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Abstract—Millimeter wave (mmWave) communications are
an essential component of 5G-and-beyond ultra-dense Gbit/s
wireless networks, but also pose significant challenges related
to the communication environment. Especially beam-training
and tracking, device association, and fast handovers for highly
directional mmWave links may potentially incur a high overhead.
At the same time, such mechanisms would benefit greatly from
accurate knowledge about the environment and device locations
that can be provided through simultaneous localization and
mapping (SLAM) algorithms.

In this paper we tackle the above issues by proposing CLAM, a
distributed mmWave SLAM algorithm that works with no initial
information about the network deployment or the environment,
and achieves low computational complexity thanks to a funda-
mental reformulation of the angle-differences-of-arrival mmWave
anchor location estimation problem. All information required by
CLAM is collected by a mmWave device thanks to beam training
and tracking mechanisms inherent to mmWave networks, at no
additional overhead. Our results show that CLAM achieves sub-
meter accuracy in the great majority of cases. These results are
validated via an extensive experimental measurement campaign
carried out with 60-GHz mmWave hardware.

I. INTRODUCTION

Millimeter wave (mmWave) communications in the 30–

300 GHz band are considered key ingredients to achieve

multiple Gbit/s link rates in 5G-and-beyond networks [1] as

well as WLANs [2]. First mmWave devices following the

IEEE 802.11ad standard are commercially available [3], [4].

mmWave signals follow quasi-optical propagation patterns,

with clear reflections off boundary surfaces, and little scat-

tering [5]. However, the high frequency of mmWave trans-

missions implies short coverage ranges. Moreover, mmWaves

are blocked by a number of materials, including the hu-

man body [6]. Several materials reflect mmWave signals,

providing alternative paths in case no line-of-sight (LoS)

path is available. To achieve viable link ranges, mmWave

devices employ directional, electronically steerable antenna

arrays. The identification of the best steering direction for

the antenna’s main lobe is called beam training [7], [8]. For

relatively static scenarios, brute force or hierarchical training

as used, e.g., in the 802.11ad standard [9] work reasonably

well. More refined methods exist that reduce beam training

times, can track multiple paths at once, and work better in

dynamic scenarios [10]–[12].

The quasi-optical propagation of mmWave signals, the

sparse angle of arrival (AoA) spectrum that results, and the

capability to track multiple components of the AoA spectrum,

imply a very desirable consequence: that mmWave technol-

ogy seamlessly allows mobile network devices to achieve

simultaneous localization and mapping (SLAM) through ap-

propriately designed AoA-based methods. Such information

is instrumental to mmWave networks, as it enables context

awareness, and can facilitate beam training or handover oper-

ations, and can be used for location-based services and appli-

cations [13]. For example, gathering enough AoA information

for device localization allows to do immediate handovers

without the need for beam training to any access point (AP)

for which only the position is known. To be viable for practical

mmWave systems, a SLAM algorithm:

1) should ideally be run locally by each client, without any

additional special-purpose messaging (which allows it to

run on any 5G or 802.11ad compliant devices);

2) should work with commercial off-the-shelf (COTS) de-

vices, which are often low-cost, non-calibrated, and

subject to computational constraints;

3) should not require to engineer or manually configure the

network deployment (especially the AP locations).

The above constraints have profound implications on the

design of a SLAM algorithm for mmWave networks. Specif-

ically, to achieve requirement 1) no additional data should

be exchanged among the devices, or between the device and

the APs, requiring each device to achieve SLAM indepen-

dently. Only existing information, i.e., AoAs extracted from

beam training, can be leveraged for localization. Range-based

mechanisms such as [14] are not viable on unmodified COTS

hardware, and are thus incompatible with requirement 2).

Moreover, the designed algorithm should not be computa-

tionally complex, so that it can run in real-time on low-

end devices. Finally, due to 3) the AP locations are not

known in advance and cannot be distributed to the network

devices (which would also require special-purpose messaging).

Requirement 3) also prevents fingerprinting-based algorithms,

which would incur a very high network setup cost.

Our goal is to overcome the constraints and issues above,

by designing a zero-initial information, zero-overhead, low-

complexity SLAM algorithm. We approach the localization

part of SLAM through angle difference of arrival (ADoA)

information. This entails two sub-steps: estimating the loca-

tions of the surrounding APs, and deriving the position of the

client based on AP locations. The former is achieved through

a novel approach that finds and solves a minimal number

of relationships among ADoA measurements obtained by a

client as it moves throughout an indoor environment. These

relationships are found offline through automatic expression

manipulation techniques. After a sufficient number of APs



have been located, an error-resilient version of the ADoA

localization algorithm is employed to estimate the client’s

position. All required ADoA information can be derived from

the output of the beam training as carried out according to

the standard. We remark that several approaches exist to track

the LoS and non-line-of-sight (NLoS) components of a sparse

mmWave AoA spectrum. Having NLoS information available

makes it possible for our algorithm to work in the presence

of realistic propagation issues, including blockage originating

from the environment or from other mobile users.

