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Federated learning (FL) has attracted tremendous attentions in recent years due to its privacy-preserving

measures and great potential in some distributed but privacy-sensitive applications, such as finance and

health. However, high communication overloads for transmitting high-dimensional networks and extra

security masks remain a bottleneck of FL. This article proposes a communication-efficient FL framework

with an Adaptive Quantized Gradient (AQG), which adaptively adjusts the quantization level based on a

local gradient’s update to fully utilize the heterogeneity of local data distribution for reducing unnecessary

transmissions. In addition, client dropout issues are taken into account and an Augmented AQG is developed,

which could limit the dropout noise with an appropriate amplification mechanism for transmitted gradients.

Theoretical analysis and experiment results show that the proposed AQG leads to 18% to 50% of additional

transmission reduction as compared with existing popular methods, including Quantized Gradient Descent
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(QGD) and Lazily Aggregated Quantized (LAQ) gradient-based methods without deteriorating convergence

properties. Experiments with heterogenous data distributions corroborate a more significant transmission

reduction compared with independent identical data distributions. The proposed AQG is robust to a client

dropping rate up to 90% empirically, and the Augmented AQG manages to further improve the FL system’s

communication efficiency with the presence of moderate-scale client dropouts commonly seen in practical

FL scenarios.

CCS Concepts: • Computing methodologies→ Artificial intelligence;Machine learning; Distributed

computing methodologies; • Security and privacy; • Networks→ Network reliability;;

Additional Key Words and Phrases: Federated learning, information compression, communication efficiency

ACM Reference format:

Yuzhu Mao, Zihao Zhao, Guangfeng Yan, Yang Liu, Tian Lan, Linqi Song, and Wenbo Ding. 2022.

Communication-Efficient Federated Learning with Adaptive Quantization. ACM Trans. Intell. Syst. Technol.

13, 4, Article 67 (August 2022), 26 pages.

https://doi.org/10.1145/3510587

1 INTRODUCTION

The deployment of the Internet of things (IoT), ubiquitous sensing, edge computing, and many

other distributed systems have enabled the rapid development of distributed learning techniques

in recent years [10, 12, 20]. Distributed learning could fully utilize low-cost computing resources

throughout the network and achieve comparable performance with centralized learning. Neverthe-

less, the leakage of data, gradients, and even models during the updating and transmitting process

in distributed learning has raised the concerns of user privacy and security, which greatly limit

its applications in some specific fields, such as finance and health. To this end, federated learning

(FL), which prevents privacy leakage by avoiding data exposition, has been proposed by Google

and other researchers, attracting tremendous attention from both academia and industry [22].

Many approaches — such as differential privacy [1], secret-sharing techniques [5], and homo-

morphic encryption [21] — have been developed to mask transmitted gradients and can mostly

well address the security issues in FL. However, high-dimensional neural networks and extra secu-

rity masks [8, 16, 31] may lead to high communication overhead, which becomes a main bottleneck

of FL systems. In this context, communication-efficient learning algorithms have been proposed

mainly to reduce transmission bits based on gradient quantization, which maps a real-valued vec-

tor to a constant number of bits. Representative gradient quantization algorithms for distributed

systems include Quantized Stochastic Gradient Descent (QSGD) [3], 1-bit SGD [25], and SignSGD

[4]. However, these methods communicate at all iterations (transmit all computed gradients) with

a fixed number of quantization bits, which is not efficient enough for FL, in which non-IID (In-

dependently Identically Distributed) data distribution is common. To address this problem, Sun

et al. proposed a gradient innovation-based Lazily Aggregated Quantized (LAQ) gradient method,

which utilizes the differences between local loss functions and skips the transmission of slowly

varying quantized gradients [15]. Although the LAQ method reduces transmission overload by

skipping unnecessary communication rounds, it still fixes the number of bits for all transmitted

gradients, which remains to be improved.

In order to further reduce overall transmitted bits, this article proposes a communication-

efficient FL framework with an Adaptive Quantized Gradient (AQG), in which the quantization

level is adjusted according to the local gradient’s updates adaptively. Specifically, gradients with

a larger amount of updates are quantized and transmitted with more bits and vice versa. In ad-

dition, this article takes client dropouts into account, which is another main challenge faced by

FL system due to limited device reliability [5]. In order to improve the performance of an AQG

with the presence of the noise introduced by client dropouts, the proposed FL framework with an
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Table 1. Notations

дkm gradient computed by clientm at iteration k

д̂km gradient used for aggregation from clientm at iteration k
bmax upper bound for the number of bits after quantization

bkm the quantization bit number chosen by clientm at iteration k

b̂km the quantization bit number chosen by clientm for д̂km
Qb (д

k
m ) дkm quantized with b bits

θk the aggregated global model broadcast at iteration k

εb (д
k
m ) quantization error (Qb (д

k
m ) − дkm )

M client set

M
k
b

subset of clients uploading gradients with b bits at iteration k

p client dropping rate

�a� the ceil of a
‖x‖2 l2-norm of x

‖x‖∞ l∞-norm of x

AQG is augmented by a variance-reducedmethod inwhich transmitted gradients are appropriately

amplified to keep the unbiased estimators.

Theoretical analysis and experiment results show that the proposed AQG outperforms existing

methods in terms of overall transmitted bits without deteriorating convergence properties. The

AQG is robust to a client dropping rate up to 90% empirically, and the Augmented AQG with gra-

dient amplification acts as a competitive solution to achieve an even more significant transmission

reduction, with a moderate client dropping scale commonly seen in practical FL scenarios.

