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Introduction

The growing demand for processing is being satisfied by the growing num-
ber of homogeneous and heterogeneous processing cores in a computing plat-
form. However, this trend goes hand-in-hand with issues pertaining to pro-
gram parallelization, application partitioning, deep memory hierarchy, lim-
ited communication bandwidth, power consumption, etc. Some of these prob-
lems could be alleviated by utilizing tools to unleash the performance of these
emerging computing systems. In this chapter, we present current computing
trends and describe the basic concepts required to understand the questions
raised in the dissertation. Subsequently, we discuss some opportunities of-
fered by these multicore platforms and highlight the main challenges in the
efficient utilization of these platforms. Thereafter, we briefly describe the
research directions of this dissertation followed by the main contributions.
Finally, we provide an outline to the remainder of the dissertation.

1.1. Background

Although the number of transistors per chip is growing due to technology scaling
[2], increasing the clock rate of processors is becoming economically less viable due
to fabrication cost and power consumption [3]. These limitations shifted the trend
towards the integration of a growing number of homogeneous or heterogeneous
processing cores [4] in general-purpose [5], embedded [6, 7] and high-performance
computing platforms [8] as depicted in Figure 1.1. However, these multicore archi-
tectures pose specific challenges regarding their programmability, as the effective
utilization of these platforms in an architecture agnostic way is not possible. Hard-
ware constraints, such as memory bandwidth, local scratch-pad memory etc. need

1
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Figure 1.1: Multicore processor proliferation [1].

to be explicitly taken into account.

Because of the growing gap between processor and memory speeds [9], it is becom-
ing more and more important to optimize memory-access behavior of applications.
Secondly, with the growing number of cores, the degradation of performance im-
provement exacerbates, as communication is typically more time-consuming than
computation. Hence, this communication is considered as the major design chal-
lenge in multicore architectures [10]. In addition, it is a major source of energy
consumption [11].

1.1.1. Application Partitioning

There is a huge code base of legacy, sequential applications which need to be
ported to emerging multicore architectures, and thus need to be parallelized. To
port an existing sequential application to multicore architecture, applications must
be divided into smaller parts which are mapped to the available cores in the archi-
tecture as shown in Figure 1.2. This is known as application partitioning and it is
a critical task, as an improper partitioning and mapping may result in performance
degradation. Main identifiable reasons are irregular memory-access patterns and
the communication among cores which may reduce the anticipated performance
improvement.
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Figure 1.2: Partitioning of an application into four parts to be mapped on the available four cores in the
architecture.

1.1.2. Classes of Parallelism

Parallel computing is the form of computing in which various computations can be
carried out simultaneously. This is possible because of the availability of parallelism
in applications. Parallelism exists in applications in two forms.

o Data-Level Parallelism refers to the class of parallelism in which there are
many data items that can be processed in parallel. For instance, addition of
two matrices where addition of elements can happen in parallel.

» Task-Level Parallelism refers to the class of parallelism in which various tasks
in application can be processed in parallel. For instance, if in an application
we have to add, subtract and multiply two matrices, then these three tasks
can be executed in parallel.

1.1.3. Classes of Parallel Architectures

Computing systems exploit the parallelism available in application to gain perfor-
mance. This can be done in four major ways.

e Instruction-Level Parallelism exploits data-level parallelism available in the ap-
plication by pipelining and speculative execution.

o Data-Level Parallelism is exploited by vector architectures and Graphical Pro-
cessing Unit (GPU) by applying a single instruction to multiple data items in
parallel.
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n e Thread-Level Parallelism exploits data-level or task-level parallelism. This is
achieved in a tightly coupled hardware model where parallel threads can in-
teract among each other.

* Request-Level Parallelism exploits task level parallelism among largely decou-
pled tasks specified by operating system or programmer.

1.1.4. Heterogeneous Computing

Heterogeneous computing utilizes heterogeneity in the architecture to perform ef-
ficient processing. Heterogeneity refers to the availability of more than one kind
of cores in the architecture. Some cores have good single thread performance,
whereas, the other cores have high throughput. Heterogeneous systems gain high
performance and energy efficiency due to these dissimilar cores which are special-
ized for specific type of processing. This means that each application or part of an
application is matched to the core, based on its performance demand.

A well known form of heterogeneous computing utilizes accelerators to gain per-
formance. Here, compute intensive parts of an application are off-loaded to the ac-
celerator. An accelerator is a computing unit comprised of many simple processing
units specifically designed to run computationally intensive part of the application
very fast.

GPU is a well known example of an accelerator. GPU was originally designed to
efficiently process images, but their ability to perform floating point operations at
extremely high speed has given rise to the form of computing coined as General
Purpose Computing on GPUs (GPGPU). Apart form GPU, Xeon-Phi [12], Digital
Signal Processor (DSP) [7] and Field Programmable Gate Array (FPGA) [6, 8] are
also used as accelerators in various application domains.

1.1.5. Profilers

Profilers are program analysis tools which provide information about various aspects
of programs, for instance, number and types of instructions, frequency of function
calls [13], time consumed per function[14, 15], call-graph [13—-16] etc. In [17], the
need for such tools has been well formulated as:

“Program analysis tools are extremely important for understanding
program behavior. Computer architects need such tools to evaluate
how well programs will perform on new architectures. Software writ-
ers need tools to analyze their programs and identify critical sections of
code. Compiler writers often use such tools to find out how well their
instruction scheduling or branch prediction algorithm is performing.”
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Figure 1.3: Memory-access with a stride of k.

1.1.6. Memory Profilers

When a function loads/stores data from/to an address in memory, it is known as
read/write memory-access. Memory profilers [14, 15, 18—=20] monitor these mem-
ory reads and writes to provide information about the memory-access patterns of
functions.

Cache memories try to make predictions mainly based on the following types of
access patterns:

1. Temporal: recently accessed data will be needed again in the near future.
2. Spatial: data adjacent to the currently referenced data, will be accessed.

3. Strided: memory is accessed in some predictable pattern. An example of
strided memory-access with a stride of k is shown in Figure 1.3. The code
snippet performing this memory-access is also shown, where different values
of k will result in different amounts of strides.

e When k=1, Array elements are accessed as 0, 1,2, 3,---. This pattern is
known as sequential memory-access.

e When k=2, Array elements are accessed as 0, 2,4, 6, ---.

4. Random: data is accessed randomly and is un-predictable.

Due to the growing gap between processor and Memory speeds [9], it is becoming
increasingly important to characterize the memory-access patterns of applications
for performance improvement. For instance, the information about access patterns
is utilized by caches, which are small memories utilized to hide the main memory-
access latency by predicting the next memory-access [21, 22]. Cache designers
need the information about the memory-access patterns to design efficient cache
controllers. Programmers need this information to match the access patterns of an
application at hand with the cache architecture.

5
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Figure 1.5: Data-communication profilers are generally special class of memory profiling tools. Some
data-communication profilers report communication without tracing memory accesses.

1.1.7. Data-Communication Profilers

Data-communication in an application occurs when certain part of a program writes
data into memory and later the same data is read by another (or same) part of the
application. Therefore to track data-communication, both memory read and write
accesses need to be tracked as shown in Figure 1.4.

At the fine-granularity level, this data-communication can be reported at the instruc-
tion or the basic block level. At the coarser-granularity, data-communication can be
reported between functions in a sequential application or between threads in paral-
lel applications. Profilers that provide this inter/intra-function data-communication
information are termed as data-communication profilers. Figure 1.5 shows the clear
relationship between memory profilers and data-communication profilers, where it
can be seen that data-communication profilers are a sub class of memory profilers.
Furthermore, it can also be seen that some data-communication profilers do not
utilize memory access information to report data-communication. These profilers
track, for instance, network traffic to report communication.

6
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Data-communication can occur in various patterns [23]. We briefly describe here
the common data-communication patterns.

1. Read-only: In this communication pattern, data is written to a memory
location once but read multiple times. This pattern involves reading the same
data over and over again like reading constants, which are initialized once but
read multiple times throughout the execution of application.

2. Migratory: This communication pattern occurs when a data structure is re-
peatedly read and then written by a number of threads in the atomic regions
during program execution. An example can be the processing of an image by
various threads repeatedly in a pipeline fashion.

3. Producer-consumer: Producer of a data structure is the thread which
writes data to a data structure. The thread that reads this data structure
is called the consumer. Hence, the process occurs in the form of a producer-
consumer communication pattern.

In order to provide a motivational example for data-communication profiling, con-
sider the inter-function data-communication at the application level depicted on the
left side of Figure 1.6. To map this application on a multicore architecture, functions
can be clustered together as depicted on the right-hand side after application parti-
tioning. Each cluster can be mapped onto a core in multicore architecture, convert-
ing inter-cluster communication into the inter-core communication. Consequently,
it is very important to perform partitioning, utilizing the data-communication infor-
mation in an intelligent manner in order to avoid expensive external communication.

For homogeneous architectures the data-communication information can be uti-
lized by setting the thread affinity to bind highly communicating threads to the
same core to reduce inter-core communication. For heterogeneous architectures,
which utilize Central Processing Unit (CPU)/FPGA/DSP/Xeon-Phi as an accelerator,
this information can be utilized to perform the mapping such that the expensive

7
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Figure 1.7: Performance of SP benchmark degrades with growing number of cores [26].

data-communication between CPU and the accelerator is reduced as much as pos-
sible.

1.2. Problem Overview

Due to technology scaling [2], the computing performance increased orders of mag-
nitude during the last few decades. However, as the transistor size is approaching
atomic scale, it is becoming increasingly difficult to improve microchip performance
without making a considerable sacrifice on power and cost [4, 24, 25]. Due to
this disproportional increase in power and cost, the industry can no longer rely on
performance doubling every 18 months, though computational demands continue
to increase sharply.

In order to satisfy the growing processing demands, the trend shifted towards grow-
ing number of cores [4, 27] to gain performance. Here, an application is analyzed
to extract the parallel parts of the application which are executed as threads in
parallel on the available cores in the architecture. Various challenges make it hard
to parallelize applications to gain performance from multicore architectures [28—
30]. First of all, not all applications are parallel in nature. Secondly, extracting
the available parallelism from existing applications is not trivial because of the way
they are written. For instance dependence analysis becomes difficult when features
like indirect addressing, pointers, recursion and indirect functions are used. Sec-
ondly, determining the the loop boundaries and coordinating the accesses to global
resources are also tedious and error prone.

Even if the applications are parallelized to take benefit of the available cores in the
architecture, application performance does not necessarily scale with an increas-

8
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Table 1.1: Estimated energy consumption for arithmetic operations.

Integer Floating Point

Operation | Size | Energy | Size | Energy
Add 8-bit | 0.03 pJ | 16-bit | 0.4 p]
32-bit | 0.1 pJ | 32-bit | 0.9 pJ
8-bit | 0.2p) | 16-bit | 1p]
32-bit | 3.1p] | 32-bit | 4pJ]

Mult

ing number of cores[31]. The performance is limited mainly due to the inter-core
communication and contention while accessing shared memory [26, 32-34]. Fig-
ure 1.7 shows the performance of SP benchmark from NAS parallel benchmark suite
[35] for various number of cores. It can be seen that the optimal number of cores
is 8 and performance degrades for core count greater than 8. Similar results are
reported in literature[31] for other real applications.

Realizing an exascale-level performance by the end of this decade imposes a major
challenge on energy and power consumption [11, 36, 38]. The power consumption

Table 1.2: Estimated energy consumption for memory access.

Memory Type | Size Energy
8 KB 10 pJ
Cache 32 KB 20 pJ
1 MB 100 pJ
DRAM 1.3-2.6n]
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is increasingly dominated by data-transfer and memory accesses [36, 39, 40] in
65nm and smaller technologies as depicted in Figure 1.8. The research[38] presents
the estimated energy cost for arithmetic operations and memory access (cache and
DRAM) as given in Table 1.1 and Table 1.2, respectively. It can be seen that add and
multiply operations of various sizes cost 0.03pJ-4pJ, whereas, cache memory access
costs 10pJ-100pJ. The situation worsens if DRAM access is involved (1.3-2.6nJ of
energy is consumed for a DRAM access [40]). DRAM consumes energy even when
it is not being used due to cell refreshing. The energy consumption increases with
the memory size [37], as depicted in Figure 1.9. The off-chip memory energy
consumption is even worse as 40 —50% of energy is spent in off-chip memory [38].

Heterogeneous multicores are envisioned to be a promising design paradigm to
combat today’s challenges in reducing power consumption and alleviate the impact
of the memory wall [11, 27, 41]. This can be observed from the growing number of
accelerator based systems in TOP500 list [42]. Currently the world’s most powerful
supercomputer, Tianhe-2 [43], utilizes accelerators. In general, the TOP500 list
shows a growing momentum of accelerator based systems as currently more than
100 supercomputers use accelerators. These systems account for 143 petaflops of
processing power which is over one-third of the list’s total Floating Point Operations
Per Second (FLOPS).

In these accelerator-based systems, the compute intensive part of the application is
offloaded from CPU to the accelerator. The problem which arises from this offload
model of computation is that data needs to be moved from CPU to the accelerator
as this data-communication generally occurs on a slow bus, such as Peripheral
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Component Interconnect Express (PCle). This data-communication is considered
as the primary bottleneck [44—47]. Recent work [48] shows that about 70% of
the stalls are comprised of data-dependence and memory stalls. This percentage
increases significantly when the peak bandwidth is reduced clearly indicating that
limited off-chip memory bandwidth is a critical performance bottleneck for these
applications. Therefore, partitioning an application to map on these architectures
is a critical task [49, 50] as it requires structuring algorithms such that the expensive
data-transfers are completely avoided or reduced as much as possible.

Another trend in computing, especially with accelerator-based computing, is that
these architectures have deeper memory hierarchy. These systems normally have
distinct on- and off-chip address spaces and require software to move data in be-
tween them. Example of such architectures exist in general purpose [5], [51],
embedded [6, 7, 52], and high performance computing platforms [8, 53-55]. Ex-
plicit memory management is necessary for program correctness as well as to boost
performance [25, 56-58] for these architectures. This implies that placing the data
in the memory hierarchy closer to the processor is critical. This placement of data
can be on-die cache or scratch-pad, local DRAM, or remote memory accessed over
high-speed interconnect.

Figure 1.10 shows the memory hierarchy of the Nvidia GeForce GT-640 GPU ar-
chitecture. Accessing the shared memory is an order of magnitude faster than
accessing the global memory [60]. However, the trade off is that shared memory
is limited and requires management by a programmer. The problem with these
exposed memory hierarchy architectures is that it is not trivial to program these ar-
chitectures. This is illustrated by Figure 1.11 where it can be seen that the compu-
tational capacity of multicore architectures is underutilized due to the programming
bottleneck.

In a nutshell, the key to scaling computing performance is to reduce the data move-
ment as much as possible. Accomplishing this requires a deep understanding of the
memory access behavior of an application and careful look at the data flow in the
application. Manual analysis of applications is tedious and error prone. Therefore,
tools are required to characterize the data-communication in an application and
highlight the communication hot spots. These tools can help programmers to per-
form communication-aware partitioning and mapping decisions based on detailed
quantitative application profile. These tools are also helpful to system architects to
design future interconnects considering the communication behavior of the target
application domain.

1.3. Research Questions

To efficiently map a sequential application onto a multicore architecture, various as-
pects need to be taken into account. These aspects are detection of computational
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and memory hot-spots, extraction of parallelism, application partitioning, design
space exploration, memory assignment, data-movement among cores etc. In this
work we focus on some of the research questions as listed below.

Question 1 - How can we efficiently report data-communication among parts of
an application at various granularity levels?

We discussed earlier that to report data-communication information, all the
write and read memory accesses need to be related together to form data-
communication relationship. The challenge lies in the fact that these reads
and writes can happen anywhere in the 128 TB user address space, so keeping
track of the writer of a memory location efficiently, is not trivial. Hence, the
design of the tool has a great impact on the execution-time and memory-
usage overheads of a profiler.

Question 2 - How far can we automate the process of application parallelization
based on the detailed static and dynamic application profile?

Ideally we want to perform the application parallelization automatically by
parallelizing compilers. But this approach has not been successful as com-
pilers do not have enough information such as dependence at compile time.
Therefore, the challenge is to utilize the detailed run-time information in con-
junction with compile time information to automate the process as much as
possible.

Question 3 - How can we utilize the data-communication patterns to assign the
data-structures in an application to the available memory-hierarchy in the
architecture?

Data-structures are allocated in memory and accessed by various parts of
an application. Recent systems have various memory spaces available in the
architecture. These spaces have different access-time and sizes. Proper uti-
lization of these memory spaces based on the access pattern is critical to gain
performance. The challenge in this regard is to report the access patterns
in application at the data-structure level so that it can be utilized to perform
proper memory assignment.

Question 4 - How can we utilize the memory-access and data-communication
patterns in an application to design efficient hybrid interconnects for embed-
ded and high performance computing platforms utilizing FPGA as an acceler-
ator?

