
ORE Open Research Exeter

TITLE

Communication-Efficient Federated Learning for Wireless Edge Intelligence in IoT

AUTHORS

Mills, J; Hu, J; Min, G

JOURNAL

IEEE Internet of Things

DEPOSITED IN ORE

27 November 2019

This version available at

http://hdl.handle.net/10871/39842

COPYRIGHT AND REUSE

Open Research Exeter makes this work available in accordance with publisher policies.

A NOTE ON VERSIONS

The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of
publication

http://hdl.handle.net/10871/39842

1

Communication-Efficient Federated Learning for

Wireless Edge Intelligence in IoT
Jed Mills, Jia Hu*, Geyong Min*

Abstract—The rapidly expanding number of IoT devices is
generating huge quantities of data, but public concern over
data privacy means users are apprehensive to send data to a
central server for Machine Learning (ML) purposes. The easily-
changed behaviours of edge infrastructure that Software Defined
Networking provides makes it possible to collate IoT data at
edge servers and gateways, where Federated Learning (FL) can
be performed: building a central model without uploading data to
the server. FedAvg is a FL algorithm which has been the subject
of much study, however it suffers from a large number of rounds
to convergence with non-Independent, Identically Distributed
(non-IID) client datasets and high communication costs per
round. We propose adapting FedAvg to use a distributed form
of Adam optimisation, greatly reducing the number of rounds
to convergence, along with novel compression techniques, to
produce Communication-Efficient FedAvg (CE-FedAvg). We per-
form extensive experiments with the MNIST/CIFAR-10 datasets,
IID/non-IID client data, varying numbers of clients, client par-
ticipation rates, and compression rates. These show CE-FedAvg
can converge to a target accuracy in up to 6× less rounds than
similarly compressed FedAvg, while uploading up to 3× less data,
and is more robust to aggressive compression. Experiments on
an edge-computing-like testbed using Raspberry Pi clients also
show CE-FedAvg is able to reach a target accuracy in up to 1.7×

less real time than FedAvg.

Index Terms—Federated Learning, Internet of Things, Dis-
tributed Computing, Edge Computing, Compression.

I. INTRODUCTION

THERE are over 8 billion Internet of Things (IoT) devices

worldwide, as of 2019 [1]. These are typically low-

powered, embedded devices used for data collection. The

expansion of the number of IoT devices has therefore led to an

explosion in the quantity of data available for organisations to

use for Machine Learning (ML) purposes. These organisations

can use this data for insights, consumer products, and scientific

research. However, there is growing public concern over the

distribution of private data. Many IoT devices, such as security

cameras, fitness and health trackers and smartphones gather

sensitive data that users would not wish to share with a central

server.

The combination of increasing IoT devices and data, along

with user privacy concerns presents a series of opportunities

and challenges for ML. There is the potential to use the

large number of IoT devices to perform distributed ML, rather

J. Mills, J. Hu and G. Min are with the College of Engineering, Maths and
Physical Science, University of Exeter, United Kingdom. E-mail: {jm729,
j.hu, g.min}@exeter.ac.uk.

* Corresponding authors.
Copyright (c) 20xx IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

than in a central server, distributing expensive training and

inference while keeping private data on user devices. However,

distributed ML schemes are typically designed for the data-

centre, assuming high performance computing and networking

hardware, contrasting the highly heterogeneous computing and

communication capabilities of low-powered IoT devices. Also,

IoT devices collect data from different users, so the distribu-

tion over devices can be highly non-Independent, Identically

Distributed (non-IID), making it difficult to create ML models

with good performance.

Software Defined Networking (SDN) has the potential to

help alleviate some of the distributed ML problems. Edge

network architecture typically involves IoT devices connected

to IoT gateways. Gateways and similar devices often possess

much more computing and storage capacity than IoT devices

and are located at the network edge, closer to user devices,

meaning data does not need to be centrally collected. SDN

could be used to easily alter the behaviour of IoT gateways:

collecting data from a group of local IoT devices and perform-

ing distributed ML, or delivering these data securely to nearby

edge servers.

To address the issue of distributed ML, the concept of

Federated Learning (FL) [2] – collaboratively training a model

across devices without sharing their data – was introduced.

McMahan et al. [3] proposed an implementation of FL with

their FedAvg algorithm, designed for user devices such as

smartphones. In FedAvg, clients independently train Deep

Neural Networks (DNNs) on their local data and periodically

average them. FedAvg has been shown to work in real-world

settings by Google with their GBoard [4] next-word-prediction

and emjoi-prediction [5] software. FedAvg can be used in the

IoT/SDN framework described above to provide distributed

ML at the network edge.

Modern DNNs contain a huge number of weights, in the

order of tens to hundreds of millions. As FedAvg requires

uploading and downloading these models between the clients

and the central server, several works have been published on

reducing the amount of communication performed by FedAvg

to reduce bottlenecks and help ease network use.

A standard method of training DNNs is minibatch-

Stochastic Gradient Descent (mb-SGD): model weights are

updated with their gradients multiplied by a fixed learning rate.

Most works on FL use mb-SGD for their DNNs, however,

there are more sophisticated optimisation techniques based

on mb-SGD, such as AdaGrad [6] and RMSProp [7]. Adam

[8] is one popular technique that features both per-parameter

learning rates and momentum. It has been shown to be a very

efficient optimizer for many tasks, and has the potential to

2

improve the convergence rate of FedAvg.