The remainder of the article is organized as follows. Section 2 provides an overview of the

FL system and discusses our motivations. The proposed Adaptive Quantized Gradient method is

elaborated in Section 3. A theoretical analysis and convergence guarantee of AQG are provided

in Section 4. We evaluate the performance of AQG with extensive experiments in Section 5 and

present our conclusions in Section 6.

Notations. The notations used in this article are listed in Table 1.

2 SYSTEM OVERVIEW ANDMOTIVATIONS

2.1 Federated Learning System

FL is designed to collaboratively train a global machine learning model with heterogeneous local

data distribution across multiple privacy-sensitive clients. A typical architecture for a FL system

with M distributed clients and a server is shown in Figure 1. Similar to most distributed learn-

ing systems, an FL system uses a server to receive locally computed gradients and update the

global model by aggregation. However, in order to prevent privacy leakage from raw gradients,

distributed clients have to mask or encrypt the local gradients before transmission. Therefore, the

communication burden in FL systems tends to be heavier compared with other distributed learn-

ing systems [5]. In addition, distributed clients in FL systems, such as mobile devices in wireless

networks, usually have limited computation and communication resources, which may lead to

the dropout of the participants in each iteration, like the client M shown in Figure 1. Thus, the

robustness to client dropout is another practical requirement for FL systems [5].

2.2 Motivations

FL is bottlenecked by high communication overhead and limited device reliability. The lack of

efficient transmission and robustness to client dropouts may lead to slow, expensive, and unstable
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67:4 Y. Mao et al.

Fig. 1. Typical architecture for an FL system.

learning. In this article, the FL framework with the proposed AQG method provides opportunities

for communication-efficient FL with large-scale of client dropouts.

First, AQG focuses on reducing unnecessary transmission by fully utilizing the heterogeneous

property of FL. Due to the heterogeneity of local data distribution, local optimization objectives

decrease at different rates. Therefore, adaptively adjusting the quantization level according to a

gradient’s update amount provides a more efficient way to communicate with the server by quan-

tizing slowly varying gradients with less amount of bits.

Second, AQG aims to address the noise induced by client dropouts.When a client dropout occurs,

all coordinates of a transmitted gradient are lost, which can be regarded as an extreme example of

gradient sparsification [2, 19, 28, 29]. In order to limit the variance increase of a sparsified gradi-

ent, Wangni et al. proposed keeping the unbiasedness of the sparsified gradient by appropriately

amplifying the remaining coordinates [30]. Inspired by this idea, the AQG tries to stay robust to

client dropouts or even further improve the communication efficiency of FL with client dropouts

by further adjusting the transmitted gradients and suppressing the noise.

3 AQG: ADAPTIVE QUANTIZED GRADIENT

To reduce transmission overhead, a multilevel adaptive quantization scheme is proposed in this

section. As illustrated in Figure 2(a), the FL system with an AQG can be implemented as follows.

At iteration k , the server broadcasts global model θk to all clients. Each client computes gradient

дkm with its local data Xm :

дkm = ∇fm (Xm ;θ
k ). (1)

After gradient computation, each client needs to make two decisions: (1) is it necessary to send

its quantized gradient? and (2) how many bits bkm should be used to quantize and send its newly

computed gradient? The first decision is the key idea in the LAQ method [15]. In this article, it

is considered to be a special case of the second decision, where bkm is chosen as zero if the client

decides to send nothing.

If client m chooses a non-zero bkm and updates its newly quantized gradient, then Qbkm
(дkm ) is

one of the quantized gradients that actually participates in gradient aggregation on the server side

at iteration k . Otherwise, the server reuses the old quantized-gradient Q
b̂k−1m

(д̂k−1m ) from the last

iteration to represent clientm in the aggregation. In summary, an iteration step of the proposed

AQG is as follows:

Gradient Update Q
b̂km

(
д̂km
)
=

⎧⎪⎪⎨⎪⎪⎩
Qbkm

(
дkm
)
, m ∈ M \Mk

0

Q
b̂k−1m

(
д̂k−1m

)
, m ∈ Mk

0

(2)
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Fig. 2. The schematic illustration of the communication-efficient FL with an AQG in comparison with the

LAQ.method In LAQ, the quantization level is fixed at b, while the AQG adaptively adjusts the quantization

level for every client at each iteration, as indicated by (a), in which the red lines indicating the transmis-

sion of quantized gradients are drawn in different thicknesses to represent different quantization levels se-

lected by various clients. In addition, the AQG addresses potential client dropouts with appropriate gradient

amplification.

Gradient Aggregation θk+1 = θk − α
∑
m∈M

Q
b̂km

(
д̂km
)
, (3)

where Mk
0 denotes the subset of clients that sets bkm = 0 and uploads nothing at iteration k . For

clientm, Q
b̂km

(д̂km ) represents the quantized gradient actually used for aggregation at iteration k ,

which may be outdated ifm ∈ Mk
0 .

The target problems of AQG are that:

(1) For adaptive quantization of lazily aggregated gradients, a precision selection criterion

that can cooperate with a lazy aggregation scheme and adaptively decide the quantization

level for each newly computed gradient is required.

(2) For an FL scenario in which client dropouts are relatively frequent, methods to limit the

noise introduced by gradient lossing are also in great need.

The next section presents the precision selection criterion developed in this article and the quan-

tization scheme applied in the proposed AQG. In Section 3.3, an optional augmentation of AQG is

proposed to address potential client dropouts.

