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Communication Cost Minimization in Wireless
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Abstract—In recent years, wireless sensor and actor networks
(WSANs) have been extensively deployed to monitor physical
environment and facilitate decision making based on data col-
lected. Emerging applications such as road surveillance highlight
some interesting research issues in WSANs, including coordina-
tion problems in sensor–actor or actor–actor communications.
In this paper, the issue of choosing a set of working actors for
coordinating data transmission in a road sensor and actor network
with minimum communication cost is studied. A theoretical model
is introduced to analyze the communication cost of data trans-
mission in WSANs, and the sensor–actor coordination problem
is formulated as an optimization problem. It is demonstrated
that the problem can be divided into subproblems, and optimal
solutions can be obtained by using a dynamic programming al-
gorithm. A novel graph-based algorithm is also proposed with a
communication-cost graph used to depict the cost of data trans-
mission and a modified Dijkstra’s algorithm to find optimal solu-
tions in reduced time complexity. The efficiency of the proposed
algorithms is confirmed using extensive simulations.

Index Terms—Communication optimization, road surveillance,
sensor-actor coordination problem, sensor and actor network.

I. INTRODUCTION

W IRELESS sensor and actor networks (WSANs), which
are composed of a set of sensors and actors linked

by wireless medium to perform distributed sensing and acting
tasks, have been widely used in battlefield surveillance, chem-
ical attack detection, home automation, and environmental
monitoring [1]–[3]. Sensors are low-cost, low-power devices
with limited sensing, computation, and wireless communication
capacities. Actors are assumed to be equipped with better
processing capabilities, higher transmission power, and longer
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Fig. 1. Example of road surveillance.

battery life. In WSANs, sensors and actors work together in
data-centric applications, with sensors gathering information
about the physical world and actors taking appropriate actions
on the environment [4].

Recently, researchers have proposed the use of WSANs for
road surveillance; these are sometimes called road sensor and
actor networks (RSANs) [5], [6]. Fig. 1 shows an example of
an RSAN. A large number of sensors and actors are randomly
deployed on public roads to collect real-time data on traffic and
road conditions. When sensors detect an event (i.e., a passing
car), they transmit sensing data (i.e., position and speed of the
car) to nearby actors, which transmit data to the sink through
long-range communication. The sink processes and analyzes
the sensor data on board and then issues action commands to
actors. Typical applications in RSANs include vehicle tracking,
driver warning, and incident detection. For example, if a driver
is going in the wrong direction, the sink will detect this and
activate the appropriate actor to send a warning message to the
driver. RSANs can also provide more sophisticated information
services such as road-surface condition reporting and traffic
information queries. There are a number of studies on RSANs,
such as the use of sensor networks for vehicle tracking in mil-
itary applications [7], [8]. Karpinski et al. proposed a software
architecture for sensor networks in smart roads [6]. Jeong et al.

presented an autonomous passive localization scheme for road
sensor networks [5]. However, not much has been done to
investigate how to achieve effective coordination in sensors and
actors in RSANs.
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While a large number of sensors and actors are typically
deployed in a road network, such a dense deployment is usually
not necessary for actor nodes since actors have higher capac-
ities, and a single actor can cover a larger area. To reduce
network overhead, some actors could be put to sleep to save
energy and prolong network lifetime. The process of choosing
a set of working sensors and actors and establishing suitable
data paths between them is known as sensor–actor coordina-

tion [3], [4], [9]. Previous research has studied efficient data
collecting, clustering, and sleeping schedule strategies in sensor
networks [3], [10]–[17]. However, these strategies cannot be
applied directly to RSANs because of the following: First, they
work with different coordination patterns. The sensor–actor
network is like a heterogeneous network combining powerful
and resource-limited devices performing both long-range and
short-range communications. Second, most existing cluster-
ing algorithms in sensor networks are topology dependent. In
RSANs, the deployment of sensors and actors are restricted in
a road network. This restriction in topology yields a different
communication optimization problem, which will be discussed
in this paper. To the best of our knowledge, the sensor–actor
coordination issue with the explicit objective of minimizing
network communication cost in road networks has not been
studied in the literature.

In this paper, we address the following challenging research
problem in the design of RSANs: how to choose a set of work-
ing actors and route sensing data between sensors and actors
to minimize the total communication cost for road surveillance.
Specifically, we make the following contributions.

1) We present a theoretical model to analyze the communi-
cation cost in an RSAN. By introducing the assumption
of virtual actors deployed in road intersections, we formu-
late the problem of choosing the working actor set (WAS)
for coordinating data transmission as an optimization
problem.

2) We demonstrate that the optimization problem can be
divided into subproblems; thus, a dynamic programming
algorithm is proposed to obtain the optimal solution to
achieve minimal communication cost. The time complex-
ity of the dynamic programming algorithm is proven to be
O(nm2), where n is the number of nodes, and m is the
number of actors in RSANs.

3) We also introduce an efficient graph-based algorithm to
solve the problem in lower time complexity. A commu-

nication cost graph (CC-Graph) is used to depict the
cost of data transmission in RSANs, and a modified
Dijkstra’s algorithm is applied to find the shortest path,
with an optimal solution to the problem obtained as the
end result. The graph-based algorithm is proven to run
in O(nm + m2lgm), which is more efficient than the
dynamic programming solution.

4) We further prove that, without the deployment of actors
in virtual nodes, the proposed strategies produce a near-
optimal solution, which approaches the optimal solution
with asymptotic order O(1/m).

5) We produce extensive simulations to study the system
performance, which shows the efficiency of the proposed
approaches.

Fig. 2. RSAN.

The rest of this paper is organized as follows: Section II
presents the system model of RSANs and formulates the com-
munication cost minimization problem. Section III outlines
both a dynamic programming solution and a graph-based solu-
tion to the problem and proves their correctness and optimality.
The performance of the proposed algorithms is evaluated in
Section IV. Section V introduces related work, and finally,
Section VI concludes this paper.