FedAvg therefore has the following problems when con-

sidered with the IoT edge-computing scenario. First is the

high communication cost per round due to large models being

sent between the clients and the server, and the second is the

high number of rounds to convergence, especially in non-

IID settings. This paper proposes Communication-Efficient

FedAvg (CE-FedAvg), which reduces the number of rounds to

convergence, and the total data uploaded per round over Fe-

dAvg. We therefore make the following contributions:

• Proposal of the CE-FedAvg algorithm, which is com-

posed of two parts: distributed Adam optimisation and

compression of uploaded models. CE-FedAvg reduces the

number of communication rounds taken to reach a target

accuracy, and the total data uploaded per round compared

to uncompressed FedAvg.

• We develop two novel schemes for the quantization of

communicated weights and moment values of Adam

(Uniform and Exponential Quantization). These two

schemes are used alongside sparsification and Golomb

encoding for the compression in CE-FedAvg.

• Extensive simulated experiments of CE-FedAvg using the

MNIST and CIFAR-10 datasets, three DNN architectures,

and varying numbers of clients and client participation

rates. These show CE-FedAvg is able to reach a target

accuracy in far fewer rounds than FedAvg in non-IID

scenarios, and that it is more robust to aggressive com-

munication reduction.

• Further experimentation on an edge-computing-like

testbed using Raspberry Pi clients show CE-FedAvg

reduces the real time to convergence over FedAvg.

The remainder of this article is structured as follows: we

outline related work in the fields of FL and ML for the IoT; we

then describe our proposed algorithm, CE-FedAvg, in detail;

after that we outline the simulation and testbed experiments

we ran comparing CE-FEdAvg to FedAvg; and we finally give

our conclusions of this work in the last section.

II. RELATED WORK

A. Federated Learning

McMahan et al. [3] proposed the original FedAvg algorithm

to train an aggregate model without uploading client data

to a server. FedAvg drastically reduces total communicated

data compared to datacentre-style distributed SGD (where

each worker performs a single step of SGD before aggrega-

tion).

FL considers clients with non-IID data distributions, which

is an obstacle to training a good central model. Zhao et al.

[9] proposed sharing a small amount of data between non-IID

clients to reduce the difference between clients distributions,

increasing the maximum accuracy their FedAvg models were

able to attain.

Devices participating in FL are assumed to have highly het-

erogeneous computing and networking resources. Wang et al.

[10] addressed this with a control algorithm that dynamically

changes the number of local SGD updates that clients perform

before uploading their models, based on a trade-off between

the computing power and networking bandwidth available to

the client.

Several papers have been written on the task of reducing

the amount of data communicated during FedAvg. Konečný

et al. [11] introduced the concepts of structured and sketched

model updates, and were able to significantly reduce the

quantity of uploaded data during training. Similarly, Sattler et

al. [12] demonstrated their Sparse Binary Compression system

against uncompressed FedAvg, and were able to achieve

better accuracy while communicating much less data. Lin

et al. proposed Deep Gradient Compression [13], a system

applicable to FedAvg, where gradient updates are accumulated

at clients until their magnitude is greater than a threshold.

Sattler et al. [14] proposed Sparse Ternary Compression to

compress weight updates during FedAvg, including using

Golomb Encoding [15] to compress the indexes of weights

in sparse matrices produced by sparsification.

As well as compression of weights, other techniques to

reduce communication during FedAvg have been proposed.

Chen et al. [16] aggregated shallow layers more frequently

than deep layers (they assert that shallow layers learn general

features and deep layers learn more specific features). Their

scheme was able to converge to a target accuracy with up to

7× less communication than FedAvg. Liu et al. [17], proposed

having clients aggregate with intermediate servers which then

aggregate with a main server with two given frequencies. Their

experiments showed that increasing aggregation frequency

causes the global model to converge faster (as would be

expected), and that the global aggregation frequency has the

biggest impact on convergence rate.

Leroy et al. [18] proposed adapting the Adam optimizer to

the FedAvg algorithm. In their system, clients perform SGD

using all their local data, and send their weight updates to the

server. The server holds 1st and 2nd moment values for each

weight, which it uses to compute the central model weight

updates using the Adam update rule. However, the way we

use Adam is different in our work from [18]: our method uses

Adam optimisation at clients, and the Adam values are also

aggregated at the server, as opposed to using Adam solely

at the server. We also propose compression schemes for our

version, which Leroy et al. do not.

B. Internet of Things and Machine Learning

Some works have been published combining Deep Learning

and the IoT. One seminal work by Liu et al. [19] created a

system for identifying foods. In it, image preprocessing and

segmentation was performed on edge devices, and classifi-

cation was done on a central server, reducing the latency at

inference time. Li et al. [20] put forward a similar idea where

a ML model was trained in the cloud, then initial layers of the

model were distributed to edge servers. At inference time, the

edge servers compute the first layers before sending the result

of these to the cloud for the final inference, resulting in less

data sent to the cloud over sending the raw input.

For training near the network edge, Kyu et al. [21] created

Fog Privacy-Preserving Deep Learning (FPPDL), which com-

bines privacy-preserving techniques with intermediate-layer

3

aggregation of IoT data at ‘Fog’ nodes before aggregation with

a central server.

ML has been applied to a large variety of edge-like devices.

Reina et al. [22] treated Unmanned Aerial Vehicles (UAVs)

as edge devices, and solved the Multi-Objective Optimization

Problem for their area coverage using a Multi-Subpopulation

Genetic Algorithm.

Pathinarupothi et al. [23] developed a unique IoT-based

system to provide health alerts to doctors for patients. Patients

were fitted with multiple physiological sensors, which could

be connected to the internet using the patient’s smartphone as

a gateway. The gateways had software to determine if doctors

need be alerted of patients. This system shows the ability for

smartphones to be used as intelligent, programmable gateways

for nearby IoT devices, which could be applicable to the

scheme proposed in this work.

