DiSCO: Communication-Efficient Distributed Optimization of Self-Concordant Empirical Loss

> Yuchen Zhang UC Berkeley

Joint work with Lin Xiao (Microsoft Research)

July, 2015

Motivation

big data optimization problems

- dataset cannot fit into memory or storage of single computer
- require distributed algorithms with inter-machine communication

origins

- data science (statistics, machine learning, data mining, ...)
- industry (search, online services, advertising, social media, ...)

tools:

- regression/classification
- numerical linear algebra
- statistical estimation

Empirical risk minimization (ERM)

popular formulation in supervised learning

$$\underset{w \in \mathbf{R}^d}{\text{minimize}} \quad \frac{1}{N} \sum_{j=1}^N \phi(w, z_j) + \frac{\lambda}{2} \|w\|_2^2$$

- i.i.d. data samples: $z_1, \ldots, z_N \in \mathcal{Z} \subset \mathbf{R}^p$
- loss function: ϕ convex in w for every $z\in\mathcal{Z}$
- regularization parameter $\lambda \sim 1/\sqrt{N}$ or smaller

Empirical risk minimization (ERM)

• popular formulation in supervised learning

$$\underset{w \in \mathbf{R}^d}{\text{minimize}} \quad \frac{1}{N} \sum_{j=1}^N \phi(w, z_j) + \frac{\lambda}{2} \|w\|_2^2$$

- i.i.d. data samples: $z_1,\ldots,z_N\in\mathcal{Z}\subset\mathbf{R}^p$
- loss function: ϕ convex in w for every $z\in\mathcal{Z}$
- regularization parameter $\lambda \sim 1/\sqrt{N}$ or smaller
- linear regression
 - quadratic loss.
- binary classification:
 - logistic loss.
 - hinge loss.

Distributed optimization

- distributed algorithms: alternate between
 - a local computation procedure at each machine
 - a communication round with simple map-reduce operations
- bottleneck: high cost of inter-machine communication
 - speed/delay, synchronization
 - energy consumption
- iteration complexity
 - number of communication rounds to find $f(\widehat{w}) f(w_{\star}) \leq \epsilon$
 - measures computation and communication efficiency

Iteration complexity

• assumption: $f : \mathbf{R}^d - \mathbf{R}$ twice continuously differentiable,

$$\lambda I \preceq f''(w) \preceq LI, \qquad \forall w \in \mathbf{R}^d$$

in other words, f is $\lambda\text{-strongly convex and }L\text{-smooth}$

condition number

$$\kappa = \frac{L}{\lambda}$$

we focus on ill-conditioned problems: $\kappa \gg 1$

- iteration complexities of first-order methods
 - gradient descent (GD): $\mathcal{O}(\kappa \log(1/\epsilon))$
 - accelerated GD, ADMM: $\mathcal{O}(\sqrt{\kappa}\log(1/\epsilon))$
 - stochastic gradient method (SGD): $\mathcal{O}(\kappa/\epsilon)$

Implications for distributed machine learning

$$f(w) = \frac{1}{m} \sum_{i=1}^{m} f_i(w) = \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \phi(w, z_{i,j}) + \frac{\lambda}{2} \|w\|_2^2$$

- m machines, each holds n samples. Regularization parameter λ decreases with total sample size mn. (typical setting: $\lambda \sim \frac{1}{\sqrt{mn}}$, condition number $\kappa = \Theta(\sqrt{mn})$)
- iteration complexity of accelerated GD or ADMM:

$$\mathcal{O}\left((mn)^{1/4}\log(1/\epsilon)\right)$$

iteration complexity grows with sample size!

Implications for distributed machine learning

$$f(w) = \frac{1}{m} \sum_{i=1}^{m} f_i(w) = \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \phi(w, z_{i,j}) + \frac{\lambda}{2} \|w\|_2^2$$

- m machines, each holds n samples. Regularization parameter λ decreases with total sample size mn. (typical setting: $\lambda \sim \frac{1}{\sqrt{mn}}$, condition number $\kappa = \Theta(\sqrt{mn})$)
- iteration complexity of accelerated GD or ADMM:

$$\mathcal{O}\left((mn)^{1/4}\log(1/\epsilon)\right)$$

iteration complexity grows with sample size!