3.1 Precision Selection Criterion

As mentioned before, the LAQ algorithm proposed by Sun et al. skips the uploads of quantized

gradients with small innovations — the difference between Qb (д
k
m ) and the last upload Qb (д̂

k−1
m ),

where b is the fixed number of bits after quantization [15]. In order to decide whether client m
needs to upload its newly quantized gradient Qb (д

k
m ) at iteration k , the LAQ method develops a

communication selection criterion as follows:

���Qb

(
д̂k−1m

)
−Qb

(
дkm
)���22 ≥ 1

α2M2

D∑
d=1

ξd ‖θk+1−d − θk−d ‖22 + 3
( ���εb (д̂k−1m

)���22 + ‖εb (дkm ) ‖22 ), (4)

where εb (д̂
k−1
m ) and εb (д

k
m ) denote quantization errors, and {ξd }Dd=1 are predetermined constant

weights used to balance the impact of global model updates from previous D steps. In LAQ, client

m sends its newly quantized local gradientQb (д
k
m ) at iteration k only when the difference between

Qb (д
k
m ) and the last uploadQb (д̂

k−1
m ) is larger than a threshold, which takes the quantization error

and global model’s innovation into account [15]. Note that the quantization level b in LAQ is fixed.
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Fig. 3. The principle of the precision selection criterion, in which T denotes the parameter difference term
1

α 2M2

∑D
d=1

ξd ‖θk+1−d − θk−d ‖22 and Δ denotes the gradient innovation ‖Q
b̂k−1m

(д̂k−1m ) −Qbmax
(дkm )‖22 .

This article extends the single precision level LAQwith communication selection criterion (4) to

multilevel adaptive quantization for transmitted gradients. The key idea of the AQG is that under

a preset upper bound bmax for the number of bits after quantization, gradients with smaller inno-

vations can be quantized with a lower number of bits, since the negative impact of their precision

losses on convergence is limited.

In order to decide how many bits bkm should be used to quantize and send client m’s newly

computed gradient дkm , we develop the following precision selection criterion:���Qb̂k−1m

(
д̂k−1m

)
−Qbmax

(
дkm
)���22

≥ 1

α2M2

D∑
d=1

ξd ‖θk+1−d − θk−d ‖22 + 3
( ���εbmax−b+1

(
д̂k−1m

)���22 + ���εbmax−b+1
(
дkm
)���22 ) . (5)

As illustrated in Figure 3, the precision selection criterion (5) in the AQG quantizes larger up-

dates with more bits and vice versa. Specifically, with quantization levels [1, . . . ,bmax ], the quan-

tization errors for any given vector д always satisfy εbmax
(д) ≤ εbmax−1 (д) · · · ≤ ε1 (д). There-

fore, with bmax quantization levels in total, the range of each gradient innovation ‖Q
b̂k−1m

(д̂k−1m )−
Qbmax

(дkm )‖22 can be divided into bmax + 1 intervals, as shown in Figure 3(a). Then, we allocate the

higher quantization level for clients with larger gradient innovations, as indicated by Figure 3(b).

Thus, the proposed precision selection criterion divides the entire client setM into bmax + 1 non-

overlapping subsets as follows:

M
k
0 ∪Mk

1 ∪Mk
2 ∪Mk

3 ∪ · · · ∪Mk
bmax

= M (6a)

M
k
0 ∩Mk

1 ∩Mk
2 ∩Mk

3 ∩ · · · ∩Mk
bmax

= ∅, (6b)

whereMk
b
denotes the subset of clients that send gradients quantized by b bits at iteration k . Mk

0

denotes the subset of clients that skip the update.

FL with an AQG is summarized in Algorithm 1. At iteration k , each client checks where its

innovation locates in Figure 3(a), and then re-quantizes its gradientwith the corresponding number

of bits for the update. Theoretical analysis of a multilevel AQG with (5) is provided in Section 4.

For computation simplicity, a two-level variant of the AQG is also proposed in this article. At

each iteration:

Two-level AQG. There are only two precision levels to be selected for each client. In other

words, b in criterion (5) only has two options: �bmax

2 � and bmax .
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ALGORITHM 1: AQG

Input: stepsize α > 0, bmax , D, and {ξd }Dd=1.
Initialize: θ 1.

1: for k = 1, 2, . . . ,K do

2: Server broadcasts θk to all workers.

3: for each clientm ∈ M in parallel do

4: Workerm computes дkm and Qbmax
(дkm ).

5: if (5) with b = 1 holds for workerm then

6: for b = bmax ,bmax − 1, . . . , 1 do
7: if (5) with b holds for workerm then

8: Workerm computes and sends Qb (д
k
m ).

9: Set bkm = b.

10: Set д̂km = д
k
m and b̂km = b on both sides.

11: Break.

12: end if

13: end for

14: else

15: Workerm sends nothing.

16: Set bkm = 0,

17: Set д̂km = д̂
k−1
m and b̂km = b̂

k−1
m on both sides.

18: end if

19: end for

20: Server updates θk+1 by θk − α ∑M
m=1Qb̂km

(д̂km ).

21: end for

3.2 Quantization Scheme

For better comparison, we adapt the quantization scheme used in the LAQ algorithm [15]. The

scheme quantizes the difference between the new gradient дkm and the last quantized upload

Q
b̂k−1m

(д̂k−1m ):

Δ = дkm −Qb̂k−1m

(
д̂k−1m

)
. (7)

With b bits used for quantization, the value range of Δ’s elements can be represented by a

uniformly discretized grid with 2b − 1 quantized values, as shown in Figure 4. By projecting every

real number in this range to the closest quantized value, дkm can be represented by Qb (д
k
m ) with b

bits for each element instead of 32/64 bits by default.