Using FPGA as accelerator has the advantage that its internal structure can be
customized based on the computation in the application. In order to reduce
the performance loss due to data-communication, can the interconnect be
customized to match the application data-communication patterns?

Question 5 - How can we evaluate the quality of solutions generated by different
partitioning algorithms in terms of computation and communication time of
an application?

13
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Due to a large variety of architectures and the lack of proper benchmarks,
it is hard to reproduce experimental results, for fair comparison, on the tar-
get platforms. Furthermore, the complexity furthers in case of reconfigurable
architectures as the application development process involves building and
synthesizing hardware blocks. Considering these challenges, can we have a
proper methodology to quickly evaluate the quality of the partitioning algo-
rithms?

1.4. Dissertation Contributions

In order to answer the research questions posed in the previous section, this thesis
makes the following contributions.

Contribution 1 - Developed an efficient, open-source profiler, MCProf. This pro-
filer has at least an order of magnitude less overhead as compared to the
state-of-the-art data-communication profilers for a variety of benchmarks.
Furthermore, MCProf generates a detailed memory-access and data-communication
profile of the application at various granularity levels. To generated informa-
tion is related to the source-code making it easy for programmers or tools to
utilize it.

Contribution 2 - Developed a framework which automates the process of appli-
cation parallelization. Source-level information is combined with the run-time
information generated by MCProf to automatically generate parallel represen-
tation of an input sequential application.

Contribution 3 - Validated the tool by utilizing the memory-access information
generated by MCProf for the memory-intensive objects in the application to
assign data-structures to the available memory spaces available in the accel-
erator, such as GPU and FPGA.

Contribution 4 - Developed a Partition Evaluation Tool (PET) which can compare
various partitioning algorithms based on the quality of the solutions found by
these algorithms.

1.5. Dissertation Organization

Remainder of this dissertation is organized as follows.

Chapter 2 surveys the memory-access optimization profilers and presents pro-
pose a classification of these profilers. Focus is on data-communication profilers
which is a sub-class of memory-access optimization profilers. A detailed compari-
son of data-communication profilers is provided to highlight their strong and weak
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aspects. Finally, recommendations for improving existing data-communication pro-
filers and/or designing the future ones are thoroughly discussed.

Chapter 3 presents the design of MCProf, an efficient memory-access and data-
communication profiler. In contrast to prior work, MCProf reports detailed profile
at various granularity levels with manageable overheads for realistic workloads.
Experimental results show that on the average, the proposed profiler has at least
an order of magnitude less overhead as compared to the state-of-the-art data-
communication profilers for a variety of benchmarks. A case-study is presented
which shows the utilization of MCProf to efficiently map a sequential application on
a platform using GPU as an accelerator.

Chapter 4 first presents a semi-automatic parallelization methodology based on
MCProf to help programmers extract and express parallelization. Later on, a tool-
chain is presented which automates the whole process of application parallelization
to generate parallel representation of the input sequential application. We compare
our approach with automatic parallelization and other semi-automatic parallelization
and outline the advantages and limitations of each approach.

Chapter 5 addresses the challenges of efficiently utilizing accelerator based archi-
tectures by utilizing the detailed memory access and data-communication profile
of an application. Both software and hardware based optimizations for platforms
utilizing FPGA as accelerator are presented. Experimental results are provided for
real applications to show the effectiveness of the optimizations.

Chapter 6 concludes this dissertation and presents future research areas.
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Background and Related
Work

With the advent of technology, multi-core architectures are prevalent in em-
bedded, general-purpose as well as high-performance computing. Efficient
utilization of these platforms in an architecture agnostic way is an extremely
challenging task. Hence, profiling tools are essential for programmers to
optimize the applications for these architectures and understand the bottle-
necks. Typical bottlenecks are irregular memory-access patterns and data-
communication among cores which may reduce anticipated performance im-
provement.

In this chapter, we survey the memory-access optimization profilers and pro-
pose a classification of these profilers. Focus is on data-communication pro-
filers which is a sub-class of memory-access optimization profilers. A de-
tailed comparison of data-communication profilers is provided to highlight
their strong and weak aspects. Finally, recommendations for improving exist-
ing data-communication profilers and/or designing the future ones are thor-
oughly discussed.

2.1. Introduction

Profilers are program analysis tools which provide information about various as-
pects of programs. For instance, number and types of instructions, frequency of
function calls, time consumed per function call, etc. A lot of work is available in lit-
erature for profilers that focus at the fine granularity of instructions or at the coarse
granularity of individual functions [13, 61, 62]. Cache profiling, which is a kind of
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memory profiling [63], has also been studied extensively. However, very few tools
exist which provide intra-application data-communication information. Therefore,
in this work our focus is on memory profiling tools with a focus on those which
provide intra-application data-communication information. Even though there is no
generally acknowledged classification of memory profilers, we propose to organize
the discussion based on the following three aspects of profiling:

¢ Profiling objective ( Section 2.2 )
e Profiling input ( Section 2.3 )

e Profiling technique ( Section 2.4 )

The remainder of this paper is organized as follows. We start by detailing the pro-
posed classification in Section 2.2, Section 2.3 and Section 2.4. In Section 3.7,
we compare existing memory profilers which provide the data-communication in-
formation. To the best of our knowledge, we have included all the tools in this
regard. Based on this study, we provide some recommendations for the improve-
ments of the existing data-communication profilers or design of the future ones, in
Section 2.6. Finally, Section 2.7 concludes the paper.

2.2. Memory Profilers based on Profiling Objective

Based on the profiling objective, we further classify memory profilers into four
classes, namely, memory-access optimization, memory debugging, dependence
analysis and workload characterization, depicted in Figure 2.1. Furthermore, memory-
access optimization profilers are further classified into cache/locality profilers and
data-communication profiling. The focus of this work is on profilers designed for
memory-access optimization. We believe that the other classes of profilers have
been discussed in other studies and a number of example tools are available.

2.2.1. Memory Profiling for Memory-access Optimization

Profilers in this class analyze performance issues related to memory accesses in
applications. For instance, the performance of an application may suffer because
of pure locality of memory accesses. Cache/locality profilers can highlight the parts
of the application responsible for such behavior. Another aspect of performance
optimization is the communication among the parts of applications running on sep-
arate homogeneous/heterogeneous cores. Data-communication profilers provide
such information and highlight communication related performance bottlenecks.
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Figure 2.1: Classification of memory profilers based on profiling objective.
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Table 2.1: Cache/Locality profilers

20

Input . " Supported Platform
Profiler Sre/Binary Tanguage STMT Output CL/IDE Technique Based on Availability o5 Architecture
. . Text Reports, N ~ Linux, OSX Intel, AMD,
Cachegrind[64] Binary NA MT Graphical Reports CL, IDE DBI Valgrind Open-Src Android PPC
. Arch. Perf. . Intel, AMD,
Oprofile[14] Binary NA MT Text Reports CcL HWC Counters Open-Src Linux ARM, PPC, IBM
. Arch. Perf, .
NUMATop[65] Binary NA MT Text Reports CL HWC Counters (Intel PMU) Open-Src Linux Intel
. Arch. Perf. .
Dprof[66] Binary NA MT Text Reports CL HWC Counters (AMD IBS) Open-Src Linux AMD
. B Arch. Perf. Linux, OSX Intel, AMD,
Zoom[20] Binary NA MT Graphical Reports CL, IDE HWC Counters Free Windows ARM
Src for detailed C, C++, C#, Java Arch. Perf. Commerdial
Vtune[15] graphical Fortran, OpenMP, MT Graphical Reports CL, IDE HWC, DBI Counters (Intel PMU), Linux, Win Intel
reports MPI, OpenCL Pin (Intel)
Graphical Program Src for detailed C, C++, . Commercial
Analysis Toolkit[67] graphical reports pthreads MT Graphical Reports CL, IDE SBI ATOM (HP) Tru64 Intel
) Src for detailed . _ Commercial(HP) ¥ HP Integrity
Caliper[68] graphical reports C, C++ MT Graphical Reports CL, IDE DBI Free(Non-Commercial) HP-UX Servers
CodeXL [69](successor Src for detailed C, C++, . Arch. Perf. Counters Commercial(AMD), . .
(of Code Analyst) graphical reports Opencl. MT Graphical Reports | CL, IDE HwC (AMD IBS, TBS) Open-Src (Linux) Linux, Win AMD
Src for detailed C, C++, C#, C++ AMP, Arch.
Visual Profiler[70] graphical reports Visual Basic, Visual F#, MT Graphical Reports CL, IDE HWC Perf. Free Win Intel, AMD
Java Script, OpenMP Counters
. . Src for detailed C, C++, OpenMP, . Arch. Perf. Counters, Solaris, SPARC,
Solaris Studio[71] graphical reports MPI, Java M7 Graphical Reports IDE HwC VampirTrace(MPI) Free RHEL X86-64

Src: Source, ST: Single Threaded, MT: Multi threaded, DBI: Dynamic Binary Instrumentation, SBI: Static Binary Instrumentation, CL: Command line, IDE: Integreted Development Environment, HWC: Hardware Counters,
IBS: Instruction Based Sampling, TBS: Time Based Sampling, PMU: Performance Monitoring Unit
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Locality/Cache Profilers

To decrease the gap between processor and main memory, small but very fast
memories, known as caches, are used. As the size of these memories is small,
only the most frequently used data can be stored in these memories based on the
prediction of the algorithm in cache controller. Hence, analysis of cache behavior
is crucial to increase the performance of the programs, and/or design new cache
algorithms. Various tools exist which profile applications to analyze cache behavior
as listed in Table 2.1. A few well-known open-source tools are detailed below.

Cachegrind [64] is Valgrind tool which can detect first and last level instruction
and data cache misses for C/C++ programs. Cachegrind tracks cache statistics
(I1, D1 and L2 hits and misses) for every individual line of source code executed
by the program. At program termination, it prints a summary of global statistics,
and dumps the line-by-line information to a file. This information can then be
used by an accompanying script to annotate the original source code with per-line
cache statistics. KCachegrind, a visualization tool for the profiling data generated
by Cachegrind, is also available.

Oprofile [14] is a hardware dependent, open-source profiling tool that works on
recording events from hardware performance measurement units. Apart from var-
ious other performance events, it can sample events related to L1, L2 instruction
and data caches to provide information about cache hits/misses by an application
on a certain platform. The profiler is controlled by using the opcontrol and the
reports are generated by the opreport utility.

NumaTOP [65] is an open-source tool for runtime memory locality characterization
and analysis of processes and threads running on a NUMA system. It utilizes In-
tel hardware performance counters sampling technologies to identify where NUMA
related performance bottlenecks reside. This performance data is associated with
Linux runtime information to provide real-time analysis in a GUI on production sys-
tems.

Data-communication Profilers

Memory profilers in this class, profile applications to measure communication among
various parts of an application. These profilers are further classified in to the fol-
lowing two classes.

Shared Memory Data-communication Profilers Table 2.2 provides a sum-
mary of such profilers. Quad (Quantitative Usage Analysis of Data) [72] provides
dynamic information regarding data usage between any pair of co-operating func-
tions in an application. This tool is based on Pin [76] and it tracks the reads and
writes to a memory location at the granularity of byte. When a function writes
to a memory location, it is saved as a producer of this memory location in a Trie

21




Background and Related Work

Ch-2

Table 2.2: Data-communication profilers

Profiler Sre/binary mmmemmm ST/MT Output CL/IDE Technique Based on | Availability OMCuuo_Ama _u_mhmﬂ__ﬁmnﬂ:ﬂm
QUAD[72] binary NA ST DOT, XML cL DBI Intel Pin | Open-Src >K,nwm__mw:ocwx Intel, ARM
Pincomm[73] |  binary NA MT csv cL DBI Intel Pin | Open-Src >K,nwm_ww:ocwx Intel, ARM
CETA[74] binary NA ST DoT cL | erchtecture | VIUteCh | open-src | Win, Linux Intel
Redux[75] binary NA ST text cL DBI Valgrind | Open-src | LNt Android, HMM,_\._\@_,MW

Src: Source, ST: Single Threaded, MT: Multi threaded, DBI: Dynamic Binary

nstrumentation, CL: Command line, IDE

: Integreted Development Environment
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data structure. The function reading this memory location is called the consumer
and by getting the information from the Trie, a producer-consumer communication
relationship is established. Apart from providing the quantitative information about
the number of bytes, two other metrics are also reported. The first metric is the
number of unique memory addresses, while the second metric is the number of
data values uniquely communicated from producer to consumer.

Pincomm [73, 77] is a tool based on Pin [76] which constructs Dynamic Data Flow
Graph (DDFG) to report the communication flow between various parts of the pro-
gram. The parts can be functions, data structures, threads etc. which are repre-
sented on DDFG. The communication is reported in the form of producer-consumer
relationship. The information can also be provided in terms of marked region in
the code which appear on the DDFG. These markers can also be used to start and
stop communication. The dynamic objects allocated during the execution of the
program are also detected to report the communication through these objects.

CETA (Communication Extraction from Threaded Applications) [74] provides data-
flow information between multiple threads. Memory reads and writes are tracked
at runtime using Simics multiprocessor architecture simulator [78]. Hash table is
utilized to record the writing thread of an address. When the read is performed the
communication is updated in another hash table. After the completion of simulation,
Python scripts report the collected information as a DOT graph.

Redux [75] is a Valgrind based tool for drawing the detailed dynamic data flow
graphs of programs. Because of these details, it can only be used for small kernels
or parts of programs, as discussed by authors. Secondly, the purpose of the tool
as reported by authors is to represent the computational history of a program and
not the communication behavior.

Distributed Memory Data-communication Profilers Message Passing Inter-
face (MPI) [79] is a popular example of distributed memory programming model.
The MPI provides communication functionality between a set of processes in a lan-
guage independent way. This explicit communication is carried out through routines
like MPI sendandMPI recieve. Various commercial [71, 80, 81] and well main-
tained open-source [82—85] tools exist which track these routines to characterize
communication in MPI programs. We refer the reader to the comparative studies
[86, 87] for further details. We would like to highlight here that these tools are not
designed to provide the communication profile of sequential applications. These
tools are based on the technique which requires MPI parallel program as input.
Hence, it only helps in validating the parallel program written only in MPI, rather
than constructing one.

23



Ch-2: Background and Related Work
Memory
Profilers
Single Multi
Threaded Threaded

Figure 2.2: Classification of memory profilers based on profiling input.

2.3. Memory Profilers based on Input Application

Memory profilers can take sequential or parallel application as an input (Figure 2.2)
to provide the memory access behavior of an application. Profilers also exist which
can profile both sequential and parallel applications.

2.3.1. Profiling Sequential Applications

Profilers in this class profile sequential applications for performance analysis, report
communication, trace bugs, detect data-races etc. QUAD [72] is an example of
such profilers.

2.3.2. Profiling Parallel Applications

Profilers in this class provide information about the memory access behavior of
the parallel applications. ParallelTracer [88] is a trace-based performance analysis
framework for heterogeneous multicore systems. It instruments source code to
trace various events in the application. It is an extension of Trace Collection and
Trace Post Processing (TCPP) framework [89]. Furthermore, pin based tools [90],
such as Parallel Amplifier, are available for the analysis and optimization of parallel
C/C++ programs.

2.4. Memory Profilers based on the Profiling Tech-
nique

Based on the technique, memory profilers are broadly classified as static and dy-
namic analysis tools as shown in Figure 2.3. Static analysis tools provide the in-
formation based on the source-code without running the application. These tools
can predict the communication in regularly structured programs. The polyhedral
model is usually imposed in this analysis to compute the communication and data-
dependencies analytically. For instance, the work presented in [91] uses exact
data-dependence analysis provided by the polyhedral model to automatically ex-
plore the opportunities for communication/computation overlap. This kind of anal-
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Figure 2.3: Classification of memory profilers based on profiling technique.

25



Ch-2: Background and Related Work

ysis is infeasible for a large number of existing and emerging applications as these
programs have irregular structure. Furthermore, problems such as pointer analy-
sis, is still very difficult, even exponential-time algorithms do not always produce
sufficiently precise results [92].

Tools based on dynamic analysis collect information by running the application in
a simulator or on the target platform. These are further classified as architecture
simulation and instrumentation. Architecture simulation involves modeling a virtual
computer system with CPU and memory hierarchy. SimpleScalar [93] is an example
in this class, which can simulate various architectures with non-blocking caches,
speculative execution, and state-of-the-art branch prediction. A drawback of this
technique is that it is computationally intensive, which limit its use to small data
inputs. Furthermore, simulation with these small data inputs may not exhibit the
realistic memory-access patterns.

Binary instrumentation is a widely used instrumentation technique in which an in-
strumentation tool injects instrumentation code to the compiled binary. This type
of instrumentation can be done statically or dynamically.

