
Communication-Efficient Distributed Optimization

using an Approximate Newton-type Method

Ohad Shamir OHAD.SHAMIR@WEIZMANN.AC.IL

Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel

Nathan Srebro NATI@TTIC.EDU

Toyota Technological Institute at Chicago and the Department of Computer Science, Technion, Haifa, Israel

Tong Zhang TZHANG@STAT.RUTGERS.EDU

Department of Statistics, Rutgers University, Piscataway NJ, USA, and Baidu Inc., Beijing, China

Abstract

We present a novel Newton-type method for dis-

tributed optimization, which is particularly well

suited for stochastic optimization and learning

problems. For quadratic objectives, the method

enjoys a linear rate of convergence which prov-

ably improves with the data size, requiring an

essentially constant number of iterations under

reasonable assumptions. We provide theoretical

and empirical evidence of the advantages of our

method compared to other approaches, such as

one-shot parameter averaging and ADMM.

1. Introduction

We consider the problem of distributed optimization, where

each of m machines has access to a function φi : R
d → R,

i = 1, . . . ,m, and we would like to minimize their average

φ(w) = 1
m

m
∑

i=1

φi(w). (1)

We are particularly interested in a stochastic optimization

(learning) setting, where the ultimate goal is to minimize

some stochastic (population) objective (e.g. expected loss

or generalization error)

F (w) = E
z∼D

[f(w, z)] (2)

and each of the m machines has access to n i.i.d. samples

z1i , . . . , z
n
i from the source distribution D, for a total of

Proceedings of the 31
st International Conference on Machine

Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

N = nm independent samples evenly and randomly dis-

tributed among the machines. Each machine i can construct

a local empirical (sample) estimate of F (w):

φi(w) = F̂i(w) =
1

n

n
∑

j=1

f(w, zji ) (3)

and the overall empirical objective is then:

φ(w) = F̂ (w) =
1

m

m
∑

i=1

F̂i(w) =
1

nm

∑

i,j

f(w, zji ). (4)

We can then use the empirical risk minimizer (ERM)

ŵ = argmin F̂ (w) (5)

as an approximate minimizer of F (w). Since our inter-

est lies mostly with this stochastic optimization setting, we

will denote ŵ = argminφ(w) even when the optimiza-

tion objective φ(w) is not an empirical approximation to a

stochastic objective.

When considering distributed optimization, two resources

are at play: the amount of processing on each machine, and

the communication between machines. In this paper, we

focus on algorithms which alternate between a local op-

timization procedure at each machine, and a communica-

tion round involving simple map-reduce operations such as

distributed averaging of vectors in R
d. Since the cost of

communication is very high in practice (Bekkerman et al.,

2011), our goal is to develop methods which quickly opti-

mize the empirical objective F̂ (·), using a minimal number

of such iterations.

One-Shot Averaging A straight-forward single-iteration

approach is for each machine to optimize its own local ob-

jective, obtaining

ŵi = argminφi(w), (6)



Newton-type Distributed Optimization

and then to compute their average:

w̄ =
1

m

m
∑

i=1

ŵi. (7)

This approach, which we refer to as “one-shot parame-

ter averaging”, was recently considered in Zinkevich et al.

(2010) and further analyzed by Zhang et al. (2013). The

latter also proposed a bias-corrected improvement which

perturbs each ŵi using the optimum on a bootstrap sam-

ple. This approach gives only an approximate minimizer of

φ(w) with some finite suboptimality, rather then allowing

us converge to ŵ (i.e. to obtain solutions with any desired

suboptimality ǫ). Although approximate solutions are often

sufficient for stochastic optimization, we prove in Section

2 that the one-shot solution w̄ can be much worse in terms

of minimizing the population objective F (w), compared to

the actual empirical minimizer ŵ. It does not seem possible

to address this suboptimality by more clever averaging, and

instead additional rounds of communications appear neces-

sary.

Gradient Descent One possible multi-round approach to

distributed optimization is a distributed implementation of

gradient descent: at each iteration each machine calculates

∇φi(w(t)) at the current iterate w(t), and then these are av-

eraged to obtain the overall gradient ∇φ(w(t)), and a gradi-

ent step is taken. As the iterates are then standard gradient

descent iterates, the number of iterations, and so also num-

ber of communication rounds, is linear in the conditioning

of the problem – or, if accelerated gradient descent is used,

proportional to the square root of the condition number: If

φ(w) is L-smooth and λ-strongly convex, then

O
(

√

L

λ
log

(

1

ǫ

)

)

(8)

iterations are needed to attain an ǫ-suboptimal solution.

The polynomial dependence on the condition number may

be disappointing, as in many problems the parameter of

strong convexity λ might be very small. E.g., when strong

convexity arises from regularization, as in many stochastic

optimization problems, λ decreases with the overall sample

size N = nm, and is typically at most 1/
√
nm (Sridharan

et al. 2008; Shalev-Shwartz et al. 2009; and see also Sec-

tion 4.3 below). The number of iterations / communication

rounds needed for distributed accelerated gradient descent

then scales as 4
√
nm, i.e. increases polynomially with the

sample size.

