, alternatively, as a

3D cyclic torus. The decision to initially model the T3E as

fully connected, even though its network is a 3D cyclic

torus, is based on the circumstance that it is not known at

compile how a parallel program is mapped onto T3E’s

processors. For the purpose of comparison, the T3E is

represented as a 3D cyclic torus in additional experiments.
The routing algorithm of the target systems is reflected

by a shortest-path algorithm in the topology graph
(Section 4.2).

7.2 Results

To summarize, a large set of randomly generated DAGs

(v ¼ 600, 800, 1; 000; CCR ¼ 0:1, 1 and 10; ��� ¼ 1:5 and 3) is

scheduled by an algorithm under the classic and under the

contention model onto various configurations of the target

systems: eight and 16 processors of BOBCAT, four and seven

processors of SunE3500, and 32processors of T3E. For each of

these schedules, code is generated and executed on the

respective target system.The charts of Fig. 9 showthe average

accuracy and efficiency achieved under the two models over

all DAGs on all configurations of the systems.
Accuracy—For low communication (CCR ¼ 0:1), the

accuracy difference between both models is negligible

(Fig. 9a). This makes sense, as a small CCR means that

communication is less important than computation. Thus,

the effect of contention is almost negligible and the

awareness of contention cannot improve the accuracy. With

more communication, the accuracy becomes worse for both

algorithms. However, the algorithm under the contention

model now achieves much more accurate results for

medium (CCR ¼ 1) and, especially, for high communica-

tion (CCR ¼ 10) than the algorithm under the classic

model. In these cases, contention plays a significant role.
Efficiency—It is intuitive that the accuracy of the

schedules has a direct influence on their execution times,

which is represented in a normalized form by the efficiency

in Fig. 9b. Essentially, the efficiency confirms the results

regarding the accuracy. Indeed, the contention-aware

scheduling algorithm achieves better efficiency for medium

(CCR ¼ 1)—improvement of about 10 percent—and high

communication (CCR ¼ 10)—improvement of about 40 per-

cent—than the one under the classic model. Unfortunately,

the speedup of the schedules for CCR ¼ 10 is often below

one, but recall that the efficiency under the contention

model suffers from the worse node priority (the contention-

aware algorithm does not use the bottom-level scheme

(Section 7.1.2)), thus, the results might improve further with

a better node priority.
When the accuracy and efficiency results are separated

according to the target system, it is revealed that the most

accurate and efficient schedules are obtained for Sun E3500

(Figs. 10a and 10b). The accuracy is much better, compared

to the average results for all target systems in Fig. 9, for

medium (CCR ¼ 1) and high communication (CCR ¼ 10).

Also, the efficiency improvement over the classic model is

higher: on Sun E3500 it is about 11 percent for medium and

about 53 percent for high communication.
The importance of the choice of the topology model is

evidenced by the comparison of the two different topology

graphs for the T3E (fully connected versus 3D cyclic torus)

in contention scheduling (Fig. 10c). The more accurate

model—the 3D cyclic torus—yields a much better predic-

tion of the real execution times. The efficiency does not

improve using the torus graph, which is comprehensible

given that the processors might be mapped to completely

different processors as assumed during scheduling. Hence,

the contention-aware algorithm captures the importance of

contention through the torus graph, but the produced

schedules are obviously inappropriate when the mapping

of the tasks onto the processors is different as decided by

the scheduling algorithm.
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Fig. 9. (a) Average accuracy and (b) efficiency under the two scheduling

models over all DAGs and various configurations of the three target

systems.

TABLE 1
Characteristics of the Employed Target Systems



7.3 Discussion

Contention aware scheduling significantly improves both
the accuracy and the efficiency of the produced schedules.
Still, the results are improvable.

In part, this might be due to the topology graphs
employed in some of the experiments. For example,
modeling a system as fully connected allows a high degree
of concurrent communication. However, an analysis of the
target systems shows that, in all of them, each processor is
connected to the network through an interface, allowing at
most one incoming and one outgoing communication at a
time [10]. In other words, end-point contention is not
sufficiently considered when using the fully connected
graph. This explanation is confirmed by the better results
for Sun E3500. The employed bus model serializes all
communications, thereby implicitly considering end-point
contention. Probably, the results for BOBCAT and T3E can
be further improved by using a switch vertex to model the
interface bottleneck (Section 4.1).

Another possible explanation for the still improvable
results is that communication contention is not the only
aspect which is inaccurately reflected in the classic model.
Even for the contention model, a relation between the
increase of communication (CCR) and the degradation of
accuracy can be observed in the presented experimental
results. This indicates another deficiency of the scheduling
models regarding communication. Like the classic model
(Definition 2), the contention model (Definition 7) supposes
a dedicated communication subsystem to exist in the target
system (Property 3). With the assumed subsystem, compu-
tation can overlap with communication because the
processor is not involved in communication. However, the
analysis of the three parallel systems shows that none of
them possesses such a dedicated communication subsys-
tem. On all three systems, the processors are involved, in
one way or the other, in interprocessor communication.
Consequently, to further improve the accuracy and effi-
ciency of scheduling, the involvement of the processor
should be investigated [29].

Concluding, the experimental evaluation exposed that,
despite the improvable results, the new contention model
significantly improves both the accuracy and the efficiency
of task scheduling,

8 CONCLUSIONS

This paper was dedicated to the incorporation of contention
awareness into task scheduling. The ideal system model of

classic task scheduling does not capture any kind of
contention for communication resources. Therefore, a new
system model was proposed that abandons the assumptions
of a fully connected network and concurrent communication.
Instead, the topology of the network is represented by a new
graph model that allows us to capture both end-point and
network contention. Contention awareness is achieved by
scheduling the edges of the DAG onto the links of the
topology graph. Edge schedulingwas theoretically analyzed,
including aspects like heterogeneity, routing, and causality.
Based on the network model and the edge scheduling
technique, task scheduling was enhanced with contention
awareness. This approach preserves the theoretical basis of
task scheduling and has a very small impact on the complex-
ity of scheduling algorithms. It was shown how classic list
scheduling is easily extended to be contention-aware.

Experimental results demonstrated the significantly
improved accuracy and efficiency of the schedules. The
results also suggest that the involvement of the processors
in communication should be investigated in order to further
improve task scheduling’s accuracy and efficiency.
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