II. SYSTEM MODEL

Fig. 2 shows the road sensor–actor network that corresponds
to Fig. 1. In this example, sensors detect events and send their
data to nearby actors. Unlike other research assuming actors
to be resource-rich nodes with unlimited power supply, we
make much weaker assumptions about actors in our model: We
only assume that actors are capable of sensing and performing
long-range communications. That is, in our model, actors are
not necessary to be powerful nodes; they could be resource-
limited nodes operating on batteries, or they could be just
normal sensors that are chosen to collect data and send them
to the sink (like cluster heads). The assumption of coexistence
of powerful and resource-limited actors coincides with our real
life experience. For example, people tend to deploy powerful
nodes in the busy roads to monitor their traffic condition. On
the other hand, the rural area may not be covered by powerful
actors, where resource-limited nodes will be used for long-
range communication. In such a case, minimizing communi-
cation cost in the system is important to save energy and extend
network lifetime.

Each actor has two states: working or inactive. If an actor
is in the working state, it can sense events, collect data from
nearby sensors, and establish long-range communication with
the sink. If it is in the inactive state, it acts like a normal sensor.
Consider the example in Fig. 2; if sensor A has detected an
event, the data collected by the sensor need to travel three hops
to send to the nearest actor B. However, if actor C is in the
working state, it only needs one hop for A to communicate
with C. More working actors clearly improves communication
efficiency as the sensor data can be more quickly processed but
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Fig. 3. Data communication in a road segment.

at the expense of increased communication cost and greater
power consumption in the actors. Hence, the selection of a
suitable set of working actors to minimize the total network
communication cost is a key design decision in RSANs.

In most cases, RSANs are complicated and irregular net-
works, which are hard to analyze. To simplify the system
model, we introduce virtual actors. We assume that there are
virtual actors deployed at intersections of the road networks,
and they are always in the working state. As shown in Fig. 2,
the actors with dotted circle are virtual actors. The reason
behind virtual nodes is that traffic is busier at the intersections
and requires careful surveillance; hence, people tend to deploy
actors in these places. In a real road, if no actors are deployed
in such areas, the virtual node will redirect the workload to a
nearby working actor. For example, in Fig. 2, node D is a virtual
actor; if there is no real actor deployed in its area, the virtual
node will direct its workload to a nearby working actor E or B.

The virtual nodes divide the road networks into a number
of segments. Since virtual actors are assumed to always stay
in the working state, we only need to optimize sensor–actor
coordination in each road segment. In the rest of this paper,
we formulate the communication cost minimization problem in
a road segment and propose a dynamic programming solution
and a graph-based algorithm to obtain the optimal solutions.
Since a virtual node may not exist in the actual network, the
solutions we obtained may be not optimal. However, we will
show in Theorem 5 that our approach produces a near-optimal
solution, with an asymptotic order of O(1/m), where m is the
number of actors in a road segment.

Consider data communication in a road segment between
two virtual actors, as shown in Fig. 3. Assume that there are n
nodes in the road numbered by 1, 2, . . . , n, of which there are m
actors, which are denoted by a1, a2, . . . , am. Notice that a1 = 1
and am = n are virtual actors. Sensor i (1 ≤ i ≤ n) generates
sensing data and query data with mean arrival rate λi. Actors
collect data from nearby sensors and send them to the sink.
The sink stores the data, performs data-processing operations,
handles user queries, sends back the requested data, broadcasts
traffic information, and triggers the appropriate actor to perform
some actions such as accident alarm and driver warning.

A. WAS

Our objective is to find a set of working actors to minimize
the total network communication cost. We first provide the
following formal definition of a WAS.

Definition 1 (WAS): Assume that n sensor and actor nodes
are deployed in a road, which are numbered by S={1, 2, . . . ,
n}. Among them are m (m ≤ n) actors denoted by A = {a1,
a2, . . . , am} (1 = a1 < a2 < · · · < am = n). Suppose that
there are K working actors, which are denoted by w1, w2, . . . ,
wK , where 0 ≤ K ≤ m, 1 = w1 < w2 < · · · < wK = n, and

Fig. 4. Data communication between two working actors.

wi ∈ A (i = 1, . . . , K). The set WK = {w1, w2, . . . , wK} is a
subset of A. We call WK a WAS of A.

B. Network Communication Cost

It is essential to minimize network communication in a
sensor network since sensors and some actors are resource-
constrained nodes with limited battery lifetime and communi-
cation capabilities, and network communication is a significant
component of energy consumption in sensors. Hence, we will
use energy cost as the key metric in our analysis.

In RSANs, there are three main components in network com-
munication cost: sensor–sensor, sensor–actor, and actor–sink
communication. To simplify the analysis, we assume that
the energy cost for unit data transmission in each hop of
sensor–sensor and sensor–actor communication is the same,
which is denoted by ε. (Note that our model can be extended
to the condition where ε is different.) Consequently, the cost
for an actor collecting data from a sensor is proportional to the
sensor’s data generation rate and the number of hops between
them. For example, in Fig. 3, the energy cost between actor 1
and sensors 2 and 3 can be calculated by λ2ε + 2λ3ε. However,
energy cost for actor–sink communication is different for each
actor since the distance of each actor to the sink is not the same.
We use εai

to denote the energy cost for actor ai sending a
unit of data to the sink. We also assume that there is a constant
energy cost mai

for keeping an actor in the working state,
meaning that there is background energy consumption, even in
the absence of data transmission. If an actor is a virtual node, we
set its εai

and mai
to the minimum value of all working actors.

In our analysis, we use energy consumption to describe
communication cost. We should point out that our model could
be used in more general situations by applying different cost
metrics. For example, if we want to extend the lifetime of
the network, we need to reduce the energy consumption of
resource-constrained nodes as much as possible. To achieve
that, we could assign ε and εai

relative cost values: the trans-
mission energy cost to the energy it left. If a node is running
out of energy, its relative cost is high; hence, it is less likely to
be chosen to perform long-range communications. On the other
hand, if an actor is powerful, its εai

will be assigned a small
value, and as a result, more sensors will transmit data through it.
In the rest of this paper, we only use an absolute value of energy
consumption as the cost metric to formulate the problem.