3.3 Augmented AQG for Client Dropouts

This article also considers random client dropout in FL and uses zkm to control the participation of

clientm at iteration k . With a client dropping rate p:

zkm ∼ Bernoulli (p).

If zkm = 1, client m drops out and fails to perform gradient computation at iteration k . It is
obvious that with a dropping rate p, the percentage of active clients is approximately 1−p at each

iteration.

With this setting, the expectation of clientm’s upload is as follows:

E
[
Qbkm

(
дkm
)]
= (1 − p) ·Qbkm

(
дkm
)
+ p · 0, (8)

where 0 is a zero vector of the same shape as Qbkm
(дkm ).
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Fig. 4. Quantization scheme in the AQG.

In order to get an unbiased expectation, the upload is adjusted to Qbkm
(дkm )/(1 − p). Then,

E
[
Qbkm

(
дkm
)]
= (1 − p) ·

(
Qbkm

(
дkm
)
/(1 − p)

)
+ p · 0 = Qbkm

(
дkm
)
. (9)

The Augmented AQG is summarized in Algorithm 2. The intuitive explanation for gradient

amplification is that the loss function fm is smooth, which means the new update Qbkm
(дkm ) tends

to be approximate to recent previous updates that may have been lost due to client dropouts.

Compared with the existing LAQ method, the proposed AQG method adjusts the number of

quantization bits based on local gradient innovation adaptively. The rationale of AQG is that the

proposed precision selection criterion utilizes the inherent heterogeneity of local optimization

objectives to reduce unnecessary transmission cost. Theoretical analysis in the next section will

prove that the AQGmaintains the desired convergence properties of the LAQmethod. Experiments

show that the AQG advances and fits FL better with the following contributions:

(1) The AQG outperforms existing popular methods in terms of overall transmission bits and

achieves a more significant transmission reduction with heterogeneous data distribution

compared with IID data distribution.

(2) The AQG is robust to a client’s dropping rate up to 90%, and the Augmented AQG manages

to further reduce transmission overload with a moderate scale of client dropouts.

4 CONVERGENCE ANALYSIS

In this section, the proposed AQG is analyzed theoretically and a convergence guarantee is pro-

vided. The theoretical analysis of an AQG is based on the following assumption:

Assumption 1. Loss function f (θ ) =
∑
m∈M fm (θ ) is L-smooth.

The Lyapunov function of AQG is defined in the same way as the LAQ:

V(θk ) = f (θk ) − f (θ ∗) +
D∑
d=1

D∑
j=d

ξ j

α
‖θk+1−d − θk−d ‖22 , (10)

where θ ∗ is the optimal solution of minθ f (θ ).
With the quantization errors in precision selection criterion (5) being ignored, the parameter dif-

ferences term in Lyapunov function helps guarantee that the error induced by skipping gradients

decreases with the objective residual in the training process.

4.1 Convergence Guarantee

To ensure convergence, the following inequality should always hold:

V(θk+1) − V(θk ) ≤ 0. (11)
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ALGORITHM 2: Augmented AQG

Input: stepsize α > 0, bmax , D, and {ξd }Dd=1.
Initialize: θ 1.

1: for k = 1, 2, . . . ,K do

2: Server broadcasts θk to all workers.

3: for each clientm ∈ M in parallel do

4: if zkm = 0 then

5: Workerm computes дkm and Qbmax
(дkm ).

6: if (5) with b = 1 holds for workerm then

7: for b = bmax ,bmax − 1, . . . , 1 do
8: if (5) with b holds for workerm then

9: Workerm computes and sends Qb (д
k
m ).

10: Set bkm = b.

11: Set д̂km = д
k
m and b̂km = b on both sides.

12: Break.

13: end if

14: end for

15: end if

16: else

17: Workerm sends nothing.

18: Set bkm = 0,

19: Set д̂km = д̂
k−1
m and b̂km = b̂

k−1
m on both sides.

20: end if

21: end for

22: Server updates θk+1 by θk − α ∑M
m=1Qb̂km

(д̂km ).

23: end for

Lemma 1. Under Assumption 1, (11) holds if the following three inequalities are satisfied simulta-

neously:

−α
2
+
1

2
αρ1 + (L + 2β1) (1 + ρ2)α

2 ≤ 0 (12a)[α
2
+

(L
2
+ β1

)
(1 + ρ2

−1)α2
] ξD
α2
− βD ≤ 0 (12b)[α

2
+

(L
2
+ β1

)
(1 + ρ2

−1)α2
] ξd
α2
+ βd+1 − βd ≤ 0, (12c)

where ρ1 and ρ2 are constants. βd =
1
α

∑D
j=d

ξ j ,∀d ∈ {1, . . . ,D}. See the Appendix for proof details.
It indicates that if the stepsize α and constants {ξd }Dd=1 satisfy these three inequalities, the con-

vergence of the Lyapunov function (10) is guaranteed theoretically.

4.2 Linear Convergence With Strongly Convex Loss

The theoretical analysis under the strongly convex loss function is based on the following

assumption:

Assumption 2. Loss function f (θ ) =
∑
m∈M fm (θ ) is μ-strongly convex.
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Fig. 5. Convergence of loss function with logistic regression and IID data distribution.