In light of our zero-initial information constraint, our al-

gorithm estimates all data needed for SLAM, including the

location of physical APs (which are the actual sources of LoS

arrivals) and of virtual APs (which are the virtual sources of

NLoS arrivals, and can be modeled by mirroring the location

of a physical AP through a surface that reflects the mmWave

signal). This makes the problem much harder, but we show

that it can still be tackled through ADoA information. Since

typically LoS and NLoS arrivals from the same physical

AP are available (although not necessarily at the same point

in time), the coupling of virtual APs to their originating

physical APs allows to estimate the location and shape of the

boundaries of the environment and of the obstacles therein.

Finally, we need to limit the complexity of the location

estimation algorithm. We achieve this via a fundamental

reformulation of the ADoA joint AP and user localization

algorithm, that is adapted to the challenging case of zero-initial

information. Our formulation is amenable to fast initialization

procedures to find initial estimates of the AP and device loca-

tions, as well as to low-complexity updating mechanisms for

successive refinements of such estimates as the device moves.

To the best of our knowledge, this formulation has never

been used in the literature related to AoA-based localization

approaches. We note that our method is very different from

traditional SLAM approaches used, for example, in the field

of robotics. There, SLAM is typically a dedicated mechanism

whose primary objective is to make vehicles or robots aware

of the environment; it is often achieved through radars, laser

or cameras, by leveraging movement direction information

supplied by the robot’s sensors, and in the presence of more

landmarks than anchors available in a typical 60 GHz WLAN.

In contrast, our SLAM algorithm is embedded in the network,

as it relies only on operations that are carried out for standard

communications. The information it generates is instrumental

to optimize the network behavior in an anticipatory fashion.

Additionally, it complies with COTS hardware constraints, as

it does not rely on radar-like approaches or on special-purpose

equipment. Our specific contributions are:

• a new approach that tackles ADoA localization from

a fundamental standpoint to design a distributed, zero-

initial information, zero-overhead, low-complexity algo-

rithm (Sections II and III);

• a thorough evaluation of our algorithm through experi-

ments with 60-GHz mmWave hardware, backed by sim-

ulations for a more comprehensive investigation (Sec-

tions IV and V).

Fig. 1. Scenario with a single mobile user with four anchor nodes (blue, a1 to
a4). Red dots at u1 to u3 are ADoA measurement locations. Circles represent
both AoAs (radii) and ADoAs (spanned by arcs between radii pairs).

II. ANCHOR POSITION ESTIMATION

Our algorithm for communication-driven localization and

mapping in mmWave networks (CLAM) is composed of three

parts: anchor location estimation, device localization, and

environment mapping. Consider the scenario in Fig. 1, where a

single mobile device receives signals from four anchor nodes,

of which a1, a2 and a3 are physical APs, whereas a4 is the

virtual AP that models the source of NLoS signals from a3.

We recall that a4 is obtained by mirroring the location of

a3 through the reflecting wall. In subsequent locations u1,

u2, and u3, the user leverages beam training information to

compute the ADoA between the signals from every anchor

pair. The arcs in the circles centered on u1, u2, and u3 in Fig. 1

visualize ADoAs, and circle radii convey the corresponding

AoAs. We remark that CLAM works with physical and virtual

anchors alike. As a result, multi-path mmWave propagation

helps increase the localization accuracy.

CLAM estimates the locations of the anchor nodes starting

from zero initial information. It does so in such a way that

the anchor locations are compatible with ADoA measurements

taken at different positions, corresponding to angle measure-

ments extracted from the standard beam training mechanism.

ADoA anchor localization is invariant to rotation, translation

and scaling. We therefore consider the relative localization

of the user and APs, and define a solution to the anchor

localization process as the equivalence class of the valid

anchor locations under the three above transformations.1 We

call this class an anchor shape, or simply a shape, and denote

it with the symbol S . For example, the anchor shape of anchors

a1 to a4 in Fig. 1 is their set of coordinates, along with any

rotation, translation and scaling of these coordinates. Note

that knowing the shape is equivalent to knowing any of its

elements, and all angles between them. In the following, we

will denote a set of anchors as A, and the shape that refers to

this set of anchors as SA.

The anchor shape can be estimated by observing different

ADoAs from the same anchor set across different measure-

ments taken at different user locations. The intuition is that a

1We remark that all ambiguities can be resolved by knowing the coordinates
of any two points in the localization area, e.g., the coordinates of two APs.
However, using the location information for network optimization such as
beam tracking or fast AP handovers does not require such disambiguation. A
device can base these decisions on its own local coordinate system.



given anchor shape S generates a set of possible ADoAs ΓS .

This set univocally determines a shape. Using multiple ADoA

sets, it is possible to detect a compatible shape by fusing the

different measurements.

Note that the anchor position estimation problem is under-

determined if the user sees just three anchors. Formally, for a

given anchor set A, ΓSA
can be computed by mapping every

point of the 2D space into the ADoAs Θ that a user would

observe at that point. This defines a manifold of dimension 2

inside a space of dimension |A|−1. Therefore, when |A| ≥ 3,

the set of possible ADoAs ΓSA
is contained in, but does not

span, the full space of angle combinations, and can thus be

used to infer the shape SA. Therefore, we develop the model

by assuming that the user measures ADoAs from exactly four

anchors, and then extend it to any number of anchors.