Given a WAS WK , we now formulate its communication
cost. We first consider the scenario shown in Fig. 4. In this case,
x and y are two working actors, and there is no working actor
between them; thus, sensing data in the path are sent to either
x or y. Consider a node i (x < i < y); its communication cost
to x and y is |i − x|λiε + λiεx and |i − y|λiε + λiεy accord-
ingly. To minimize the cost, if i satisfies |i − x|λiε + λiεx ≤
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|i − y|λiε + λiεy , i.e., i ≤ (1/2)(x + y − (εx − εy/ε)), data
from i should be sent to x; otherwise, it should be sent to
y. We denote t(x, y) = ⌊(1/2)(x + y − (εx − εy/ε))⌋ as the
split point of x and y. As shown in Fig. 4, data from node
x + 1, . . . , t(x, y) are sent to actor x, and data from node
t(x, y) + 1, . . . , y − 1 are sent to actor y. If εx = εy , t(x, y) is
exactly the midpoint of x and y: t(x, y) = ⌊(x + y)/2⌋. We use
the function φ(x, y) to indicate the total communication cost of
the nodes between x and y, which can be calculated as

φ(x, y) =

t(x,y)
∑

i=x+1

λi · (i − x)ε +

y−1
∑

j=t(x,y)+1

λj · (y − j)ε

+

t(x,y)
∑

i=x+1

λi · εx +

y−1
∑

j=t(x,y)+1

λj · εy. (1)

In (1), the first two terms represent the cost for the collection
of data from sensor nodes by x and y, and the last two terms
represent the cost for sending the data from the actors to the
sink. In addition, nodes x and y also act as sensors, which will
incur actor–sink communication cost λxεx and λyεy . Hence,
the total communication cost in this scenario is

φ(x, y) + λxεx + λyεy + mx + my. (2)

Without loss of generality, assume that WK = {w1, w2,
. . . , wK} (1 = w1 < w2 < · · · < wK = n) is a WAS. The set
of nodes 1, 2, . . . , n can be divided into a number of sub-
sets: {w1, . . . , w2}, {w2, . . . , w3}, . . . , {wK−1, . . . , wK}. The
communication cost of each subset can be calculated as in
the preceding scenario. Thus, the total communication cost of
WK is

K−1
∑

i=1

φ(wi, wi+1) +
∑

j∈WK

(λjεj + mj). (3)

C. (a, b)-WorkingSet Problem

We now study the problem of choosing the optimal work-
ing actors to minimize the total network communication cost,
which we call (a, b)-WorkingSet problem. We provide a formal
definition of the problem as follows:

Definition 2 [(a, b)-WorkingSet Problem]: Given a set of
sensor and actor nodes S = {a, a + 1, . . . , b} (a < b), a set of
actor nodes A = {a1, a2, . . . , am} satisfies a = a1 < a2 < · · ·
< am = b (m ≤ b − a). Suppose that WK = {w1, w2, . . . ,
wK} is a WAS of A. Define an objective function as

C(a, b,WK) =

K−1
∑

i=1

φ(wi, wi+1) +
∑

j∈WK

(λjεj + mj). (4)

The (a, b)-WorkingSet problem is given as follows: Find K
and WK so that C(a, b,WK) is minimized.

According to this definition, the sensor–actor coordination
problem in road network is simply a (1, n) − WorkingSet
problem. Two solutions to the problem are presented in the next
section.

III. SOLUTIONS

In this section, we present two solutions to the (a, b) −
WorkingSet problem: a dynamic programming solution and
a graph-based solution.

A. Dynamic Programming Solution

The following theorem shows that a solution to the (a, b) −
WorkingSet problem can be obtained by solving sub-
problems.

Theorem 1: Assume that S and A constitute a node set and
an actor set, respectively, as defined in Definition 2. Suppose
that WK = {w1, w2, . . . , wK} is an optimal solution to the
(a, b) − WorkingSet problem, and Qµ = {q1, q2, . . . , qµ} is
an optimal solution to the (a,wK−1) − WorkingSet problem;
then, W = Qµ ∪ {wK} is also an optimal solution to the
(a, b) − WorkingSet problem.

Proof: As Qµ is an optimal solution to the (a,wK−1) −
WorkingSet problem, we have

C(a,wK−1,Qµ) ≤ C (a,wK−1,WK − {wK}) . (5)

The communication cost of W is

C(a, b,W) =

(

µ−1
∑

i=1

φ(qi, qi+1) + φ(qµ, wK)

)

+

⎛

⎝

∑

j∈Qµ

(λjεj + mj) + λwK
εwK

+ mwK

⎞

⎠

=

⎛

⎝

µ−1
∑

i=1

φ(qi, qi+1) +
∑

j∈Qµ

(λjεj + mj)

⎞

⎠

+ φ(qµ, wK) + λwK
εwK

+ mwK

= C(a, qµ,Qµ) + φ(qµ, wK) + λwK
εwK

+ mwK
.

On the other hand, the communication cost of WK is

C(a, b,WK) =

K−1
∑

i=1

φ(wi, wi+1) +
∑

j∈WK

(λjεj + mj)

=

⎛

⎝

K−2
∑

i=1

φ(wi, wi+1) +
∑

j∈WK−{wK}

(λjεj + mj)

⎞

⎠

+ φ(wK−1, wK) + λwK
εwK

+ mwK

=C (a,wK−1,WK − {wK}) + φ(wK−1, wK)

+ λwK
εwK

+ mwK
.

Notice that qµ = wK−1 and that according to (5)

C(a, b,W) − C(a, b,WK)

= C(a,wK−1,Qµ) − C (a,wK−1,WK − {wK}) ≤ 0.

That is

C(a, b,W) ≤ C(a, b,WK). (6)
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On the other hand, since WK is an optimal solution to the
(a, b) − WorkingSet problem

C(a, b,WK) ≤ C(a, b,W). (7)

Combining (6) and (7), we have

C(a, b,W) = C(a, b,WK).

Hence, W is also an optimal solution to the problem. �

Theorem 1 shows that the problem can be divided into sub-
problems; thus, dynamic programming can be applied to obtain
an optimal solution. By trying WK−1 on different actors, the
problem can be divided into different subproblems, which form
different WASs. The WAS with minimal cost is the optimal
solution to the problem. Let OPT (a, b) be the minimum cost
obtained in the (a, b) − WorkingSet problem. A dynamic
programming solution is given as follows:

OPT (a, b) = min {τ1, OPT (a, i) + τi}

(i = a2, a3, . . . , am−1) (8)

where τ1 = φ(a, b) + λaεa + ma + λbεb + mb (which is the
cost when no working actors are chosen between nodes a and
b), and τi = φ(i, b) + λbεb + mb.