Under Assumption 2, there is: ��θ − θ ∗��22 ≤ 2

μ
[f (θ ) − f (θ ∗)]. (13)

Lemma 2. Under Assumptions 1 and 2, the following inequality holds:

V(θk+1) ≤ (1 − c )V(θk )

+ B
������

M∑
m=1

εbmax

(
д̂km
)������

2

2

+ B
∑

m∈Mk
0

( ���εbmax

(
д̂k−1m

)���22 + ���εbmax

(
дkm
)���22 )

+ B
���
bmax∑
b=1

∑
m∈Mk

b

���εb̂km (д̂km )���22 + bmax∑
b=1

∑
m∈Mk

b

���εbmax

(
д̂km
)���22���� , (14)

where c and B are constants depending on μ, ρ1, ρ2 and parameters involved in selection criterion (5).

See the Appendix for proof details.

Theorem 1. Under Assumptions 1, 2 and Lemma 2, Lyapunov function and the quantization errors

all converge at a linear rate: ���εb (дkm )���2∞ ≤ Pτb
2σk
V(θ 1) (15a)

V(θk+1) ≤ σk
V(θ 1), (15b)

where σ ∈ (0, 1) and τb is the quantization granularity with 2b quantization levels. P is a constant

based on parameters in Lemma 1. See the Appendix for proof details.

5 EXPERIMENT RESULTS

In this section, the performance of FL with the proposed AQG is evaluated with regularized logistic

regression and a neural network, respectively, representing strongly convex and non-convex loss

function. Experiment results demonstrate that the AQG outperforms state-of-the-art quantization

algorithms in terms of reducing transmission bits and resisting client dropouts.

5.1 Experiment Setup

Datasets. In this article, we evaluate the proposed AQG method with a heterogeneous simula-

tion dataset [7], MNIST and CIFAR10, considering both IID and non-IID data distribution. To sim-

ulate non-IID data distribution with MNIST and CIFAR10, each client is assigned only two classes

of data with a balanced amount. The detailed description of the adopted dataset is provided in the

Appendix.
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Table 2. Performance Comparison of Gradient-Based Algorithms

Experiment setting Iteration # Communication # Bit # Transmission Reduction

Logistic Regression

IID

Two-Level AQG 500 3,933 7,952 41%
Multilevel AQG 500 4,372 8,372 38%

4-bit LAQ 500 3,354 1.34 × 104 0
4-bit QGD 500 9,000 3.6 × 104 −∗

non-IID

Two-Level AQG 500 4,870 1.54 × 10
4 51%

Multilevel AQG 500 8,273 1.78 × 10
4 43%

4-bit LAQ 500 7,842 3.14 × 104 0

32-bit GD1 500 9,000 2.88 × 105 −

Neural Network

IID

Two-Level AQG 2,713 854 1,708 34%
Multilevel AQG 2,881 974 1,928 25%

4-bit LAQ 2,784 643 2,572 0
4-bit QGD 2,890 28,900 1.16 × 105 −

non-IID

Two-Level AQG 1,319 1030 2,060 44%
Multilevel AQG 1,702 977 1,845 49%

4-bit LAQ 2,19 921 3,684 0
4-bit QGD 1,251 12,510 50,040 −

1Since 4-bit QGD fails to converge with logistic regression and non-IID data distribution, the 32-bit vanilla GD is

implemented for comparison.

*4-bit QGD definitely costs more bits compared with the baseline 4-bit LAQ.

Models. We implement logistic regression with the simulation dataset, a fully-connected net-

work with MNIST, and a ResNet18 model with CIFAR10.

Parameters. For the AQG and LAQ, the constant parameterD = 10, the weights {ξd }Dd=1 = 1/D,
and M = 10. Other standard hyperparameters of the training process are listed in Table 3 in the

Appendix.

The experiment results of logistic regression and the fully connected neural network are shown

in Table 2. For logistic regression, all algorithms run 500 iterations. For the fully connected net-

work, all algorithms run 4,000 iterations, andwe calculate the number of iterations, communication

rounds, and transmission bits when the loss residual decreases to less than 1×10−6. For both tasks,
the amount of bits counted for each algorithm in Table 2 is the number of bits used to transmit one

dimension of the uploaded gradient. Generally speaking, the proposed AQG achieves transmission

reduction in all experimental settings, and the transmission reduction for non-IID data distribu-

tion is more significant than that of IID data distribution. The experiment results of ResNet18 with

CIFAR10 shown in the Appendix demonstrate a similar trend.

5.2 Performance Analysis

5.2.1 Performance of the AQG with IID Data Distribution. Figure 5(a) shows that with IID data

distribution, the multi-level AQG and the two-level variant of AQG both reach a linear conver-

gence rate as LAQ and QGD in strongly convex conditions. Meanwhile, AQG significantly saves

transmission bits compared with 4-bit LAQ and 4-bit QGD, as shown in Figure 5(c). It can be ob-

served from Figure 5(b) that the reduction of transmission bits is at the cost of a slight increase in

communication rounds compared with LAQ, but it is worthwhile due to the significant reduction

in overall transmission load.

Figure 6 shows the experiment results with IID data distribution and non-convex loss function.

Similar to the results with logistic regression, the multi-level AQG and two-level AQG both require

fewer bits to reach convergence without sacrificing the convergence properties of 4-bit LAQ and

4-bit QGD, as depicted in Figures 6(a) and 6(c). Meanwhile, compared with 4-bit QGD, the AQG sig-

nificantly reduces communication rounds to the same order of magnitude as 4-bit LAQ, as shown

in Figure 6(b).

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 4, Article 67. Publication date: August 2022.



67:12 Y. Mao et al.

Fig. 6. Convergence of loss function with neural network and IID data distribution.

Fig. 7. Convergence of loss function with logistic regression and non-IID data distribution.

Fig. 8. Convergence of loss function with neural network and non-IID data distribution.