- can we do better?
 - unlikely for first-order methods (optimal complexity)
 - need to use further structure and/or alternative methods
 our approach: Newton + preconditioned conjugate gradient

Making it really work

- outer loop: (inexact) damped Newton method
 - problem: iteration complexity $\mathcal{O}(\kappa^2 + \log(\log(1/\epsilon)))$
 - solution: self-concordant analysis

 $O(f(w_0) - f(w_\star) + \log(\log(1/\epsilon)))$

- inner loop: conjugate gradient (CG) to compute Newton step
 - problem: iteration complexity of CG: $\mathcal{O}(\sqrt{\kappa}\log(1/\epsilon))$
 - solution: use preconditioned conjugate gradient (PCG) method

Making it really work

- outer loop: (inexact) damped Newton method
 - problem: iteration complexity $\mathcal{O}(\kappa^2 + \log(\log(1/\epsilon)))$
 - solution: self-concordant analysis

 $O(f(w_0) - f(w_\star) + \log(\log(1/\epsilon)))$

- inner loop: conjugate gradient (CG) to compute Newton step
 - problem: iteration complexity of CG: $\mathcal{O}(\sqrt{\kappa}\log(1/\epsilon))$
 - solution: use preconditioned conjugate gradient (PCG) method
- DiSCO: what's in a name?
 - Distributed SeCond Order method
 - Distributed Self-Concordant Optimization
 - Distributed Stochastic Convex Optimization

Preview: communication efficiency

	Number of Communication Rounds $\widetilde{\mathcal{O}}(\cdot)$		
Algorithm	Ridge Regression (quadratic loss)	Binary Classification (logistic loss, smoothed hinge loss)	
AGD	$(mn)^{1/4}\log(1/\epsilon)$	$(mn)^{1/4}\log(1/\epsilon)$	
ADMM	$(mn)^{1/4}\log(1/\epsilon)$	$(mn)^{1/4}\log(1/\epsilon)$	
DANE	$m\log(1/\epsilon)$	$(mn)^{1/2}\log(1/\epsilon)$	
DiSCO	$m^{1/4}\log(1/\epsilon)$	$m^{3/4}d^{1/4} + m^{1/4}d^{1/4}\log(1/\epsilon)$	

- regularization parameter $\lambda \sim 1/\sqrt{mn}$
- deterministic or high probability bounds (except last one)
- DANE by Shamir, Srebro and Zhang (ICML 2014)

DiSCO: Inexact damped Newton method

input: initial point w_0 and specification of a sequence $\{\epsilon_k\}$ repeat for k = 0, 1, 2, ...1. find a vector v_k such that $||f''(w_k)v_k - f'(w_k)||_2 \le \epsilon_k$ 2. compute $\delta_k = \sqrt{v_k^T f''(w_k)v_k}$ and $w_{k+1} = w_k - \frac{1}{1+\delta_k}v_k$ until a stopping criterion is satisfied

- if $\delta_k = 0$ and $\epsilon_k = 0$, reduces to classical Newton method.
- forcing δ_k > 0: ensuring convergence when w_k is far apart from the optimal solution.
- allowing $\epsilon_k > 0$: v_k can be computed by a communication efficient distributed algorithm (preconditioned CG).

Iteration complexity

• assumptions:

- f standard self-concordant
- $-\lambda I \preceq f''(w) \preceq LI$ for all $w \in \mathbf{R}^d$
- theorem: if we choose

$$\epsilon_k \sim \|f'(w_k)\|_2$$

then $f(w_k) - f(w_\star) \le \epsilon$ whenever

$$k \approx f(w_0) - f(w_\star) + \log(1/\epsilon)$$

• **theorem:** if initialize w_0 by one-shot averaging, then $f(w_0) - f(w_{\star}) = O(1)$.

• need to find v_k such that $||f''(w_k)v_k - f'(w_k)||_2 \le \epsilon_k$.