According to the dynamic programming equation, the mini-
mal cost of the (1, n) − WorkingSet problem can be obtained
by calculating OPT (1, n) recursively. At the same time, the
optimal WAS WK can also be obtained when the process is
finished.

Theorem 2: The time complexity of the dynamic program-
ming algorithm in solving a (1, n) − WorkingSet problem is
O(nm2), where n is the number of nodes and m is the number
of actors.

Proof: According to (1), the time complexity of φ(a, b)
or φ(i, b) is O(n). By applying dynamic programming to
calculate (8), when we want to get the result of OPT (a, b),
the result of OPT (a, i) (i = a2, a3, . . . , am−1) already exists
in the system memory. Hence, the value of OPT (a, b) can
be obtained by checking m − 1 values, each of which takes
O(n) time in calculating a function φ. This process runs
in time complexity of O(mn). To calculate OPT (1, n), the
result of OPT (1, a2), OPT (1, a3), . . . , OPT (1, am−1) should
be sequentially calculated. Thus, the overall time complexity of
this problem is O(n) + O(2n) + · · · + O((m − 1)n), which is
O(nm2). �

B. Graph-Based Solution

In this section, we will introduce a graph-based solution,
which is more efficient than the dynamic programming algo-
rithm. First, we construct a CC-Graph to represent the com-
munication cost of the (1, n) − WorkingSet problem. Then,
we apply a modified Dijkstra’s algorithm to find a shortest path
in the graph. The shortest path is mapped to a WAS, which is
output as an optimal solution to the problem. Finally, we prove
the correctness of the graph-based algorithm.

1) Construction of CC-Graph: For a (1, n) − WorkingSet
problem, we can use a weighted directed graph to describe its

Fig. 5. Example of CC-Graph.

access cost. We call this graph a CC-Graph. Fig. 5 gives the
corresponding CC-Graph of the road in Fig. 3. The construction
of the CC-Graph is described next.

Nodes: As shown in Fig. 5, starting from an entrance node

V (0, 0), the CC-Graph is composed of m rows and m
columns, where m is the number of actors. The ith (1 ≤
j ≤ m) row of the graph has m + 1 − i nodes, and the
jth (1 ≤ j ≤ m) column has j nodes, forming an inverted
triangle. The nodes in row i (1 ≤ i ≤ m) are denoted as
V(i,i), V(i,i+1), . . . , V(i,m) from left to right. We call the last
node in each column a critical node (marked in black). It
can be seen from Fig. 5 that there are m critical nodes in
the CC-Graph: V(1,1), V(2,2), . . . , V(m,m). Node V(m,m) is
also known as the exit node.

Edges: There are horizontal and vertical edges in the CC-
Graph. For the ith (1 ≤ i ≤ m) row, there are horizontal
directed edges from V(i,j) to V(i,j+1) (i ≤ j ≤ m − 1),
and for the jth (1 ≤ j ≤ m) column, there are vertical
edges from V(i,j) to V(i+1,j) (1 ≤ i < j). There is also
a vertical edge from the entrance node V(0,0) to node
V(1,1). We call the vertical edges from noncritical nodes
to critical nodes solid edges and the other vertical edges
virtual edges. We use dashed lines to indicate virtual edges
and solid lines to indicate solid edges in the CC-Graph
(see Fig. 5).

Weights: We assign a weight for each edge in the CC-Graph.
Let W (V(i,j), V(i,j+1)) denote the weight from node V(i,j)

to node V(i,j+1). The weights of horizontal edges are
calculated by

W
(

V(i,j), V(i,j+1)

)

=

{

φ(ai, aj), j = i+1
φ(ai, aj+1)−φ(ai, aj), i+1<j <m.

(9)
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To reduce computational complexity, we calculate
W (V(i,j), V(i,j+1)) as follows:

W
(

V(i,j), V(i,j+1)

)

=

{

φ(ai, aj), j = i + 1
W1 + W2 + W3, i + 1 < j < m

(10)
where

W1 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

t(ai,aj+1)
∑

k=t(ai,aj)+1

[(2k−ai−aj)λkε

+(εai
−εaj

)λk

]

, t(ai, aj+1)<aj

aj−1
∑

k=t(ai,aj)+1

[(2k−ai−aj)λkε

+(εai
−εaj

)λk

]

, aj ≤ t(ai, aj+1)

W2 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

(aj+1−aj)ε+(εaj+1
−εaj

)
]

×
aj−1
∑

k=t(ai,aj+1)+1

λk, t(ai, aj+1)<aj

t(ai,aj+1)
∑

k=aj

[(k−ai)λiε+λiεai
] , aj ≤ t(ai, aj+1)

W3 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

aj+1−1
∑

k=aj

[

(aj+1−k)λkε+λkεaj+1

]

, t(ai, aj+1)<aj

aj+1−1
∑

k=t(ai,aj+1)+1

[(aj+1−k)λkε

+λkεaj+1

]

, aj ≤ t(ai, aj+1).

The equality of (9) and (10) can be proven by using the
definition of φ (1). The detailed derivation is shown in the
Appendix.

For vertical edges, the weight of a virtual edge is
assigned 0, and the weight of a solid edge is assigned the
communication cost of the corresponding actor

W
(

V(i,j), V(i+1,j)

)

=

{

λaj
εaj

+ maj
, i = j − 1

0, otherwise

(1 ≤ i < j, 2 ≤ j ≤ m). (11)

In addition, the weight of edge V (0, 0) → V (1, 1) is as-
signed by

W
(

V(0,0), V(1,1)

)

= λ1ε1 + m1.

CC-Path and graph traveling rule: We define a communi-

cation cost path (CC-Path) as a path from the entrance
node V(0,0) to the exit node V(m,m) in the CC-Graph. For
example, in Fig. 5, a CC-Path is the path from V(0,0) to
V(1,1), traversing to V(1,3), then down to V(3,3), then to
V(3,5), then down to V(5,5), then to V(5,6), finally reaching
V(6,6).

Traveling on a CC-Graph is like walking through a CC-Path
from the entrance node to the exit node. We make the following
graph traversal rule: each time a virtual edge is traversed, the
traversal vertically continues until a solid edge is reached. In
other words, both horizontal and vertical traversals are possible.
Direction can be changed any time in horizontal traversals,
whereas in vertical traversals, a critical node must be reached
before direction can be changed.