A. Anchor shape estimation

Our novel formulation of the ADoA anchor localization

problem is based on determining a non-trivial implicit ex-

pression R(S,Θ) that ties an anchor shape S to a set of

measured ADoAs Θ, such that R(S,Θ) = 0 if S is an anchor

shape compatible with Θ. In contrast with previous work

such as [15], [16], we do not directly exploit the geometry

of the ADoA localization problem, but rather we inspect the

relationship among the anchors involved, in order to find an

underlying structure that can reveal the expression R(S,Θ).
Call anchor angles the angles formed among any three

anchors (e.g., â1a2a3 and â2a3a4 in Fig. 1), and let ξijk =
|âiajak| be the amplitude of the corresponding angle. Note

that the anchor angles fully determine the anchor shape. The

intuition behind the following development is that the relation

R is a trigonometric polynomial of a certain order, whose

terms are powers of trigonometric functions of the anchor

angles and ADoAs. This relationship can be expressed as

R(S,Θ)=
∑

i

∑

j

pimi,jsj=pTMs=vec(M)T (p⊗s), (1)

where each pi and each sj are trigonometric polynomial

functions of the ADoAs and of the anchor angles, respectively;

p, s denote their vector representation (we single out a linearly

independent set of terms), M is the matrix of polynomial

coefficients, vec( · ) denotes the column-wise vectorization of

the argument, T denotes transposition and ⊗ is the Kronecker

product. Call ζik(uj) = |âiujak|. An order-3 term would be

for example sin ζ13(u1) cos ζ24(u1) sin ζ24(u1) for ADoAs, or

sin ξ123 cos
2 ξ234 for anchor angles.

If R(Θ,S) exists and is non-trivial, we can generate a large

number K of random shapes and locations and assemble the

products (p⊗ s)i, i = 1, . . . ,K, into a matrix

X = [(p⊗ s)1, (p⊗ s)2, · · · (p⊗ s)K ] . (2)

This matrix satisfies vec(M)TX = 01×K . Therefore,

vec(M)TXXTvec(M)=0, or vec(M)∈ker(XXT )\{0} (3)

where ker(·) denotes the kernel of the argument.

We compute matrix X for different orders of the trigono-

metric polynomial functions of the ADoAs and anchor angles.

Through automatic expression manipulation, we then prove

that the minimum order that leads to a non-trivial kernel is 2

for the ADoA terms, and 3 for the anchors angle terms. This

makes it possible to simplify the formulation by reducing

the dimension of both p and s to 5, such that we finally

have that R(S,Θ) = pT s = 0 for every anchor shape S
compatible with the set of measured ADoAs Θ. We remark

that the generation of matrix X, the identification of matrix

M and the derivation of vectors p and s is done offline

only once, after which they can be used in any anchor shape

identification problem involving four anchors, as we detail in

the next subsections.

To the best of our knowledge, this is the first time that the

anchor estimation problem is tackled using automatic expres-

sion manipulation to estimate anchor shapes as defined above.

This approach enables the fusion of ADoA measurements not

just for locating a moving client, but also to estimate the

location of anchor nodes in a computationally efficient way.

B. Erroneous ADoA measurements

The formulation above assumes error-free ADoA measure-

ments. To take into account measurement errors, assume that

NT different measurements are obtained at different time

epochs, indexed by t. For this set of measurements, ideally,

the anchor shape would be the one that generates s such that

pT
t s = 0 ∀t, where we remark that the anchor angle terms s

do not depend on t. With erroneous measurements, we cannot

achieve the equality, hence we resort to a minimum mean

square error (MMSE) approach, by defining the cost function

F(S) =
∑

t

(pT
t s)

2 = sT
( NT∑

t=1

ptp
T
t

)
s = sTOs , (4)

where O =
∑NT

t=1
ptp

T
t . The solution to the anchor shape

estimation problem is then obtained as

Ŝ = argmin
S

F(S) . (5)

In the next section we discuss a practical algorithm that

computes and refines the anchor shape with any number of

anchors, in a way that is robust to mmWave path obstruction.

III. PRACTICAL ALGORITHM AND SLAM EXTENSION

A. Extension to more than four anchors

Starting from the derivation in Section II, we take all the

possible subsets of four anchors, compute the corresponding

cost function, and finally sum the obtained values into a global

cost function as follows. Call C4
A the set of all possible subsets

of four anchors. The global cost function is defined as:

FA(SA) =
∑

c∈C4

A

Fc(Sc) =
∑

c∈C4

A

sTc Ocsc , (6)

where Fc,Sc, sc,Oc are the cost function, the anchor shape,

the vector s and the objective matrix O considered in Sec-

tion II, computed for the set of anchors c ∈ C4
A.