Other authors have investigated the resource consumption

of DNNs on IoT and edge devices. Chandakkar et al. [24]

developed a system for re-training and pruning networks at

the edge as nodes receive data over time. Similarly, DeepIoT

[25] was created to reduce the size of DNNs for inference

by using a second network to determine the best weights to

drop from the original network. Guo et al. [26] proposed a

novel approach that involved training a DNN and using an

automata to gradually prune the network weights over time.

They were able to slightly improve the MNIST performance

of dense networks with this method while pruning > 40% of

weights.

Most current work exploring ML and the IoT focuses

on centralised training, and using IoT/edge computing for

inference, or on decreasing the size of DNNs for these devices.

This work, however, investigates decentralised training using

full DNNs.

III. CE-FEDAVG

The FedAvg algorithm has a single master model that is an

aggregate of client models. For each round of communication,

the server selects a subset of clients and pushes the master

model to these clients. Each client then performs a predeter-

mined number of rounds of gradient descent using the client’s

local data, pushes their model weight deltas to the server, and

the server then averages these updates to become the new

master model.

FedAvg features a fixed learning rate across devices as

per normal mb-SGD. As shown below, this can result in a

very large number of rounds required to converge to a given

accuracy. mb-SGD can result in low convergence rates in later

rounds of training because some weights need finer ‘tuning’

than others. Adam optimization is a popular alternative to

standard mb-SGD. It stores two values for each model weight:

m (the 1st moment) and v (the 2nd moment), which are

used along with gradients computed by backpropagation and

global decaying learning rates to update model weights for

each minibatch. Adam reduces both the problems of weights

requiring different degrees of tuning (having adaptive rates for

each weight), and local minima (via momentum).

Alongside this, in FedAvg, the entire DNN model is sent

from clients to server each round. Modern DNNs have a

Fig. 1. One communication round of CE-FedAvg: 1. Clients download the
global model weights, 1st and 2nd moments (ω,m, v); 2. Clients perform
training on their IoT-derived datasets; 3. Clients compress their models; 4.
Clients upload their compressed parameters and indexes (ω′,m′, v′, i); 5. The
server decompresses the model weights and moments; 6. The server aggregates
all client models before starting a new round of training.

huge number of weights, and the upload bandwidth of edge

clients is typically far lower than the download bandwidth.

Therefore, uploading models to the server is a significant

potential bottleneck of the system. Previous works have shown

that these uploaded weight tensors can be compressed without

significantly harming the performance of the model [11] [12]

[13] [14]. However, these schemes typically increase the

number of rounds FedAvg takes to converge, albeit with lower

total data uploaded by clients.

To address the above problems, we propose CE-FedAvg:

a scheme that both reduces the number of rounds taken to

converge to a given accuracy and decreases the total data

uploaded during training over FedAvg. Algorithm 1 shows the

details of CE-FedAvg. The UniQ, UniDQ, ExpQ and ExpDQ

functions are shown in Algorithms 2 and 3.

In CE-FedAvg, the server first initialises the global model

with random weights and 0 values for the 1st and 2nd Adam

moments (line 3). Each communication round, the server

selects a subset of clients (line 5) and sends the weights and

moments to them. In our algorithm, clients are selected at

random, but in reality clients would be selected based on their

power/communication properties at the time as in [4]. These

clients then perform their local Adam SGD (lines 7-8), and

upload their data to the server. The server dequantizes and

reconstructs the sparse updates from the clients (lines 10-17),

averages the updates (lines 20-22) and starts the next round.

Each client updates by replacing their current model with the

downloaded global weights and moments (line 27), performing

E epochs of Adam SGD (lines 28-34), sparsifying and then

quantizing the model deltas and sparse indexes (lines 36-40)

4

and uploading the model to the server. Barring compression,

CE-FedAvg would communicate 3× the data as FedAvg (the

shapes of m and v are the same as ω). However, as shown later,

ω, m and v can be aggressively compressed in CE-FedAvg

while still taking less rounds to converge than FedAvg.

Algorithm 1 CE-FedAvg

1: Server Executes:

2: // Global weights, 1st and 2nd moments

3: initialise ω; m← 0; v← 0
4: while termination condition not met do

5: S ← random set of max(C ·K, 1) clients

6: for each k ∈ S in parallel do

7: (ωq,mq,vq, g, b
∗, lzmin, lzmax, gzmin,

8: gzmax, bm, bv)← ClientUpdatek(ω,m,v)
9: // Decompress deltas and indexes

10: ∆ωk ← 0

11: ∆mk ← 0

12: ∆vk ← 0

13: idxs← GDecode(g, b∗)
14: ∆ωk,idxs ← UniDQ(ωq, lzmin,

15: lzmax, gzmin, gzmax)
16: ∆mk,idxs ← ExpDQ(mk, bm)
17: ∆vk,idxs ← ExpDQ(vk, bv)
18: end for

19: // Update global weights

20: ω←ω+
∑K

k=1
nk

n ∆ωk

21: m←m+
∑K

k=1
nk

n ∆mk

22: v← v +
∑K

k=1
nk

n ∆vk

23: end while

24:

25: function CLIENTUPDATEk(ω,m,v)

26: // Client weights, 1st and 2nd moments

27: ωk ←ω; mk ←m; vk ← v

28: for epoch ← 1 : E do

29: batches ← (data Pk in batches of size B)

30: for each b ∈ batches do

31: // Perform Adam gradient descent

32: ωk,mk,vk ← AdamSGD(ωk,mk,vk)
33: end for

34: end for

35: // Compress ωk, mk, vk deltas and indexes

36: ωs, idxs← Sparsify(ωk −ω)
37: g, b∗ ← GEncode(idxs)
38: ωq, lzmin, lzmax, gzmin, gzmax ← UniQ(ωs)
39: mq, bm ← ExpQ(mk −m)
40: vq, bv ← ExpQ(vk − v)
41: Return (ωq,mq,vq, g, b

∗, lzmin, lzmax,

42: gzmin, gzmax, bm, bv) to server

43: end function

CE-FedAvg provides other practical benefits over FedAvg.