By applying the graph traveling rule, a CC-Path can be
denoted by a sequence of critical nodes that it passes through.
For example, the aforementioned CC-Path passes through four
critical nodes, which can be denoted by (V(1,1), V(3,3), V(5,5),
V(6,6)). Obviously, each CC-Path must contain the entrance
node and exit node. On the other hand, each critical node se-
quence containing V(1,1) and V(m,m) denotes a unique CC-Path,
i.e., the sequence (V(1,1), V(m−1,m−1), V(m,m)) denotes the CC-
Path: V(0,0) → V(1,1) → · · · → V(1,m−1) · · · → V(m−1,m−1) →
V(m−1,m) → V(m,m).

2) Graph-Based Algorithm: The graph-based algorithm is
very simple. The basic idea is to construct a CC-Graph and find
the shortest CC-Path in the graph. The intuition is that the sum
of weights in a CC-Graph represents the communication cost of
a WAS. Thus, the shortest path represents the lowest cost WAS.
It is easy to modify the Dijkstra’s algorithm to follow our graph
traveling rule in finding a shortest CC-Graph. The detailed steps
are described as follows.

Step 1) Construct a CC-Graph, and assign weights
to its edges using the method introduced in
Section III-B1.

Step 2) Apply a modified Dijkstra’s algorithm on the CC-
Graph with its weight assignment to get a shortest
path.

Step 3) Assuming that the shortest cost path finding in
step 2 is represented by a sequence of critical
nodes (V(x1,x1), V(x2,x2), . . . , V(xk,xk)) (1 = x1 <
x2 < · · · < xk = m), map the sequence to a set of
working actor nodes W = {x1, x2, . . . , xk}. Output
W as the optimal WAS.

The correctness of the graph-based algorithm will be proven
in the next section.

3) Correctness of the Graph-Based Algorithm: We will now
prove the correctness of the graph-based algorithm. Several
lemmas are needed to get the desired result represented by
Theorem 3.

Lemma 1: Each CC-Path in the graph corresponds to a WAS
of actor nodes; each WAS of the actor node corresponds to a
CC-Path in the graph.

Proof: We will show that a CC-path can be mapped to
a WAS of actor nodes. It has been shown in Section III-B1
that a CC-Path can be denoted by a sequence of critical nodes.
Assume that (V(x1,x1), V(x2,x2), . . . , V(xk,xk)) (1 = x1 < x2 <
· · · < xk = m) is such a sequence. We now map it to a set
of working actors: W = {ax1

, ax2
, . . . , axk

}. W is a subset
of actors {a1, a2, . . . , am}. According to Definition 1, W is a
WAS of actor nodes.

Now, we show that a WAS can be mapped to a CC-Path.
Assume that W = {ax1

, ax2
, . . . , axk

} (1 = x1 < x2 < · · · <
xk = m) is a WAS of actor nodes. We can map it to a critical
node sequence (V(x1,x1), V(x2,x2), . . . , V(xk,xk)). According to
the definition of CC-Path, this sequence corresponds to a CC-
Path in the graph. The lemma is proven. �

Lemma 2: The sum of the weights in a CC-Path is equal to
the communication cost of the corresponding WAS.

Proof: According to Lemma 1, a CC-Path can be de-
noted by a critical node sequence (V(x1,x1), V(x2,x2), . . . ,
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V(xk,xk)) (1 = x1 < x2 < · · · < xk = m), and its correspond-
ing WAS is W ={x1, x2, . . . , xk}. The CC-Path contains k − 1
horizontal subpaths and k vertical subpaths.

The horizontal subpaths and their weights are given as
follows:

1 V(x1,x1) → · · · → V(x1,x2)

whose sum of weights is
x2−1
∑

j=x1

W
(

V(x1,j), V(x1,j+1)

)

= φ(x1, x1 + 1) +

x2−1
∑

j=x1+1

(φ(x1, j + 1) − φ(x1, j))

= φ(x1, x2);

2 V(x2,x2) → · · · → V(x2,x3)

whose sum of weights is
x3−1
∑

j=x2

W
(

V(x2,j), V(x2,j+1)

)

= φ(x2, x2 + 1) +

x3−1
∑

j=x2+1

(φ(x2, j + 1) − φ(x2, j))

= φ(x2, x3)

...

k − 1 V(xk−1,xk−1) → · · · → V(xk−1,xk)

whose sum of weights is
xk−1
∑

j=xk−1

W
(

V(xk−1,j), V(xk−1,j+1)

)

= φ(xk−1, xk).

The k vertical subpaths and their weights are given as
follows:

1 V(0,0) → V(x1,x1)

whose sum of weights is λx1
εx1

+ mx1
;

2 V(x1,x2) → · · · → V(x2,x2)

whose sum of weights is λx2
εx2

+ mx2
;

...

k V(xk−1,xk) → · · · → V(xk,xk)

whose sum of weights is λxk
εxk

+ mxk
.

Thus, the sum of the weights of the CC-Path is

k−1
∑

i=1

φ(xi, xi+1) +
∑

j∈W

(λjεj + mj). (12)

Compared with (3), the sum of the weights in a CC-Path
is equal to the communication cost of the W . The lemma is
proven. �

Theorem 3: The graph-based algorithm gives an optimal
solution to the (1, n) − WorkingSet problem.

Proof: According to Lemma 1, there exists a one-to-one
mapping between the CC-Paths and the possible WAS of m
actor nodes. Lemma 2 shows that the sum of weights of a CC-
Path is equal to the communication cost of the corresponding
WAS. By applying the modified Dijkstra’s algorithm, a shortest
path can be found. The sum of weights of the shortest path
corresponds to the WAS with minimal communication cost,
which is the optimal solution to the (1, n) − WorkingSet
problem. �

Theorem 4: The time complexity of the graph-based algo-
rithm in solving a (1, n) − WorkingSet problem is O(mn +
m2lgm).