We now extend the formulation to account for mmWave

path blockage. Note that this causes two separate issues:

i) matrix Oc could be impossible to compute since some

anchors in c may not be visible; ii) some anchor locations

may be impossible to estimate, e.g., because they have not

been observed in a sufficient number of measurements. Define

At
v ⊂ A as the set of visible anchors at time t. Issue i)

is solved by considering only the measurement indices t for

which all anchors of c are visible. To achieve this, we consider

an update strategy for matrix Oc. As the algorithm assumes no

initial knowledge, at t = 0 we have Oc = 0. At time t, only

the anchor sets c ⊂ At
v permit to update Oc. Call C4

At
v
, the

set of all subsets of four anchors among those that are visible

at time t. For T t
c = {1≤τ≤ t s.t. c∈C4

Aτ
v
}, we compute

Oc =
∑

τ∈T t
c

pc
τp

cT
τ , (7)

where pc
τ is the vector p considered in Section II, computed

for set c ∈ C4
A at time τ . Eq. (7) allows us to include the

contribution of all valid measurements by adding one more

term to each sum whenever a measurement is taken (i.e., t
increases by 1).

To solve issue ii), we start by estimating the anchor shape

for subsets of anchors that have been observed in a sufficient

number of measurements. Then, we iteratively include addi-

tional anchors until there are no more anchors that can be

accurately located. To do this, we design a set of criteria to

compute a first estimation of four anchors, add one additional

anchor, and refine the estimation over the new set.

Having the update algorithm for the Oc matrices, and start-

ing from A = ∅ at t = 0, we pick the first set of four anchors

A∗ ∈ C4
A to be the first combination such that all anchors in

the set appear at least in θI measurements. θI is called the

“initialization threshold.” The initial estimation of the anchor

locations is then computed as Â∗ = argminA∗ Fc(Sc). We

achieve this via a Nelder-Mead simplex direct search [17]

using as an initial point the minimum cost element of a set of

several anchor locations configurations2 drawn independently

at random according to a Gaussian N (0, 1) distribution. We

remark that the mean and variance of the distribution are

not relevant, since the problem is invariant to translation and

scaling. To avoid accuracy issues, after every estimation of A∗,

we will normalize it to have mean 0 and variance |A∗|−1.

We now extend set A∗ by adding anchors from A \ A∗,

provided that each anchor has appeared in at least θE mea-

surements along with at least three anchors already in A∗.

θE is called the “extension threshold” and it allows the

position of the new anchor to be accurately estimated. Call

the inserted anchor α. Its location is estimated by computing

Â∗ = argminα FA∗(SA∗) through a very fast random search

in [−2, 2]× [−2, 2], followed by a Nelder-Mead simplex direct

search. The complexity of this step is even lower than that of

2Note that the initial search involves the computation of only one term of
the sum in (7), and is run only once. It therefore represents a very low startup
cost, for which a resolution of up to 2

20 elements could be easily afforded.

the initial search, and can be further limited by restricting the

computation of FA∗(SA∗) to the θRE
anchor combinations

c ∈ C4
A∗ that appear the most in all measurements (where the

subscript E refers to the extension step), and by capping the

Nelder-Mead running time to θTE
milliseconds.

All location estimates for all anchors in set A∗ (including

the newly added anchor) are then refined by solving

Â∗ = argmin
A∗

FA∗(SA∗) = argmin
A∗

∑

c∈C4

A∗

Fc(Sc) . (8)

As before, we restrict the above sum to the θRR
combinations

of anchors that appear the most in c ∈ C4
A∗ , and cap the

running time of the Nelder-Mead method to θTR
milliseconds.

B. User localization

Once the anchor locations have been estimated, we can

localize the user. We first assume that ADoA measurements

are error-free. Localizing the user means therefore to find

a location compatible with the ADoAs observed from those

physical and virtual anchors whose positions have been es-

timated. We take anchor ai as a reference, and use anchor

aj to determine the locus of points that generate the angle

âiuaj . Call ai and aj the coordinate vectors of ai and

aj , respectively. The above locus is, by definition, the arc

of circumference that contains both ai and aj , centered at

Rπ/2−âiuaj
(aj − ai)/ sin(âiuaj) + ai, where Rβ(x) is the

counter-clockwise rotation of x by an angle β. Anchor ai
is contained in this circumference. The inversion of this

circumference to the point ai is the line defined by the points

x such that 〈x − ai ,Rπ/2−âiuaj
(aj − ai)〉 = 2 sin(âiuaj).

Denote by u−ai the inversion of u to point ai. Combining

the corresponding expressions for different indices j yields a

system of equations of the form

Zi(u
−ai − ai) = Yi. (9)

In order to account for noisy measurements, we estimate

u−ai − ai by solving the MMSE problem

q̂ = argmin
q

‖Ziq−Yi‖
2
= (ZT

i Zi)
−1ZT

i Yi . (10)

By solving q̂ = u−ai − ai for point u, we get the estimate

ûi =
(ZT

i Zi)
−1ZT

i Yi∥∥(ZT
i Zi)−1ZT

i Yi

∥∥2 + ai . (11)

Finally, we compute ûi for all reference anchors ai and

average the corresponding estimates to yield û = Ei(ûi).