5.2.2 Performance of the AQG with non-IID Data Distribution. Figures 7 and 8 verify that the

AQG works well with heterogeneous data distribution. Both variants of AQG manage to reduce

the amount of transmitted bits compared with other alternatives in both strongly convex and

non-convex optimization. Meanwhile, it is obvious that experiments in non-IID data distribution

benefit more from the AQG compared with IID data distribution. The results are consistent with

our expectation since the idea of AQGs is to utilize the inherent heterogeneity of local optimization

objectives.

5.2.3 Performance of the AQG with Client Dropouts. In this subsection, we focus on the setting

of wireless networks with mobile devices, in which computation and communication are both

extremely expensive and client dropouts are frequent. Given these constraints, the two-level AQG

is applied in experiments with client dropouts as an adaptive solution for both communication and

computation efficiency. Figure 9 shows the performance of the AQGwith a client dropping ratep of
0.2, 0.5, and 0.7. Experiment results demonstrate that both the AQG and Augmented AQG require
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Fig. 9. Convergence of loss function with neural network (p = 0.2, 0.5, and 0.7).

Fig. 10. Convergence of loss function with neural network (p = 0.8 and 0.9).

fewer transmission bits compared with LAQ. Moreover, the Augmented AQG has a stronger ability

to reduce transmission bits with the presence of such moderate client dropouts.

Figure 10 shows the performance of the AQGwith a client dropping rate p of 0.8 and 0.9. Experi-
ments show that AQGmanages to achieve stable convergencewith ideal rates and, at the same time,

significantly reduces transmission bits even when there are only about 10% of clients participating

in gradient computation at each iteration. However, we notice that the augmented version of AQG

fails to converge, with a dropping rate higher than 0.8. It may be because when the dropping rate

is too high, the unbiased estimation in the Augmented AQG no longer remains accurate and even

induces more noise into the training. Thus, the Augmented AQG is recommended for application

in FL systems in which the client dropping scale is moderate. Given the fact that the client drop-

ping rate is not likely to be so high in most practical systems, the Augmented AQG–based method

is sufficient to address the dropping problem faced by FL.

6 CONCLUSION

This article focuses on communication efficiency and the client dropout issue in FL and proposes

the AQG, which not only adaptively adjusts the quantization level depending on the local gradi-

ent’s update before transmission, but also appropriately amplifies transmitted gradients to limit

the dropout noise. For communication efficiency, the key idea is to quantize less informative gra-

dient with less bits and vice versa. Since the AQG fully utilizes the heterogeneity of local data

distribution to reduce unnecessary transmission, it achieves a larger transmission reduction with

non-IID data distribution, as expected. Compared with existing popular methods, the AQG leads

to 18% to 50% of transmission reduction while keeping the desired convergence properties and

shows robustness to large-scale client dropouts, with a dropping rate up to 90%. The Augmented

AQG brings extra transmission reduction with moderate-scale client dropouts commonly seen in

practical scenarios, which indicates the gradient amplification’s effectiveness in suppressing the

noise introduced by client dropouts.
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Due to the aforementioned superiorities, the AQG can be used jointly with other

communication-efficient methods for FL architectures, such as gradient sparsification [18, 27],

client selection based on local resources [13, 23, 32] and adaptively distributing subnetworks for

heterogeneous clients [6, 9]. These superiorities and flexibility indicate great potential for the pro-

posed FL framework with the AQG. Future works include deploying the AQG jointly with such

techniques in practical FL systems.

APPENDICES

A MATHEMATICAL PROOF

A.1 Proof of Lemma 1

We first derive several preliminary formulas:

(1) In the AQG, the aggregated global gradient consists of up-to-date gradients and reused

gradients:

M∑
m=1

Q
b̂km

(
д̂km
)
=

bmax∑
b=1

∑
m∈Mk

b

Q
b̂km

(
д̂km
)
+
∑

m∈Mk
0

Q
b̂k−1m

(
д̂k−1m

)

=

M∑
m=1

Qbmax

(
д̂km
)
+

bmax∑
b=1

∑
m∈Mk

b

[
Q
b̂km

(
д̂km
)
−Qbmax

(
д̂km
)]

+
∑

m∈Mk
0

[
Q
b̂k−1m

(
д̂k−1m

)
−Qbmax

(
д̂km
)]
. (16)

(2) From the update rule of the AQG, there is that

θk+1 − θk = −α
M∑

m=1

Q
b̂km

(
д̂km
)
. (17)

(3) The definition of the quantization error results in

M∑
m=1

Qbmax

(
д̂km
)
= ∇f (θk ) −

M∑
m=1

εbmax

(
д̂km
)
. (18)

(4) With inequality 〈a,b〉 ≤ 1
2ρ‖a‖22 + 1

2ρ ‖b‖22 and (18), we have the following inequality:

− α
〈
∇f (θk ),

M∑
m=1

Qbmax

(
д̂km
)〉

= −α
〈
∇f (θk ),∇f (θk ) −
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(
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= −α ‖∇f (θk )‖22 + α
〈
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(
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≤ −α ‖∇f (θk )‖22 +
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2
‖∇f (θk )‖22 +

α
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������
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(
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)������

2

2

. (19)
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(5) Under Assumption 1, there is

f (θk+1) − f (θk )

≤
〈
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Then, given the following Lyapunov function of AQG:

V(θk ) = f (θk ) − f (θ ∗) +
D∑
d=1

D∑
j=d

ξ j

α
‖θk+1−d − θk−d ‖22 , (21)

if we set βd =
1
α

∑D
j=d

ξ j ,∀d ∈ {1, . . . ,D}, then:

V(θk ) = f (θk ) − f (θ ∗) +
D∑
d=1

βd ‖θk+1−d − θk−d ‖22 . (22)

Therefore, the Lyapunov function results in the following inequality:
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+
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Therefore, with (24) and (25):
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With the precision selection criterion (5), we have that
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]
M

���
bmax∑
b=1

∑
m∈Mk

b

����εb̂km (д̂km )����22 +
bmax∑
b=1

∑
m∈Mk

b

���εbmax

(
д̂km
)���22���� (29)

=

(
−α
2
+
αρ1
2

)
‖∇f (θk )‖22 +

α

2ρ1

������
M∑

m=1

εbmax

(
д̂km
)������

2

2

+

(L
2
+ β1

)
(1 + ρ2)α

2
������∇f (θk ) −

M∑
m=1

εbmax

(
д̂km
)������

2

2

+

D−1∑
d=1

(βd+1 − βd )‖θk+1−d − θk−d ‖22 − βD ‖θk+1−D − θk−D ‖22

+

[α
2
+

(L
2
+ β1

)
(1 + ρ−12 )α2

]
1

α2

D∑
d=1

ξd ‖θk+1−d − θk−d ‖22

+ 3
[α
2
+

(L
2
+ β1

)
(1 + ρ−12 )α2

]
M
∑

m∈Mk
0

(���εbmax

(
д̂k−1m

)���22 + ���εbmax
(дkm )���22)

+ 2
[α
2
+

(L
2
+ β1

)
(1 + ρ−12 )α2

]
M

���
bmax∑
b=1

∑
m∈Mk

b

����εb̂km (д̂km )����22 +
bmax∑
b=1

∑
m∈Mk

b

���εbmax

(
д̂km
)���22���� (30)

≤
[
−α
2
+
αρ1
2
+ (L + 2β1) (1 + ρ2)α

2
]
‖∇f (θk )‖22 +

[
α

2ρ1
+ (L + 2β1) (1 + ρ2)α

2

] ������
M∑

m=1

εbmax

(
д̂km
)������

2

2

+

{ [α
2
+

(L
2
+ β1

)
(1 + ρ−12 )α2

]
1

α2
ξD − βD

}
‖θk+1−D − θk−D ‖22

+

D−1∑
d=1

{ [α
2
+

(L
2
+ β1

)
(1 + ρ−12 )α2

]
1

α2
ξd + βd+1 − βd

}
‖θk+1−d − θk−d ‖22

+ 3
[α
2
+

(L
2
+ β1

)
(1 + ρ−12 )α2

]
M
∑

m∈Mk
0

(���εbmax

(
д̂k−1m

)���22 + ���εbmax
(дkm )���22)

+ 2
[α
2
+

(L
2
+ β1

)
(1 + ρ−12 )α2

]
M

���
bmax∑
b=1

∑
m∈Mk

b

����εb̂km (д̂km )����22 +
bmax∑
b=1

∑
m∈Mk

b

���εbmax

(
д̂km
)���22���� . (31)

Ignoring the quantization errors, the following three inequalities should hold simultaneously

for ∀d ∈ {1, . . . ,D} in order to ensure that V(θk+1) − V(θk ) ≤ 0:

−α
2
+
1

2
αρ1 + (L + 2β1) (1 + ρ2)α

2 ≤ 0 (32a)[α
2
+

(L
2
+ β1

)
(1 + ρ2

−1)α2
] ξD
α2
− βD ≤ 0 (32b)[α

2
+

(L
2
+ β1

)
(1 + ρ2

−1)α2
] ξd
α2
+ βd+1 − βd ≤ 0 (32c)

(32) provides the choice of range in terms of stepsize α and weights {ξd }Dd=1:
D∑
d=1

ξd ≤ min

{
1 − ρ1

4(1 + ρ2)
,

1

2(1 + ρ−12 )

}
(33a)

α ≤ min
⎧⎪⎨⎪⎩ 2L

⎡⎢⎢⎢⎢⎣ 1 − ρ1
4(1 + ρ2)

−
D∑
d=1

ξd

⎤⎥⎥⎥⎥⎦ , 2L
⎡⎢⎢⎢⎢⎣ 1

2(1 + ρ−12 )
−

D∑
d=1

ξd

⎤⎥⎥⎥⎥⎦
⎫⎪⎬⎪⎭ (33b)
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This analysis indicates that there is no need to modify these two parameters involved in LAQ

[15].

A.2 Proof of Lemma 2

Under Assumption 2:

V(θk+1) − V(θk )
≤ 2μ

[
−α
2
+
αρ1
2
+ (L + 2β1) (1 + ρ2)α

2
] [

f (θk ) − f (θ ∗)
]

+

[
α

2ρ1
+ (L + 2β1) (1 + ρ2)α

2

] ������
M∑

m=1

εbmax

(
д̂km
)������

2

2

+ βD

{ [α
2
+

(L
2
+ β1

)
(1 + ρ−12 )α2

] ξD
α2βD

− 1
}
‖θk+1−D − θk−D ‖22

+

D−1∑
d=1

βd

{ [α
2
+

(L
2
+ β1

)
(1 + ρ−12 )α2

] ξd
α2βd

+
βd+1
βd
− 1
}
‖θk+1−d − θk−d ‖22

+ 3
[α
2
+

(L
2
+ β1

)
(1 + ρ−12 )α2

]
M
∑

m∈Mk
0

(���εbmax

(
д̂k−1m

)���22 + ���εbmax
(дkm )���22)