Proof: The graph-based algorithm contains three steps.
We demonstrate the running time of each step as follows:
For step 1, a CC-Graph has O(m2) nodes and O(m2)
edges. According to (10), the running time of calculating
W (V(i,j), V(i,j+1)) is O(t(ai, aj+1) − t(ai, aj)) + O(aj+1 −
aj). Thus, the running time for calculating the weights
of edges in each row is O(

∑m
j=i+1 W (V(i,j), V(i,j+1))) =

O(t(ai, am)) + O(am) = O(n). Thus, the time complexity of
CC-Graph construction in step 1 is O(mn). According to [18],
the running time of Dijkstra’s algorithm in a graph with V
nodes and E edges is O(V lgV + E) by using a Fibonacci
heap implementation. In our case, the running time of applying
the modified Dijkstra’s algorithm in an CC-Graph (step 2) is
O(m2lg(m2) + m2) = O(m2lgm). The running time of step 3
is clearly O(m). Thus, the total running time of the graph-based
algorithm is O(mn + m2lgm). �

Compared with Theorem 2, it can be seen that the graph-
based algorithm is more efficient than the dynamic program-
ming algorithm.

C. Discussions

As we have mentioned, the dynamic programming algorithm
and the graph-based algorithm produce an optimal solution
based on the assumption of virtual working actors. In real
RSANs, working actors may be not deployed in each intersec-
tion; thus, the solution may be not optimal in the real case. The
following theorem shows that the proposed algorithms produce
a near-optimal solution when there are no working actors in the
intersections.

Theorem 5: Given n sensors and actors deployed in a road
segment, with m actors among them, assume that C is the
minimum communication cost obtained by the dynamic pro-
gramming algorithm or graph-based algorithm, and C ′ is the
actual communication cost. Let ∆C = C ′ − C, and consider
the expectation of ∆C/C. We have

E

(

∆C

C

)

= O

(

1

m

)

. (13)

Proof: Assume that S = {1, 2, . . . , n} is the set of sensors
and actors. We now consider the first node to be a virtual node.
Due to symmetry, the situation is similar when the last node is a
virtual node. If there is no actual working actor deployed in the
first node, the solution obtained by the dynamic programming
algorithm and graph-based algorithm is not optimal since the
traffic to the first node needs to be redirected to a nearby



LI et al.: COMMUNICATION COST MINIMIZATION IN WSANs FOR ROAD SURVEILLANCE 625

Fig. 6. Communication cost when the first node is not a working actor.

working actor. Assume that y (1 < y < n) is the first working
actor from the first node. As shown in Fig. 6, the traffic in the
path from x to t(x, y) (x = 1 in this case) is directed to y, but
the traffic of the rest of the nodes remains unchanged.

According to (1), if the first node is a working actor, the
communication cost is

φ(1, y) =

t(1,y)
∑

i=1

λi · (i − 1)ε +

y−1
∑

j=t(1,y)+1

λj · (y − j)ε

+

t(1,y)
∑

i=1

λi · ε1 +

y−1
∑

j=t(1,y)+1

λj · εy.

If the first node is not a working actor, as shown in Fig. 6, the
communication cost becomes

φ′(1, y)=

t(1,y)
∑

i=1

λi ·(y−i)ε+

y−1
∑

j=t(1,y)+1

λj ·(y−j)ε+

y
∑

i=1

λi ·εy.

Thus

∆C =φ′(1, y)−φ(1, y)=

t(1,y)
∑

i=1

λi(y+1−2i)+

t(1,y)
∑

i=1

λi(εy−ε1).

Let λmax = max{λi} and λmin = min{λi}, (i = 1, 2, . . . , n).
We have

∆C ≤ y2λmax + yλmax(εy − ε1) = O(y2).

Assume that m actors are randomly deployed in the n nodes,
i.e., each node has a probability of m/n being an actor. Thus,
the probability of the first working actor being the ith node is

Pr{y = i} =
(

1 −
m

n

)i−1

·
m

n
.

Thus, the expectation of y2 is

E(y2)=

n
∑

i=1

i2
(

1−
m

n

)i−1 m

n
≈1+3

n−m

m
+2

(

n−m

m

)2

.

On the other hand, by (1)

φ(x, y) ≥

t(x,y)
∑

i=x+1

λi · (i − x)ε +

y−1
∑

j=t(x,y)+1

λj · (y − j)ε

≥λminε

⎛

⎝

t(x,y)
∑

i=x+1

(i − x) +

y−1
∑

j=t(x,y)+1

(y − j)

⎞

⎠

≥λminε

(

1 +
y − x

2

)

(y − x).

Fig. 7. Simulation area.

According to (3), the optimal cost C satisfies

C ≥
m

∑

i=1

φ(wi, wi+1) ≥ mλminε
(

1 +
n

2m

) n

m

=λminε
(

1 +
n

2m

)

n.

Thus

E

(

∆C

C

)

=O

(

E(y2)

C

)

= O

(

1 + 3n−m
m

+ 2
(

n−m
m

)2

λminε
(

1 + n
2m

)

n

)

=O

(

1

m

)

.

The theorem is proven. �

Theorem 5 shows that, without deploying virtual nodes,
the proposed algorithms will give a near-optimal solution,
which approaches the optimal solution with asymptotic order
O(1/m). If the number of actors m in a road segment is large
enough, our solution will be very close to the optimal solution.

IV. PERFORMANCE EVALUATION

In this section, we conduct simulation experiments to evalu-
ate the performance of the proposed algorithms. Our simulation
scenario is based on the application of road condition surveil-
lance in a city block of Beijing, China. Experiment results show
the efficiency of the proposed strategies.

A. Simulation Environment

We simulate the application of road surveillance for the
Beijing Olympic Stadium. Fig. 7 shows a rectangular area
(2980 m × 2030 m), where the Beijing Olympic Stadium
is located. Sensors and actors are randomly deployed in the
three main roads from east to west and the two main roads
from north to south (yellow lines in the figure) around the
Olympic Stadium to monitor road conditions. When sensors
detect events, the sensing data are sent to the nearby actors and
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Fig. 8. Performance under various node density (λ = 0.01). (a) Energy cost. (b) Number of working actors.

then onward to the sink, which is located inside the Olympic
Sports Center, as shown in the figure.

We list a number of tunable parameters used in the experi-
ments as follows: We use ρ to indicate node density, which is
calculated by the average number of nodes per kilometer in the
WSAN. We vary ρ from 200 to 400 to check the scalability
of the algorithm. ξ represents the actor density (the average
number of actors per kilometer), varying from 30 to 150 in the
experiments.