C. Spurious estimate filtering

As a final post-processing step, we rule out location es-

timates affected by a very large error. As such spurious

estimates are normally far from the trajectory of a mobile

node, we define for each estimate a value vt = min{‖ût −
ût−1‖, ‖ût − ût+1)‖}, where t is a position index, and ût−1,

ût and ût+1 are estimates computed as in Section III-B. If ût

is spurious, vt becomes detectably large. We therefore discard

an estimate t′ if vt′ > 2med({v}), where med( · ) is the

median and {v} collects all vt computed as above.



D. Simultaneous Localization and Mapping (SLAM)

We finally extend the standard physical/virtual anchor

matching method to estimate the environment boundaries by

leveraging LoS and NLoS paths. Recall that the location of

the virtual source of NLoS mmWave paths can be obtained

by mirroring the location of the physical AP through the

boundary that reflects the NLoS path. Since CLAM estimates

the location of both physical and virtual anchors alike, such

estimates can be matched based on the AP’s ID and exploited

to infer the location of environment boundaries. To this end,

we first define a criterion to decide whether a wall actually

“exists.” Assume a virtual anchor av is obtained by mirroring

the physical anchor ap through a wall. The normal vector

pointing towards the inside of this wall is computed as

npv = (av−ap)/‖av−ap‖. For every physical anchor, we can

compute all the npv corresponding to its virtual anchors. To

avoid mistaking proper virtual anchors for spurious reflections,

e.g., caused by scattering, we impose that normal vectors to

the same wall computed from different positions must agree.

Formally, we check that

∑

n′
pv

exp

(
−
‖npv − n′

pv‖

2β2

)
> θN , (12)

where n′
pv spans the set of all virtual anchors corresponding

to any physical anchor, β2 = 0.01 is the variance of the

Gaussian kernel and θN is a reliability threshold. If (12) is

satisfied, we compute a wall position estimate corresponding

to the reflection point of a received NLoS path. Such position

is obtained as the intersection between the line that bisects

segment apav and the segment ûav .

Throughout our simulation campaign, we found θN = 2.5
to yield a good tradeoff between the accuracy of the wall

estimates and the number of discarded estimates (both increase

with increasing θN ). Thanks to the flexibility offered by the

thresholds employed in CLAM, it is possible to adapt to

different complexity requirements. For example, users with

more powerful devices could increase θI , θE , θR and θRR
to

yield a more accurate solution at the cost of higher complexity.

Conversely, power saving or time-constrained operations are

enabled by smaller threshold values, or by constraining the

optimization problem to a shorter run time via θTE
and θTR

.

In an extreme case, we can also decide to refresh the shape

estimates only once every given number of measurements, so

as to avoid continuous computation on constrained devices.

IV. EXPERIMENTAL VALIDATION

Currently, there exists no COTS equipment providing direct

access to RF chain output, and phased arrays are not easily

available for integration in a testbed. Therefore, to evaluate our

algorithm in a real environment, we use a Pasternack VubIQ

60-GHz down-converter with a 7◦-aperture horn antenna as

user device. To emulate sector-level sweeping, we mount the

VubIQ on a stepper motor controlled by an Arduino board.

The baseband signal is recorded by an Agilent EXA N9010A

Signal Analyzer. The setup is controlled by Matlab code run-

ning on a laptop. The system is configured to take fine grained

mmWave power measurements in the 60 GHz band in angular

steps of 0.45◦, so that 800 measurements cover a complete

circumference. For the APs we employ five transmitters with

60-GHz up-converters: one Pasternack VubIQ, two SiversIMA

DC1005V/00 and two SiversIMA CO2201A.

We use pseudo omni-directional transmitters in order to

speed up the collection of the measurements, and capture all

available paths of a given AP at the same time. As a general

rule-of-thumb, we equipped APs located in open areas with

an omni-directional antenna; where omni-directionality is not

needed we employed wide-beam antennas (e.g., 80◦-aperture

horn antennas for APs near corners, and open wave-guide

terminations translating into a 120◦ antenna aperture for APs

located near walls).

Once the measurements have been collected at different

locations, we retrieve the AoA patterns for each AP. Different

peaks in each pattern correspond to the LoS arrival (when

available) and to one or more NLoS arrivals.

A. Room Setup

We test our algorithms in two different scenarios. The

first, Scenario A (Fig. 2a), is an L-shaped working place

with an open area, six small offices and two labs, all of

which are in active use. The walls are made of bricks and

have glass windows. Glass panels divide the offices from the

open area. Office and lab furniture (including tables, chairs,

screens and metal cupboards) make the propagation setting

realistically complex. The omni-directional transmitters were

placed centrally in the open area, whereas the 80◦ horn

antennas were positioned in the two west corners of the open

area. In this scenario, we measured the AoA pattern from

different APs at 66 positions. This makes it possible to emulate

different trajectories through the open space, with an average

separation of 1.3 m between nearest measurement points.

Note that furniture constrained the measurements, which were

taken around the work stations, in empty areas, and along the

corridors. In Fig. 3 we show two examples of the equipment

and furniture in part of scenario A’s measurement setup.