Static binary instrumentation was pioneered by ATOM [17]. ATOM organizes the
final executable such that the application program and user’s analysis routines run
in the same address space. Hence, there is a possibility to mix code and data in an
executable. Third Degree [94] and Graphical program analysis toolkit [67] by HP
are example of tools in this regard.

Dynamic binary instrumentation involves the dynamic compilation of binary of an
application to insert the instrumentation code anywhere in it. The program binary is
instrumented just before its execution. Examples of tools utilizing this technique are
Quad [72] and Pincomm [73, 77] which are based on Pin [76]. Similarly, Memcheck
[18] and Redux [75] are examples of the tools based on Valgrind [16]. Dr. Memory
[95] is another example of dynamic binary instrumentation based memory checking
tool, based on open-source DynamoRIO [96] platform.

2.5. Comparison of Data-Communication Profilers

Table 2.3 lists the profilers which can be utilized for memory-access optimizations.
To present a combined view, this table depicts the classification of these profilers
on the all the three aspects of the proposed criteria. An important observation that
can be made from this table is that hardware performance counters and dynamic
binary instrumentation is the most widely used technique utilized by these profilers.
Another observation is that most of the existing tools focus on cache-access opti-
mizations. Similarly, a number of tools exist with perform communication profiling
for distributed memory systems where communication is explicit. However, very
few tools provide architecture independent data-communication profiling informa-
tion. Therefore, these tools are studied and there strengths and weaknesses are
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Table 2.4: Comparitive summary of QUAD and Pincomm.

Category QUAD Pincomm
Input Binary Binary
Input Type ST ST/MT
Output dot, xml csv
Technique DBI DBI
Internal Data Structure Trie Hash table
Availability Open source Open source
Based on Intel Pin Intel Pin
Supported OS Win, Linux, OS X Win, Linux, OS X
Supported Architecture Intel, ARM Intel, ARM
Reported Metrics + (Bytes, UNMA, UNDV) - (Bytes only)
Profiling Granularity - (8-bit only) + (8,16,32,64-bit)
Execution-time Overhead + -
Memory-usage Overhead - +
Documentation + -

+ indicates profiler is better in this category

discussed and compared in this section.

Redux provides the communication information at a fine-granularity of operations.
Due to the amount of the details involved, it can only be used for very small toy
applications, as indicated by the authors.

CETA utilizes architecture simulation, which is a computationally intensive approach.
To give the reader an idea, Gem5 [98] achieves a simulation speed of 200 KIPS. With
this speed, simulating a single core will take around 8 hrs. Hence, this slow simu-
lation speed limits the use of such tools to small data inputs. Simulation with small
data inputs may not exhibit the realistic memory-access and data-communication
patterns. Furthermore, it requires the design and development of a cycle accurate
simulator of these architectures as CETA's implementation is necessarily specific to
the processor-architecture, simulator, and OS in use, as reported by the authors.
Therefore, our focus in this comparison is limited to Quad and Pincomm which
are especially designed to provide data-communication information. A summary of
various characteristics of both the tools is provided in Table 2.4. For the following
detailed comparison, we performed tests on a 2.66 GHz Intel(R) Core(TM)2 Quad
CPU with 12 GB of main memory. We used Pin v2.12 running on Ubuntu 12.04 LTS
with Linux kernel 3.5.0-45-generic.

2.5.1. Comparison of the Generated Profiles

Both Quad and Pincomm are based on Pin DBI framework and take application
binary as an input to generate data-communication information. Pincomm gen-
erates a trace file which is processed by a Perl script to generate user readable
information. The advantage of generating this trace file is that temporal aspect of
data-communication is preserved. In this way, various phases during the applica-
tion run can be characterized. The disadvantage is that the size of this trace file
grows very large for applications with realistic workloads.
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Table 2.5: Overhead comparison of Quad and Pincomm

’ Domain ‘ Application } Eéelrjcxgon-[time Overhead | Memory-usage Overhead |

Pincomm [ QUAD ] Pincomm |

canny 342.8 712.8 1209.3 204

Img. Proc. KLT 15965 3580.2 751.3 1525
ocean-NC 2503.1 3774.6 377.7 64.4
SPLASH-2 fmm 2100.8 2657.7 340.2 55.9
raytrace 2897.3 6690.7 361.3 61.3
Bio Inform. bwa-mem 1693.3 3765 410.5 73.5

Average 1855.63 3530.17 575.05 101.93
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Figure 2.4: Classification of memory profilers based on profiling objective.

Quad provides its output graph in dot and XML formats. The nodes in this graph rep-
resent the functions in the application and edges correspond to the data-communication
between functions. In each communication relationship, the number of bytes
(Bytes), Uniqgue Memory Addresses (UnMAs) and number of Unique Data Values
(UnDVs) are reported on the edges. Furthermore, the intensity of the data-communication
is also depicted by the color of the edge in the descending order of Red, Brown,
Green etc.

Quad only supports sequential applications while Pincomm can also profile multi-
threaded applications. Inter-thread data-communication information can be utilized
to see the effect of parallelization and drive the mapping of threads to cores for
reduced inter-core data-communication.

2.5.2. Overhead Comparison

Both the tools are utilizing dynamic analysis to report the data-communication in-
formation, hence large overhead is expected. In order to perform a comparison of
the execution-time and memory-usage requirements of Quad and Pincomm, we run
the two profilers on the same machine to generate the data-communication infor-
mation. The execution-time is the wall-clock time measured in seconds by the Linux
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Figure 2.5: Classification of memory profilers based on profiling objective.

time utility. The memory usage is the peak resident set size (vmHWM) measured in
Mega Bytes (MB) by using the Linux /proc/<pid>/status.

Table 2.5 presents the execution-time and memory-usage overhead of Pincomm
and Quad. These results are provided for several applications from different do-
mains as depicted in the first two columns of the table. The numbers in Columns
3 and 4 present the ratios of application execution-time with the native application
execution time. These numbers represent the slow-down caused by the application
execution because of the profiling. For example, Pincomm and Quad slow the ex-
ecution of canny application by a factor of 712.8 and 342.8, respectively. In order
to compare the two profilers, Column 5 lists the ratio of the Pincomm overhead
compared to Quad. Similarly, Columns 6 and 7 report the memory-usage over-
head caused by profiling. Column 8 reports the ratio of the Quad memory-usage
overhead compared to the Pincomm.

It can be seen from the results in Table 2.5 that, on the average, Pincomm has about
2 x higher execution-time overhead than Quad to generate the same information.
Main source of the overheads in these tools is the data-structure which stores and
retrieves the information about the producer of a memory address. This data-
structure is critical to the performance of these tools as it is accessed on each
memory read/write performed in the application. In this regard, Pincomm uses the
STL map, whereas Quad uses a Trie data-structure. Access time increases linearly
with the increase in number of accesses for STL map, whereas, in the case of Trie,
it stays constant. This means the performance of STL map suffers with the growing
size of map, due to the growing application complexity.

Another important point to mention here is that overheads of Trie and Hash map
utilized by Quad and Pincomm, respectively, scale with increase in input data. In or-
der to clearly illustrate this, we have plotted the execution-time and memory-usage
of accessing only the data-structures of these tools in Figure 2.4 and Figure 2.5,
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for the canny application for various image sizes.

Second reason for the variation in overheads of these tools is that Pincomm writes
the gathered information to the disk, whereas Quad keeps this information in the
memory. Therefore, on the average, the memory-usage of Quad is about 5x higher
than Pincomm. This is because of the space required for extra metrics reported by
Quad, which are stored in the internal data-structure in the memory, resulting in the
higher memory-usage overhead than Pincomm. In short, Quad makes a trade-off
in order to be time-efficient, by keeping information in the memory, while Pincomm
is space-efficient as it commits the information to the disk.

2.6. Discussion and Recommendations

In this section, we summarize our recommendations to improve existing data-
communication profilers and/or design the future ones

1. Reduction of overheads: is critical for the usability of the tools. Following
suggestions are proposed:

o Efficient trace collection by utilizing hardware performance counters

o Efficient storage of producer consumer relationship

« Efficient design to shift computation from analysis to instrumentation.
¢ Configurable Profiling granularity

2. Architecture independent communication characterization: is impor-
tant as it can be utilized to port existing sequential applications to the emerg-
ing parallel architectures. Secondly, this approach does not require time-
consuming task of architecture simulators.

3. Detection of communication patterns: Spatial and temporal data-communication
information is important. This will also provide insights in mapping the data-
structure in an application to the architecture memory hierarchy.

4. Source-code related profiling information: increases the usability of the
generated profile by the programmers. Furthermore, this is also important for
the automation of communication-aware optimizations of applications.

2.7. Conclusion

Both the memory bottleneck and the multi-core trend create the need for detailed
data-communication profiling. In this work, we have discussed various memory
profilers, with a deeper focus on data-communication profiling. We have proposed
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a categorization of memory profilers based on the profiling objective and profiling
technique. In addition, we have provided a detailed comparison of the existing
data-communication profilers. The important features of these profilers have been
extensively discussed. Furthermore, the shortcoming in these tools are highlighted,
which serve as recommendations for the improvement of the existing and/or the
design of future data-communication profilers.

Note. The content of this chapter is based on the following article:

[1] Imran Ashraf, Mottaqiallah Taouil, and Koen Bertels. Memory Profiling for
Intra-application Data-Communication Quantification: A Survey. In
Proceedings of 10th IEEE International Design and Test Symposium, Dead Sea,
Jordan, Dec 2015.
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MCPROF: Memory and
Communication Profiler

The growing demand of processing power is being satisfied mainly by an
increase in the number of computing cores in a system. One of the main
challenges to be addressed is efficient utilization of these architectures. This
demands data-communication aware mapping of applications on these archi-
tectures. Appropriate tools are required to provide the detailed intra-application
data-communication information and highlight memory-access patterns to
port existing sequential applications efficiently to these architectures or to
optimize existing parallel applications.

Based on the study in the Chapter 2, in this chapter, we present MCProf,
an efficient memory-access and data-communication profiler. In contrast to
other tools, MCProf reports such information with manageable overheads
for realistic workloads. Experimental results show that on the average, the
proposed profiler has at least an order of magnitude less overhead as com-
pared to other state-of-the-art data-communication profilers for a wide range
of benchmarks.

3.1. Introduction

Efficient application partitioning demands the understanding of the data-flow among
various parts of a program in an application. With the growing program complex-
ity, driven by an increasing demand of processing, it is time-consuming, tedious
and error-prone to manually analyze these complex applications. Hence, program
analysis tools are required to identify the hot-spots and/or bottlenecks pertaining

33



Ch-3: MCPROF: Memory and Communication Profiler

to the target platform[10].

Well maintained open-source and commercial performance analysis tools exist which
report communication in programs where communication is explicit, such as MPI
[86, 87]. We would like to highlight here that these tools are not designed to pro-
vide the communication profile of sequential applications. These tools are based on
the technique which requires MPI parallel program as input. Hence, it only helps in
validating the parallel program written only in MPI, rather than constructing one.

Data-communication profilers based on static-analysis tools can be developed [92],
but they can only be used for regularly-structured applications and are inapplica-
ble for most of the real-world programs due to their irregular structure. Addition-
ally, pointer-analysis and their dynamic nature makes it hard to track the data-
communication statically. Hence, dynamic methods are required to characterize
the data-communication for such programs. Dynamic analysis tools generally have
a high overhead as compared to static ones. To generate a realistic profile of ap-
plications dynamically requires the use of realistic workloads, which results in an
increase in overhead. Another challenge with such tools is the difficulty of pinpoint-
ing the exact source-code location that is responsible for the data-communication.
This information, though very useful for developers, makes the design of such tools
challenging and increases their overhead.

In this work, we present an open-source memory-access and data-communication
profiler which addresses these issues. The proposed tool provides detailed informa-
tion which is not provided by existing tools. As a case-study, we analyze memory-
access patterns and data-communication bottlenecks for a feature tracking applica-
tion. Experimental results show that the proposed tool generates this information at
considerably reduced execution-time and memory-usage overhead due to its well-
thought design. The remainder of this chapter is structured as follows. We start by
providing the related work in Section 4.2 and design considerations in Section 3.3.
The design of the proposed profiler is detailed in Section 3.4. In Section 5.3.3, we
discuss the use of generated information as a case-study to map an application on
a platform using GPU as accelerator and the experimental results are described in
Section 5.3.4. An empirical comparison of the overheads is presented in Section 3.7,
followed by conclusions in Section 5.4.

3.2. Related Work

Various open-source [14, 64, 66] and propriety [15, 99] tools exist which perform
memory profiling. However, these tools only provide the information about the
cache misses and do not report data-communication information in an application
to perform partitioning or communication-aware mapping.

Though static-analysis tools [92] can also track data-communication, a large num-
ber of tools utilize dynamic-analysis to collect accurate information at runtime. Ar-
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chitecture simulation is one of the dynamic analysis technique which has been used
to track the data-communication among threads in parallel applications [23] by us-
ing a cycle-accurate architecture simulator. However, simulation is generally com-
putationally intensive which limits its use to small data inputs. Furthermore, it
requires the design and development of a cycle-accurate simulator of these archi-
tectures. A well-known dynamic-analysis technique used by large number of tools
is instrumentation, which is performed either at compile-time [100] or at run-time
[18], [101]. Various tools based on this technique are used for finding memory-
management [18] and threading bugs [18, 100]. However, very few tools exist, as
discussed in this section, which perform detailed data-communication characteriza-
tion, especially in sequential applications for efficient application partitioning.

Redux [75] a Valgrind based tool, draws the detailed Dynamic Data-Flow Graphs
(DDFGs) of programs at the instruction-level. This tool has huge overhead as it
generates fine-grained DDFGs. Hence, it can only be used for very small programs
or parts of programs, as discussed by authors. Secondly, the purpose of the tool
as reported by authors is to represent the computational history of a program and
not to report its communication behavior.

Pincomm [77] reports the data-communication and it it is based on Intel Pin Dy-
namic Binary Instrumentation (DBI) framework [76]. Pincomm uses a hash-map to
record the producer of a memory location. Due to this map, the tool has high mem-
ory overhead. Due to this overhead, Pincomm stores the intermediate information
to the disk and reads it later by a script to generate the communication graph.
This disk writing incurs high execution-time overhead. Furthermore, the authors
also mention the use of markers in the source-code to reduce the overhead and
manage the output complexity. However, in complex applications inserting these
markers manually is time-consuming. Secondly, this marking requires knowledge
of the application to understand what are the important parts of the program, which
is not trivial.

Quad (Quantitative Usage Analysis of Data) [72], also based on Pin [76], provides
data-communication information between functions by tracking memory access at
byte-granularity. Trie is used to store producer-consumer relationships and it does
so with less memory overhead as memory allocations in the Trie are done on de-
mand at granularity of each byte. However, this approach has high execution-time
overhead, mainly because of the access-time of Trie and the frequent memory
allocations. Furthermore, the cumulative information is reported at the application-
level, which makes it difficult to utilize. In addition, the information generated is
not really useful when the application has different memory access behavior per
call. Moreover, the provided information is without suitable relationship to the ap-
plication source-code, which makes its use tedious for developers.

Summarizing, existing approaches have high execution-time and memory-usage
overhead, which limits their use for realistic workloads. This may affect the quality
of the generated profile. Furthermore, the provided information lacks necessary
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dynamic details and is not linked to the source-code, making it hard to utilize this
information.

3.3. Practical Considerations

In order to record memory-access behavior of an application and generate an
inter-function data-communication profile, an important requirement is to know the
producer-consumer relationship among functions. Consumer of a memory location
is trivial to determine, as it is the currently executing function. On the contrary,
efficiently obtaining the information about the producer is not trivial, as this re-
quires recording the producer of each memory location at a certain granularity.
The main reason for this difficulty is the huge user space, for example, on a 64-bit
system, with 48-bit virtual addressing, memory addresses can be anywhere in the
128 TB memory-map in the user space. Hence, the problem boils down to efficiently
recording the producer of a memory location, such that the profiling approach has
a balanced trade-off between execution-time and memory-usage overhead. Fur-
thermore, this mechanism should be flexible and portable, thereby making almost
no assumptions about the memory map or other Operating System (OS) specific
functionalities.

3.4. MCPROF: Memory and Communication PRO-
Filer

In this section, we present the design of MCProf ' which can conceptually be divided
into three main blocks as depicted in Figure 3.1 and detailed in this section.