We consider three traffic conditions: 1) busy traffic (repre-
senting rush hours), where each sensor generates hundreds of
sensing data per second; 2) normal, where each sensor gener-
ates one or two units of data per second; 3) idle (representing
late evening or early morning), where only a few sensing data
are generated in a long interval. We use λ to denote the average
data generation rate of a sensor. λ = 100, 1, 0.01 corresponds to
the preceding three conditions, respectively. Each sensing data
unit is assumed to be a single byte. The transmission range of
sensors is set to 10 m.

We employ an energy model similar to [3] and [10]. The
energy consumption per bit is calculated as E = 2Eelec + βdα,
where α is the exponent of the path loss (2 ≤ α ≤ 5), β is a
constant [J/(bit · mα)], and Eelec is the energy needed by the
transceiver circuitry to transmit or receive one bit [in joules per
bit]. The communication energy parameters are set as Eelec =
50 nJ/bit, β = 10 pJ/bit/m2, and α = 2.

As both the dynamic programming algorithm and graph-
based algorithm give near-optimal solutions to the problem, we
only implement the graph-based algorithm in our simulation for
its complexity is lower. The graph-based algorithm is referred
to the OPT algorithm in the rest of this paper. We compare our
algorithm with several other heuristic solutions: 1) Random:
Select working actors at random. 2) Top K: Select the K largest
aggregate data transmission rate actors as the working set. The
top 30% actors are chosen in our simulation. 3) ALL: All actors
are assumed to be in the working state.

B. Simulation Results

Fig. 8 shows performance under the traffic condition λ =
0.01. Fig. 8(a) compares system energy consumption as a

function of node density ρ. When ρ varies from 200 to 400,
the energy cost of Random, Top K, and ALL increases, but
the cost of OPT remains constant. As can be seen, OPT has the
lowest energy cost and is invariant to node density. As expected,
ALL has the highest energy cost, which is about dozens of
times higher than that of the OPT strategy. Fig. 8(b) shows
the average number of working actors selected by the four
different algorithms on each road. The OPT strategy shows a
near constant number of working actors under all conditions.
There are many more working actors in the other algorithms,
which linearly increase with the node density.

The reason OPT consumes much less energy than the other
algorithms can be explained as follows: For the condition
λ = 0.01, there is only a few data items to be transferred
in the network. Actors are idle most of the time. The OPT
strategy turns off as many actors as possible to save energy.
As shown in Fig. 8(b), OPT selects about four working actors
and is insensitive to node density. Thus, the energy cost remains
constant. The Random, Top K, and ALL strategies choose more
working actors while the node density increases. As a result,
more energy is consumed, even if there is no data transmission.

Fig. 9 shows the performance when the node density is fixed
to 300 and the actor density varies from 30 to 150. It is shown
that the energy cost of all algorithms, with the exception of
OPT, increases with the node density. Again, OPT demonstrates
a constant number of working actors and the lowest energy cost.

Figs. 10 and 11 compare performance for λ = 1. In this case,
the energy cost and working actor number of all algorithms
increase when the node density increases. Still, OPT has the
lowest energy cost. The performances of Random and Top K
are similar: they both consume more energy than OPT. ALL
has the highest energy cost, which is about 10%–20% higher
than OPT. Fig. 11 also shows a favorable property of the OPT
algorithm: the number of working actors is insensitive to the
actor density ξ. For the OPT algorithm, the number of working
actors remains constant when ξ varies from 30 to 150. Its
corresponding energy cost also remains the same most of the
time. Other algorithms use more working actors and consume
more energy than OPT algorithm. In this figure, the energy
cost of ALL varies from 675 to 850 mJ when the actor density
increased. However, the cost of OPT remains below 650 mJ,
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Fig. 9. Performance under various actor density (ρ = 300, λ = 0.01). (a) Energy cost. (b) Number of working actors.

Fig. 10. Performance under various node density (λ = 1). (a) Energy cost. (b) Number of working actors.

Fig. 11. Performance under various actor density (ρ = 300, λ = 1). (a) Energy cost. (b) Number of working actors.

which represents an energy savings of about 30%, compared
with ALL.

Fig. 12 compares performance for the different schemes
when λ = 100. As illustrated in the figure, even though the
number of working actors selected by these algorithms is quite
different, the energy costs of the four strategies are roughly the
same. The reason is given as follows: Unlike the other two
conditions, data traffic is quite busy in this case; thus, data

transmission dominates energy consumption. Fig. 13(a) shows
the percentage of energy consumed in long-range actor–sink
communication. As can be seen, more than 90% of the energy
is consumed in actor–sink communication. When there is a
sufficient number of working actors, adding more working
actors only affects data communication between sensors, which
cannot reduce the cost of actor–sink communication. Thus,
energy cost is insensitive to actor-selecting algorithms when
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Fig. 12. Performance under various node density (λ = 100). (a) Energy cost. (b) Number of working actors.

Fig. 13. Energy and workload under various node density (λ = 100). (a) Proportion of actor–sink energy cost. (b) Average workload.

traffic is busy. However, the number of actors does affect
the average workload of each node. Fig. 13(b) compares the
average data transmission rate of the algorithms. It shows that
OPT has the lowest average workload, as all actors are working.
The number of working actors in OPT is very close to ALL [see
Fig. 12(b)]; thus, it also has a reasonable workload. TOP K has
the heaviest workload, which is more than twice that of the OPT
algorithm.

In conclusion, according to the simulation, the advantages of
our algorithm can be summarized as follows: When the system
is in idle condition, the OPT algorithm turns off as many actors
as possible to save energy. For normal road surveillance, it
yields the lowest energy cost, and its performance is insensitive
to actor density. In a busy traffic environment, it keeps the
workload of working actors at a low level.

V. RELATED WORK

Unlike traditional wireless sensor networks, which are com-
posed of homogeneous nodes and single-sink performing cen-
tralized operations [1], WSANs enable heterogeneous nodes
to cooperatively perform distributed sensing and active tasks
[2]–[4]. Equipped with more energy and computing resources,
the actor nodes can perform more complex functions such as

data collection, coordination, and responses to events. However,
the heterogeneity of WSANs also introduces many research
challenges including node deployment, real-time requirement,
coordination, mobility, etc. [2]–[4], [19], [20].

