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Motivation

big data optimization problems

e dataset cannot fit into memory or storage of single computer
e require distributed algorithms with inter-machine communication

origins

e data science (statistics, machine learning, data mining, ...)

e industry (search, online services, advertising, social media, ...)
tools:

e regression/classification
e numerical linear algebra
e statistical estimation



Empirical risk minimization (ERM)

e popular formulation in supervised learning
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— i.i.d. data samples: z1,...,2y € Z C R?

— loss function: ¢ convex in w for every z € Z

— regularization parameter A ~ 1/v/N or smaller



Empirical risk minimization (ERM)

e popular formulation in supervised learning
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— i.i.d. data samples: z1,...,2y € Z C R?
— loss function: ¢ convex in w for every z € Z
— regularization parameter A ~ 1/v/N or smaller

¢ linear regression
— quadratic loss.

e binary classification:

— logistic loss.
— hinge loss.



Distributed optimization

e distributed algorithms: alternate between

— a local computation procedure at each machine
— a communication round with simple map-reduce operations

¢ bottleneck: high cost of inter-machine communication

— speed/delay, synchronization
— energy consumption

e iteration complexity

— number of communication rounds to find f(w) — f(wy) <€
— measures computation and communication efficiency



lteration complexity

assumption: f:R? — R twice continuously differentiable,
M < f"(w) < LI, VweR?
in other words, f is A-strongly convex and L-smooth

condition number I

K==

A
we focus on ill-conditioned problems: x> 1

iteration complexities of first-order methods
— gradient descent (GD): O(klog(1/e€))

— accelerated GD, ADMM: O(y/klog(1/¢))
— stochastic gradient method (SGD): O(k/e¢)



Implications for distributed machine learning
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e m machines, each holds n samples. Regularization parameter A
decreases with total sample size mn.
(typical setting: A\ ~ ﬁ condition number kK = ©(y/mn))

e iteration complexity of accelerated GD or ADMM:
@ ((mn)1/4 log(1 /e))

iteration complexity grows with sample size!
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e m machines, each holds n samples. Regularization parameter A
decreases with total sample size mn.

(typical setting: A\ ~ f condition number kK = ©(y/mn))

e iteration complexity of accelerated GD or ADMM:

@ ((mn)1/4 log(1 /e))
iteration complexity grows with sample size!

e can we do better?
— unlikely for first-order methods (optimal complexity)
— need to use further structure and/or alternative methods
our approach: Newton + preconditioned conjugate gradient



Making it really work

e outer loop: (inexact) damped Newton method

— problem: iteration complexity O(x? + log(log(1/e)))
— solution: self-concordant analysis

O(f(wo) — f(w,) +log(log(1/e)))

e inner loop: conjugate gradient (CG) to compute Newton step
— problem: iteration complexity of CG: O(y/klog(1/€)
— solution: use preconditioned conjugate gradient (PCG)
method



Making it really work

e outer loop: (inexact) damped Newton method

— problem: iteration complexity O(x? + log(log(1/e)))
— solution: self-concordant analysis

O(f(wo) — f(w,) +log(log(1/e)))

e inner loop: conjugate gradient (CG) to compute Newton step
— problem: iteration complexity of CG: O(y/klog(1/€)
— solution: use preconditioned conjugate gradient (PCG)
method

e DiSCO: what's in a name?
— Distributed SeCond Order method
— Distributed Self-Concordant Optimization
— Distributed Stochastic Convex Optimization



Preview: communication efficiency

Number of Communication Rounds O(-)
Algorithm | Ridge Regression Binary Classification
(quadratic loss) | (logistic loss, smoothed hinge loss)
AGD (mn)'/*1og(1/€) (mn)Y*log(1/€)
ADMM | (mn)'/*log(1/€) (mn)/*1og(1/¢)
DANE mlog(1/e) (mn)'/?1og(1/€)
DiSCO m'*log(1/e) m3/AdM* + mAd * log(1/€)

e regularization parameter A ~ 1/y/mn
e deterministic or high probability bounds (except last one)
e DANE by Shamir, Srebro and Zhang (ICML 2014)



DiSCO: Inexact damped Newton method

input: initial point wy and specification of a sequence {e}

repeat for k=0,1,2,...
1. find a vector vy such that || f"(wg)vg — f'(wg)|l2 < e

2. compute i = uv,{f”(wk)vk and wg, = wg — ﬁvk

until a stopping criterion is satisfied

e if 6 =0 and ¢, = 0, reduces to classical Newton method.
e forcing 5 > 0: ensuring convergence when wy, is far apart from
the optimal solution.

e allowing ¢, > 0: v can be computed by a communication
efficient distributed algorithm (preconditioned CG).



lteration complexity

e assumptions:

— f standard self-concordant
= M =< f"(w) < LI for all w € RY

e theorem: if we choose
e ~ |1.f (wi) |2
then f(wg) — f(ws) < € whenever
k& f(wo) — f(w,) +log(1/e)

e theorem: if initialize wqy by one-shot averaging, then

flwo) = f(wy) = O().



