
DiSCO: Communication-Efficient Distributed
Optimization of Self-Concordant Empirical Loss

Yuchen Zhang
UC Berkeley

Joint work with
Lin Xiao (Microsoft Research)

July, 2015



Motivation

big data optimization problems

• dataset cannot fit into memory or storage of single computer
• require distributed algorithms with inter-machine communication

origins

• data science (statistics, machine learning, data mining, . . . )
• industry (search, online services, advertising, social media, . . . )

tools:

• regression/classification
• numerical linear algebra
• statistical estimation

1



Empirical risk minimization (ERM)

• popular formulation in supervised learning

minimize
w∈Rd

1

N

N∑
j=1

φ(w, zj) +
λ

2
‖w‖22

– i.i.d. data samples: z1, . . . , zN ∈ Z ⊂ Rp

– loss function: φ convex in w for every z ∈ Z
– regularization parameter λ ∼ 1/

√
N or smaller

• linear regression

– quadratic loss.

• binary classification:

– logistic loss.
– hinge loss.

2



Empirical risk minimization (ERM)

• popular formulation in supervised learning

minimize
w∈Rd

1

N

N∑
j=1

φ(w, zj) +
λ

2
‖w‖22

– i.i.d. data samples: z1, . . . , zN ∈ Z ⊂ Rp

– loss function: φ convex in w for every z ∈ Z
– regularization parameter λ ∼ 1/

√
N or smaller

• linear regression

– quadratic loss.

• binary classification:

– logistic loss.
– hinge loss.

2



Distributed optimization

• distributed algorithms: alternate between

– a local computation procedure at each machine
– a communication round with simple map-reduce operations

• bottleneck: high cost of inter-machine communication

– speed/delay, synchronization
– energy consumption

• iteration complexity

– number of communication rounds to find f(ŵ)− f(w?) ≤ ε
– measures computation and communication efficiency

3



Iteration complexity

• assumption: f : Rd −R twice continuously differentiable,

λI � f ′′(w) � LI, ∀w ∈ Rd

in other words, f is λ-strongly convex and L-smooth

• condition number

κ =
L

λ

we focus on ill-conditioned problems: κ� 1

• iteration complexities of first-order methods

– gradient descent (GD): O(κ log(1/ε))
– accelerated GD, ADMM: O(

√
κ log(1/ε))

– stochastic gradient method (SGD): O(κ/ε)

4



Implications for distributed machine learning

f(w) =
1

m

m∑
i=1

fi(w)=
1

mn

m∑
i=1

n∑
j=1

φ(w, zi,j) +
λ

2
‖w‖22

• m machines, each holds n samples. Regularization parameter λ
decreases with total sample size mn.
(typical setting: λ ∼ 1√

mn
, condition number κ = Θ(

√
mn))

• iteration complexity of accelerated GD or ADMM:

O
(

(mn)1/4 log(1/ε)
)

iteration complexity grows with sample size!

• can we do better?

– unlikely for first-order methods (optimal complexity)
– need to use further structure and/or alternative methods

our approach: Newton + preconditioned conjugate gradient

5



Implications for distributed machine learning

f(w) =
1

m

m∑
i=1

fi(w)=
1

mn

m∑
i=1

n∑
j=1

φ(w, zi,j) +
λ

2
‖w‖22

• m machines, each holds n samples. Regularization parameter λ
decreases with total sample size mn.
(typical setting: λ ∼ 1√

mn
, condition number κ = Θ(

√
mn))

• iteration complexity of accelerated GD or ADMM:

O
(

(mn)1/4 log(1/ε)
)

iteration complexity grows with sample size!

• can we do better?

– unlikely for first-order methods (optimal complexity)
– need to use further structure and/or alternative methods

our approach: Newton + preconditioned conjugate gradient
5



Making it really work

• outer loop: (inexact) damped Newton method

– problem: iteration complexity O
(
κ2 + log(log(1/ε))

)
– solution: self-concordant analysis

O
(
f(w0)− f(w?) + log(log(1/ε))

)
• inner loop: conjugate gradient (CG) to compute Newton step

– problem: iteration complexity of CG: O(
√
κ log(1/ε)

– solution: use preconditioned conjugate gradient (PCG)
method

• DiSCO: what’s in a name?