The use of WSANs for vehicular tracking has been proposed
in a number of recent projects [5]–[8]. Karpinski et al. proposed
a software architecture for sensor networks in smart roads
[6]. Jeong et al. presented an autonomous passive localization
scheme for road sensor networks [5]. However, little attention
has been paid to effective coordination in sensors and actors in
RSANs.

Some recent papers have considered the issue of real-time
communication and coordination in sensor networks [2], [3],
[21]. The SPEED protocol [21] provides real-time commu-
nication services and is designed to be a stateless localized
algorithm with low control overhead. Melodia et al. proposed
a sensor–actor coordination model based on an event-driven
partitioning paradigm to achieve global network objectives
such as real-time constraints and minimum energy consumption
[3]. Wu et al. studied sensor–actor connectivity strategies to
put as many sensors as possible to sleep for energy-saving
purposes [2].

Energy-efficient routing and data-collecting protocols have
been extensively studied, and a wide range of special network
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structures, such as shortest path tree, minimum spanning tree,
minimum Steiner tree, clustering, grid, and chain, are utilized
to achieve the goal of reducing energy consumption [3], [10]–
[17], [22]–[26]. Sleep management has been shown to be an
effective method for saving energy [27]–[29]. The protocols
proposed in [30] and [31] can improve network performance
by maintaining a backbone composed of a small number of
active nodes while scheduling other nodes to operate in low
duty cycles to conserve energy. However, as we mentioned
before, these strategies cannot be directly used in RSANs. To
our knowledge, the sensor–actor coordination issues with the
explicit objective of minimizing network communication cost
in road networks has not been extensively studied in the past.

VI. CONCLUSION

In this paper, we have addressed the question of choosing
a set of working actors for coordinating data transmission
in WSANs to minimize communication cost. We have first
presented a theoretical model to analyze the communication
cost of data transmission in RSANs. Based on the assump-
tion of virtual nodes, we have formulated the sensor–actor
coordinating communication problem as an optimization prob-
lem and proven that it can be divided into subproblems, thus
allowing optimal solutions to be obtained by using dynamic
programming. The time complexity of the dynamic program-
ming algorithm has been proven to be O(nm2). We have also
proposed a lower complexity graph-based algorithm, which
uses a CC-Graph to depict the cost of data communication and
a modified Dijkstra’s algorithm to find an optimal solution to
the problem. The running time of the graph-based algorithm
is O(mn + m2lgm), which is more efficient than the dynamic
programming algorithm and more applicable in large-scale
distributed systems. We have further proven that, without the
deployment of actors in virtual nodes, the proposed strategies
produce a near-optimal solution, which approaches the optimal
solution with asymptotic order O(1/m). Performance of the
proposed algorithms has been evaluated by simulation, which
confirms the efficiency of the proposed algorithms.

The strategies discussed in this paper are local optimization
based on road segments divided by virtual nodes. In the future,
we will address the following issues to improve it. We intend
to consider how to minimize communication cost in the entire
network, instead of individual segments, which is a substan-
tially more complicated optimization problem. We will also
investigate the feasibility of exploiting the mobility pattern of
the vehicles to carry the sensing data to the nearby actors as a
means to decrease the cost of sensor–actor communications.

APPENDIX

PROOF OF THE EQUALITY OF (9) AND (10)

The equality of (9) and (10) can be verified by
showing that φ(ai, aj+1) − φ(ai, aj) = W1 + W2 + W3 when
i + 1 < j < m.

There are two possible relative positions of node aj and
the split point of ai and aj+1: t(ai, aj+1) < aj , and aj ≤
t(ai, aj+1).

If t(ai, aj+1) < aj , i.e., node aj is in the right part of the
midpoint t(ai, aj+1), according to (1), we have

φ(ai, aj)=

t(ai,aj)
∑

k=ai+1

λk ·(k−ai)ε+

aj−1
∑

k=t(ai,aj)+1

λk ·(aj−k)ε

+

t(ai,aj)
∑

k=ai+1

λk ·εai
+

aj−1
∑

k=t(ai,aj)+1

λk ·εaj

=

t(ai,aj)
∑

k=ai+1

[λk ·(k−ai)ε+λk ·εai
]

+

t(ai,aj+1)
∑

k=t(ai,aj)+1

[

λk ·(aj−k)ε+λk ·εaj

]

+

aj−1
∑

k=t(ai,aj+1)+1

[

λk ·(aj−k)ε+λk ·εaj

]

φ(ai, aj+1)=

t(ai,aj+1)
∑

k=ai+1

λk ·(k−ai)ε

+

aj+1−1
∑

k=t(ai,aj+1)+1

λk ·(aj+1−k)ε

+

t(ai,aj+1)
∑

k=ai+1

λk ·εai
+

aj+1−1
∑

k=t(ai,aj+1)+1

λk ·εaj+1

=

t(ai,aj)
∑

k=ai+1

[λk ·(k−ai)ε+λk ·εai
]

+

t(ai,aj+1)
∑

k=t(ai,aj)+1

[λk ·(k−ai)ε+λk ·εai
]

+

aj−1
∑

k=t(ai,aj+1)+1

[

λk ·(aj+1−k)ε+λk ·εaj+1

]

+

aj+1−1
∑

k=aj

[

λk ·(aj+1−k)ε+λk ·εaj+1

]

.

Thus

φ(ai, aj+1) − φ(ai, aj)

=

t(ai,aj+1)
∑

k=t(ai,aj)+1

[

(2k − ai − aj)λkε + (εai
− εaj

)λk

]

+
[

(aj+1 − aj)ε + (εaj+1
− εaj

)
]

aj−1
∑

k=t(ai,aj+1)+1

λk

+

aj+1−1
∑

k=aj

[

(aj+1 − k)λkε + λkεaj+1

]

.
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Compared with the expression of W1, W2, and W3, when
t(ai, aj+1) < aj , it is easy to see that

φ(ai, aj+1) − φ(ai, aj) = W1 + W2 + W3.

If aj ≤ t(ai, aj+1), i.e., node aj is in the left of the midpoint
t(ai, aj+1), we can obtain the same conclusion similarly. Thus,
the equality of (9) and (10) is proven.
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