3.4.1. Memory Access Tracer

The memory access tracer uses Intel’s Pin [76] DBI framework to trace memory
reads and writes performed by the application. Pin provides instrumentation APIs
to instrument at various granularity levels, such as instructions, basic-blocks, rou-
tines and image level. The instrumentation APIs allow the user to register callback
routines, known as analysis routines, which are called when a certain event happen.
For instance, registered instruction-level analysis routine will be triggered on each
executed instruction. We utilize instruction-level instrumentation to track memory
reads and writes by each instruction. Furthermore, routine-level instrumentation
is utilized to keep track of the currently executing function. These are tracked by
maintaining a call-stack of the functions executing in the application. Static symbols
are obtained by reading Executable and Linkable Format (ELF) [102] header. To
track the dynamic allocations, image-level instrumentation is utilized to selectively

nttps://bitbucket.org/imranashraf/mcprof/downloads
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Figure 3.1: Main blocks of MCProf and their important sub-blocks. Application (binary) to be profiled is
given as input to obtain data-communication profile in various formats at the output. Shaded block is
the Intel’s Pin DBI framework.

instrument library images for memory (re)allocation/free routines.

An important point to mention here is that although in the current implementation
we have used the Pin framework to trace memory accesses, in the future, if desired,
with minor modifications, it is possible to use any other DBI framework or any other
technique to trace memory accesses.

3.4.2. Data Collection Engines

On each memory access traced by the Memory Access Tracer, a specific callback
function is triggered based on the selected engine. In the case of a write, the
producer of the memory address is recorded in the shadow memory. On a read
access, the producer is retrieved from the shadow memory, while the consumer of
the memory access is the function at the top of the call-stack. Furthermore, based
on the information required by each engine, extra information is also recorded.
For instance the source-line and filenames of the allocated blocks as well as the
allocation size, which is stored in the symbol-table. Currently we have implemented
the following three engines in MCProf.
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e Engine-1: This engine reports the memory-intensive functions and objects
in the application. This information, combined with the execution profile of
the application, can be automatically used, if desired, to reduce the overhead
by performing selective instrumentation and also reduce the complexity of
generated profile.

¢ Engine-2: This engine records inter-function/inter-thread data-communication
at the application level. The data-communication information is stored in a
data-communication matrix, where indices of the matrix are the producer
and consumer function/threads. When object-tracking is enabled, the data-
communication is reported to/from the objects in the source-code.

e Engine-3: This engine generates per-call data-communication information.
This is important for applications with irregular memory access behavior per-
call. Each call is also given a unique sequence number which helps in identi-
fying the temporal information of each call.

The complexity of these engines varies with the variation in the amount of details
collected in the profile, hence, command-line switches are provided to select the
desired engine. Furthermore, the modular design of the tool helps in easily adding
new engines by modifying the existing engines to generate the desired information
or produce the output in the desired format.

3.4.3. Shadow Memory

This block is responsible for recording the producer of each byte. On each write
access, the selected engine sends the address, size, thread ID and the function
at the top of the stack, which is the writer (producer) of this byte to the shadow
memory unit. When a function reads a byte, the reader (consumer) is the currently
executing function, while the the producer is retrieved from the shadow memory
unit. These reads and writes can happen anywhere in the 128 TB user address
space, so keeping track of the producer efficiently, is not trivial. Hence, the de-
sign of this shadow memory block has a great impact on the execution-time and
memory-usage overheads of a profiler. Hence, we have combined the following
two techniques in the design of the shadow memory unit.

¢ Direct Mapping in which an application’s address is translated to a shadow
memory address by using a Scale and Offset. Given an address Addr, its
shadow address will be (Addr x Scale) + of fset. Although this address
translation is fast, it assumes a particular OS memory layout and requires the
reservation of a huge amount of virtual memory at fixed addresses.

¢ Table-lookup in which multi-level tables are used to map addresses in an
application to their shadow addresses. This is similar to the page look-up
tables utilized in OSes. This approach is more flexible as it does not require
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Figure 3.2: Hybrid shadow memory scheme utilized by MCProf. Most frequently accessed regions of
memory (Mem0 and Mem1) use Direct Mapping. Rest of the memory map is shadowed by 3-Level Table
Lookup.

neither a fixed memory layout, nor an initial reservation of huge memory,
as tables are allocated on demand. The downside of this approach is that
the multi-level table look-up is slower than the address translation in direct

mapping.

In order to make a well-informed trade-off between flexibility, execution-time and
memory-usage overheads, we have utilized a hybrid design of the shadow memory
unit as shown in Figure 3.2. We analyzed the access frequency in the memory map
and found out that the most frequently accessed memory is the bottom (Mem0)
and the top (Mem1) regions in the memory map. For most of the applications, N
and M can be 2GB as shown in Figure 3.2. To make accesses to these regions
faster, we reserve’ in advance two shadow memories corresponding to these two
memory regions, shown as Shadow Mem0 and Shadow Mem1, respectively. This
results in a simpler mapping of addresses in these regions to the shadow addresses
by Equation (3.1), without requiring any lookup.

Addrg, = (Addr&MOH) << log,(SCALE)) + (Addr&(SM1L + SMOL)) + SMOL (3.1)

2These regions are only reserved in the memory map, actual memory-usage is 4B for each byte of
memory used by the program.
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where, Addr is the address of the original byte, Addr, is the address of the corre-
sponding shadow bytes, SCALE is 4, and MOH, SM1L and SMOL are constants as
shown in Figure 3.2.

A point worth mentioning here is that in the Windows/Linux OS, heap grows from
lower to higher addresses, while stack grows from higher toward lower addresses.
The shared libraries are mapped by the OS somewhere between these bounds.
A simpler and faster approach could have been to restrict the address mapping
of a program to the lower half and use the upper half for the shadow memory.
However, to the best of our knowledge, there is currently no (portable) method to
restrict the address allocation in this manner. So, for the middle (128 TB — 20 GB)
less frequently used region, we utilize a 3-level table-lookup scheme as shown in
Figure 3.2 to cover this address space.

Initially, the level-1 table is created and all its entries are marked as UNACCESSED.
Tables in the remaining two levels are created on demand when the address in that
range is touched for the first time. The address of the memory accessed in this
region is used to index these tables to reach level-3 where 4 shadow bytes are
written for each byte memory accessed in the original program. One byte for the
function ID, one byte for thread ID and 2 bytes for the ID of the object this address
belongs to. Therefore, we currently restrict the number of function and thread IDs
to 256. In the future we will investigate more applications, and if required, increase
the number of bytes to store the IDs, as it is simply a parameter in the tool.

3.5. Case-study

The focus of this case study is on the utilization of data-communication information
provided by MCProf to map an application onto the GPU, without performing algo-
rithmic modifications. The use case involves Kanade-Lucas-Tomasi Feature Tracker
(KLT) application [103]. This application detects interesting features in a frame
and tracks them in the subsequent frames. We have used version 1.3.4, which is
the latest version of KLT [104]. This C implementation has 102 functions in 17
source-files making up 5033 lines of code.

For the experiments performed in this case study, we used 64 bit, 2.5 GHz Intel(R)
Xeon(R) CPU with 32 GB RAM. Nvidia GeForce GT 640 GPU, with 2 GB memory,
is used as an accelerator which is connected to the PCle slot of the CPU. Ubuntu
12.04 is running on the machine with Linux kernel 2.6.32-24-server and Nvidia
driver version 319.37. Nvidia CUDA toolkit V6.0 is used to program the GPU.
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Table 3.1: gprof flat profile for the KLT application.

| Function Name | %Time |
KLTSelectGoodFeatures | 54.07
convolvelmageVert 19.65
convolvelmageHoriz 10.17
trackfeature 7.81
%oTotal Contribution | 91.7

3.5.1. Implementation without Data-communication Optimiza-
tion

In order to efficiently map an application onto an accelerator based platform, com-
pute intensive functions, known as kernels, are off-loaded to the accelerator. We
used gprof [13] to identify the kernels in the application as shown in Table 5.1.
For this run, 30 frames have been used with frame size chosen as 1024 x 768, to
accumulate enough number of samples to generate representative profile of the
application. The total percentage contribution of these kernels 91.7% (0.917 per
unit).

As a first step in the mapping process, we mapped these kernels to the GPU. Table
3.2 provides the timing results of the first mapping step. For these experiments,
1024 features were tracked from frames of size 1024 x 768. Column 1 contains
the names of the compute-intensive kernel. Column 2 lists the execution-time of
these kernels on CPU (t.,,) in seconds. Egpucomp is the time spent in performing
the computation on GPU which is shown in Column 3. The communication time
tgpucomm 1S listed in Column 4 which is the time spent in transferring data to GPU
before computation and reading the results back, after the computation is com-
plete. The execution-time speedup is the ratio of the execution-time on CPU and
GPU. Total kernel speedup (Sk,,,,,) is reported in Column 5, which is calculated as

Lepu . In order to highlight the effect of data-communication, Column
tgpucomp +t9Pucomm

6 lists the kernel speedup (SKmmp) for only the computation, calculated as tt&

gpUcomp

From Column 5 in Table 3.2, it can be seen that speedup has been obtained for
all the kernels except for trackFeature kernel. Hence, this kernel should not
be mapped to GPU. Another important result that can be deduced by comparing
Column 5 to Column 6 is that the communication has significantly reduced the
achieved speedup. In the next sub-section we will perform the optimization of this
data-communication by utilizing MCProf.
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Table 3.2: Execution Time (sec) and Speedup results for the initial KLT implementation.

’ Kernel ‘ tcpu ‘ tgpucomp ‘ tgpucomm ‘ SKtotal ‘ SKcomp ‘
KLTSelectGoodFeatures | 13.53 1.17 0.36 8.8x | 11.52x
convolveImageVert 3.93 0.14 0.76 4.35x | 28.08x
convolvelmageHoriz 1.77 0.18 0.76 1.87x | 9.89x%
trackFeature 1.96 1.49 0.52 0.96x | 1.31x

Table 3.3: Memory Intensive Objects in KLT reported by MCProf.

| Objects | Reads | Writes | Reads/Writes | Total | %Total |
tmpimgCS 3.8e8 | 5.1e7 7.4 4.3e8 | 26.6
pointlist 1.3e8 | 1.3e8 1 2.6e8 16.3
pyramidImg 1.3e8 | 3.5e7 3.8 1.7e8 10.3
grady 1.34e8 | 3.1e6 42.7 1.3e8 8.3
gradx 1.34e8 | 3.1eb6 42.7 1.3e8 8.3
tmpimgTF 6.7e7 | 9.4e6 7.1 7.6e7 4.6
guassderiv_kernel | 6.7e7 | 4.7e3 14063.1 6.7¢e7 4.1
guass_kernel 6.7€7 | 4.6e3 14500.6 6.7e7 4.1
%Total Contribution 82.6

3.5.2. Optimization of Data-communication

Optimization of the data-communication requires understanding of the data-flow
in the application. Understanding this data-communication by manual source-code
is not trivial, especially for applications like the one we have considered in this
case study involving a large number of functions and objects. Furthermore, pointer
arithmetic exacerbates this problem making it hard to determine the real producer
and consumer of the data.

MCProf provides this production-consumption information in the form of a data-
communication graph in various formats. An overview of this information is shown
as communication matrix in top right corner of Figure 3.3 representing inter-function
communication intensity. MCProf also generates the detailed quantitative data-
communication information in the form of a directed graph. As there are large num-
ber of functions in the KLT application, the complete graph is too large to present
here. Secondly, such large graphs are hard to be utilized by developers. Typically,
the most compute-intensive functions are selected for analysis. MCProf detects
memory-intensive objects and the functions communicating with these memory-
intensive objects. Table 3.3 lists the memory-intensive objects of the KLT applica-
tion reported by MCProf. Apart from mentioning the reads and writes accesses, the
percentage accesses are also reported in the last column. The last row of the table
shows that memory accesses through these 9 objects correspond to 82.6% of the
total application memory accesses.
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Figure 3.3: KLT communication graph generated by MCProf. Functions (ovals), compute-intensive func-
tions (Grey ovals) and the objects(rectangles) involved in the communication are also shown.

Figure 3.3 shows the data-communication graph of KLT application generated by
MCProf while tracking 256 features in 3 frames of size 1024 x 768. The ovals
represent the functions in the application whereas the objects are represented by
rectangles where the nhumber inside the rectangle is the allocation size. The kernels
in the application are shown in Grey ovals. The amount of communication in bytes is
represented by directed edges, where the color of the edges represent the intensity
of the communication. To simplify the discussion, the dotted lines are used to mark
the functions in the main stages of applications.

tmpimgSF and tmpimgTF are generated by KLTToFloatImage on CPU and
transferred to GPU as an input to convolveImageHoriz. KLTToFloatImage,
though not compute-intensive, still mapping it to GPU will be better as it will make
tmpimgSF and tmpimgTF internal to GPU and reduce CPU-GPU communication.

guassderiv_kernel and guass_kernel are generated by computeKernels
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Figure 3.4: KLT communication matrix generated by MCProf.

on the CPU and consumed by convolveImageHoriz and convolveImageVert
on GPU. However, mapping the function computeKernels to GPU is not required
asguassderiv_kernel and guass_ kernel are consumed heavily but produced
very infrequently. This is also evident from the very high Reads/Write ratio (Table
3.3) implying very less production and a lot of consumption of data from these
objects. Furthermore, these objects are very small in size (284 Bytes), hence can
be easily mapped to GPU’s constant memory.

Another optimization which can be performed in the convolution stage is the al-
location and de-allocation of large number of tmpimgCs objects for each frame.
Allocating a single object in the start and re-using it in the subsequent frames in-
stead of re-allocating it will reduce the execution-time. Similar optimization can be
performed for pointlist in the Feature Selection stage.

gradx and grady generated in the Convolution Stage are consumed in the Fea-
ture Selection stage by KL.TSelectGoodFeatures. Hence, these objects can be
kept on the GPU for utilization in these stages. Furthermore, these objects should
be mapped to GPU’s shared memory. This is because of high Reads/Writes ra-
tio depicted in Table 3.3, suggesting high re-use of these objects. This will result
in performance improvement as shared memory has higher bandwidth as com-
pared to global memory. On the contrary, point1ist has Reads/Writes ratio of 1,
which suggests no reuse, hence it should be kept in the global memory. Mapping
pointlist to shared memory will only increase the overhead of the data transfer
between global memory and shared memory without being reused.

44



Sec-3.6: Experimental Results

- m u
5] %gqut

2.08x

|

640x480 800x600 1,024x768
Frame Size (Pixels)

2.41x

Normalized Frames/Second
S = N W A L O ®
T

320x240

Figure 3.5: Normalized frames per seconds achieved by the GPU and data-communication optimized
GPU implementation.

Based on the preliminary results in Table 3.2, it was concluded that t rackFeature
should not be mapped to GPU because of slow-down. Even if this kernel is not so
efficient on the GPU, we should still port it to the GPU to avoid the bulk of data-
communication regarding the transfer of pyramidImg between GPU and CPU. This

is clearly shown by the communication edges to the computelIntensityDifference
and computeGradientSum function in the Feature Tracking stage.

3.6. Experimental Results

In this section we provide the performance results for the implementations dis-
cussed in the case study. The frame sizes have been selected corresponding to the
frame dimensions used in various video standards [105]. The affect of varying the
number of tracked features on the achieved application speedup is also discussed.
The number of features to be tracked is set to 1024.

After applying these optimizations to the initial GPU implementation (gpu), we ob-
tained a data-communication optimized version of the GPU implementation (gpu,y. ).
Figure 3.5 shows the normalized Frames Per Seconds (fps) achieved by both the
implementations for various frame sizes ranging from 320 x 240 to 1024 x 768 while
the number of tracked features is set to 1024. Increasing the frame size, results in
an increase in the amount of computation performed on the GPU. Increased com-
putation results in better utilization of the available resources of the GPU, resulting
in higher speedup as can be observed from this figure. On the other hand, increas-
ing the frame size also increases the amount of frame data transferred to the GPU
for processing and getting results back. This data-communication has been opti-
mized in the case of gpu,,, based on the information provided by MCProf. Hence,
gpu,pe implementation achieves up-to 2.75x higher speedup as compared to gpu
implementation where this communication is not optimized.
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Figure 3.6: Execution-time overheads.

3.7. Overhead Comparison with Existing Profilers

In this section, we present the overhead comparison of MCProf with other state-of-
the-art data-communication profilers Quad and Pincomm as these are particularly
designed to report data-communication. To make a fair comparison, these tools
are configured in such a manner that all the profilers generate exactly the same
information while running on the same platform. For these experiments, we used
Pin v2.13 on the machine used in case-study. Figure 3.6 depicts the execution-time
and memory-usage overhead of Pincomm, Quad and MCProf for applications from
various domains, namely; image-processing (canny, kit) domain, SPLASH-2 bench-
marks (ocean-NC, fmm, raytrace) and a bio-informatics application (bwa-mem).
Each bar represents the ratios of the application execution-time with and without
profiling for each profiler. Similarly, Figure 3.7 reports the ratios of application
memory-usage with and without profiling.