- need to find v_k such that $||f''(w_k)v_k f'(w_k)||_2 \le \epsilon_k$.
- conjugate gradient (CG) method to approximately solve $f''(w_k)v_k = f'(w_k)$: iteration complexity $\sqrt{\kappa}$, where $\kappa = L/\lambda \sim \sqrt{mn}$ is the condition number of Hessian $f''(w_k)$.

- need to find v_k such that $||f''(w_k)v_k f'(w_k)||_2 \le \epsilon_k$.
- conjugate gradient (CG) method to approximately solve $f''(w_k)v_k = f'(w_k)$: iteration complexity $\sqrt{\kappa}$, where $\kappa = L/\lambda \sim \sqrt{mn}$ is the condition number of Hessian $f''(w_k)$.
- precondition conjugate gradient (PCG) method to approximately solve $P^{-1}f''(w_k)v_k = P^{-1}f'(w_k)$:
 - Let μ be a scalar and $H_1 := f_1''(w_k)$ be the local Hessian at the first machine; then Let $P := H_1 + \mu I$.

- need to find v_k such that $||f''(w_k)v_k f'(w_k)||_2 \le \epsilon_k$.
- conjugate gradient (CG) method to approximately solve $f''(w_k)v_k = f'(w_k)$: iteration complexity $\sqrt{\kappa}$, where $\kappa = L/\lambda \sim \sqrt{mn}$ is the condition number of Hessian $f''(w_k)$.
- precondition conjugate gradient (PCG) method to approximately solve P⁻¹f''(w_k)v_k = P⁻¹f'(w_k):
 - Let μ be a scalar and $H_1 := f_1''(w_k)$ be the local Hessian at the first machine; then Let $P := H_1 + \mu I$.
 - **theorem**: if $||H_1 f''(w_k)||_2 \le \mu$, then the condition number of $P^{-1}f''(w_k)$ is bounded by $1 + \mu/\lambda$.

- need to find v_k such that $||f''(w_k)v_k f'(w_k)||_2 \le \epsilon_k$.
- conjugate gradient (CG) method to approximately solve $f''(w_k)v_k = f'(w_k)$: iteration complexity $\sqrt{\kappa}$, where $\kappa = L/\lambda \sim \sqrt{mn}$ is the condition number of Hessian $f''(w_k)$.
- precondition conjugate gradient (PCG) method to approximately solve P⁻¹f''(w_k)v_k = P⁻¹f'(w_k):
 - Let μ be a scalar and $H_1 := f_1''(w_k)$ be the local Hessian at the first machine; then Let $P := H_1 + \mu I$.
 - **theorem**: if $||H_1 f''(w_k)||_2 \le \mu$, then the condition number of $P^{-1}f''(w_k)$ is bounded by $1 + \mu/\lambda$.
 - **theorem**: by matrix concentration, $\mu \sim 1/\sqrt{n}$, thus the condition number of $P^{-1}f''(w_k)$ is bounded by \sqrt{m} .

- need to find v_k such that $||f''(w_k)v_k f'(w_k)||_2 \le \epsilon_k$.
- conjugate gradient (CG) method to approximately solve $f''(w_k)v_k = f'(w_k)$: iteration complexity $\sqrt{\kappa}$, where $\kappa = L/\lambda \sim \sqrt{mn}$ is the condition number of Hessian $f''(w_k)$.
- precondition conjugate gradient (PCG) method to approximately solve $P^{-1}f''(w_k)v_k = P^{-1}f'(w_k)$:
 - Let μ be a scalar and $H_1 := f_1''(w_k)$ be the local Hessian at the first machine; then Let $P := H_1 + \mu I$.
 - **theorem**: if $||H_1 f''(w_k)||_2 \le \mu$, then the condition number of $P^{-1}f''(w_k)$ is bounded by $1 + \mu/\lambda$.
 - **theorem**: by matrix concentration, $\mu \sim 1/\sqrt{n}$, thus the condition number of $P^{-1}f''(w_k)$ is bounded by \sqrt{m} .
 - PCG's iteration complexity $(m^{1/4})$ is much smaller than CG's iteration complexity $((mn)^{1/4})$.