Instead of gradient descent, one may also consider more

sophisticated methods which utilize gradient information,

such as quasi-Newton methods. For example, a dis-

tributed implementation using L-BFGS has been proposed

in (Agarwal et al., 2011). However, no guarantee better

then (8) can be ensured for gradient-based methods (Ne-

mirovsky & Yudin, 1983), and we thus may still get a poly-

nomial dependence on the sample size.

ADMM and other approaches Another popular ap-

proach is distributed alternating direction method of multi-

pliers (ADMM, e.g. Boyd et al. 2011), where the machines

alternate between computing shared dual variables in a dis-

tributed manner, and solving augmented Lagrangian prob-

lems with respect to their local data. However, the con-

vergence of ADMM can be slow. Although recent works

proved a linear convergence rate under favorable assump-

tions (Deng & Yin, 2012; Hong & Luo, 2012), we are

not aware of any analysis where the number of iterations

/ communication rounds doesn’t scale strongly with the

condition number, and hence the sample size, for learn-

ing applications. A similar dependence occurs with other

recently-proposed algorithms for distributed optimization

(e.g. Yang, 2013; Mahajan et al., 2013; Dekel et al., 2012;

Cotter et al., 2011; Duchi et al., 2012). We also mention

that our framework is orthogonal to much recent work on

distributed coordinate descent methods (e.g. Recht et al.,

2011; Richtárik & Takác, 2013), which assume the data is

split feature-wise rather than instance-wise.

Our Method The method we propose can be viewed as

an approximate Newton-like method, where at each iter-

ation, instead of a gradient step, we take a step appro-

priate for the geometry of the problem, as estimated on

each machine separately. In particular, for quadratic ob-

jectives, the method can be seen as taking approximate

Newton steps, where each machine i implicitly uses its lo-

cal Hessian ∇2φi(w) (although no Hessians are explicitly

computed!). Unlike ADMM, our method can take advan-

tage of the fact that for machine learning applications, the

sub-problems are usually similar: φi ≈ φ. We refer to our

method as DANE—Distributed Approximate NEwton.

DANE is applicable to any smooth and strongly convex

problem. However, as is typical of Newton and Newton-

like methods, its generic analysis is not immediately ap-

parent. For general functions, we can show convergence,

but cannot rigorously prove improvement over gradient de-

scent. Instead, in order to demonstrate DANE’s advantages

and give a sense of its benefits, we focus our theoretical

analysis on quadratic objectives. For stochastic quadratic

objectives, where f(w, z) is L-smooth and λ-strongly con-

vex in w ∈ R
d, we show that

O
(

(L/λ)2

n
log(dm) log(

1

ǫ
)

)

(9)

iterations are sufficient for DANE to find w̃ such that with

high probability F̂ (w̃) ≤ F̂ (ŵ) + ǫ. When L/λ is fixed

and the number of examples n per machine is large (the



Newton-type Distributed Optimization

regime considered by Zhang et al. 2013), (9) establishes

convergence after a constant number of iterations / commu-

nication rounds. When λ scales as 1/
√
nm, as discussed

above, (9) yields convergence to the empirical minimizer

in a number of iterations that scales roughly linearly with

the number of machines m, but not with the sample size

N = nm. To the best of our knowledge, this is the first

algorithm which provably has such a behavior. We also

provide evidence for similar behavior on non-quadratic ob-

jectives.

Notation and Definitions For vectors, ‖v‖ is always the

Euclidean norm, and for matrices ‖A‖2 is the spectral

norm. We use λ 4 A 4 L to indicate that the eigenval-

ues of A are bounded between λ and L. We say that a

twice differentiable1 function f(w) is λ-strongly convex or

L-smooth, iff for all w, its Hessian is bounded from below

by λ (i.e. λ 4 ∇2f(w)), or above by L (i.e. ∇2f(w) 4 L)

respectively.

2. Stochastic Optimization and One-shot

Parameter Averaging

In a stochastic optimization setting, where the true objec-

tive is the population objective F (w), there is a limit to the

accuracy with which we can minimize F (w) given only

N = nm samples, even using the exact empirical mini-

mizer ŵ. It is thus reasonable to compare the suboptimality

of F (w) when using the exact ŵ to what can be attained us-

ing distributed optimization with limited communication.

When f(w, z) has gradients with bounded second mo-

ments, namely when ∀w Ez

[

‖∇wf(w, z)‖2
]

≤ G2, and

F (w) is λ-strongly convex, then (Shalev-Shwartz et al.,

2009)2

E[F (ŵ)] ≤ F (w∗)+O
(

G2

λN

)

= inf
w
F (w)+O

(

G2

λnm

)

(10)

where w∗ = argminF (w) is the population minimizer

and the expectation is with respect to the random sample

of size N = nm. One might then ask whether a subop-

timality of ǫ = O
(

G2

λnm

)

can be also be achieved using

a few, perhaps only one, round of communication. This

is different from seeking a distributed optimization method

that achieves any arbitrarily small empirical suboptimality,

and thus converges to ŵ, but might be sufficient in terms of

stochastic optimization.