Due to the adaptive learning rates inherited from Adam,

CE-FedAdam works well with the default Adam parameters.

FedAvg, on the other hand, requires finding learning rates for

each specific dataset and scenario [3]. Not only is this time-

consuming and costly, but in the FL setting, the server does not

have access to client datasets, so it is unclear how this would

be done in reality. Also, as CE-FedAvg reduces the number of

rounds of communication to reach a target accuracy, the total

amount of computation required of clients is also reduced:

the extra cost of performing one round of CE-FedAvg over

FedAvg is outweighed by reduced rounds of learning. We are

not aware of any work on FL that reduces the amount of

computation at clients in this way.

IV. COMPRESSION STRATEGIES

Previous work compressing the models uploaded by clients

typically rely on sparsification of weights and/or quantization

of weights from typical 32-bit floats.

Algorithm 2 Uniform Quantization (UniQ) and Dequantiza-

tion (UniDQ)

1: function UNIQ(a)

2: lzmin ← min(a−)
3: lzmax ← max(a−)
4: gzmin ← min(a+)
5: gzmax ← max(a+)
6: q← 0|a| // initialise q, type 8-bit int

7: qa<0 ← ⌊
127

lzmax−lzmin
(aa<0 − lzmin)⌋

8: qa>0 ← 128 + ⌊ 127
gzmax−gzmin

(aa>0 − gzmin)⌋
9: return q, lzmin, lzmax, gzmin, gzmax

10: end function

11:

12: function UNIDQ(q, lzmin, lzmax, gzmin, gzmax)

13: d← 0|q| // initialise d, type 32-bit float

14: dq<128 ← (lzmax−lzmin

127 qq<128) + lzmin

15: dq≥128 ← (gzmax−gzmin

127 (qq≥128 − 128)) + gzmin

16: return d

17: end function

Our proposed technique comprises of sparsification fol-

lowed by quantization. To sparsify gradients, for each tensor,

the top (s − 1)% of deltas with the largest absolute value

are chosen, and they are extracted along with their (flattened)

indexes. In CE-FedAvg, the corresponding m and v deltas are

also sent along with the weight deltas, using the same indexes.

We found that if non-corresponding m and v values are sent

(i.e. the m and v tensors are sparsified independently, in the

same manner as the weight tensors) this quickly produces

exploding gradients at the clients, likely due to stale m

and v values producing problems in the Adam optimization

algorithm.

After sparsification, the weight deltas, m and v are quan-

tized from 32-bit floats to 8-bit unsigned ints. The weight

deltas contain positive and negative values with the greatest

(s−1)% of magnitudes, and are quantized as per the Uniform

Quantization scheme shown in Algorithm 2. To quantize using

Uniform Quantization, the values with the greatest positive and

greatest negative, and lowest positive and lowest negative are

chosen (lines 2-5). These are used to map all values lower than

zero to the integers 0-127 (line 7) and values greater than zero

to 128-255 (line 9). To dequantize, the reverse functions are

applied (lines 14-15) to return a vector of floats.

Analysis of m and v values produced by Adam show that

there is a large range in the scale of these values: the authors

5

experiencing values with exponents ranging from 10−1 to to

10−35. Attempts to quantize m and v deltas show that they

are very sensitive to errors in their exponent, and quantizing

them using Uniform Quantization or schemes from other

works results in exploding gradients within a few rounds.

Therefore, we propose a different method of quantization,

dubbed Exponential Quantization, for these deltas.

Algorithm 3 Exponential Quantization (ExpQ) and Dequan-

tization (ExpDQ)

1: function EXPQ(a)

2: b← min(abs(a))
1

127

3: q← 0|a| // initialise q, type 8-bit int

4: p← ⌊ 1
log(b) log(abs(a))⌋

5: qa<0 ← abs(pa<0)
6: qa>0 ← 128 + abs(pa>0)
7: return q, b

8: end function

9:

10: function EXPDQ(q, b)

11: d← 0|q| // initialise d, type 32-bit float

12: d0<q<128 ← −b
−q0<q<128

13: dq≥128 ← b128−qq≥128

14: return d

15: end function

In Exponential Quantization, negative values are again

mapped to the range 0-127, and positive to 128-255. Algorithm

3 shows the procedure. To quantize a tensor, the smallest

absolute value, δ, is found, and b = δ−1/127 is computed

(line 2). This provides the base for quantization: the minimum

base with exponent of 127 able to represent the value with the

smallest magnitude in the tensor. Using the minimum possible

base provides the highest resolution for the quantized values.

The logarithm with base b for all values in the tensor is then

found and rounded to the nearest integer (line 4), with 128

added to positive values to map them to 128-255 (line 6). To

dequantize, b is simply raised to the power of q for each value,

times by −1 for q < 128 (lines 12-13).

The last item to be compressed are the indexes of the values

in the sparse arrays sent from clients to server. For these

values, we use the lossless Golomb Encoding [15] technique as

used by Sattler et al. [14] in their Sparse Ternary Compression

scheme.