To provide a good tradeoff between CLAM’s accuracy and

complexity, we set θI = 8, θE = 5, θRE
= 64, θRR

= 128. We

do not set specific values for θTE
and θTR

, which provides an

upper bound to localization performance. The typical running

time is about 500 ms on a mainstream laptop.

Scenario B (Fig. 2b) consists of a large room of with

a size of about 24×6 m2. The room has brick walls and

glass windows, and is mostly empty of furniture. A wooden

wall, interrupted by an open door, splits the space into two

sections. In the smaller of the two sections we placed the

omnidirectional transmitter, slightly shifted from the middle

of the room, and deployed the 80◦-aperture transmitter in a

corner. In the largest space we set up a 80◦-aperture transmitter

in a corner, and an omnidirectional transmitter slightly south-

west from the middle of the room. The 120◦-beamwidth

transmitter was centrally deployed along the top wall. For this

setup, we measured 72 different positions in a scattered grid,

where nearest locations are about 1.15 m apart.
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Fig. 2. Floor plans of Scenarios A and B, showing the locations of mmWave APs and the antenna aperture
for each AP (80◦, 120◦ or omni). (c) AoA spectra for APs 2 and 4 at position X and for APs 2 and 5 at
position Y. Both LoS and reflected NLoS paths are clearly distinguishable.
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In Fig. 2c, we depict the received AoA patterns at two

positions marked as “X” and “Y” in Fig. 2a. For position X,

we show the AoA spectra of APs 4 (purple) and 2 (orange),

whereas we consider APs 2 (orange) and 5 (brown) for

position Y. As expected, AoA spectra reveal multiple arrivals

from different directions, with a LoS arrival of higher power,

and weaker NLoS arrivals related to paths that incurred one or

two reflections. AoA measurements are fed to the localization

algorithm in order to estimate the location of the user based

on the procedure in Sections II and III.

B. Measurements results

In Fig. 4 we illustrate the performance of CLAM over

the data collected in our measurement campaign. The heat

map in Fig. 4a shows the median user localization error

throughout different positions in Scenario A. The voids in the

map represent non-walkable locations such as tables, storage,

and internal walls. The error is remarkably low (mostly sub-

50 cm) everywhere in the room except for a few locations

near the top and top-right sections of the area. Here, the larger

errors are mostly due to the less accurate positioning of some

virtual anchors. In turn, this is due to the weak mmWave

illumination that results from the sparse AP deployment and

can be reduced significantly by increasing the number of APs.

Moreover, some areas are subject to higher errors, and the

corresponding location estimates are discarded as outliers (see

Section III-C): these areas are marked via a red circle in

Fig. 4a. Still, the results are very accurate, given the shape

of the room as well as the presence of furniture and other

obstacles in the area.

Fig. 4b shows the median localization error of CLAM in

Scenario B. We observe that the locations in the top section

are accurately estimated, except near the top-right room corner,

where the illumination from the omni-directional AP5 (see

also Fig. 2b) becomes comparatively weaker. CLAM’s accu-

racy is smaller in the bottom section, where some estimates

are affected by a larger error, especially near the door and the

bottom wall. These results are expected due to the presence of

two APs compared to the three in the top section, which yields

poorer illumination from LoS and NLoS arrivals. Besides

limited AP coverage, the transition across the middle door

in Scenario B causes a disconnect between anchor knowledge

on either side. Thus, it is impossible for the mobile node to

leverage the three anchors in the top section to keep localizing

in the bottom section. As a result, CLAM can only work with

two physical anchors and the corresponding virtual anchors.

Still, we consider CLAM’s accuracy to be remarkable, in

particular given that it does not assume any initial knowledge

about the user and the environment, and that our deployment

is characterized by a low density of APs.

Fig. 4c shows the localization error CDF in Scenarios A

and B for both CLAM and the ADoA-based algorithm of [15],

named cADoA in the following. Recall that, unlike CLAM,

cADoA assumes to know the position of the anchors and the

environment map. Despite these assumptions being in favor of

cADoA, CLAM achieves a median error smaller than 0.3 m

(Scenario A) and 0.5 m (Scenario B), whereas cADoA is

affected by a generally larger error, and by a median error

about 1 m in scenario A and 1.3 m in scenario B. About 99%

of CLAM’s location estimates achieve sub-meter accuracy in

scenario A. In scenario B, CLAM’s accuracy is slightly worse.

However, sub-meter errors are still achieved 83% of the time,

despite the very challenging case of little AP coverage in the

bottom section of the scenario. Location estimation fails (due

to insufficient available paths) in 9% of scenario A’s positions

and in 5% of scenario B’s.