For one-shot parameter averaging, Zhang et al. (2013,

1All our results hold also for weaker definitions of smoothness
and strong convexity which do not require twice differentiability.

2More precisely, (Shalev-Shwartz et al., 2009) shows this as-
suming ‖∇wf(w, z)‖2 ≤ G2 for all w, z, but the proof easily
carries over to this case.

Corollary 2) recently showed that for λ-strongly convex

objectives, and when moments of the first, second and third

derivatives of f(w, z) are bounded byG, L, andM respec-

tively3, then

E ‖w̄ − w∗‖2 ≤ Õ
(

G2

λ2nm
+
G4M2

λ6n2
+
L2G2 log d

λ4n2

)

,

(11)

where w̄ is the one-shot average estimator defined in (7).

This implies that the population suboptimality E[F (w̄)] −
F (w∗) is bounded by

Õ
(

LG2

λ2nm
+
LG4M2

λ6n2
+
L3G2 log d

λ4n2

)

. (12)

Zhang et al. (2013) argued that the dependence on the sam-

ple size mn above is essentially optimal: the dominant

term (as n → ∞, and in particular when n ≫ m) scales

as 1/(nm), which is the same as for the empirical mini-

mizer ŵ (as in eq. 10), and so one-shot parameter aver-

aging achieves the same population suboptimality rate, us-

ing only a single round of communication, as the best rate

we can hope for using unlimited communication, or if all

N = nm samples were on the same machine. Moreover,

the O(n−2) terms can be replaced by a O(n−3) term using

an appropriate bias-correction procedure.

However, this view ignores the dependence on the other

parameters, and in particular the strong convexity parame-

ter λ, which is much worse in (12) relative to (10). The

strong convexity parameter often arises from an explicit

regularization, and decays as the sample size increases.

E.g., in regularized loss minimization and SVM-type prob-

lems (Sridharan et al., 2008), as well as more generally

for stochastic convex optimization (Shalev-Shwartz et al.,

2009), the regularization parameter, and hence the strong

convexity parameter, decreases as 1√
N

= 1√
nm

. In prac-

tice, λ is often chosen even smaller, possibly as small as
1
N . Unfortunately, substituting λ = O(1/

√
nm) in (12) re-

sults in a useless bound, where even the first term does not

decrease with the sample size.

Of course, this strong dependence on λ might be an arti-

fact of the analysis of Zhang et al.. However, in Theorem 1

below, we show that even in a simple one-dimensional ex-

ample, when λ ≤ O(1/
√
n), the population sub-optimality

of the one-shot estimator (using m machines and a total

of nm samples), can be no better then the population sub-

optimality using just n samples, and much worse than what

3The exact conditions in Zhang et al. (2013) refer to var-
ious high order moments, but are in any case satisfied when
‖∇wf(w, z)‖ ≤ G, ‖∇2

wf(w, z)‖2 ≤ L and ∇2f(w, z) is M -
Lipschitz in the spectral norm. For learning problems, all deriva-
tives of the objective can be bounded in terms of a bound on the
data and bounds on the derivative of a scalar loss function, and
are less of a concern to us.



Newton-type Distributed Optimization

can be attained using nm samples. In other words, one-shot

averaging does not give any benefit over using only the data

on a single machine, and ignoring all other (m − 1)n data

points.

Theorem 1. For any per-machine sample size n ≥ 9, and

any λ ∈
(

0, 1
9
√
n

)

, there exists a distribution D over ex-

amples and a stochastic optimization problem on a convex

set4 W ⊂ R, such that:

• f(w; z) is λ-strongly convex, infinitely differentiable,

and ∀w∈W Ez[‖∇f(w; z)‖2] ≤ 9.

• For any number of machines m, if we run one-shot

parameter averaging to compute w̄, it holds for some

universal constants C1, C2, C3, C4 that

E[‖w̄ − w∗‖2] ≥ C1

λ2n
, E[‖ŵ − w∗‖2] ≤ C2

λ2nm

E[F (w̄)]−F (w∗) ≥ C3

λn
, E[F (ŵ)]−F (w∗) ≤ C4

λnm

The intuition behind the construction of Theorem 1 is that

when λ is small, the deviation of each machine output ŵi
from w∗ is large, and its expectation is biased away from

w∗. The exact bias amount is highly problem-dependent,

and cannot be eliminated by any fixed averaging scheme.

Since bias is not reduced by averaging, the optimization

error does not scale down with the number of machines

m. The full construction and proof appear in appendix A.

In the appendix we also show that the bias correction pro-

posed by Zhang et al. to reduce the lower-order terms in

equation (11) does not remedy this problem.

3. Distributed Approximate Newton-type

Method

We now describe a new iterative method for distributed

optimization. The method performs two distributed aver-

aging computations per iteration, and outputs a predictor

w(t) which, under suitable parameter choices, converges

to the optimum ŵ. The method, which we refer to as

DANE (Distributed Approximate NEwton-type Method) is

described in Figure 1.