We have reported MCProf results with two different settings depicted as MCPROF
and MCPROFx in these figures. Results with MCPROF legend are overheads while
providing the common basic information which Pincomm and Quad can also gen-
erate. Whereas, MCPROFx report overheads of complex engine while generating
the detailed data-communication information with stack recording and object de-
tection. Mean overhead results are also depicted in these figures. These results
show that MCProf has, on the average, an order of magnitude less execution-time
and memory-usage overheads. Main reason for this reduction in overhead is the
well-thought design of the shadow memory scheme utilized by MCProf. Due to
the design, we were able to shift most of the processing from analysis-time to
instrumentation-time. Moreover, the access-time and memory-usage overhead of

46



Sec-3.8: Conclusion

10,000 ¢
i B Pincomm
> 0 QuaD
= B MCPROF ><
21,000 F B MCPROFx 0
& wv
2
K v
o
. g
2 100
< 3
[}
g
l:s >
2 10 N
Z
: o
[}
p=

canny KLT ocean—NC fmm raytrace bwa—mem Mean

Applications

Figure 3.7: Memory-usage overheads.

the hybrid shadow memory scheme is considerably less as compared to Trie or Hash
map utilized by Quad and Pincomm, respectively. In order to clearly illustrate this,
we have plotted the execution-time and memory-usage of accessing only the data-
structures of the three tools in Figure 3.8 and Figure 3.9, for the canny application
for various image sizes.

Another important observation from Figure 3.6 is that MCProf has an average
memory-usage overhead of 4.7 —5.3x, which is mainly because 4 shadow bytes are
allocated for each byte used in the original program, plus some additional memory
for storing extra information.

3.8. Conclusion

Both the memory wall and the multi-core trend create the need for detailed data-
communication profiling. In this work, we presented the design of MCProf, a
memory-access and data-communication profiler. The unique design of the pro-
posed profiler resulted in significantly reduced execution-time and memory-usage
overheads as compared to the state-of-the-art, making the profiler useful for real
applications with realistic workloads. The reduced overheads allowed us to gen-
erate additional memory-access and data-communication information which is not
provided by existing tools.
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Note. The content of this chapter is based on the following article:

[1] Imran Ashraf, Vlad-Mihai Sima, and Koen Bertels. Intra-Application Data-
Communication Characterization. In Proceedings of 1st International
Workshop on Communication Architectures at Extreme Scale, Frankfurt, Ger-
many, July 2015.
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Profile Driven Application
Parallelization

In this chapter, we first present a semi-automatic parallelization methodology
based on MCProf to help programmers extract and express parallelization.
The MCProf tool provides a detailed profile of the data flowing inside an appli-
cation and the Xpu programming paradigm provides an intuitive and simple
interface to express parallelism as well as the necessary runtime support.
We present in detail a use case, Canny Edge Detection, as well as the perfor-
mance numbers for a second application, fluid animate. Later on, we present
a framework which automates the whole process of extracting various forms
of parallelism in sequential applications. The framework takes a sequential
application, generates the required static and dynamic information and uti-
lizes this information to automatically generate the parallel representation of
the application. We demonstrate the working of framework by a case study
to highlight the information generated by various tools involved in the de-
veloped framework. We also discuss that our framework is able to extract
various forms of fine and coarse grained parallelism.

4.1. Introduction

Despite decades of research and development of parallelizing compilers, automatic
parallelization of sequential code using a compiler is standing as the holy grail of
parallel computing and has had a limited success. Utilization of tool-chains which
assist the programmer by full or partial automation of various parallelization phases
presents a better alternative which can offer better performance-productivity trade
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off.

In this chapter we present the semi-automatic approach. Section 4.2 discusses
some of the available parallelizing compiler frameworks. Section 4.3 presents the
results of the Canny Edge Detection algorithm when using two state-of-the-art com-
mercial parallelizing compilers. Section 4.4 presents the proposed parallelization
methodology and achieved results. Later in Section 4.5 we introduce the paral-
lelizing framework followed by Section 5.3.3 describing the use of the proposed
framework.

4.2, Background and Related Work

Though static-analysis tools [92] can also track data-communication, a large num-
ber of tools [72, 73] utilize dynamic-analysis to collect producer-consumer relation-
ship at runtime. These tools have high run-time overhead, which limits their use
for realistic workloads affecting the quality of the generated information. Further-
more, the provided information lacks necessary dynamic details and is not linked
to the source code, making it hard to utilize this information. A number of auto-
matic parallelization compilers exist such as Par4All [106], Cetus [107], Parallware
[108], Polaris [109] or PolyCC/PLUTO [110] which are source to source compilers
that can produce parallel code after analyzing the sequential code using different
parallelization techniques. The Intel ICC [111] is a popular compiler which pro-
vides an automatic parallelization feature which allows both instruction-level and
thread-level parallelization of sequential regions of the input code.

Automatic parallelization of sequential code has had limited success [112]. Great
advances have been made in automatic parallelism extraction at the instruction
level, however, in order to exploit efficiently modern multicore platforms, compilers
need to capture parallelism also at thread-level which is a challenging task. Pareon
by Vector Fabrics [113] is an example of a tool, which assists the programmer and
guides the parallelization process instead of performing automatic code paralleliza-
tion.

4.3. Parallelization using Existing Commercial Com-
pilers

In this section, we present the parallelization of the Canny application by using two
commercial compilers; we refer to them as CC1 and CC2 in the rest of the discussion.
CC1 can be used both in automatic and semi-automatic way, whereas, CC2 uses
only a semi-automatic approach. We attempted to use PolyCC/PluTo compiler [110]
which uses polyhedral analysis to tile and parallelize loops in sequential programs.
However, the compiler suggested significant manual modification of the code in
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order to make it processable by the compiler. For instance, the compiler requires
removing all affine expressions from the inner loop to be able to process it. So the
parallelization process is no longer transparent.

4.3.1. CC1

CC1 allows automatic parallelization of sequential program at thread-level using
OpenMP and at instruction-level through vectorization using SSE/AVX intrinsics. In
order to parallelize a sequential program, the compiler searches for loops which do
not expose cross-iteration dependence and are good candidate for parallel execu-
tion. A data flow analysis is performed to ensure correct and safe parallel execution.
The compiler then uses OpenMP to specify the parallelism.

Default Automatic Mode: is a one shot fully automatic parallelization mode in
which the program is parallelized using compile-time static analysis.

Run-time Controlled Mode: collects the run-time information (profiling data)
and uses it to guide the program parallelization.

Guided Parallelization Mode: in which compiler can be used to perform run-
time analysis to generate an advisory reports, suggesting ways (often code modi-
fications) to the programmer to parallelize loops.

Parallelization of Canny Application using CC1

For the canny application, the default automatic mode and run-time controlled mode
did not show any significant speedup over the original sequential application, hence,
we used the guided parallelization mode. By using the advisory reports, the loops in
the gaussian smooth were successfully parallelized, however, many other loops
could not be parallelized due to false data-flow dependences. Listing 4.1 illustrates
an example where a small manual modification made the loop parallelizable. We
made several manual modifications such as nested loop fusion and iterator duplica-
tion to help the compiler. The resulting parallel program achieved better speedups
(up to 4x for 16 threads on a platform with two Intel Xeon E5-2670 processors at
2.6 GHz).

CC1 is capable of performing instruction-level parallelism by vectorization. In this
regard, we performed three experiments to evaluate the vectorization quality in
each case:

1. In order to evaluate the vectorization quality, we measured the achieved per-
formance of one of the two loops of the gaussian smooth function. This
loop was reported as auto-vectorized by the compiler.

2. In the original code, this loop contains control branches (i £) to handle loop
bounds, which limit vectorization efficiency. We removed these branches.

3. Finally, we vectorized the code manually using SIMD intrinsics (SSE4.2).
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Figure 4.1: Performance comparison of automatically vectorized code using CC1 and manually vectorized
code.

The results of these three versions are shown in Figure 4.1. It can be seen that
the manual vectorization achieves significantly better performances than the au-
tomatic vectorization performed by the compiler even after vectorization-friendly
code transformations.

4.3.2. CC2

CC2 aims at the parallelization of sequential C/C++ code for ARM Cortex A9 and
x86 as target systems. To use CC2, an application is compiled with a C99 compliant
compiler to perform instrumentation of the application. The instrumented applica-
tion is then executed on the model of the target architecture to generate the profile
of the application. The generated profile can be visualized in a GUI to select the
loops which have high execution contribution as the candidates for parallelization.
Furthermore, the dependencies are also reported in a GUL.

After selecting the number of cores in the architecture, CC2 predicts the achievable
speedup at the loop-level as well as the application-level. Based on the selected
parallelization, refactoring steps are presented by the tool to be applied on the
sequential code by the programmer to parallelize it. CC2 suggests parallelizations in
terms of a low level threading Application Programming Interface (API) and OpenMP
pragmas.

1// Loop carried dependency on pos in orignal sequential loop
2 for (int pos=0, r=0; r<rows; r++, pos++)
for (int c=0; c<cols; c++, pos++)
image[pos] = x;

for (int pos=0; pos<rows*cols; pos++)

3
4
5
6 // equivalent parallelizable loop
7
8 image[pos] = x;

Listing 4.1: CC1 fails to resolve an easily removable data dependencies which prevents parallelization.
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Parallelization of Canny Application by CC2

For the loops in gaussian smooth, CC2 detected that there are no loop depen-
dencies and suggested an OpenMP pragma. For a 4-core system, loop speedup
of 4x was predicted, whereas the achieved speedup is only 2.58x. Similarly, a
2.2x application speedup was predicted, however, the actual application speedup
is 1.64x.

For the loop in magnitude xy, CC2 detected r as an induction variable, however,
for pos variable, synchronization was suggested. This synchronization resulted
in slowdown, instead of speedup. By changing the code, as already discussed in
Listing 4.1, programmer can avoid this synchronization. Hence, a loop speedup of
2.84x and an application speedup of 1.7x was achieved. Finally, for the third loop
in non max_supp, CC2 predicted no speedup, hence, it was not parallelized.

4.3.3. Lessons Learned

It can be summarized from the discussion in this section that Parallel compilers, such
as CC1, may significantly improve programmer’s productivity by automatic code
parallelization, however, such compilers suffers from inherent difficulties. Hence,
manual code analysis and modifications are required.

CC2 performs run-time analysis to detect dependencies and suggest parallelization.
However, there are cases in which even simple loop carried dependencies are not
resolved automatically. Therefore, these dependencies are either resolved manu-
ally or synchronization is suggested. This synchronization can result in loop (and
hence application) slow-down, instead of speedup, requiring manual inspection and
modification of application by the programmer. Furthermore, the information is pro-
vided among loop iterations, not across loop nests or functions in the application
to exploit coarse-grained application parallelization and data-flow optimizations.

This outlines the need for tools which analyze the programs dynamically to provide
data-flow information to highlight real data-dependences. This information should
be provided at various granularity levels to extract and express various forms of
parallelization available in the application.

4.4. MCProf-Xpu Semi-automatic Approach

xpu [1][114] is a structured parallel programming framework which aims to easily
express and exploit parallelism. xpu allows the expression of different types of
parallelism at different levels of granularity. Supported parallelism types includes
data parallelism [115], task parallelism [114] and pipeline parallelism [116]. These
different parallelism types can be composed hierarchically in the same application
[117].
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The xpu parallel programming model is designed for easing explicit parallelism ex-
pression and therefore requires locating the hot-spots in the program and extract-
ing parallelism by analyzing task-dependencies (producer-consumer relationships).
Usually this analysis is performed manually by reading and analyzing the code and
profiling the application, which is a time-consuming and error-prone task. MCProf
can automate this analysis phase and provides a clear picture of the program with
all the required information including task-dependencies, compute-intensive and
communication-intensive hot-spots in the application. Hence, MCProf and xpu can
form a parallelization tool-chain which offers a much smoother transition from the
sequential-code to the parallel-code. The MCProf-xpu parallelization methodology
follows the traditional parallelization steps which can be summarized as follows:

1. Profiling sequential code: to locate hot-spots.

2. Extracting parallelism and granularity adjustment: analyzing data and
task dependencies and decomposing tasks to extract more parallelism, if avail-
able, at finer grain.

3. Expressing parallelism: using the parallel programming API.

4. Executing the parallel code efficiently: parallel programming libraries
are often based on a run-time which is responsible of efficient scheduling to
optimize execution.

4.4.1. Profiling The Sequential Application using MCProf

Figure 4.2 shows the MCProf output graph of Canny, where nodes represent func-
tions. Each node contains the function name, the percentage of dynamically ex-
ecuted instructions by this function with respect to the whole application, as well
as the total number of calls to this function. For instance, gaussian smooth is
executed once and it is a computationally intensive function as it covers 80% of the
instructions executed by the whole application.

In addition, the inter-function data-flow is represented by edges. Furthermore, the
statically and dynamically allocated objects involved in each flow are also detected
by MCProf and represented by rectangles containing object names and allocation
sizes. The communication intensity is quantitatively shown by the number of bytes
on each edge and also illustrated by the color the edges from red (highest) to
green (lowest). In this way, programmer is able to visualize the computation- and
communication-intensive parts of an application, in a single graph, without manual
source code inspection.

To extract parallelism, coarse-grained functions should be decomposed to extract
potential finer-grain parallelism, we refer to this decomposition step as granularity
adjustment.
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Figure 4.2: Task dependency graph of Canny application generated by MCProf.

57




Ch-4: Profile Driven Application Parallelization

kernel image
60 B 786.4 kB

47.0MB [I11.8 MB

gaussian_smoothl

tempim

gaussian_smooth2
40%, 1

1.6 MB

smoothedim
1.6 MB

derrivative_x_y1
1%, 1

derrivative_x_y2
1%, 1

1.6 MB 1.6 MB
delta_x delta_y
1.6 MB 1.6 MB

Figure 4.3: MCProf profile at loop-level granularity showing independence of the two loop nests inside
the derivative_x_y function.

4.4.2. Granularity Adjustment

As seen in Figure 4.2, gaussian smooth has 80% execution contribution in the
application. In order to extract parallelism inside this function, we use the MCProf
feature of splitting functions at loop level granularity. Figure 4.3 shows the simpli-

fied output graph generated by MCProf where the loops in gaussian smooth are
split as separate nodes represented by gaussian smoothl and gaussian smooth2.
A similar split of derivative x y is also shown as derivative x yl and
derivative x y2.

As depicted in the Figure 4.3, the gaussian smooth function exposes depen-
dencies between its two loop nests, thus they cannot be executed concurrently.
However, each of these loops can be parallelized individually since they operate
independently on columns and rows of the image. On the other hand, the two
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int gaussian_smoothl(char *inImg, float *kernel, char *outImg, /* more args */)
{ /* process an image row */ }
int main(){
// task definition
xpu::task gauss_task(gaussian_smoothl, image, kernel, tempim, /* more args */);
// parallel loop construction
xpu:: parallel_for parallel_gauss(0,size,1,&gauss_task);
// parallel loop execution
parallel_gaussian.run();

}

Listing 4.2: xpu parallel for loop construction and execution.

parts of the derivative x y do not expose any dependency and therefore can
be executed in parallel, since these loops are using a common read-only input while
producing separate outputs. A similar analysis is performed on other functions to
extract the available parallelism.

4.4.3. Parallelization Using Xpu

After analyzing the data-flow dependencies and extracting parallelism, we use the
xpu framework to express the parallelism. In this regard, xpu skeletons are utilized
to exploit various forms of parallelism available in the application.

Thread-level parallelism: Thread-level data parallelism can be achieved by par-
allelizing sequential loops. In xpu, this is expressed by using parallel for pat-
tern. For instance, Listing 4.2 shows how the gaussian smooth is parallelized
using the xpu parallel loop skeleton. The task which processes the data elements is
constructed and named parallel gaussian. We note that data partitioning and
tasks scheduling are handled transparently by the xpu run-time to ensure dynamic
forward-scalability and execution-efficiency across different platforms.

Instruction-level parallelism: Beside loop parallelization, vectorization can act
as a great performance multiplier by allowing SIMD operations on the pixels of
the image. xpu provides transparent vectorization through built-in vectorized types
such as vec4f or vec8s, which are implemented using x86 SSE intrinsics. For
instance, using vec4f allows vectorization of standard operations on single preci-
sion float and other composite operations which are not available natively in SSE
instruction-sets, such as trigonometric functions. Similarly, by using the vec8s
type, the programmer can operate implicitly on 4 floats simultaneously.

Understanding the data-access pattern is one of the major challenging task in the
vectorization process especially in the case of irregular or non-contiguous memory-
accesses (load and stores). Tracking data-accesses across loops iterations can be a
time-consuming and error-prone task. To address this issue, MCProf can generate
a graphical view of the data-access pattern of both input and output data in a user-
delimited region of the code, particularly loops. Figure 4.4 shows the data-access
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Figure 4.4: Fine-grain access-pattern of gaussian_smooth1 loop reading image, kernel and writing
tmpimg objects. Accesses in same iteration are represented by the same color.