Using these techniques, compressed FedAvg therefore up-

loads for each weight tensor: the weight deltas (8-bit integers);

the four min/max values from Uniform Quantization (4 × 32
bits); their indexes (Golomb encoded); and b∗ (a 32-bit float

used for Golomb encoding). CE-Fedvgm must communicate

all of these, plus the m and v deltas (both 8-bit integers) and

the base, b for both of these from Exponential Quantization

(32-bit floats). The total number of uploaded bits after com-

pression, per client per round, is therefore:

FedAvg: bitsup = 160|W |+ (1− s)(8 + gs)
∑

ω∈Ω

|ω| (1)

CE-FedAvg: bitsup = 224|W |+(1−s)(24+gs)
∑

ω∈Ω

|ω| (2)

where s is the sparsity, Ω is the set of weight tensors

comprising the network, and gs is the expected number of

bits needed to Golomb encode one index value for a given

sparsity.

Fig. 2. Top: expected number of bits per value, gs, using Golomb Encoding
versus sparsity. Bottom: compression ratio of CE-FedAvg and FedAvg, and
CE-FedAvg:FedAvg uploaded data ratio versus sparsity.

The implementation of Golomb Encoding (GE) [15] is the

same as used in [14]. The expected number of bits per value

for a given sparsity, gs, is given as:

gs = b∗ +
1

1− s2
b∗

(3)

b∗ = 1 + ⌊log2(
φ− 1

s
)⌋ (4)

where φ =
√
5+1
2 ≈ 1.62 is the golden ratio. The value of b∗

is sent from client to server to convert the GE bit string back

to integer values.

Plotting gs (Figure 2, top), the second terms of the above

equations, and the nominal (without |W | terms) ratio of CE-

FedAvg to FedAvg uploaded data with different s (Figure 2,

bottom) shows that CE-Fedvg compresses more than FedAvg

using this scheme. This means the total amount of data

uploaded by a CE-FedAvg client in a single round is between

2.6−2× that of FedAvg for 0.5 ≤ s < 1.0, as opposed to 3×

6

if there was no compression. However, despite communicating

2− 2.6× more data than FedAvg per client per round, due to

the reduction in rounds achieved by CE-FedAvg, clients still

upload less total data than FedAvg in many cases.

V. EXPERIMENTS

A. Simulation Setup

A series of experiments were conducted to evaluate CE-

FedAvg against FedAvg. The experiments were image

classification tasks using the MNIST [27] and CIFAR10 [28]

datasets. Models were implemented using Tensorflow [29].

MNIST: 28 × 28 greyscale images of handwritten

digits in 10 classes. Two models were trained

on this dataset. The first (MNIST-2NN) had

two fully connected layers of 200 neurons with

ReLU activation, and a softmax output layer.

The second (MNIST-CNN) was a convolutional

network consisting of: two 5 × 5 convolutional

layers with 32 and 64 output neurons, respectively,

each followed by 2 × 2 max pooling and ReLU

activation; a fully connected layer with 512 neurons

and ReLU activation; and a softmax output layer.

CIFAR10: 32 × 32 colour images of objects in 10

classes. One network (CIFAR-CNN) was trained

on this dataset with: two 3× 3 convolutional layers

with 32 output neurons, L2 regularization and

each followed by batch normalization; a dropout

layer with d = 0.2, two 3× 3 convolutional layers

with 64 output neurons, L2 regularization, and

batch normalization; a second dropout layer with

d = 0.3; two final 3 × 3 convolutional layers with

L2 regularization and batch normalization; a final

d = 0.4 dropout layer; and a softmax output layer.

The networks were trained on the datasets using differing

numbers of clients, classes per client, client participation rate,

compression rates, and either FedAvg or CE-FedAvg until

a given target accuracy was achieved. The models had the

following target accuracies: MNIST-2NN, 97%; MNIST-CNN,

99%; CIFAR-CNN, 60%. For each setting, values of E were

tested to find the best for that setting, and when using FedAvg,

different learning rates were also tested.

The entire dataset was split across all clients in each

case. Therefore, increasing numbers of clients resulted in less

samples per worker. To produce IID data, the datasets were

shuffled and each client given an equal portion of the data.

For non-IID data, the datasets was sorted by class, divided

into slices, and each client was either given two slices. This

resulted in most clients having data from only two classes.

The test data for each dataset was taken from the official test-

sets.

B. Simulation Results

We ran experiments using FedAvg and CE-FedAvg to reach

a given target accuracy as described above. The networks

were run with IID (Y = 10), and non-IID (Y = 2) data

partitioning, where Y is the number of classes per worker.

For FedAvg, multiple global learning rates were also trialled

for each scenario. The following tables show the average

number of rounds to reach a given target accuracy for the

best parameter setup in each case. ‘NC’ is used where no set

of parameters could be found to get the algorithm to converge

to the target. Sparsity rates of s = {0.6, 0.9, 0.95} provides

approximately {7, 25, 53}× compression for FedAvg, and

approximately {9, 33, 68}× compression for for CE-FedAvg,

respectivley, resulting in a FedAvg:CE-FedAvg uploaded data

ratio per round of of ≈ 1 : 2.3.

TABLE I
ROUNDS REQUIRED TO REACH TARGET TEST ACCURACIES FOR FEDAVG

(GREY) AND CE-FEDAVG (WHITE), WITH UPLOAD SPARSITY s = 0.6.