DANE maintains an agreed-upon iterate w(t), which is

synchronized among all machines at the end of each it-

eration. In each iteration, we first compute the gradient

∇φ(w(t−1)) at the current iterate, by averaging the local

gradients ∇φi(w(t−1)). Each machine then performs a sep-

arate local optimization, based on its own local objective

4Following the framework of Zhang et al., we present an ex-
ample where the optimization is performed on a bounded set,
which ensures that the gradient moments are bounded. However,
this is not essential and the same result can be shown when the
domain of optimization is R.

φi(w) and the computed global gradient ∇φ(w(t)), to ob-

tain a local iterate w
(t)
i . These local iterates are averaged to

obtain the centralized iterate w(t).

The crux of the method is the local optimization performed

on each machine at each iteration:

w
(t)
i = argmin

w
[φi(w) (13)

− (∇φi(w(t−1))− η∇φ(w(t−1)))⊤w +
µ

2
‖w − w(t−1)‖22]

To understand this local optimization, recall the definition

of the Bregman divergence corresponding to a strongly

convex function ψ:

Dψ(w
′;w) = ψ(w′)− ψ(w)− 〈∇ψ(w), w′ − w〉.

Now, for each local objective φi, consider the regularized

local objective, defined as

hi(w) = φi(w) +
µ

2
‖w‖2

and its corresponding Bregman divergence:

Di(w
′;w) = Dhi

(w′;w) = Dφi
(w′;w) +

µ

2
‖w′ − w‖2.

It is not difficult to check that the local optimization prob-

lem (13) can be written as

w
(t)
i = argmin

w
φ(w(t−1)) + 〈∇φ(w(t−1)), w − w(t−1)〉

+
1

η
Di(w;w

(t−1)), (14)

where we also added the terms φ(w(t−1)) +
〈∇φ(w(t−1)), w(t−1)〉 which do not depend on w
and do not affect the optimization. The first two terms

in (14) are thus a linear approximation of the overall

objective φ(w) about the current iterate w(t−1), and do not

depend on the machine i. What varies from machine to

machine is the potential function used to localize the linear

approximation. The update (14) is in-fact a mirror descent

update (Nemirovski & Yudin, 1978; Beck & Teboulle,

2003) using the potential function hi, and step size η.

Let us examine this form of update. When µ → ∞ the

potential function essentially becomes a squared Euclidean

norm, as in gradient descent updates. In fact, when η, µ→
∞ as η̃

.
= η

µ remains constant, the update (14) becomes a

standard gradient descent update on φ(w) with stepsize η̃.

In this extreme, the update does not use the local objective

φi(w), beyond the centralized calculation of ∇φ(w), the

updates (14) are the same on all machines, and the second

round of communication is not needed. DANE reduces to

distributed gradient descent, with its iteration complexity

of O
(

L
λ log(1/ǫ)

)

.



Newton-type Distributed Optimization

Procedure DANE

Parameter: learning rate η > 0 and regularizer µ > 0
Initialize: Start at some w(0), e.g. w(0) = 0
Iterate: for t = 1, 2, . . .

Compute ∇φ(w(t−1)) = 1
m

∑m
i=1 ∇φi(w(t−1)) and distribute to all machines

For each machine i, solve w
(t)
i = argminw

[

φi(w)− (∇φi(w(t−1))− η∇φ(w(t−1)))⊤w + µ
2 ‖w − w(t−1)‖22

]

Compute w(t) = 1
m

∑m
i=1 w

(t)
i and distribute to all machines (∗)

end

Figure 1. Distributed Approximate NEwton-type method (DANE)

At the other extreme, consider the case where µ = 0 and

all local objectives are equal, i.e. hi(w) = φi(w) = φ(w).
Substituting the definition of the Bregman divergence into

(14), or simply investigating (13), we can see that w
(t)
i =

argminφi(w) = argminφ(w) = ŵ. That is, DANE con-

verges in a single iteration to the overall empirical opti-

mum. This is an ideal Newton-type iteration, where the

potential function is perfectly aligned with the objective.

Of course, if φi(w) = φ(w) for all machines i, we would

not need to perform distributed optimization in the first

place. Nevertheless, as n→ ∞, we can hope that φi(w) are

similar enough to each other, such that (14) approximates

such an ideal Newton-type iteration, gets us very close to

the optimum, and very few such iterations are sufficient.

In particular, consider the case where φi(w), and hence also

φ(w) are quadratic. In this case, the Bregman divergence

Di(w;w
(t−1)) takes the form:

1

2
(w−w(t−1))⊤(∇2φi(w

(t−1))+µI)(w−w(t−1)), (15)

and the update (14) can be solved in closed form:

w
(t)
i = w(t−1) − η(∇2φi(w

(t−1)) + µI)−1∇φ(w(t−1))

w(t) = w(t−1)

− η

(

1

m

∑

i

(∇2φi(w
(t−1)) + µI)−1

)

∇φ(w(t−1)).

(16)

Contrast this with the true Newton update:

w(t) = w(t−1)−η
(

1

m

∑

i

∇2φi(w
(t−1))

)−1

∇φ(w(t−1)).

(17)

The difference here is that in (16) we approximate the in-

verse of the average of the local Hessians with the average

of the inverse of the Hessians (plus a possible regularizer).