1 xpu::vec4f vi,v2,v3,acc,kl, k2,k3, k4;

2 for (int i=begin; i<end; i++) {

vl = &in[i]; v2 = &in[i+4]; //load inputs

v3 = &in[i+8]; v4 = &in[i+12];

// vectorized operations :

acc = ki*vl + k2*v2 + k3*v3 + k4*v4;

sum = (k1+k2+k3+k4).sum();

acc /= sum;

out[i—(kernel_size/2)] = acc.sum(); //store output

cwooNOUT AW

3

Listing 4.3: Code Vectorization using xpu.

patterns in the first three iterations of the gaussian loop. Each color corresponds
to an iteration. In each iteration, we used the xpu vectorized type vec4f to load
the required inputs from both image and kernel at the indicated position. Four
multiplications and the sum is then performed simultaneously. This allowed us to
achieve a significant speedup over both the sequential code and the automatically
vectorized code generated by the compiler. Listing 4.3 shows an example of vec-
torized code using xpu.

Task Parallelism: As depicted in the MCProf output in Figure 4.3, derivative x
and derivative y do notexpose any producer-consumer dependencies and thus
can be executed as parallel tasks. This can be easily specified using xpu as shown
in Listing 4.4.

Figure 4.5 shows the speedup achieved for the Canny application parallelized by

1 // tasks definition

2xpu::task dx_t(derrivative_x, smoothed_img, dx);
3xpu::task dy_t(derrivative_y , smoothed_img, dx);
4 // parallel execution

5xpu:: parallel(&dx_t, &dy_t)->run();

Listing 4.4: Task-level parallelism in derivative_xy expressed in XPU.
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Figure 4.5: Achieved speedups over the sequential execution for the Canny application when parallelized
by various approaches.

MCProf-xpu methodology, CC1 and CC2. The theoretical speedup based on Am-
dahl’s law and estimated speedup while considering SIMD support is also shown. It

can be seen that a speedup of 15x is achieved for 16 coresonan Intel Xeon E5-2670,

which is about 4 x higher than what achieved by CC1 and CC2. Similar performances
are achieved on 64 cores platform with four AMD Opteron 6274 processors.

Apart from the Canny application, we have also parallelized fluidanimate applica-
tion which is a part of the PARSEC Benchmark [23]. This benchmark includes three
versions of the application: a serial version, a parallel version which uses POSIX
Thread API and another parallel version which uses Intel Thread Building Blocks.
Another parallel version using xpu has been developed in [1][115]. We developed a
new version using the MCProf-xpu methodology. In the original xpu-based fluidani-
mate version, all the five processing stages were parallelized. However, the MCProf
analysis report have shown that some of these stages are not hot-spots which are
not worth parallelization. Parallelizing these stages introduces a communication
overhead which affects the overall performance. The granularity adjustment us-
ing MCProf showed that splitting the computeForces processing stage in three
sub-stages clearly isolate the computationally intensive regions which should be
parallelized.

The Xpu parallel for skeleton has been used to express the thread-level data
parallelism exposed by different processing stages. The later skeleton provides a
scalable data partitioning and uses a cache-aware scheduling policy which promote
data reuse and improve spatial and temporal data locality. This scheduling tech-
niques appeared to be particularly beneficial in this study case since each fluid cell
is processed on the processor core. Furthermore, we replaced the fluid cells ar-
rays by xpu vec3f arrays to take advantage of SSE vectorization. In the reference
sequential code, these fluid cells are expressed using regular float arrays.
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Figure 4.6: Performance comparison of the PThread, TBB, xpu only and xpu-MCProf versions of the
PARSEC Fluidanimate application.

Figure 4.6 shows the achieved performance by the four versions. We observe that
using MCProf profiling information improved the performances of the original xpu-
only version. We note that the performances of the PThread version suffers from
significant degradation when more than two processors (32 threads) on the AMD
platform (64 cores/4 processors) are used, our investigation have shown that this
degradation is caused by the use of barriers which results to an expensive many-
to-many communication which affect the performances especially when the four
processors are used. The xpu version uses a synchronization mechanism that fol-
lows a less-expensive one-to-many communication pattern.

4.5. MCPROF-XPU Parallelizing Framework
This section briefly presents the MCProf-xpu parallelizing framework. Figure 4.7

presents an overview of the framework.

4.5.1. ROSE Compiler

ROSE [118] is an open-source, object-oriented compiler infrastructure facilitating
ease of building tools for analysis and transformation of programs in various lan-
guages including C/C++. We have used ROSE for the following tasks.

1. Inserting markers in the source-code to mark loop boundaries.
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Figure 4.7: MCProf-xpu parallelizing framework.

2. Outlining loops to consider them as separate functions.

3. Generating source location information like starting and ending position of
loops, variable names etc.

4.5.2. MCPROF Extensions

For this work, we extended MCProf to generate the following information:

e Runtime callgraph to show the loop nests as well in the callgraph. This is
important for function splitting at the coarser granularity of loop nests.

» Coarse-grained dependence information, for instance, dependence between
functions and loop nests.

« Fine-grained dependence information, for instance, dependence among loop
iterations.

4.5.3. MXIF Generator
This block takes static and dynamic information generated by various tools to gen-

erate parallel application. In order to help programmers easily apply the paral-
lelization manually, or help a tool automatically generate the parallel application,
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we generate a representation of the parallel application in MCProf-xpu Interchange
Format (MXIF).

4.5.4. Case-study

The focus of this case-study is to show various intermediate steps taken by the par-
allelizing framework to parallelize a sequential application presented in Listing (4.5)
and show the information generated by various tools in the framework. Though
this is a simple application, it contains various forms of parallelisms:

Coarse-grained: Function calls at Lines 28-29 can be executed in parallel.

Coarse-grained: Both loops in function addsub can be executed in parallel to
each other.

Coarse-grained: Both loops in function muldiv can be executed in parallel to each
other.

Fine-grained: Iterations of all the for loops can be executed in parallel.

void addsub (float* sum, float* diff, float* inl, float* in2, int N)
{
for (int i=0; i<N; i++)
sum[i] = inl[i] + in2[i];

for (i=0; i<N; i++)
diff[i] = inl[i] - in2[i];
}

void muldiv (float* prod, float* gout, float* inl, float* in2, int N)
{

for (int i=0; i<N; i++)
prod[i] = inl[i] * in2[i];

for (int i=0; i<N; i++)
qout[i] = inl[i] / in2[i];
int main (int argc, char **argv)

int i, N = 5000;
/* allocation of a,b,c,d,e and f */

for (i=0; i<N; i++){
el[i] = i+1.7;
fli] = i+1.7;

}

addsub (a,b,e, f,N);

muldiv(c,d,e, £,N);

/* de-allocation of a,b,c,d,e and £ */
}

Listing 4.5: Example Sequential Application.
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sequential main_0_1
parallel for main 15 2 pf
task main_15_2
parallel dummy par_3
parallel addsub_23_3
parallel for addsub 7 4 pf
task addsub 7 4
parallel for addsub_9 5 pf
task addsub_9 5
parallel muldiv_24 6
parallel for muldiv 11 7 pf
task muldiv 11 7
parallel for muldiv_13_ 8 pf
task muldiv_13_8

Figure 4.8: Simplified representation of parallel application.

( task_graph dummy par_ 3
( parallel
( task_graph addsub_23_3)
( task_graph muldiv_24_6)
)

task_graph addsub_23_3
( parallel
( task_graph addsub_7_4_pf)
( task_graph addsub_9 5 pf)
)

task_graph addsub_7_4_ pf
( parallel_for
( task addsub_7_4)
)

task addsub 7 4
( mapping_of
( chunk_of addsub_7
( function addsub
( file "test.c” )
( lines 5 22 )

lines 9 13 )

input sum ” float * 7 )
input inl ” float * ")
input in2 ” float * 7 )
input N 7 int ” )

input i 7 int 7 )
output NULL )

)
)
( call file "test.c” )
( call_line 9 )

Listing 4.6: Part of the Generated MXIF.

Figure 4.8 shows the result of parallelization in simplified form. It can be seen
from this figure that the framework is able to extract the available parallelism in the

application. Listing (4.6) shows the generated mxif.
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Figure 4.10: Speedup results on Machine 2.

In order to check the scalability of the parallel application, we have executed it on
two machines. Machine 1 has 40 core (20 core 2 way hyper threaded) on Intel(R)
Xeon(R) CPU E5-2670 v2 running at 2.50 GHz having 96 GB of main memory. Ma-
chine 2 has 64 core (16 core 4 way hyper threaded) IBM Power 7 v2.3 running
at 3.3 GHz containing 164 GB main memory. Figure 4.9 and Figure 4.10 depict
the speedup results for both the machines showing the scalability upto 64 and 128

threads respectively.

4.6. Conclusion

With the emergence of multicore processor architectures, we can no longer avoid
parallelizing applications and making parallelizing compilers more efficient is an im-
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portant objective. In this chapter, we presented the integrated use of two main
tools which are very complementary in their functionality. MCProf provides such
a detailed profile which can then be used by xpu, a parallel middle layer and pro-
gramming approach which provides minimally invasive code changes to express
and exploit in a natural way the available parallelism in an application. Not only
does the combined approach provide better performance it also reduces substan-
tially the overall time needed to parallelize sequential applications. Later on we
also presented a framework to automate the approach. We extended MCProf to
generate required extra run-time information, augmented it with static information
generated by ROSE compiler to generate parallel representation of the application
in mxif. This mxif is then used to generate the parallel code using xpu. We demon-
strated through a case-study that our framework is able to extract various forms of
fine and coarse grained parallelism.

Note. The contents of this chapter are based on the following articles:

[1] Imran Ashraf, Koen Bertels, Nader Khammassi, and Jean-Christophe Le
Lann. Communication-aware Parallelization Strategies for High Per-
formance Applications. In Proceedings of IEEE Computer Society Annual
Symposium on VLSI, Montpellier, France, July 2015.
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Data-communication
Optimization for
Accelerator-based Platforms

Accelerators based platforms are being utilized to satisfy the growing de-
mand of processing in various application domains. However, programming
these accelerators poses specific challenges regarding their programmability.
One of the main challenges deals with assignment of data-structures to the
available memory hierarchy. Second main challenge is the data-communication
between the accelerator and the main processor.

In this chapter we address these challenges by utilizing the detailed memory
access and data-communication profile of an application. In Chapter 3 we
presented a case-study where the information generated by MCProf was uti-
lized to perform communication-aware mapping of a sequential application
on a platform using GPU as an accelerator. In this chapter, we present two
case-studies where the software and hardware based optimizations are per-
formed by using the information generated by MCProf for platforms utilizing
FPGA as accelerator.

The third case-study details the utilization of data-communication profile of
applications to perform data communication-aware evaluation of partitioning
solutions. Results are provided for real applications as well as well-known
benchmarks from various domains.
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5.1. Case Study 1: Software-based Optimizations

In this case-study, we present a detailed discussion of a use case involving Kanade-
Lucas-Tomasi Feature Tracker (KLT) application [103]. This application detects in-
teresting features in a frame and tracks those features in the subsequent frames.
We have used version 1.3.4, which is the latest version of KLT [104]. This Cimple-
mentation has 102 functions in 17 source files. The focus of this case study is on
the utilization of information provided by MCProf to map the application onto the
Molen heterogeneous reconfigurable platform.

5.1.1. Research Context and Experimental Setup

The work presented in this case-study, although not restricted to any specific archi-
tecture, has been developed in the context of the Molen [52] polymorphic processor.
The Molen architecture is based on the shared memory, processor, co-processor ar-
chitectural paradigm [119]. It couples a General-Purpose Processor (GPP) and one
or more Custom Computing Units (CCUs). Each CCU has its own set of registers and
local memory for processing. The GPP controls the execution and (re)configuration
of the CCUs. We utilized MCProf to provide a comprehensive overview of the mem-
ory access behavior of an application.

All the experiments were performed on two different platforms. The general profil-
ing of the KLT application with gprof was done on an Intel 32-bit Core2 Duo E8500
@3.16GHz with 4GB of RAM, running the Linux kernel v2.6.34.10-0.6-pae. The ap-
plication source code was compiled with gcc v4.5.0 with level two optimizations and
without function inlining. The target platform is the Molen heterogeneous recon-
figurable platform on Xilinx ML510, Virtex5 FX 130T with 2 MB Block RAM (BRAM)
FPGA board. A PowerPC 440 @400 MHz with 512 MB DRAM, is used as a GPP,
and CCUs are implemented as HW modules on FPGA. 30 K slices are available for
(re)configuration and there can be a maximum of 5 RUs on the FPGA, where each
CCU has 256 KB of local Memory. A number of design choices can be made in
mapping applications onto Molen, which are guided by the information provided by
the MCProf.

5.1.2. Mapping Steps

Table 5.1 shows the flat profile of the KLT application generated by gprof on the
Intel x86 architecture. For this run, 10 frames have been used for feature track-
ing. The frame size has been chosen as 80 x 60 to be able to satisfy the memory
requirement of the platform. It can be seen from this profile that we can map the
top three kernels, namely interpolate, convolveImageHoriz and convolveImageVert
on each of CCUs in the platform. The combined execution time of these three ker-
nels is 0.805 p.u (80.5%). Using Amdahl’s law, the theoretical application speedup,
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Table 5.1: gprof flat profile for the KLT application on the Intel x86 architecture.

o4 self self total
Kernel Jotime sec calls ms/call ms/call
interpolate 48.5 0.97 26.26M 0.00 0.00
convolveImageHoriz 16.0 0.32 183 1.75 1.75
convolveImageVert 16.0 0.32 183 1.75 1.75
KLTSelectGoodFeat. 6.0 0.12 1 120.0 141.14
computeGradientSum 5.0 0.10 17249 0.01 0.04
computelntensityDiff. 2.5 0.05 23871 0.00 4.02

assuming an unlimited speedup for the kernel(s) in question, can be calculated as
follows:

D 1 1

T -1 f 1-s _ 1-0805

= 5.13, (5.1)

where p is the speedup factor of the accelerated part, f is the percentage con-
tribution of the sequential part, and s is the original percentile contribution of the
accelerated part.

The mapping of the aforementioned kernels will result in performance improve-
ments, but this performance can be improved by reducing the communication
among all the computing elements. gprof and other traditional profilers do not
provide information about the data communication in an application. In simple
applications, it may be easy to analyze communication among various functions.
However, in a complex application as in this case study (102 functions), it can be
a tedious and time consuming task to manually understand the intensity of the
communication, the addresses, and the amount of unique data involved in each
communication. In short, an automatic tool like MCProf can provide this informa-
tion and guide us in the mapping process based on the communication of functions
with the top contributing kernels. We describe the mapping process below.

Step 1: In the original application, gprof shows that the self contribution of inter-
polate per call is quite low (0.00 in Table 5.1). Mapping interpolate as it is onto a
CCU will result in performance degradation, due to the large number of calls (about
24.2M) to this CCU. This is because the overhead of each call to CCU will be more
than the execution time of this function. So, we modified interpolate to process a
complete frame per call, resulting in reduced number of total calls.

Step 2: The complete communication graph generated by MCProf is quite complex
due to the large number of functions in this application. So, a reduced graph of the
top contributing kernels (dark Grey ovals) and the functions communicating with
these kernels is shown in Figure 5.1. The objects allocated inside the application
are represented by rectangles. The amount of data communication is shown in
bytes. Furthermore, the intensity of the communication is indicated by the color of
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Figure 5.1: Communication graph generated by MCProf for the original KLT application.
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the links in the descending order of red, brown, dark green, green and blue.

Figure 5.1 depicts that the image is read by pgmread and this image data is fed to
KLTToFloatImage. The bytes transferred by KLTToFloatImage to convolveIlmage-
Horiz are roughly 4 times higher than the image data input to KLTToFloatImage,
which shows some kind of expansion being performed here. If we look into the
code, it becomes clear that the image data is converted from char to float data
type. As convolvelmageHoriz is one of the top contributing kernels, to further re-
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duce the communication, we can transfer the char data to convolveImageHoriz and
cast it inside this function to reduce the external communication.

Step 3: The convolvelmageHoriz and convolvelmageVert are also communicating
heavily with each other through tmpimgCS objects. If we merge these two functions
together as a single convolveImage function, this communication will be performed
locally. convolvelmageHoriz and convolveImageVert are also consuming a lot of
data from gauss_kernel and gaussderiv_kernel objects. The size of these objects is
not big and they are written fewer times and read multiple times. Therefore merging
computeKernel with convolution functions will also make this communication local.

Step 4: interpolate is communicating heavily with convolveImageVert. In this case,
we cannot merge these two functions together as this will require pyramidImg to
be allocated on CCU. The size of pyramidImg is 352 KB which is greater than the
the memory available per CCU (256 KB). Finally, we have two modified kernels
performing the functionality of convolvelmage and interpolateImg, which can be
mapped onto two CCUs.

Table 5.2: Results of various intermediate implementation steps performed in mapping.