– Distributed SeCond Order method
– Distributed Self-Concordant Optimization
– Distributed Stochastic Convex Optimization

6



Making it really work

• outer loop: (inexact) damped Newton method

– problem: iteration complexity O
(
κ2 + log(log(1/ε))

)
– solution: self-concordant analysis

O
(
f(w0)− f(w?) + log(log(1/ε))

)
• inner loop: conjugate gradient (CG) to compute Newton step

– problem: iteration complexity of CG: O(
√
κ log(1/ε)

– solution: use preconditioned conjugate gradient (PCG)
method

• DiSCO: what’s in a name?

– Distributed SeCond Order method
– Distributed Self-Concordant Optimization
– Distributed Stochastic Convex Optimization

6



Preview: communication efficiency

Number of Communication Rounds Õ(·)
Algorithm Ridge Regression Binary Classification

(quadratic loss) (logistic loss, smoothed hinge loss)

AGD (mn)1/4 log(1/ε) (mn)1/4 log(1/ε)

ADMM (mn)1/4 log(1/ε) (mn)1/4 log(1/ε)

DANE m log(1/ε) (mn)1/2 log(1/ε)

DiSCO m1/4 log(1/ε) m3/4d1/4 +m1/4d1/4 log(1/ε)

• regularization parameter λ ∼ 1/
√
mn

• deterministic or high probability bounds (except last one)

• DANE by Shamir, Srebro and Zhang (ICML 2014)

7



DiSCO: Inexact damped Newton method

input: initial point w0 and specification of a sequence {εk}
repeat for k = 0, 1, 2, . . .

1. find a vector vk such that ‖f ′′(wk)vk − f ′(wk)‖2 ≤ εk
2. compute δk =

√
vTk f

′′(wk)vk and wk+1 = wk − 1
1+δk

vk

until a stopping criterion is satisfied

• if δk = 0 and εk = 0, reduces to classical Newton method.

• forcing δk > 0: ensuring convergence when wk is far apart from
the optimal solution.

• allowing εk > 0: vk can be computed by a communication
efficient distributed algorithm (preconditioned CG).

8



Iteration complexity

• assumptions:

– f standard self-concordant
– λI � f ′′(w) � LI for all w ∈ Rd

• theorem: if we choose

εk ∼ ‖f ′(wk)‖2

then f(wk)− f(w?) ≤ ε whenever

k ≈ f(w0)− f(w?) + log(1/ε)

• theorem: if initialize w0 by one-shot averaging, then
f(w0)− f(w?) = O(1).

9



Solving Newton system

• need to find vk such that ‖f ′′(wk)vk − f ′(wk)‖2 ≤ εk.

• conjugate gradient (CG) method to approximately solve
f ′′(wk)vk = f ′(wk): iteration complexity

√
κ, where

κ = L/λ ∼
√
mn is the condition number of Hessian f ′′(wk).

• precondition conjugate gradient (PCG) method to
approximately solve P−1f ′′(wk)vk = P−1f ′(wk):

– Let µ be a scalar and H1 := f ′′1 (wk) be the local Hessian at
the first machine; then Let P :=H1 + µI.

– theorem: if ‖H1 − f ′′(wk)‖2 ≤ µ, then the condition
number of P−1f ′′(wk) is bounded by 1 + µ/λ.

– theorem: by matrix concentration, µ ∼ 1/
√
n, thus the

condition number of P−1f ′′(wk) is bounded by
√
m.

– PCG’s iteration complexity (m1/4) is much smaller than CG’s
iteration complexity ((mn)1/4).

10



Solving Newton system

• need to find vk such that ‖f ′′(wk)vk − f ′(wk)‖2 ≤ εk.

• conjugate gradient (CG) method to approximately solve
f ′′(wk)vk = f ′(wk): iteration complexity

√
κ, where

κ = L/λ ∼
√
mn is the condition number of Hessian f ′′(wk).

• precondition conjugate gradient (PCG) method to
approximately solve P−1f ′′(wk)vk = P−1f ′(wk):

– Let µ be a scalar and H1 := f ′′1 (wk) be the local Hessian at
the first machine; then Let P :=H1 + µI.

– theorem: if ‖H1 − f ′′(wk)‖2 ≤ µ, then the condition
number of P−1f ′′(wk) is bounded by 1 + µ/λ.

– theorem: by matrix concentration, µ ∼ 1/
√
n, thus the

condition number of P−1f ′′(wk) is bounded by
√
m.