Again we see that the DANE update (16) approximates the

true Newton update (17), which can be performed in a dis-

tributed fashion without communicating the Hessians.

For a quadratic objective, a single Newton update is enough

to find the exact optimum. In Section 4 we rigorously ana-

lyze the effects of the distributed approximation, and quan-

tify the number of DANE iterations (and thus rounds of

communication) required.

For a general convex, but non-quadratic, objective, the

standard Newton approach is to use a quadratic approxi-

mation to the ideal Bregman divergence Dφ. This leads to

the familiar quadratic Newton update in terms of the Hes-

sian. DANE uses a different sort of approximation to Dφ:

we use a non-quadratic approximation, based on the entire

objective and not just a local quadratic approximation, but

approximate the potential on each node separately. In the

stochastic setting, this approximation becomes better and

better, and thus the required number of iterations decrease,

as n→ ∞.

Since it is notoriously difficult to provide good global

analysis for Newton-type methods, we will investigate the

global convergence behavior of DANE carefully in the next

Section but only for quadratic objective functions. This

analysis can also be viewed as indicative for non-quadratic

objectives, as locally they can be approximated by quadrat-

ics and so should enjoy the same behavior, at least asymp-

totically. For non-quadratics, we provide a rigorous conver-

gence guarantee when the stepsize η is sufficiently small

or the regularization parameter µ is sufficiently large (in

Section 5). However, this analysis does not show a bene-

fit over distributed gradient descent for non-quadratics. We

partially bridge this gap by showing that even in the non-

quadratic case, the convergence rate improves as the local

problems φi become more similar.

4. DANE for Quadratic Objectives

In this Section, we analyze the performance of DANE on

quadratic objectives. We begin in Section 4.1 with an

analysis of DANE for arbitrary quadratic objectives φi(w),
without stochastic assumptions, deriving a guarantee in

terms of the approximation error of the true Hessian. Then

in Section 4.2 we consider the stochastic setting where the



Newton-type Distributed Optimization

instantaneous objective f(w, z) is quadratic in w, utiliz-

ing a bound on the approximation error of the Hessian to

obtain a performance guarantee for DANE in terms of the

smoothness and strong convexity of f(w, z) . In Section

4.3 we also consider the behavior for stochastic optimiza-

tion problems, where λ is set as a function of the sample

size N = nm.

4.1. Quadratic φi(w)

We begin by considering the case where each local objec-

tive φi(w) is quadratic, i.e. has a fixed Hessian. The overall

objective φ(w) is then of course also quadratic.

Theorem 2. After t iterations of DANE on quadratic ob-

jectives with Hessians Hi = ∇2φi(w), we have:

‖w(t) − ŵ‖ ≤ ‖I − ηH̃−1H‖t2‖w(0) − ŵ‖,
where H = ∇2φ(w) = 1

m

∑m
i=1Hi and H̃−1 =

1
m

∑n
i=1(Hi + µI)−1.

The proof appears in Appendix B. The theorem implies that

if ‖I−ηH̃−1H‖2 is smaller than 1, we get a linear conver-

gence rate. Indeed, we would expect ‖I − ηH̃−1H‖2 ≪ 1
as long as η is close to 1 and H̃ is a good approximation for

the true Hessian H , hence H̃−1H ≈ I . In particular, if H
is not too ill-conditioned, and all Hi are sufficiently close

to their average H , we can indeed ensure H̃ ≈ H . This is

captured by the following lemma (whose proof appears in

Appendix C):

Lemma 1. If 0 < λ 4 H 4 L and for all i, ‖Hi−H‖2 ≤
β, then setting η = 1 and µ = max{0, 8β2

λ − λ}, we have:

‖I − H̃−1H‖2 ≤
{

4β2

λ2 if
4β2

λ2 ≤ 1
2

1− λ2

16β2 otherwise.

In the next Section, we consider the stochastic setting,

where we can obtain bounds for ‖Hi − H‖2 that improve

with the sample size, and plug these into Lemma 1 and

Theorem 2 to obtain a performance guarantee for DANE.

4.2. Stochastic Quadratic Problems

We now turn to a stochastic quadratic setting, where

φi(w) = F̂i(w) as in (3), and the instantaneous losses are

smooth and strongly convex quadratics. That is, for all z,

f(w, z) is quadratic in w and λ 4 ∇2
wf(w, z) 4 L.

We first use a matrix concentration bound to establish that

all Hessians Hi = ∇2F̂i(w) are close to each other, and

hence also to their average:

Lemma 2. If 0 4 ∇2
wf(w, z) 4 L for all z, then with

probability at least 1 − δ over the samples, maxi ‖Hi −
H‖2 ≤

√

32L2 log(dm/δ)
n , where Hi = ∇2F̂i(w) and H =

∇2F̂ (w).

The proof appears in appendix D. Combining Lemma 2,

Lemma 1 and Theorem 2, we can conclude:

Theorem 3. In the stochastic setting, and when the instan-

taneous losses are quadratic with λ 4 ∇f(w, z) 4 L, then

after

t = O
(

(L/λ)2

n
log

(

dm

δ

)

log

(

L‖w0 − ŵ‖2
ǫ

))

iterations of DANE, we have, with probability at least 1−δ,

that F̂ (w(t)) ≤ F̂ (ŵ) + ǫ.