SW Time(usec) HWTime (usec) Speedup
Entry Implementation Kernel Kernel Application Kernel Application Rernel Application
1 Original SW interpolate 4.75 12154566 NA NA NA NA

interpolateImg 1310 831 1.58
2 Original HW convolveImageHoriz 16132 11786160 4007 7110129 4.03 1.71
convolveImageVert 16491 4016 411
3 Modified HW 1 convolveImageHoriz 16689 11654476 4013 7015287 4.16 1.73
4 Modified HW 2 ConvolveImg 32125 11154476 6683 6797151 4.81 1.79
5 Final 2747 11025172 957 5429859 2.87 2.24

5.1.3. Experimental Results

Table 5.2 shows the experimental results of the intermediate steps performed during
the process of mapping the KLT application onto the Molen platform. The third
column contains the name of kernels under discussion in the corresponding step,
as shown in communication graph in Figure 5.1.

The first row is the original software implementation which is provided here for com-
parison. It does not involve a HW implementation, hence, mentioned Not Applicable
(NA) in HW execution times. The second row is the HW implementation based on
the gprof information, giving a total speedup of 1.71. The third row corresponds to
Step 2 in Section 5.3.3, where KLTToFloatImage was merged with the convolveIm-
ageHoriz to reduce the data communication. It can be seen that we have achieved
a speedup of 1.73 by this communication reduction. Furthermore, compiler was
also able to optimize the code efficiently when most of the functionality was placed
in a single function.

The fourth entry corresponds to Step 3 where we achieved an overall speedup of
1.79%, by using merged convolvelmage and reducing external expensive commu-
nication. Row 5 corresponds to the final result obtained by applying all the opti-
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Figure 5.2: (a) The generic hardware accelerator architecture. (b) The generic hardware accelerator
system with hybrid interconnect.

mizations mentioned in Section 5.3.3 showing that the overall speedup obtained is
2.24X.

5.2. Case Study 2: Hardware-based Optimizations

In this section we discuss the optimizations which can be performed by utilizing the
data-communication profile of MCProf to generate an efficient hybrid interconnect
[120]. These are basically hardware implementations targeted to specific platforms
to speed up the software-hardware or hardware-hardware intercommunication cus-
tom to specific application. We use Canny Edge Detection application [121] as a
case-study. The detailed profile of the data communication patterns is used to
define a hybrid interconnect to alleviate the data communication bottleneck and
improve the system performance. Based on the detailed profile, a kernel knows
the consumers of its data.

In a generic hardware accelerator system the communication infrastructure is a
predefined system backbone upon which data is transferred between the host and
the kernels as well as among the kernels. The communication infrastructure is
different from system to system. It can be a bus, a Network on Chip (NoC), shared
memory or a crossbar. Figure 5.2(a) depicts an example of a generic accelerator
system.

Hybrid interconnect refers to the communication infrastructure used considering the
data communication among the hardware accelerator kernels to speed up system
performance. The infrastructure consists of a NoC and shared local memory. The
accelerator system using our approach includes both the original communication
infrastructure to exchange the parameters and the data between the host and the
kernels and the hybrid interconnect for inter-kernel data transfer. Figure 5.2(b)
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illustrates the generic accelerator system with our hybrid interconnect.

5.2.1. Design Choices

Depending on the communication patterns, there are different ways to connect a
kernel and its local memory to the NoC (to communicate with other kernels) and
the communication infrastructure (to communicate with the host). As mentioned
earlier, MCProf is utilize to generate the communication profile to make these design
choices.

A simpler solution is to map all the kernels and all their local memories to both the
NoC and the system communication infrastructure. However, this mapping solution
requires the maximum number of routers as well as network adapters. To reduce
the NoC latency, a kernel and its communicating local memories should be mapped
to the NoC routers in such a way that the distance of these routers is shortest. For
instance, if a kernel is mapped to a router at the coordination (x,y) then the ideal
location for the local memory to which it communicates is either (x—1,y), (x+1,y),
(x,y—1),or (x,y+1).

When NoC is used, four routers and four adapters (two for kernels and two for their
local memories). Keeping in mind that the hardware resources usage for those
routers and adapters is 6x larger than the hardware resources usage for the shared
local memory solution (in the Xilinx xc5vfx130t FPGA device, the four routers and
adapters requires 1221 Look-up Table (LUT) while it is 201 LUT for the crossbar;
more details in [122]).

An efficient mapping method reduces the hardware resource usage while keep-
ing the communication time minimal. The shared local memory is another option
which connects the local memories of two kernels. Shared local memory solution
requires less hardware resources compared to the NoC. Therefore, the simpler
solution is customized to connect the kernels which are communicating with each
other by shared memory solution. Furthermore, the routers of the kernels which
are not communicating the host can be removed to reduce resource usage. When
implemented on FPGAs, most accelerator systems use BRAM as the local memory.
BRAM in modern FPGA usually have only two ports while they may be accessed by
three different components (the two communicating kernels and the host). There-
fore, based on the communication topology of each specific application, we define
a connection topology of the kernels and the local memories to the NoC so that the
number of routers and adapters required is as low as possible.

Figure 5.3 depicts the data communication profiling graph for the Canny application
with a 1024 x 1024 pixels input image. This figure shows that gaussian_smooth
takes an image as input from the host machine. So this kernel needs a connection to
the host. The output produced by gaussian_smooth is consumed by derrivative_x_y
hence a shared memory connection can be used to have a direct connection be-
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Figure 5.3: Communication graph for the canny application generated by MCProf; Functions (ovals),
compute-intensive functions (Grey ovals) and the objects(rectangles) involved in the communication are
also shown.

tween these two kernels.

derrivative_x_y communicates with three functions (gaussian_smooth, magnitude_x_y
and non_max_supp). As BRAMs have two ports, we cannot use shared memory
solution in this case. Hence, these kernels are configured to use NoC.
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By applying these optimizations, an application speed up of 1.83x was achieved
compared to baseline. This also resulted in about 50% reduction in energy con-
sumption. The detailed experimental results can be found in [123].

5.3. Case-study 03: Evaluation Methodology for Data
Communication-aware Application Partitioning

In this section, we propose a data communication-aware methodology for evalu-
ating the quality of application partitions as well as partitioning algorithms. We
also present an open source tool which implements the proposed methodology.
Moreover, we evaluate several heuristic algorithms to further substantiate the ap-
plicability of the proposed methodology and the utilization of the developed tool.
The modularity of the tool allows easy integration of new partitioning algorithms
as well as the addition of benchmark applications. The applications are used as
test inputs for the sake of comparisons in terms of relative and absolute quality
measurements of the partitioning solutions.

The criteria that drive application partitioning include, among others, the nature
of computations, execution times on Processing Elements (PEs), memory require-
ments, area available on PEs, etc. Due to the huge size of the search space, finding
an optimal partition is an NP-hard problem [124]. Therefore, heuristic algorithms
are commonly utilized to find solutions in short time. Nevertheless, the partition
found by a heuristic may or may not be close to the optimal solution. Hence, it
is very important to be able to evaluate the quality of the solution(s) found by a
heuristic method and to make a robust comparison with the solutions found by
other existing or future partitioning algorithms.

Due to a large variety of architectures and the lack of proper benchmarks, it is
hard to reproduce experimental results, for fair comparison, on the target platforms
[125]. Furthermore, the complexity furthers in case of reconfigurable architectures
as the application development process involves building and synthesizing hardware
blocks. Hence, a proper methodology is required to quickly evaluate the quality of
the partitioning algorithms.

An interesting observation is that only a small number of functions primarily con-
tribute to the overall application execution time. Similarly, a limited number of func-
tions are responsible for the main inter-task data communication. By considering
these two observations, we can potentially reduce the huge design space explo-
ration effort. Thus, the comparison with optimal partitions found by an exhaustive
search becomes feasible, in spite of the general intractability of the application par-
titioning problem. In the following, we present the proposed methodology and
the design of PET tool to evaluate the quality of partitions and compare various
partitioning algorithms.
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5.3.1. The Methodology
The proposed evaluation methodology is a 4-step process as described below.

Step 1: Formulation of the cost function. Partitions can be evaluated by calcu-
lating their costs using a cost function. A cost function takes a partition as input and
assesses its quality. Various factors can contribute to the quality of a partition, for
instance, how well the clusters are balanced, inter-cluster data communication, etc.
In this step, the factors of interest are determined to formulate the cost function.

Step 2: Implementation of the partitioning algorithm. The partitioning al-
gorithm to be evaluated is implemented in this step. The algorithm takes the ap-
plication as input and outputs a partition of the application.

Step 3: Specification of the input set. In this step, the applications that are
input to the partitioning algorithm are specified. These applications are represented
as graphs, where the values of graph vertices represent the characteristics of ap-
plications, for instance, execution contribution, memory requirements, area esti-
mates, etc. The edges in these graphs represent the data communication between
functions. The specification of an input application boils down to selecting num-
bers for vertices and edges, which can be obtained randomly or by profiling real
applications.

Step 4: Evaluation and comparison. In this step, the cost of the partition found
by the partitioning algorithm is evaluated by the cost function. The evaluated cost
can be used to perform comparisons and to rank the partition based upon its quality.
This ranking can be:

Absolute — where the comparison is performed with the optimal partition found by
an exact solution or an exhaustive search (only for applications with small number
of functions).

Relative — when optimal partitions cannot be found, thus the cost is compared in
relation to the costs of partitions found by other algorithms. In the next section,
we present the details of the tool that implements the proposed methodology.

5.3.2. PET Implementation

We developed the Partition Evaluation Tool (PET!), to evaluate the quality of par-
titions and compare various partitioning algorithms. This tool is implemented in
C++ in a flexible way to allow the partitioning strategies to be evaluated easily.
We define the relevant concepts used in the PET discussion as follows. Figure 5.4
shows the block diagram of the PET tool.

1Sources available at http://imranashraf.github.com/PET
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Figure 5.4: Bock diagram of the PET tool.

Application class models the concept of the application which needs to be parti-
tioned by the partitioning algorithm. An application has two important members,
namely functions and edges.

Function represents the subroutine in an application, which performs a certain task
of the application. Each function has an execution contribution depending upon the
task assigned to it.

Edge is a directed link denoting the communication between a pair of functions
in an application. The amount of data that is communicated is represented by the
weight of the edge.

Cluster represents the collection of functions which can be mapped onto a single
core/PE of the target platform. The number of functions in a cluster is controlled by
the capacity of that cluster. As an example, in reconfigurable systems, this capac-
ity may represent the maximum number of slices reserved for a single PE. When a
cluster is full, its status is changed from UnFinished to Finished.

Partition refers to the union of clusters, where each cluster contains various func-
tions. A viable partition holds the semantics of the application with the combination
of functions in clusters that can be mapped onto various cores/PEs in a multicore
platform. The cost of a partition can be evaluated by a call to the Cost() method of
this class.

PartitioningAlgorithm is an abstract class that can be used to implement the
algorithm(s) used to perform partitioning. This can be achieved by implementing
the Apply() virtual function of the PartitioningAlgorithm class for some algorithm
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of interest. Bruteforce is a derived class of PartitioningAlgorithm, which is used to
find all the partitions of an application by an exhaustive search. This is required
to compare the results of a heuristic algorithm under test with the optimal solution
found by the exhaustive search for small number of functions. Similarly, Heuris-
ticSearcher, SimulatedAnnealer, EvolutionarySearcher and TabuSearcher are also
derived classes of PartitioningAlgorithm and implement Heuristic Search (example
algorithm used for comparison/evaluation in this work), Simulated Annealing, Evo-
lutionary search and Tabu search, respectively, to find an optimal partition.

RNG is an efficient random number generator class, which is based on the Ziggurat
Method [126]. It generates high-quality random numbers that are able to pass
all the commonly-used tests for randomness [126]. A number of functions are
available in RNG class, which can generate random numbers following a number of
well-known distributions. This class has been used to generate random graphs and
cost values in PET.

In the next section, we detail the application of the proposed methodology and the
utilization of PET tool to evaluate the output partitions and, hence, the partitioning
algorithm.

5.3.3. Evaluation of Multi-objective Task Clustering Algorithm

In this section, we present the evaluation of a multi-objective task clustering al-
gorithm [72], to illustrate our partition evaluation methodology and the utilization
of PET in this regard. This algorithm initiates task clustering at the function-level
based on dynamic profiling information. This includes the data communication
among functions and the information about their execution time. The overall goal
of the heuristic algorithm is to get a well-balanced cluster containing tightly inter-
connected functions. The steps of the evaluation methodology are described below:

Step 1: Formulation of the Cost Function. We assume an application contain-
ing n functions to be partitioned into k clusters. These functions can be specified
as vertices v;,1 < i < n in a graph. The execution cost EC,, of a vertex v;, is the
cost of executing this function on a PE when it is mapped as a part of a cluster. The
execution cost of a cluster C; is defined as: EC¢, = Ypec, ECuplsiskl<jsn
Vertices v; and v; have an edge e;; connecting them, with the weight w;; repre-
senting the amount of the data that is communicated. The set of all the edges
in a graph makes an edge set E of the graph. The set of edges which cross the
boundary of a cluster C; form the set of external edges Eext, of this cluster with
respect to the rest of the partition. This edge set represents the communication
cost of the cluster C; with respect to the other clusters. Furthermore, the set of
edges internal to a cluster C; form the internal edge set Eint,, as it represents
the communication among functions inside C;. For this case study, we consider the
following two metrics to formulate the total cost of a partition:
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1. Balancing Penalty (BP) accounts for the load balancing among clusters in
a partition. It basically depends upon the distance between the execution
cost ECc, of cluster C; and the average execution cost of all the clusters in

Z;‘(=1 ECCj

a partition BF;, = =

,1 < i < k. Balancing penalty BP, of a

- EC,

partition P is defined as BP» = X+, BF,.

2. Communication Cost (CC) is the cost associated with external communica-
tion of a cluster with respect to the other clusters in the partition. Communi-

cation cost CC¢, of a cluster C; is CC¢, = ZeijEEextC w;j. The communication
i

cost CCp of a partition P is defined as CCp = Zle CCc;-

The total cost TCp of a partition P is then defined as:
TC=aBPo+fCCp; 0<a<1l,0<pf<landa+p =1, (5.2)

where « and B are relative weights associated with BP and CC metrics, respectively.
These weights can be selected by the designer based on the platform at hand,
to stress one metric relative to the other. For instance, if workload balancing is
important then, one can select a higher value of « than . On the other hand,when
communication is expensive, 8 can get a higher value than a.

It is worth mentioning here that this is just one way of specifying the cost function
as the weighted sum of the objectives of interest. Our approach is similar to the one
discussed in [127], where the difference of values of each objective is explained in
detail. On the same lines, we have assigned the values to each objective as their
percentage contribution in the total execution and communication cost for BP and
CC, respectively, instead of using their actual values.

Step 2: Implementation of the Partitioning Algorithm. We implemented the
clustering algorithm as a derived class of the abstract PartitioningAlgorithm class of
PET. The Apply() function implements the functionality of this heuristic algorithm
on an input application. The result is a partition of the input application containing
the clusters with various functions.

Step 3: Specification of the Input Set. We generated a number of synthetic
application graphs to be used as test inputs. Due to space limitation, we will only
discuss the real applications. We used applications from Standford Parallel Appli-
cations for Shared Memory Architectures (SPLASH-2) Benchmark Suite [128]. We
used the MCProf to extract the percentage contribution of functions and to get the
communication graphs. It should be noted that getting the profiling data by using
any other profilers will not change the methodology or the evaluation process.

Step 4: Evaluation and Comparison. We performed the absolute ranking by
finding the optimal partition determined by the exhaustive search. We compared
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Table 5.3: Specifications of the real benchmark applications used in the evaluation

# Applic. No. of % Exec. % Comm.
Functions Covered Covered

1 Barnes 38 99.19 99.45

2 Fmm 70 91.86 84.12

3 Raytrace 85 75.32 77.55

4 Clustalw 89 96.06 86.17

5 KLT 103 99.85 98.73

the cost of partition found by the heuristic algorithm against the best possible parti-
tion, using bruteforce() class to generate all the possible partitions for the generated
applications. The cost of each partition is evaluated by the Cost() method of the
Partition class. Apart from the absolute ranking, we also performed relative ranking
of the partitioning algorithm against the best solutions found by simulated anneal-
ing, evolutionary and tabu search. The detailed results of these evaluations and
comparisons are provided in the following section.

5.3.4. Experimental Results

In this section, we provide the results of the experiments performed to evaluate
the cost of heuristic algorithm and the cost of partitions found by the exhaustive
search. We performed these experiments on a 2.66 GHz Intel(R) Core(TM)2 Quad
CPU, with 4 GB RAM. We used the value of 0.5 for « and g to give equal weights
to both cost metrics. Values given to these relative weights should be based on the
target platform and care must be taken while revising them.