MNIST-2NN

Y
W 10 20 40
C 0.5 1.0 0.5 1.0 0.5 1.0

10
2.0 2.0 3.8 4.0 7.2 7.2
2.8 2.0 4.2 4.0 8.2 7.4

2
134.8 118.0 143.8 117.2 171.6 152.4
79.4 56.2 77.6 60.8 81.6 60.8

MNIST-CNN

10
3.2 3.0 7.2 4.4 10.0 9.6
3.0 3.0 4.2 4.0 8.6 8.4

2
143.2 121.4 146.6 119.4 190.2 230.0
56.4 36.2 54.0 41.0 58.8 43.0

CIFAR-CNN

10
3.0 3.0 5.2 5.0 10.6 9.8
2.8 3.0 3.0 3.0 5.2 5.4

2
111.2 99.2 159.2 138.2 225.2 241.0
80.2 82.8 58.6 75.4 53.8 92.7

Table I shows that more rounds are required to converge

in non-IID scenarios than IID, as is consistent with other FL

works. As clients’ distributions are very different in non-IID

scenarios, their models diverge more between aggregations,

harming the global model. Table I also shows that with

moderate compression, CE-FedAvg was able to reach the

target in significantly fewer rounds in non-IID scenarios.

This may be because of CE-FedAvg’s adaptive learning rates:

Adam was able to make more fine-tuned changes to the

worker models between aggregations so these models did

not diverge as much. CE-FedAvg did comparatively better

with more workers/decreasing dataset size per worker. CE-

FedAvg reduced the rounds taken by ≥ 2.3× in 10 cases,

including all the MNIST-CNN non-IID cases. In the MNIST-

CNN, W = 40, C = 0.5, Y = 2 case, CE-FedAvg reduced

the number of rounds by 5.3× over FedAvg.

Tables II and III show that higher compression rates increase

the number of rounds to reach the target, especially in non-

IID cases. Again, in all non-IID cases, CE-FedAvg is able

to reach the target far faster than FedAvg. For s = 0.9, CE-

FedAvg reached the target in ≥ 2.3× less rounds in 7 cases.

For s = 0.95, CE-FedAvg took ≥ 2.3× less rounds in 5 cases.

Taking the same MNIST-CNN case, with s = 0.9, CE-FedAvg

reaches the target in 6× fewer rounds, and 4.3× fewer for

s = 0.95.

7

TABLE II
ROUNDS REQUIRED TO REACH TARGET TEST ACCURACIES FOR FEDAVG

(GREY) AND CE-FEDAVG (WHITE), WITH UPLOAD SPARSITY s = 0.9.
‘NC’ DENOTES CASES UNABLE TO CONVERGE.

MNIST-2NN

Y
W 10 20 40
C 0.5 1.0 0.5 1.0 0.5 1.0

10
3.0 2.8 4.8 4.8 9.6 9.6
4.2 4.0 7.0 6.0 13.0 11.6

2
210.2 192.0 212.2 185.6 271.8 258.4
114.8 86.4 104.6 86.4 138.4 96.8

MNIST-CNN

10
4.4 3.8 7.4 6.4 14.2 13.4
4.8 4.8 7.8 7.4 13.6 12.4

2
256.8 184.4 216.6 462.8 495.6 447.6
85.8 50.2 78.0 56.0 79.2 74.8

CIFAR-CNN

10
4.4 4.0 8.2 7.0 14.0 14.2
5.2 5.6 6.0 6.0 9.2 9.4

2
NC NC NC NC NC NC
83.2 60.4 74.2 68.2 75.8 71.4

For all non-IID CIFAR-10 s = 0.9, 0.95 cases, compressed

FedAvg could not converge within 1000 rounds. The CIFAR-

10 problem is much more complex than MNIST. It is likely

FedAvg could not converge due to its fixed learning rate.

CE-FedAvg, on the other hand, could reliably converge even

in these extreme settings. Not considering these cases, CE-

FedAvg was less likely to diverge during training than FedAvg.

Over the total 962 FedAvg and 1034 CE-FedAvg experiments

conducted (after finding suitable E values, and learning rates

for FedAvg, and not including the ‘NC’ FedAvg cases),

FedAvg diverged before reaching the target in 2% of the

experiments, whereas CE-FedAvg diverged in 0.1% of cases

(a single case). This reliability may be to due to the adaptive

gradients of Adam: discrepancies between the model weights

downloaded from the server and what is suitable for the

specific client’s learning problem are more easily overcome

with adaptive learning rates.

TABLE III
ROUNDS REQUIRED TO REACH TARGET TEST ACCURACIES FOR FEDAVG

(GREY) AND CE-FEDAVG (WHITE), WITH UPLOAD SPARSITY s = 0.95.
‘NC’ DENOTES CASES UNABLE TO CONVERGE.

MNIST-2NN

Y
W 10 20 40
C 0.5 1.0 0.5 1.0 0.5 1.0

10
3.8 3.3 6.3 6.0 13.0 12.5
6.0 6.0 10.0 9.8 19.3 17.8

2
397.0 290.4 338.0 293.2 308.8 362.8
173.8 130.6 156.0 139.2 211.4 169.2

MNIST-CNN

10
4.6 4.6 9.6 9.0 21.0 19.4
7.8 7.0 13.0 11.5 21.0 19.0

2
264.2 282.3 400.3 421.5 585.3 698.3
133.8 94.3 126.3 107.8 160.8 161.8

CIFAR-CNN

10
5.6 5.0 9.6 8.6 20.2 18.0
10.0 10.6 10.2 9.6 14.2 13.8

2
NC NC NC NC NC NC

173.6 126.6 148.6 112.4 306.0 186.8

While also being more reliable than FedAvg, CE-FedAvg

was able to achieve this using the default parameters for

Adam optimization in every case. This resulted in much faster

experiment set times for CE-FedAvg, as multiple learning rates

did not have to be trialled. Tuning the Adam parameters may

have achieved even better results than those listed above. FL

considers machine learning where a central server does not

have access to training data due to client privacy. Therefore,

this presents a major advantage over FedAvg: without a central

test/validation set of data, it would be infeasible to test multiple

learning rates for FedAvg before conducting the actual FL,

whereas CE-FedAdam, for all of the above experiments,

worked out of the box with no parameter tuning.