The proof appears in Appendix E. From the theorem, we

see that if the condition number L/λ is fixed, then as

n → ∞ the number of required iterations decreases. In

fact, for any target sub-optimality ǫ, as long as the sam-

ple size is at least logarithmically large, namely n =
Ω
(

(L/λ)2 log(dm) log( 1ǫ )
)

, we can obtain the desired ac-

curacy after a constant or even a single DANE iteration!

This is a mild requirement on the sample size, sinceN gen-

erally increases at least linearly with 1/ǫ.

We next turn to discuss the more challenging case where

the condition number decays with the sample size.

4.3. Analysis for Regularized Objectives

Consider a stochastic convex optimization scenario where

the instantaneous objectives f(w, z) are not strongly con-

vex. For example, this is the case in linear predic-

tion (including linear and kernel classification and regres-

sion, support vector machines, etc.), and more generally

for generalized linear objectives of the form f(w, z) =
ℓz(〈w,Ψ(z)〉). For such generalized linear objectives, the

Hessian ∇2
wf(w, z) is rank-1, and so certainly not strongly

convex, even if ℓz(·) is strongly convex.

Confronted with such non-strongly-convex objectives, a

standard approach is to perform empirical minimization on

a regularized objective (Shalev-Shwartz et al., 2009). That

is, to define the regularized instantaneous objective

fλ(w, z) = f(w, z) +
λ

2
‖w‖2 (18)

and minimize the corresponding empirical objective F̂λ.

The instantaneous objective fλ(w, z) of the modified

stochastic optimization problem is now λ-strongly convex.

If f(w, z) are G-Lipschitz in w, then we have (Shalev-

Shwartz et al., 2009):

F (ŵλ) ≤ Fλ(ŵλ) ≤ Fλ(w
∗
λ) +O

(

G2

λN

)

= inf
w

(

F (w) +
λ

2
‖w‖2

)

+O
(

G2

λN

)

≤ inf
‖w‖≤B

F (w) +O
(

λB2 +
G2

λN

)

,



Newton-type Distributed Optimization

where ŵλ = argmin F̂λ(w) and w∗
λ = argminFλ(w).

The optimal choice of λ in the above is λ =
√

G2

B2N , where

B is a bound on the predictors we would like to compete

with, and with this λ we get the optimal rate:

F (ŵλ) ≤ inf
‖w‖≤B

F (w) +O
(
√

B2G2

N

)

. (19)

It is thus instructive to consider the behavior of DANE

when λ = Θ

(

√

G2

B2N

)

= Θ

(

√

G2

B2nm

)

. Plugging this

choice of λ into Theorem 3, we get that the number of

DANE iterations behaves as:

O
(

L2B2

G2
·m · log(dm) log(1/ǫ)

)

. (20)

That is, unlike distributed gradient descent, or any other

relevant method we are aware of, the number of required

iterations / communication rounds does not increase with

the sample size, and only scales linearly with the number

of machines.

5. Convergence Analysis for Non-Quadratic

Objectives

As discussed above, it is notoriously difficult to obtain

generic global analysis of Newton-type methods. Our main

theoretical result in this paper is the analysis for quadratic

objectives, which we believe is also instructive for non-

quadratics. Nevertheless, we complement this with a con-

vergence analysis for generic objectives.

We therefore return to considering generic convex objec-

tives φi(w). We also do not make any stochastic assump-

tions. We only assume that each φi(w) is Li-smooth and

λi strongly convex, and that the combined objective φ(w)
is L-smooth and λ-strongly convex.

Theorem 4. Assume that for all i, w, z, λi 4 ∇2φi(w) 4
Li and λ 4 ∇2φ(w) 4 L. Let

ρ =
1

m

m
∑

i=1

[

1

µ+ Li
− ηL

2(µ+ λi)2

]

ηλ.

If ρ > 0, then the DANE iterates satisfy φ(w(t))− φ(ŵ) ≤
(1− ρ)t[φ(w(0))− φ(ŵ)].

The proof appears in Appendix F. The theorem establishes

that with any µ > 0 and small enough step-size η, DANE

converges to ŵ. If each φi(w) is strongly convex, we can

also take µ = 0 and sufficiently small η and ensure con-

vergence to ŵ. However, the optimal setting of η and µ
above is to take µ → ∞ and set η = µ/L, in which case

ρ → λ/L, and we recover distributed gradient descent,

with the familiar gradient descent guarantee.

5 10 15 20
−6

−4

−2

0

m=4

 

 

N=6*10
3

N=10*10
3

N=14*10
3

5 10 15 20
−6

−4

−2

0

m=16

5 10 15 20
−6

−4

−2

0

5 10 15 20
−6

−4

−2

0

Figure 2. Synthetic dataset: Convergence rate for different num-

ber of machines m and sample sizes N . The top row presents

results for DANE, and the bottom row for ADMM. The x-axis is

the iteration number, and the y-axis is the logarithm (in base 10)

of the suboptimality.