In order to present the evaluation for real benchmark applications, we selected three
applications from SPLASH-2 benchmark suite, namely Barnes, Fmm and Raytrace.
We also selected Clustalw [129] sequence alignment application and KLT [103]
feature tracking application for the evaluation. Figure 5.5 presents the comparison
of the cost of the partition found by Heuristic Search (HS) with the costs of the
solutions found by Simulated Annealing (SA), Tabu Search (TS) and Evolutionary
Search (ES). It can be seen that HS performs close to other algorithms. For Barnes
and Fmm, which are relatively smaller applications, SA performs better, but for the
remaining three bigger applications, TS outperforms all the other algorithms.

An important point worth mentioning is that HS performs comparable to SA, TS and
ES in terms of cost.However, HS takes very less time to find the solution compared
to other algorithms. To give an idea, for the KLT application, HS took 815us to find
the solution, whereas, TS took 18m.

In the above experiments, we performed evaluations relative to other algorithms.
Absolute ranking can also be performed by comparing the costs against the cost of
the optimal solution found by Brute Force (BF). Performing this exhaustive search to
find the optimal partition of four clusters will require about 8 years on the computer
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Figure 5.5: Comparison of cost of partition found Figure 5.6: Absolute ranking of the cost of the par-
by HS against the cost of partition found by SA, TS tition found by HS, SA, TS and ES from the real
and ES for the real applications. applications.

used in these experiments for an application with 25 functions. The considered
applications contain 38 to 103 functions, hence, performing the exhaustive search
for the optimal partition is not practical. Thus, we limited the number of functions
to a threshold value of 18, picking the top functions according to the execution
time and data communication contribution. This feature is also supported by the
tool, where we can specify this threshold value in terms of the number of functions
for execution contribution and communication weights for filtering the top kernel
functions in the application. Table 5.3 provides detailed specifications of the five
applications. Column 3 provides the number of functions in each application. As
it can be seen in Column 4 and 5, considering a subset of the top contributing
functions covers most of the heavily executing and heavily communicating functions
in these applications. The results of the absolute ranking are provided in Figure
5.6. The vertical lines show the range of the cost of solutions found by BF for
each application. It can be seen that HS is able to find close-to-optimal solutions.
The costs of solutions found by SA, TS and ES are also marked for comparison.
Overall, SA outperforms all the other algorithms, as it is able to find close to optimal
solutions.
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Figure 5.7: Effect of variation of @ and No. of Figure 5.8: Variation of execution and communi-
PEs on cost of the partitions found by tabu search cation cost of Clustalw application. Minimum cost
for the Raytrace application from SPLASH-2 bench- values correspond to the optimal number of PEs (at
mark suite. PEs = 6) for the given @ and B.

In the above experiments, we have kept a and g fixed. Figure 5.7 presents the
variation of the costs of partitions found by Tabu Search algorithm for Raytrace
application from SPLASH-2 benchmark suite. It can be seen in this figure that for
lower values of a (higher values of g) increasing more PEs, increases cost because
of the increased communication among PEs. Higher values of a (lower values
of B) implies that the communication is not expensive on the platform at hand
and adding more PEs will decrease the total cost of partition. Similar analysis can
also be performed for various values of « and g and the number of PEs for other
applications.

Another important result which can be obtained from this evaluation is the optimal
number of PEs required for a given application for a given platform (values of a and
B). Adding more PEs may reduce the execution time of an application by performing
the job in parallel, however, the disadvantage is the increase in data communication
among the PEs, which may kill the anticipated speedup. This analysis can especially
be important for platforms where number of PEs can be reconfigured. For instance,
in Molen architecture [52], the number of cores can vary from 2-5 with an upper
limit imposed by the resources on FPGA. Even for non-reconfigurable platforms,
where number of cores cannot be altered, the additional PEs can be switched-off
to save the energy consumption.

In order to perform the analysis for optimal number of PEs, we have modified the
equation to calculate the total cost of the partition to consider the effect of the
addition of PEs as follows:

TC=a(ECs+EC,/N)+pCC;0<a<l,0<f<landa+f =1, (5.3)

where EC; is the execution cost of the serial region of the application, EC,, is the
execution cost of the parallel region of the application and N is the number of PEs.
In this simple equation, we have assumed that the cost of the parallel region of the
application scales with the number of the available PEs. Furthermore, we did not
consider the overhead of parallelization, etc, in this analysis, as the main objective
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here is to show the effect of increasing the number of PEs on the execution and
the communication costs of a partition for an application for certain values of « and
B. Figure 5.8 provides a plot of the execution and the communication cost of the
Clustalw application for a number of values of PEs. For this graph, we have given
equal weights to « and B. It can be observed from this plot that increasing the
number of PEs reduces the execution cost, but the interaction among PEs in the
form of data communication increases resulting in an increase in the communication
cost. The optimal number of PEs corresponds to the minimal cost values, which in
this case happens when the number of PEs is equal to 6.

5.4. Conclusions

In Chapter3 we presented a case-study dealing with communication-aware map-
ping of a sequential application on a platform using GPU as an accelerator. In this
chapter, we presented further use cases showing the utilization of the information
generated by MCProf for platforms using FPGA as accelerator. In the first case-
study we detailed the partitioning and mapping a feature tracking application on
Molen platform.

In the second case-study we described how the information generated by MCProf
can be utilized to customize the hardware to generate hybrid interconnect. The
idea was to use the detailed communication profile of the application to generate
custom interconnect specific to the communication demands of application.

In the third case-study, we utilized MCProf information to present a methodology to
evaluate application partitions for multicore architectures. Functions are assumed
as vertices in a graph and the communication among functions is represented by
the weights of the edges connecting them. We presented PET— a flexible and
modular partition evaluation tool— implementing the proposed methodology. We
provided the detailed relative and absolute evaluations of a heuristic task clustering
algorithm, as a case-study to prove the effectiveness of the methodology.
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Conclusion and Future Work

This chapter summarizes the overall contributions of this thesis and high-
lights some future research directions.
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6.1. Conclusion

Chapter 1 "Introduction” briefly introduced the field of homogeneous and het-

erogeneous multi-core computing and presented current computing trends.
To port an existing sequential application to multi-core platform, applications
must be divided into smaller parts which are mapped to the available cores in
the architecture. This is a critical task, as an improper partitioning and map-
ping may result in performance degradation. Tools can help programmers
by performing all or most of the steps of the porting process. This chapter
presented various research challenges in the field of application mapping to
multicore architectures. The research questions focused in this dissertation
were formulated, followed by the main contributions of this thesis.

Chapter 2 "Background and Related Work” surveyed the profilers for memory-

access optimization and presented a classification of these profilers. Data-
communication profilers which are a sub-class of memory-access optimiza-
tion profilers, were the focus of this chapter. A detailed comparison of data-
communication profilers was provided to highlight their strong and weak as-
pects. Finally, recommendations for improving existing data-communication
profilers and/or designing the future ones were discussed.

Chapter 3 "MCProf: Memory and Communication Profiler” presented the design of

MCProf, an efficient memory-access and data-communication profiler based
on the study in the Chapter 2. It was shown that this tool profiles the ap-
plication at various granularity levels with manageable overheads for realistic
workloads. Experimental results showed that on the average, the proposed
profiler has at least an order of magnitude less overhead as compared to the
state-of-the-art data-communication profilers for a variety of benchmarks.

Chapter 4 "Profile Driven Application Parallelization” started by presenting a semi-

automatic parallelization methodology based on MCProf to help programmers
extract parallelism. xpu, a parallel programming library, was used to manu-
ally express the extracted parallelism. Not only does the combined approach
provided better performance (up to 4x higher than the existing commercial
compilers), it also reduced substantially the overall time needed to paral-
lelize sequential applications. Later on, a framework was presented which
automated the whole process of application parallelization. We demonstrated
through a case-study that our framework is able to extract various forms of
fine and coarse grained parallelism available in the application.

Chapter 5 "Data-communication optimization for Accelerator-based Platforms” ad-

dressed the challenges and the solutions of mapping an application onto an
accelerator-based platforms by utilizing the detailed memory access and data-
communication profile of an application. We presented both the software and
hardware based optimizations for platforms utilizing GPU and FPGA as ac-
celerator. Results were provided for real applications as well as well-known
benchmarks from various domains. In the case of GPU, we achieved up-to
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2.75x higher speedup as compared to the GPU implementation where this
communication is not optimized. For FPGA based platforms, MCProf driven
software-based optimizations resulted in an overall speedup of 2.24x. Ap-
plying hardware-based optimizations for FPGA resulted in speed up of 1.83x
compared to the baseline. This also resulted in about 50% reduction in energy
consumption. Finally, we also presented a case-study showing the utiliza-
tion of the information generated by MCProf to perform data-communication
aware evaluation of partitioning algorithm and partitioning solutions.

6.2. Future Research Directions

In this section, we suggest several recommendations to further the research on the
challenges addressed in this dissertation.

¢ Directive based programming languages appear to be an easy way to offload
the compute intensive part of an application to the accelerator. However, pro-
grammer has to analyze the memory access patterns to perform the memory
assignment. Automatic mapping of data-structures to memory-spaces avail-
able in the hierarchy can be another area of future research.

» Both the bandwidth and latency considerations are important for optimized
mapping of application. In certain cases, if the required bandwidth is satisfied
but latency is high, then for each execution of the kernel, this high latency
will become a bottleneck in performance. Therefore, bandwidth and latency
both should be readily reported by the profiler.

e MCProf does not generate temporal information. Generation of temporal in-
formation while keeping the overheads manageable, can be another area of
investigation. This information can be utilized to implement pipelining.

¢ Dynamic binary instrumentation has been used in our work to generate the
detailed application profile. The recent architectures have better support for
hardware performance counters. Profiling based on hardware performance
counters have less overhead as compared to dynamic binary instrumentation.
So these architectural facilities can be investigated to reduce the execution-
time overhead of profiling.

¢ Inorder to help programmer with the mapping process, some kind of database
management can be very interesting to store all the information represented
by various profiling tools so that queries can be run to see the results rather
than multiple passes of modification and execution. Example queries can be;
give me the list of functions with X amount of communication, or area greater
or less than Y, etc. In this way, all the information can be merged at one place
and the output should not only be based per tool but it should be based per
requirement/goal.

89



Ch-6: Conclusion and Future Work

e Effect of various architectures on the generated application profile can also
be another interesting study which can be performed in the future.

« In order to reduce the overheads further, parallel version of MCProf can also
be implemented.

e Support for multi-threaded applications will also be interesting to optimize
existing parallel applications.
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Summary

Though transistor scaling yields more transistors per chip, however, the consistent
performance gain due to frequency scaling is no more feasible due to physical lim-
its. These trends shifted the computational paradigm towards integration of more
and more processing cores. Multicore computing is challenging, not only because
applications need to be parallelized, but also because memory access patterns and
inter-core communication need to be carefully analyzed for scalable performance
gain.

Another trend in computing is the utilization of heterogeneous cores in the sys-
tems, especially in the big data era. Efficient utilization of these heterogeneous
architectures is not possible in an architecture agnostic way. Secondly, these sys-
tems normally have a deep memory hierarchy which makes the assignment of data-
structures to the available memory spaces even more challenging. Developers need
to carefully understand and match the inherent memory access patterns of the ap-
plication to the architecture facilities to gain performance. Manual analysis of appli-
cations is tedious and error prone. Therefore, tools are required to characterize the
data-communication in an application and highlight the communication hot spots.

In this thesis we present the design of MCProf, a runtime memory-access and data-
communication profiler which helps programmers to perform communication-aware
partitioning and mapping decisions based on the detailed quantitative profile of an
application. MCProf provides a detailed insight of the data flow in the application
and highlights not only the compute intensive parts but also the memory-intensive
parts. Experimental results show that on the average, the proposed profiler has
at least one order of magnitude less overhead as compared to the state-of-the-
art data-communication profilers for a variety of benchmarks. Furthermore, the
provided information is in relationship to the source-code, making it easy for the
developers to utilize the generated information. We present a semi-automatic par-
allelization methodology based on MCProf to help programmers extract and express
parallelism. Later on, we present a framework which automates this process.

To validate the proposed tool, we present the acceleration of several applications as
case studies targeting both homogeneous and heterogeneous multicore platforms.
In the case of homogeneous multicores, we demonstrate that better performance
up to 4x can be achieved by the proposed parallelization methodology when com-
pared to available commercial compilers. In the case of heterogeneous systems
using GPU and FPGA as an accelerator, experimental results show significant per-
formance gains due to communication-aware application mapping. For instance, in
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the case of GPU up to 3x speedup was achieved over the optimized parallel version
by utilizing the information generated by MCProf. In the case of reconfigurable
platforms, we presented software and hardware based optimizations based on the
detailed application’s profile generated by MCProf. Software-based optimizations
resulted in an overall speedup of 2.24x. Applying hardware-based optimizations
for FPGA resulted in speed up of 1.83x compared to the baseline. This also re-
sulted in about 50% reduction in energy consumption. Finally, we also presented
a case-study showing the utilization of the information generated by MCProf to
perform data-communication aware evaluation of partitioning algorithm and parti-
tioning solutions.
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Hoewel het schalen van transistors meer transistors per chip oplevert, is daarente-
gen de consistente prestatieverhoging als gevolg van het schalen van de frequentie
niet meer haalbaar als gevolg van fysieke beperkingen. Deze trends verschoven de
computationele paradigma richting de integratie van meer en meer processorker-
nen. Multi-core computing is uitdagend, niet alleen omdat applicaties geparallel-
liseerd moeten worden, maar ook omdat geheugen access patterns en inter-core
communicatie zorgvuldig moeten worden geanalyseerd voor schaalbare prestatie-
verhogingen.

Een andere trend op het gebied van computers is het gebruik van heterogene ker-
nen in de systemen, met name in de big data tijdperk. Het efficiént gebruik van deze
heterogene architecturen is op een architectuur agnostische manier niet mogelijk.
Ten tweede hebben deze systemen doorgaans een diepe geheugenhiérarchie die
de toewijzing van datastructuren aan beschikbare geheugenruimtes nog uitdagen-
der maakt. Ontwikkelaars moeten zorgvuldig inherente geheugen access patterns
begrijpen en deze matchen met de faciliteiten van de architectuur om prestatiever-
hogingen te verkrijgen. Handmatige analyse van applicaties is saai en foutgevoelig.
Daarom zijn tools om de datacommunicatie in een applicatie te karakteriseren en
de communicatie hot spots te markeren nodig.

In dit proefschrift presenteren we het design van MCProf, een runtime geheugen-
toegang en datacommunicatie profiler die programmeurs helpt bij het uitvoeren
van communicatiebewuste partitionering en mapping beslissingen op basis van de
gedetailleerde kwantitatieve profiel van een applicatie. MCProf geeft een gedetail-
leerd inzicht van de datastroom in de applicatie en wijst niet alleen de intensieve
rekenkundige delen aan, maar ook de intensieve geheugen delen. Experimentele
resultaten tonen gemiddeld gezien aan dat de voorgestelde profiler ten minste een
orde van grootte minder overhead heeft vergeleken met state-of-the-art datacom-
municatie profilers voor diverse benchmarks. Bovendien is de verstrekte informatie
gerelateerd aan de source-code, waardoor het gemakkelijk voor ontwikkelaars is
om gebruik te maken van de gegenereerde informatie. We presenteren een semi-
automatische parallellisatie methodologie gebaseerd op MCProf die programmeurs
helpen parallellisme te extraheren en uit te drukken. Later presenteren we een
framework dat dit proces automatiseert.

Om de voorgestelde tool te valideren presenteren we de acceleratie van verschei-
dene toepassingen als case studies gericht op zowel homogene en heterogene mul-
ticore platforms. In het geval van homogene multicores demonsteren we dat maxi-
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maal 4x betere prestaties kunnen worden bereikt door de voorgestelde parallelli-
satie methode, vergeleken met beschikbare commerciéle compilers. In het geval
van heterogene systemen waar GPU en FPGA als een accelerator worden gebruikt,
tonen de experimentele resultaten aanzienlijke prestatieverbeteringen aan, te dan-
ken aan de communicatie-bewuste applicatie mapping. Bijvoorbeeld, in het geval
van GPU werd maximaal 3x speedup over de geoptimaliseerde parallelle versie be-
reikt door het gebruikmaken van de door MCProf gegenereerde informatie. Voor
herconfigureerbare platforms presenteerden we software en hardware optimalisa-
ties op basis van een gedetailleerde profiel van de toepassing die gegenereerd is
door MCProf. Software gebaseerde optimalisaties hebben geresulteerd in een to-
tale speed up van 2.24x. Het toepassen van hardware optimalisaties voor FPGA
heeft geresulteerd in een speed up van 1.83x vergeleken met de basislijn. Dit heeft
bovendien geresulteerd in een reductie van ongeveer 50% in energie consumptie.
Tot slot, presenteerden we ook een casestudie die de informatie gegenereerd door
MCProf gebruikt om een datacommunicatie-bewuste evaluatie van partitionering
algoritme en oplossingen uit te voeren.
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