– PCG’s iteration complexity (m1/4) is much smaller than CG’s
iteration complexity ((mn)1/4).

10



Solving Newton system

• need to find vk such that ‖f ′′(wk)vk − f ′(wk)‖2 ≤ εk.

• conjugate gradient (CG) method to approximately solve
f ′′(wk)vk = f ′(wk): iteration complexity

√
κ, where

κ = L/λ ∼
√
mn is the condition number of Hessian f ′′(wk).

• precondition conjugate gradient (PCG) method to
approximately solve P−1f ′′(wk)vk = P−1f ′(wk):

– Let µ be a scalar and H1 := f ′′1 (wk) be the local Hessian at
the first machine; then Let P :=H1 + µI.

– theorem: if ‖H1 − f ′′(wk)‖2 ≤ µ, then the condition
number of P−1f ′′(wk) is bounded by 1 + µ/λ.

– theorem: by matrix concentration, µ ∼ 1/
√
n, thus the

condition number of P−1f ′′(wk) is bounded by
√
m.

– PCG’s iteration complexity (m1/4) is much smaller than CG’s
iteration complexity ((mn)1/4).

10



Solving Newton system

• need to find vk such that ‖f ′′(wk)vk − f ′(wk)‖2 ≤ εk.

• conjugate gradient (CG) method to approximately solve
f ′′(wk)vk = f ′(wk): iteration complexity

√
κ, where

κ = L/λ ∼
√
mn is the condition number of Hessian f ′′(wk).

• precondition conjugate gradient (PCG) method to
approximately solve P−1f ′′(wk)vk = P−1f ′(wk):

– Let µ be a scalar and H1 := f ′′1 (wk) be the local Hessian at
the first machine; then Let P :=H1 + µI.

– theorem: if ‖H1 − f ′′(wk)‖2 ≤ µ, then the condition
number of P−1f ′′(wk) is bounded by 1 + µ/λ.

– theorem: by matrix concentration, µ ∼ 1/
√
n, thus the

condition number of P−1f ′′(wk) is bounded by
√
m.

– PCG’s iteration complexity (m1/4) is much smaller than CG’s
iteration complexity ((mn)1/4).

10



Solving Newton system

• need to find vk such that ‖f ′′(wk)vk − f ′(wk)‖2 ≤ εk.

• conjugate gradient (CG) method to approximately solve
f ′′(wk)vk = f ′(wk): iteration complexity

√
κ, where

κ = L/λ ∼
√
mn is the condition number of Hessian f ′′(wk).

• precondition conjugate gradient (PCG) method to
approximately solve P−1f ′′(wk)vk = P−1f ′(wk):

– Let µ be a scalar and H1 := f ′′1 (wk) be the local Hessian at
the first machine; then Let P :=H1 + µI.

– theorem: if ‖H1 − f ′′(wk)‖2 ≤ µ, then the condition
number of P−1f ′′(wk) is bounded by 1 + µ/λ.

– theorem: by matrix concentration, µ ∼ 1/
√
n, thus the

condition number of P−1f ′′(wk) is bounded by
√
m.

– PCG’s iteration complexity (m1/4) is much smaller than CG’s
iteration complexity ((mn)1/4).

10



Solving Newton system

• need to find vk such that ‖f ′′(wk)vk − f ′(wk)‖2 ≤ εk.

• conjugate gradient (CG) method to approximately solve
f ′′(wk)vk = f ′(wk): iteration complexity

√
κ, where

κ = L/λ ∼
√
mn is the condition number of Hessian f ′′(wk).

• precondition conjugate gradient (PCG) method to
approximately solve P−1f ′′(wk)vk = P−1f ′(wk):

– Let µ be a scalar and H1 := f ′′1 (wk) be the local Hessian at
the first machine; then Let P :=H1 + µI.

– theorem: if ‖H1 − f ′′(wk)‖2 ≤ µ, then the condition
number of P−1f ′′(wk) is bounded by 1 + µ/λ.

– theorem: by matrix concentration, µ ∼ 1/
√
n, thus the

condition number of P−1f ′′(wk) is bounded by
√
m.

– PCG’s iteration complexity (m1/4) is much smaller than CG’s
iteration complexity ((mn)1/4).