We again emphasize that the analysis above is weak and

does not take into account the relationship between the lo-

cal objectives φi(w). We believe that the quadratic analy-

sis of Section 4 better captures the true behavior of DANE.

Moreover, we can partially bridge this gap by the following

result, which shows that a variant of DANE enjoys a linear

convergence rate which improves as the local objectives φi
become more similar to φ (the proof is in Appendix G):

Theorem 5. Assume that in the DANE procedure, we

replace step (∗) by w(t) = w
(t)
1 , and define h(·) =

h1(·). If there exists γ > 0 such that ∀w,w′, we have

γDh(w;w
′) ≤ Dφ(w;w

′) ≤ η−1Dh(w;w
′), then

Dh(ŵ;w
(t)) ≤ (1− ηγ)tDh(ŵ;w

(0)).

If µ is small and φi ≈ φ, then we expect γ ≈ 1 and η ≈ 1.

In this case, ηγ ≈ 1, leading to fast convergence.

6. Experiments

In this section, we present preliminary experimental re-

sults on our proposed method. In terms of tuning η, µ,

we discovered that simply picking η = 1, µ = 0 (which

makes DANE closest to a Newton-type iteration, as dis-

cussed in Section 3) often results in the fastest convergence.

However, in unfavorable situations (such as when the data

size per machine is very small), this can also lead to non-

convergence. In those cases, convergence can be recovered

by slightly increasing µ to a small positive number. In the

experiments, we considered µ = 0, 3λ. These are consid-

erably smaller than what our theory indicates, and we leave

the question of the best parameter choice to future research.

We begin by considering a simple quadratic problem us-



Newton-type Distributed Optimization

COV1 ASTRO MNIST-47

m 2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64

µ = 0 2 2 2 2 2 3 6 6 6 6 12 * 5 5 5 5 6 *

µ = 3λ 9 9 9 9 9 9 14 14 14 14 14 14 10 10 10 10 10 10

ADMM 3 3 5 9 16 31 24 20 16 16 14 20 23 23 27 21 31 28

Figure 3. Number of iterations required to reach < 10−6 accuracy on 3 datasets, for varying number of machines m. Results are for

DANE using η = 1 and µ = 0, λ, 3λ, and for ADMM. * Indicates non-convergence after 100 iterations.

0 5 10

0.229

0.23

0.231

COV1

0 5 10
0.04

0.05

0.06

0.07

ASTRO

0 5 10

0.03

0.04

0.05

0.06

MNIST−47

 

 
DANE

ADMM

OSA

Opt

Figure 4. Average regularized smooth-hinge loss on the test set as a function of the iteration number. OSA represents bias-corrected

one-shot parameter averaging, which requires a single iteration. ‘Opt’ is the average loss of the exact regularized loss minimizer.

ing a synthetic dataset, where all parameters can be explic-

itly controlled. We generated N i.i.d. training examples

(x, y) according to the model y = 〈x,w∗〉 + ξ , x ∼
N (0,Σ), ξ ∼ N (0, 1), where x ∈ R

500, the covariance

matrix Σ is diagonal with Σi,i = i−1.2, and w∗ is the

all-ones vector. Given a set of examples {x, y} which is

assumed to be randomly split to different machines, we

then solved a standard ridge regression problem of the form

minw
1
N

∑N
i=1(〈x,w〉−y)2+0.005w2, using DANE (with

η = 1, µ = 0). Figure 2 shows the convergence behavior of

the algorithm for different number of machinesm as the to-

tal number of examples N (and hence also the data size per

machine) increases. For comparison, we also implemented

distributed ADMM (Boyd et al., 2011), which is a stan-

dard method for distributed optimization but does not take

advantage of the statistical similarity between problems at

different machines. The results for DANE clearly indicate a

linear convergence rate, and moreover, that the rate of con-

vergence improves with the data size, as predicted by our

analysis. In contrast, while more data improves the ADMM

accuracy after a fixed number of iterations, the convergence

rate is slower and does not improve with the data size5.

We now turn to present results for solving a smooth non-

quadratic problem, this time using non-synthetic datasets.

Specifically, we solved a regularized loss minimization

problem of the form minw
1
N

∑N
i=1 ℓ(yi〈xi, w〉)+ λ

2 ‖w‖2,
where ℓ is the smooth hinge loss (as in (Shalev-Shwartz &

Zhang, 2013)) and the training examples {(xi, yi)} are ran-

domly split among different machines. We experimented

on 3 datasets: COV1 and ASTRO-PH (as used in e.g.

5To be fair, ADMM performs a single distributed averaging
computation per iteration, while DANE performs two. However,
counting iterations is a more realistic measure of performance,
since both methods also perform a full-scale local optimization at
each iteration.

(Shalev-Shwartz & Zhang, 2013; Rakhlin et al., 2012)), as

well as a subset of the MNIST digit recognition dataset

which focuses on discriminating the 4 from the 7 digits6.