Figure 3 shows the compressed size of the MNIST-CNN

updates for FedAvg and CE-FedAvg, including an uncom-

pressed case (s = 0). It is interesting to see that while CE-

FedAvg uploads more data per client per round (due to the

extra variables from Adam) in all cases, the total data uploaded

by CE-FedAvg is far lower than FedAvg in all cases. This is

due to the large decrease in rounds to convergence CE-FedAvg

gives.

Fig. 3. Top: Compressed uploaded data per client per round for FedAvg and
CE-FedAvg with different sparsities, for the MNIST-CNN W = 40, C = 1.0,
Y = 2 scenario. Bottom: Total uploaded data during training for the same
scenario.

C. Testbed Setup

To test the real-time convergence of CE-FedAvg over FedAvg,

we used a Raspberry-Pi (RPi) testbed to simulate a hetero-

geneous low-powered edge-computing scenario. The testbed

8

consisted of 5 Raspberry Pi 2Bs and 5 Raspberry Pi 3Bs.

A desktop acted as the server over a wireless network to

emulate lower-bandwidth networking. The work of the server

in these experiments was small: receiving and decompressing,

aggregating and resending models to clients. Therefore, the

server had a small impact on the time experiments took to

run, and the vast majority of time taken in the FedAvg/CE-

FedAvg algorithm was on the RPi clients. The RPi clients

all had an install of Raspbian OS. Software was written with

Python using Tensorflow 1.12.

Experiments with 10 workers, the MNIST-2NN and

MNIST-CNN models, and sparsity rate s = 0.6 were per-

formed to evaluate the runtime of CE-FedAvg and FedAvg.

Round times were taken and averaged, and then used with the

total-rounds from the relevant parts of Table I to determine

the total time that experiment would take on the testbed. Time

taken to complete rounds was very consistent on the testbed,

making this a reliable estimator of total time.

D. Testbed Results

We ran experiments to get the estimated real time on a

RPi testbed for a set of 4 experiments to reach given target

accuracies. The results of this are shown in Figure 4.

Fig. 4. Estimated time on Raspberry Pi testbed of different FL scenarios.

The times in Figure 4 show that CE-FedAvg is able to

converge to a given target accuracy in less real time than

FedAvg with similar compression. Although the time taken

per round is greater for CE-FedAvg than FedAvg (due in small

extra computation required from Adam, but mostly due to

the increased communication per round compared to similarly

compressed FedAvg), the number of rounds taken to converge,

as per Table I, was lower in all the given experiments. Figure

4 shows CE-FedAvg was able to converge 1.2 − 1.7× faster

than FedAvg.

VI. CONCLUSION

Federated Learning (FL) can allow distributed Machine Learn-

ing to be performed on the network edge using data gen-

erated by IoT devices. We adapted FedAvg (a popular FL

algorithm) with Adam optimisation and compression to pro-

duce Communication-Efficient FedAvg (CE-FedAvg), which

reduces total uploaded data and rounds compared to similarly

compressed FedAvg. Extensive experiments on the MNIST

and CIFAR-10 datasets showed CE-FedAvg was generally

able to reach a target accuracy in far fewer communication

rounds than FedAvg in non-IID settings (up to 6× fewer).

These experiments showed CE-FedAvg is also far more robust

to aggressive compression of uploaded data, and able to

converge with up to 3× less total uploaded data per client.

Further experiments using a Raspberry-Pi testbed showed CE-

FedAdam could converge in up to 1.7× less real-time. CE-

FedAvg therefore presents the benefits of being able to train

a model in less communication rounds (reducing the overall

data and computing cost of training), less real-time, and with

less uploaded data than uncompressed FedAvg, a unique result

considering most schemes using compression reduce uploaded

data at the cost of more rounds to convergence. Future work in

this area could investigate other SGD-type algorithms applied

to FL, and in compressing the models downloaded by clients

from the server.

ACKNOWLEDGEMENT

This work was supported by EPSRC DTP Studentship.

REFERENCES

[1] K. L. Lueth, “State of the iot 2018: Number of iot devices
now at 7b - market accelrating,” August 2018. [Online].
Available: iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-
of-iot-devices-now-7b/

[2] H. B. McMahan and D. Ramage, “Federated learning: Collaborative
machine learning without centralized training data,” Google, April
2017. [Online]. Available: https://ai.googleblog.com/2017/04/federated-
learning-collaborative.html

[3] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas, “Federated
learning of deep networks using model averaging,” arXiv preprint

arXiv:1602.05629, 2016.
[4] A. Hard, K. Rao, R. Mathews, F. Beaufays, S. Augenstein, H. Eichner,

C. Kiddon, and D. Ramage, “Federated learning for mobile keyboard
prediction,” arXiv preprint arXiv:1811.03604, 2018.

[5] S. Ramaswamy, R. Mathews, K. Rao, and F. Beaufays, “Federated
learning for emoji prediction in a mobile keyboard,” arXiv preprint

arXiv:1906.04329, 2019.
[6] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods

for online learning and stochastic optimization,” Journal of Machine

Learning Research, vol. 12, pp. 2121–2159, 2011.
[7] T. Tieleman and G. Hinton, “Coursera: Neural networks for machine

learning,” Tech. Rep., 2012.
[8] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

International Conference on Learning Representations, pp. 1–13, 2014.
[9] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated

learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.
[10] S. Wang, T. Tuor, T. Salonidis, K. Leung, C. Makaya, T. He, and

K. Chan, “Adaptive federated learning in resource constrained edge com-
puting systems,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 6, pp. 1205–1221, 2019.