We conclude by discussing experimental SLAM results

in Fig. 4d for both scenarios A and B. In scenario A, the

experimental results show very good estimates of the right

and left perimeter walls, which become less accurate for

the top and bottom walls. Here, imperfect virtual anchor

estimates tend to cause slight mismatches and rotations of wall

locations. Overall, the algorithm provides a realistic view of

the location of the room walls and obstacles therein, which

would be compatible with indoor navigation requirements with

no map available a priori. Aggregating these estimates over

more measurements (as done in the subsequent simulative

analysis) and filtering outliers does allow to build very accurate

environment maps. Remarkably, the figure shows that the

algorithm correctly estimates some reflective objects in the
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Fig. 4. Experimental results for CLAM: heat maps of the median localization error for (a) scenario A and (b) scenario B; (c) CDF of the localization error.
(d) Experimental SLAM results for scenarios A and B: gray lines represent the walls, and each dot a wall location estimate.

open area at the time of the measurement, including screens

in the second table from the top.

The SLAM performance is comparatively worse in sce-

nario B, where CLAM correctly estimates the right perimeter

wall, together with the top and middle walls, and a few

locations in the bottom wall. The left wall is affected by a

higher uncertainty, as only a few marked points appear. Still,

given the challenging scenario with only a few APs and the

fact that environmental sensing comes as an added value of

the localization algorithm, we believe these results to be very

promising and worth further investigation.

V. SIMULATION RESULTS

To investigate CLAM’s performance in more detail, we now

reproduce scenarios A and B of Section IV in simulation.

We use a custom ray-tracing based simulator that accurately

models the propagation environment, and solves the electro-

magnetic propagation equations by taking into account the

properties of the different materials that constitute the walls

and other objects in the scenarios. This allows us to emulate

many user trajectories (something that would be too time-

consuming in a real measurement), to systematically evaluate

mutual mmWave path blockage by the users, and to understand

the long-term performance of CLAM when the movement of

the user through the environment enables continued refinement

of position estimates over time.

With reference to Figs. 5a and 5b, in each scenario we

deploy five physical APs (large stars, where smaller stars

represent their virtual counterparts). We consider a total of

five users that move along a smooth trajectory at 1 m/s. The

trajectories are rendered using light purple lines and points.

The green path is one example path we highlight to discuss the

localization results below. Each node takes AoA measurements

at different locations (marked with dots for the purple paths,

or circles for the green path), and applies CLAM to locate

the physical and virtual anchor nodes, and to estimate its own

position while moving. We simulate the mutual blockage of

mmWave paths by modeling the users as circles of diameter

0.6 m, and by assuming that any path crossing such circles

does not propagate further. For any given user, between 20%

and 25% of the propagation paths are blocked throughout

scenario A, and between 15% and 20% in scenario B.

We start with Fig. 6 for scenario A and Fig. 7 for scenario

B, which show the cumulative distribution function (CDF)

of the user localization error, computed over the ensemble

of location estimates taken by all mobile users. CLAM is

compared to the two approaches in [15], which belong to

the class of triangulation-based and ADoA-based algorithms,

respectively named cTV and cADoA. Unlike CLAM, both

cTV and cADoA assume to know the position of the anchors

and the floor map, so as to be able to locate virtual anchors.

All schemes are tested by assuming angle measurements to

be affected by a Gaussian error of standard deviation σ = 1◦

and σ = 2◦. These errors correspond to those obtained by

synthesizing beam shapes with a uniform linear array with 32

and 16 elements, respectively, under typical SNR conditions.

We observe that CLAM achieves much smaller localization

errors than cTV and cADoA, despite starting with zero initial

knowledge about the AP locations and the environment. In sce-

nario A, up to 97% of the location estimates are affected by an

error of less than 50 cm, with a median error between 10 and

20 cm, depending on the accuracy of the AoA measurements.

cADoA and cTV perform worse, especially if AoA data is

less accurate (σ = 2◦). CLAM fails to localize a user between

0.5% and 1.5% of the time3, against 0.06% for cADoA and

no failures for cTV. Scenario B (Fig. 7) shows the same

trend. However, the inner wall makes the anchor configuration

sparser, and increases the probability that users block mmWave

paths through the door. This is reflected by CLAM being

slightly less accurate than in scenario A. In any event, it still

achieves sub-meter accuracy (about 95% of the cases) and

a median error of about 15 cm for σ = 1◦. We observe that

cADoA and cTV show much larger median and average errors,

and a significant probability that the localization error exceeds

2 m for less accurate angle measurements. In scenario B, the

percentage of localization failures is between 2% and 4% for

CLAM (no failures for cADoA and cTV). We note that if we

applied the outlier detection filter to cADoA and cTV, their

lack of accuracy would lead to discarding up to 20% of the

estimates for scenario A and up to 30% for scenario B.

We now focus on the trajectory of a single user (the green

path in Figs. 5a and 5b), in order to investigate the localization

3Failure occurs when a point is not illuminated by a sufficient number of
anchors, or because an estimate is marked as an outlier as per Section III-C.
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Fig. 5. Simulations: localization results for scenarios A and B. Localization
is quite accurate despite mutual mmWave path blockage among the users.

errors in more detail. Recall that large stars correspond to

physical APs, whereas small stars represent virtual APs, that

model the (virtual) sources of NLoS paths. The uncertainty of

anchor and user location estimates is rendered through ellipses

whose half-axis lengths equate the standard deviation of the

estimation error along the corresponding direction. Most of the

estimated anchor and user locations are extremely accurate,

as seen from the tiny uncertainty contours. This includes all

physical and almost all virtual anchors. Just for those anchors

that the user observes only from a few positions do the

uncertainty ellipses become larger.