10



Distributed PCG method

input: wk ∈ Rd and µ ≥ 0,

communicate: broadcast wk, receive f ′i(wk), and form f ′(wk)

initialize: v(0) = 0, s(0) = P−1r(0), r(0) = f ′(wk), u
(0) = s(0)

repeat for t = 0, 1, 2 . . . ,

1. compute Hu(t) :=
∑m

i=1 f
′′
i (wk)u

(t) by map-reduce.

2. compute αt = 〈r(t),s(t)〉
〈u(t),Hu(t)〉 and update:

v(t+1) = v(t) + αtu
(t), r(t+1) = r(t) − αtHu(t)

3. compute βt = 〈r(t+1),s(t+1)〉
〈r(t),s(t)〉 and update:

s(t+1) = P−1r(t+1), u(t+1) = s(t+1) + βtu
(t)

until ‖r(t+1)‖2 ≤ εk
return: vk = v(t+1) and δk =

√
vTkHv

(t) + α(t)vTkHu
(t)

11



Putting pieces together

• outer loop (inexact damped Newton method): iteration
complexity ∼ 1 + log(1/ε). (if data i.i.d. and λ ∼ 1/

√
mn)

• inner loop (PCG): iteration complexity ∼ m1/4.
(if data i.i.d. and λ ∼ 1/

√
mn)

• overall iteration complexity: ∼ m1/4 log(1/ε).

• only communicate first-order information in each round.

• applies to quadratic loss, logistic loss, smoothed hinge loss and
any other self-concordant loss functions.

12



Experiments

regularized logistic regression

`(w) =
1

N

N∑
i=1

log(1 + exp(−yi(wTxi))) +
γ

2
‖w‖22

• data normalized so that ‖xi‖ = 1 for all i = 1, . . . , N

• regularization parameter set to be γ = 10−5

Dataset name sample size N dimension d sparsity

Covtype (N � d) 581,012 54 22%

RCV1 (N ≈ d) 20,242 47,236 0.16%

News20 (N � d) 19,996 1,355,191 0.04%

13



Algorithms compared

• AFG: distributed implementation of accelerated full gradient
method, with adaptive line search to speed up convergence

• ADMM: manually tuned penalty parameter for best performance

• L-BFGS: memory size 30

• DANE: manually tuned parameter µ for best performance

vk+1,i = arg min
w∈Rd

{
fi(w)− 〈f ′i(wk)− f ′(wk), w〉+

µ

2
‖w − wk‖22

}
wk+1 = (1/m)

m∑
i=1

vk+1,i

• DiSCO: better performance without self-concordant scaling

14



m Covtype RCV1 News20

4

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

Rounds of Communication

Lo
g 

Lo
ss

 

 

ADMM
AFG
L−BFGS
DANE
DiSCO

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

Rounds of Communication

Lo
g 

Lo
ss

 

 

ADMM
AFG
L−BFGS
DANE
DiSCO

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

Rounds of Communication

Lo
g 

Lo
ss

 

 

ADMM
AFG
L−BFGS
DANE
DiSCO

16

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

Rounds of Communication

Lo
g 

Lo
ss

 

 

ADMM
AFG
L−BFGS
DANE
DiSCO

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

Rounds of Communication

Lo
g 

Lo
ss

 

 

ADMM
AFG
L−BFGS
DANE
DiSCO

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

Rounds of Communication

Lo
g 

Lo
ss

 

 

ADMM
AFG
L−BFGS
DANE
DiSCO

64

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

Rounds of Communication

Lo
g 

Lo
ss

 

 

ADMM
AFG
L−BFGS
DANE
DiSCO

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

Rounds of Communication

Lo
g 

Lo
ss

 

 

ADMM
AFG
L−BFGS
DANE
DiSCO

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

Rounds of Communication

Lo
g 

Lo
ss

 

 

ADMM
AFG
L−BFGS
DANE
DiSCO

15



Conclusions

DiSCO

• a communication-efficient distributed optimization method

• computation and communication rounds

– does not grow with sample size and condition number
– only grows slowly with number of machines

• algorithm

– inexact damped Newton method
– preconditioned conjugate gradient method

• utilizes

– i.i.d. property of the data
– local second-order information

16



Conclusions

DiSCO

• a communication-efficient distributed optimization method

• computation and communication rounds

– does not grow with sample size and condition number
– only grows slowly with number of machines

• algorithm

– inexact damped Newton method
– preconditioned conjugate gradient method

• utilizes

– i.i.d. property of the data
– local second-order information

16