Distributed PCG method

input:
$$w_k \in \mathbf{R}^d$$
 and $\mu \ge 0$,
communicate: broadcast w_k , receive $f'_i(w_k)$, and form $f'(w_k)$
initialize: $v^{(0)} = 0$, $s^{(0)} = P^{-1}r^{(0)}$, $r^{(0)} = f'(w_k)$, $u^{(0)} = s^{(0)}$
repeat for $t = 0, 1, 2...$,
1. compute $Hu^{(t)} := \sum_{i=1}^{m} f''_i(w_k)u^{(t)}$ by map-reduce.
2. compute $\alpha_t = \frac{\langle r^{(t)}, s^{(t)} \rangle}{\langle u^{(t)}, Hu^{(t)} \rangle}$ and update:
 $v^{(t+1)} = v^{(t)} + \alpha_t u^{(t)}$, $r^{(t+1)} = r^{(t)} - \alpha_t Hu^{(t)}$
3. compute $\beta_t = \frac{\langle r^{(t+1)}, s^{(t+1)} \rangle}{\langle r^{(t)}, s^{(t)} \rangle}$ and update:
 $s^{(t+1)} = P^{-1}r^{(t+1)}$, $u^{(t+1)} = s^{(t+1)} + \beta_t u^{(t)}$
until $||r^{(t+1)}||_2 \le \epsilon_k$
return: $v_k = v^{(t+1)}$ and $\delta_k = \sqrt{v_k^T Hv^{(t)} + \alpha^{(t)}v_k^T Hu^{(t)}}$

Putting pieces together

- outer loop (inexact damped Newton method): iteration complexity ~ 1 + log(1/ε). (if data i.i.d. and λ ~ 1/√mn)
- inner loop (PCG): iteration complexity $\sim m^{1/4}$. (if data i.i.d. and $\lambda \sim 1/\sqrt{mn}$)
- overall iteration complexity: $\sim m^{1/4} \log(1/\epsilon)$.
- only communicate first-order information in each round.
- applies to quadratic loss, logistic loss, smoothed hinge loss and any other self-concordant loss functions.

Experiments

regularized logistic regression

$$\ell(w) = \frac{1}{N} \sum_{i=1}^{N} \log(1 + \exp(-y_i(w^T x_i))) + \frac{\gamma}{2} \|w\|_2^2$$

- data normalized so that $\|x_i\| = 1$ for all $i = 1, \dots, N$
- regularization parameter set to be $\gamma=10^{-5}$

Dataset name	sample size N	dimension d	sparsity
Covtype ($N \gg d$)	581,012	54	22%
RCV1 ($N \approx d$)	20,242	47,236	0.16%
News20 ($N \ll d$)	19,996	1,355,191	0.04%

Algorithms compared

- AFG: distributed implementation of accelerated full gradient method, with adaptive line search to speed up convergence
- ADMM: manually tuned penalty parameter for best performance
- L-BFGS: memory size 30
- DANE: manually tuned parameter μ for best performance

$$w_{k+1,i} = \arg\min_{w \in \mathbf{R}^d} \left\{ f_i(w) - \langle f'_i(w_k) - f'(w_k), w \rangle + \frac{\mu}{2} \|w - w_k\|_2^2 \right\}$$
$$w_{k+1} = (1/m) \sum_{i=1}^m v_{k+1,i}$$

• DiSCO: better performance without self-concordant scaling

Conclusions

DiSCO

- a communication-efficient distributed optimization method
- computation and communication rounds
 - does not grow with sample size and condition number
 - only grows slowly with number of machines

Conclusions

DiSCO

- a communication-efficient distributed optimization method
- computation and communication rounds
 - does not grow with sample size and condition number
 - only grows slowly with number of machines
- algorithm
 - inexact damped Newton method
 - preconditioned conjugate gradient method
- utilizes
 - i.i.d. property of the data
 - local second-order information