In figure 3, we present the number of iterations required for

DANE to reach accuracy < 10−6 for η = 1 and µ = 0, 3λ,

and for different number of machines. We also report re-

sults for ADMM on the same datasets. As in the syn-

thetic case, DANE explicitly takes advantage of the sim-

ilarity between problems on different machines, and we

indeed observe that it tends to converge in less iterations

than ADMM. Finally, note that for µ = 0 and many ma-

chines (i.e. few data points per machine), DANE may not

converge, and increasing µ fixes this at the cost of slowing

down the average convergence rate.

Finally, we examine the convergence on these datasets in

terms of the average loss on the test set. In figure 4, we

present the results for m = 64 machines on the three

datasets, using DANE (with µ = 3λ) and ADMM. We

also present for comparison the objective value obtained

using one-shot parameter averaging (OSA), using bias cor-

rection as proposed in (Zhang et al., 2013). The figure

highlights the practical importance of multi-round commu-

nication algorithms: while DANE and ADMM converge

to the value achieved by the regularized loss minimizer,

the single-round OSA algorithm may return a significantly

suboptimal result.

Acknowledgements: Ohad Shamir and Nathan Srebro

are supported by the Intel ICRI-CI Institute. Ohad Shamir

is further supported by an Israel Science Foundation grant

425/13 and an FP7 Marie Curie CIG grant.

6We used λ = 10−5 for COV1, λ = 0.0005 for ASTRO and
λ = 0.001 for MNIST-47. For MNIST-47, we randomly chose
10,000 examples as the training set, and the rest of the examples
as a test set.



Newton-type Distributed Optimization

References

Agarwal, A., Chapelle, O., Dudı́k, M., and Langford, J. A

reliable effective terascale linear learning system. CoRR,

abs/1110.4198, 2011.

Beck, A. and Teboulle, M. Mirror descent and nonlinear

projected subgradient methods for convex optimization.

Oper. Res. Lett., 31(3):167–175, 2003.

Bekkerman, R., Bilenko, M., and Langford, J. Scaling up

machine learning: Parallel and distributed approaches.

Cambridge University Press, 2011.

Boyd, S.P., Parikh, N., Chu, E., Peleato, B., and Eckstein,

J. Distributed optimization and statistical learning via the

alternating direction method of multipliers. Foundations

and Trends in Machine Learning, 3(1):1–122, 2011.

Cotter, A., Shamir, O., Srebro, N., and Sridharan, K. Better

mini-batch algorithms via accelerated gradient methods.

In NIPS, 2011.

Dekel, O., Gilad-Bachrach, R., Shamir, O., and Xiao,

L. Optimal distributed online prediction using mini-

batches. Journal of Machine Learning Research, 13:

165–202, 2012.

Deng, W. and Yin, W. On the global and linear conver-

gence of the generalized alternating direction method of

multipliers. Technical report, Rice University Technical

Report TR12-14, 2012.

Duchi, J., Agarwal, A., and Wainwright, M. Dual averaging

for distributed optimization: Convergence analysis and

network scaling. IEEE Trans. Automat. Contr., 57(3):

592–606, 2012.

Hong, M. and Luo, Z.-Q. On the linear convergence of

the alternating direction method of multipliers. CoRR,

abs/1208.3922, 2012.

Mahajan, D., Keerthy, S., Sundararajan, S., and Bottou, L.

A parallel sgd method with strong convergence. CoRR,

abs/1311.0636, 2013.

Nemirovski, A. and Yudin, D. On cesaro’s convergence

of the gradient descent method for finding saddle points

of convex-concave functions. Doklady Akademii Nauk

SSSR, 239(4), 1978.

Nemirovsky, A. and Yudin, D. Problem Complexity and

Method Efficiency in Optimization. Wiley-Interscience,

1983.

Rakhlin, A., Shamir, O., and Sridharan, K. Making gradi-

ent descent optimal for strongly convex stochastic opti-

mization. In ICML, 2012.

Recht, B., Re, C., Wright, S., and Niu, F. Hogwild: A

lock-free approach to parallelizing stochastic gradient

descent. In NIPS, 2011.

Richtárik, P. and Takác, M. Distributed coordinate de-

scent method for learning with big data. CoRR,

abs/1310.2059, 2013.

Shalev-Shwartz, S. and Zhang, T. Stochastic dual coor-

dinate ascent methods for regularized loss. Journal of

Machine Learning Research, 14(1):567–599, 2013.

Shalev-Shwartz, S., Shamir, O., Srebro, N., and Sridharan,

K. Stochastic convex optimization. In COLT, 2009.

Sridharan, K., Shalev-Shwartz, S., and Srebro, N. Fast rates

for regularized objectives. In Advances in Neural Infor-

mation Processing Systems, pp. 1545–1552, 2008.

Tropp, J. User-friendly tail bounds for sums of random

matrices. Foundations of Computational Mathematics,

12(4):389–434, 2012.

Yang, T. Trading computation for communication: Dis-

tributed stochastic dual coordinate ascent. In NIPS,

2013.

Zhang, Y., Duchi, J., and Wainwright, M. Communication-

efficient algorithms for statistical optimization. Journal

of Machine Learning Research, 14:3321–3363, 2013.

Zinkevich, M., Weimer, M., Smola, A., and Li, L. Paral-

lelized stochastic gradient descent. In NIPS, pp. 2595–

2603, 2010.