Solving Newton system

e need to find vy such that || f”(wg)vr — f/(wi)|l2 < €.
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Solving Newton system

need to find vy, such that || f”(wg)vr — f/(wg)l2 < €.

conjugate gradient (CG) method to approximately solve
" (w)vr = f'(wy): iteration complexity /x, where
k = L/X ~ y/mn is the condition number of Hessian f”(wy).
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Solving Newton system

e need to find vy such that || f”(wg)vr — f/(wi)|l2 < €.

e conjugate gradient (CG) method to approximately solve
" (w)vr = f'(wy): iteration complexity /x, where
k = L/X ~ y/mn is the condition number of Hessian f”(wy).

precondition conjugate gradient (PCG) method to

approximately solve P~ £ (wy)vy = P~1f/(wy,):

Let i be a scalar and Hy := f]'(wy) be the local Hessian at
the first machine; then Let P:= Hy + ul.

theorem: if ||Hy — f”(wg)||2 < p, then the condition
number of P~1f”(w;,) is bounded by 1 + 11/

theorem: by matrix concentration, u ~ 1/4/n, thus the
condition number of P~ f”(wy) is bounded by /m.

PCG's iteration complexity (m'/*) is much smaller than CG's
iteration complexity ((mn)/*).
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Distributed PCG method

input: w, € R% and p > 0,

communicate: broadcast wy, receive f/(wy), and form f’(wy)
initialize: v(©) =0, s = P10 0 = (), u® = 5O
repeat fort =0,1,2...,

1. compute Hu® := S f/(wg)u®) by map-reduce.

(r® (1))
D) — o 4 g, rtHD) = (O — o, Hu®

2. compute ay = and update:

(t+1) <t+1)
3. compute 3; = W and update:

S(t+1) P_lr(t+1)’ wt+) = g(t+1) 4 gtu(t)

until |||y < ¢,
return: v, = vt and §;, = \/ngv(t) + ool Hu®
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Putting pieces together

outer loop (inexact damped Newton method): iteration
complexity ~ 1 +log(1/¢). (if data i.i.d. and A ~ 1/y/mn)

inner loop (PCG): iteration complexity ~ m!/4.

(if data i.i.d. and A ~ 1/y/mn)
overall iteration complexity: ~ m'/*log(1/¢).
only communicate first-order information in each round.

applies to quadratic loss, logistic loss, smoothed hinge loss and
any other self-concordant loss functions.
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Experiments

regularized logistic regression

N

1
{w) = 7 2 log(1 + exp(—yi(ww)) + 2wl
1=
e data normalized so that |z;|| =1 foralli=1,...,N

e regularization parameter set to be vy = 107

Dataset name | sample size N | dimension d | sparsity
Covtype (N > d) 581,012 54 22%
RCV1 (N = d) 20,242 47,236 | 0.16%
News20 (N < d) 19,996 1,355,191 | 0.04%
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Algorithms compared

AFG: distributed implementation of accelerated full gradient
method, with adaptive line search to speed up convergence

ADMM: manually tuned penalty parameter for best performance
L-BFGS: memory size 30

DANE: manually tuned parameter p for best performance

verns = arg min { £ilw) = (ffwn) = (i), w) + S lhw — w3 |

weR

wi1 = (1/m) Z Vk41,i
=1

DiSCO: better performance without self-concordant scaling
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Conclusions

DiSCO
e a communication-efficient distributed optimization method
e computation and communication rounds

— does not grow with sample size and condition number
— only grows slowly with number of machines
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Conclusions

DiSCO
e a communication-efficient distributed optimization method
e computation and communication rounds

— does not grow with sample size and condition number
— only grows slowly with number of machines

e algorithm

— inexact damped Newton method
— preconditioned conjugate gradient method

e utilizes

— i.i.d. property of the data
— local second-order information
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