[11] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtarik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” NIPS Workshop on Private Multi-Party Machine Learning,
2016.

[12] F. Sattler, S. Wiedemann, K. Müller, and W. Samek, “Sparse binary
compression: Towards distributed deep learning with minimal commu-
nication,” 2019 International Joint Conference on Neural Networks, pp.
1–8, 2018.

[13] Y. Lin, S. Han, H. Mao, Y. Wang, and B. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” International Conference on Learning Representations, 2018.

9

[14] F. Sattler, S. Wiedemann, K. Müller, and W. Samek, “Robust and
communication-efficient federated learning from non-iid data,” arXiv

preprint arXiv:1903.02891, 2019.
[15] S. Golomb, “Run-length encodings (corresp.),” IEEE Trans. Inf. Theor.,

vol. 12, no. 3, pp. 399–401, Sep 2006.
[16] Y. Chen, X. Sun, and Y. Jin, “Communication-efficient federated deep

learning with asynchronous model update and temporally weighted
aggregation,” arXiv preprint arXiv:1903.07424, 2019.

[17] L. Liu, J. Zhang, S. H. Song, and K. B. Letaief, “Edge-assisted
hierarchical federated learning with non-iid data,” arXiv preprint

arXiv:1905.06641, 2019.
[18] D. Leroy, A. Coucke, T. Lavril, T. Gisselbrecht, and J. Dureau, “Fed-

erated learning for keyword spotting,” ICASSP 2019 - 2019 IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 6341–6345, 2019.
[19] C. Liu, Y. Cao, Y. Luo, G. Chen, V. Vokkarane, M. Yunsheng, S. Chen,

and P. Hou, “A new deep learning-based food recognition system for
dietary assessment on an edge computing service infrastructure,” IEEE

Transactions on Services Computing, vol. 11, no. 2, pp. 249–261, 2018.
[20] H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep learning for

the internet of things with edge computing,” IEEE Network, vol. 32,
no. 1, pp. 96–101, 2018.

[21] L. Lyu, J. C. Bezdek, X. He, and J. Jin, “Fog-embedded deep learning
for the internet of things,” IEEE Transactions on Industrial Informatics,
vol. 15, no. 7, pp. 4206–4215, 2019.

[22] D. Reina, H. Tawfik, and S. Toral, “Multi-subpopulation evolutionary al-
gorithms for coverage deployment of uav-networks,” Ad Hoc Networks,
vol. 68, pp. 16–32, 2018.

[23] R. K. Pathinarupothi, P. Durga, and E. S. Rangan, “Iot-based smart edge
for global health: Remote monitoring with severity detection and alerts
transmission,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2449–
2462, 2019.

[24] P. S. Chandakkar, Y. Li, P. L. K. Ding, and B. Li, “Strategies for re-
training a pruned neural network in an edge computing paradigm,” 2017

IEEE International Conference on Edge Computing, pp. 244–247, 2017.
[25] Y. Shuochao, Z. Yiran, Z. Aston, S. Lu, and A. Tarek, “Deepiot:

Compressing deep neural network structures for sensing systems with a
compressor-critic framework,” Proceedings of the 15th ACM Conference

on Embedded Network Sensor Systems, pp. 4:1–4:14, 2017.
[26] H. Guo, S. Li, B. Li, Y. Ma, and X. Ren, “A new learning automata-

based pruning method to train deep neural networks,” IEEE Internet of

Things Journal, vol. 5, no. 5, pp. 3263–3269, 2018.
[27] Y. LeCun and C. Cortes, “Mnist handwritten digit database,” 2010.

[Online]. Available: http://yann.lecun.com/exdb/mnist/
[28] A. Krizhevsky, “Learning multiple layers of features from tiny images,”

Tech. Rep., 2009.
[29] M. Abadi, A. Agarwal, P. Barham et al., “Tensorflow: Large-scale

machine learning on heterogeneous systems,” 2015, software available
from tensorflow.org.

Jed Mills is a Computer Science Ph.D. student
in the College of Engineering, Maths and Physical
Science at the University of Exeter, UK. He received
a B.Sc. in Natural Science from the University of
Exeter in 2018. His research interests are in machine
learning, distributed machine learning and mobile
edge computing.

Jia Hu is a Lecturer in Computer Science at the
University of Exeter. He received his Ph.D. de-
gree in Computer Science from the University of
Bradford, UK, in 2010, and M.Eng. and B.Eng.
degrees in Electronic Engineering from Huazhong
University of Science and Technology, China, in
2006 and 2004, respectively. His research interests
include cloud and edge computing, resource op-
timization, applied machine learning, and network
security.

Geyong Min is a Professor of High Performance
Computing and Networking in the Department of
Computer Science within the College of Engineer-
ing, Mathematics and Physical Sciences at the Uni-
versity of Exeter, United Kingdom. He received
the PhD degree in Computing Science from the
University of Glasgow, United Kingdom, in 2003,
and the B.Sc. degree in Computer Science from
Huazhong University of Science and Technology,
China, in 1995. His research interests include future
Internet, computer networks, wireless communica-

tions, multimedia systems, information security, high-performance computing,
ubiquitous computing, modelling and performance engineering.