As a general observation, if some anchor position estimates

are affected by higher uncertainty, the user location estimates

relying on those anchors will be less accurate as well. This

can be observed in the bottom section of scenario B (Fig. 5b).

The frequent mmWave propagation path blockage due to other

users limits the number of anchor observations in the bottom

section, which translates into lower accuracy. At the same

time, users block the visibility of the anchors in either room

as they move through the door, which prevents leveraging

information from both anchor sets. In the larger section, path

blockage is mitigated due to the larger room space, which

leads to more accurate location estimates.

We finally show in Fig. 8 the results of the estimation of

room walls and obstacles via the SLAM algorithm described

in Section III-D. Fig. 8a shows that SLAM works well in

scenario A: the location of all walls is estimated with good

accuracy, with only a few spurious results. Those are mainly

due to the error in the position estimate of some physical

and virtual anchors (see Fig. 5a) near the top wall and near

the internal wall in the bottom part of the room. The lack

of estimates for the bottom right part, instead, is due to an

insufficient number of physical-virtual anchor pairs that agree

on the existence of a wall, so that (12) does not exceed the

threshold θN . In scenario B the results are good as well. Given

the slightly higher localization errors, a few walls are estimated

with the wrong inclination, especially in the bottom section.

We remark that SLAM results in both scenarios would become
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Fig. 8. SLAM simulation results for (a) scenario A and (b) scenario B. Light
gray lines show the walls; each black dot represents a wall location estimate.

more accurate with a denser AP deployment, or by taking

further measurements, e.g., as a user repeatedly walks through

the respective indoor areas.

VI. RELATED WORK

The literature most related to our approach lies in the areas

of localization and SLAM. We survey each category below.

Localization in mmWave systems— Localization has been

largely studied from theoretical and practical standpoints [18].

Localization is considered as an inherent feature of mmWave

communications [19], and thanks to the characteristics of

mmWave signals is potentially achievable with up to sub-

centimeter accuracy. Large-scale mmWave MIMO systems

have been leveraged for localization by detecting the changes

in the statistics of sparse MIMO channel signatures [20].

From a theoretical standpoint, [21] shows that in a number of

practical cases it is possible to estimate both the position and

the orientation of a user. This is in line with the capabilities

of our proposed algorithm.

The quasi-optical propagation as well as the sparse AoA

spectrum perceived by a mmWave receiver enable single-

anchor localization, with much better accuracy than can be

achieved in microwave systems [22], especially if the envi-

ronment and the AP locations are assumed unknown. For

example, [15] achieves this via two approaches belonging

to the class of triangulation- and ADoA-based algorithms.

In the same vein, [14] applies ranging and multilateration



to to exploit LoS and NLoS arrivals for node localization.

The work in [16] is a first attempt to achieve localization

without initial knowledge of the environment. However, no

experimental results are provided.

Simultaneous localization and mapping— SLAM is a funda-

mental problem in the field of computer vision applied to

robotics [23]. The original solution employed a laser range

scanner (or other range, bearing or odometry sensors) and

fused the measurements via an extended Kalman filter (EKF).

Laser or lidar scanning and depth cameras have then evolved

to GPU-based or cloud implementations [24] that reduce com-

plexity by offloading computationally intensive tasks. A range-

based algorithm that exploits accurate range measurements in

a multipath environment was proposed for SLAM in [25].

SLAM has also been realized through bearing-only sensors,

often in conjunction with the EKF or other robust smoothing

techniques, such as Rao-Blackwellized particle filters [26].

Our CLAM algorithm achieves SLAM in mmWave net-

works through ADoA information extracted from standard-

compliant beam training and tracking algorithms. Unlike [14],

[27] and to abide to COTS device constraints, we do not

perform ranging, and unlike [15], [22] we assume no a-priori

information. Our algorithm is distributed and does not require

the nodes to cooperate (unlike, e.g., [28]). Anchor locations

are estimated by exploiting all possible relationships among

the angles measured by a client at different locations. To

the best of the authors’ knowledge, it is the first time such

a formulation is used, enabling a high-accuracy and low-

complexity implementation, including fast initialization.

VII. CONCLUSIONS

In this paper, we proposed CLAM, a zero-initial infor-

mation, zero-overhead and low-complexity SLAM approach

tailored to the characteristics of mmWave networks. We

leverage only standard procedures such as beam-training to

retrieve angle-difference-of-arrival information, and use this

information to estimate the location of the mmWave APs, the

position of the user, and the surrounding environment. Low-

complexity estimation procedures are enabled by a fundamen-

tal reformulation of ADoA-based anchor location estimation.

We demonstrate that CLAM localizes with very high ac-

curacy, and that it is robust to mmWave signal blockage

due to human movement in the localization area. Our results

are based on extensive experimental measurements in two

different areas, including a fully operational working area,

as well as additional simulations. The outcomes validate the

accuracy of CLAM and demonstrate that it is a feasible

approach for realistic mmWave network deployments.
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