+ 2
[α
2
+

(L
2
+ β1

)
(1 + ρ−12 )α2

]
M

���
bmax∑
b=1

∑
m∈Mk

b

���εb̂km (д̂km )���22 + bmax∑
b=1

∑
m∈Mk

b

���εbmax

(
д̂km
)���22���� . (34)

Let c and B be defined as

c = min
d=1, ...,D

{
2μ

[α
2
− αρ1

2
− (L + 2β1) (1 + ρ2)α

2
]
, 1 −

[α
2
+

(L
2
+ β1

)
(1 + ρ−12 )α2

] ξD
α2βD

,

1 −
[α
2
+

(L
2
+ β1

)
(1 + ρ−12 )α2

] ξd
α2βd

+
βd+1
βd

}
. (35a)

B = max

{
α

2ρ1
+ (L + 2β1) (1 + ρ2)α

2, 3M
[α
2
+

(L
2
+ β1

)
(1 + ρ−12 )α2

]}
. (35b)

Then:

V(θk+1) − V(θk ) ≤ −c
⎡⎢⎢⎢⎢⎣f (θk ) − f (θ ∗) +

D∑
d=1

βd ‖θk+1−d − θk−d ‖22
⎤⎥⎥⎥⎥⎦

+ B
������

M∑
m=1

εbmax

(
д̂km
)������

2

2

+ B
∑

m∈Mk
0

(���εbmax

(
д̂k−1m

)���22 + ���εbmax
(дkm )���22)

+ B
���
bmax∑
b=1

∑
m∈Mk

b

���εb̂km (д̂km )���22 + bmax∑
b=1

∑
m∈Mk

b

���εbmax

(
д̂km
)���22���� (36)
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= −c V(θk )

+ B
������

M∑
m=1

εbmax

(
д̂km
)������

2

2

+ B
∑

m∈Mk
0

(���εbmax

(
д̂k−1m

)���22 + ���εbmax
(дkm )���22)

+ B
���
bmax∑
b=1

∑
m∈Mk

b

���εb̂km (д̂km )���22 + bmax∑
b=1

∑
m∈Mk

b

���εbmax

(
д̂km
)���22���� . (37)

Thus,

V(θk+1) ≤ (1 − c )V(θk )

+ B
������

M∑
m=1

εbmax

(
д̂km
)������

2

2

+ B
∑

m∈Mk
0

(���εbmax

(
д̂k−1m

)���22 + ���εbmax
(дkm )���22)

+ B
���
bmax∑
b=1

∑
m∈Mk

b

���εb̂km (д̂km )���22 + bmax∑
b=1

∑
m∈Mk

b

���εbmax

(
д̂km
)���22���� . (38)

A.3 Proof of Theorem 1

This part proves that (15) holds for any k ≥ 0 if the following inequalities are satisfied:

4BMPτ 2bmax
+ BMP

bmax∑
b=1

τ 2
bkm
≤ σ2 − σ1. (39a)

24L2

μ
+ 18τ 2

bmax−bkm + 3τ
2
bmax

≤ σ2. (39b)

α ≥ μ

4L2M2
. (39c)

It is assumed that for any k ≥ 1, (15) holds for k − 1. Let σ1 = 1 − c; there is that
V(θk+1) ≤ σ1V(θ

k )

+ B
������

M∑
m=1

εbmax

(
д̂km
)������

2

2

+ B
∑

m∈Mk
0

(���εbmax

(
д̂k−1m

)���22 + ���εbmax
(дkm )���22)

+ B
���
bmax∑
b=1

∑
m∈Mk

b

���εb̂km (д̂km )���22 + bmax∑
b=1

∑
m∈Mk

b

���εbmax

(
д̂km
)���22���� (40)

≤ σ1σ
k−1
2 V(θ 1) + 4BMPτ 2bmax

σk−1
2 V(θ 1) + BMP

bmax∑
b=1

τ 2
bkm

σk−1
2 V(θ 1)

=
��σ1 + 4BMPτ 2bmax

+ BMP
bmax∑
b=1

τ 2
bkm

���σk−1
2 V(θ 1) ≤ σk

2 V(θ
1), (41)

where σ2 ≥ σ1 + 4BMPτ 2
bmax

+ BMP
∑bmax

b=1
τ 2
bkm

.
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Under Assumptions 1 and 2, the following inequality holds for any θ 1 and θ 2 because of con-

vexity:

‖∇fm (θ 1) − ∇fm (θ 2)‖∞ ≤
������

M∑
m=1

(∇fm (θ 1) − ∇fm (θ 2))
������∞

= ‖∇f (θ 1) − ∇f (θ 2)‖∞
≤ L‖θ 1 − θ 2‖∞, ∀m ∈ {1, . . . ,M }. (42)

With (42) and the proposed precision selection criterion (5), there is that���∇fm (θk+1) −Q
b̂k−1m

(
д̂k−1m

)���∞
=
���∇fm (θk+1) − fm (θk ) + fm (θk ) −Qbmax

(дkm ) +Qbmax
(дkm ) −Q

b̂k−1m

(
д̂k−1m

)���∞
≤ ���∇fm (θk+1) − fm (θk )���∞ + ���fm (θk ) −Qbmax

(
дkm
)���∞ + ���Qbmax

(
дkm
)
−Q

b̂k−1m

(
д̂k−1m

)���∞
≤ L‖θk+1 − θk ‖∞ + ���εbmax

(
дkm
)���∞

+

√√√
1

α2M2

D∑
d=1

ξd ‖θk+1−d − θk−d ‖22 + 3
(���εbmax−bkm

(
д̂k−1m

)���22 + ���εbmax−bkm (дkm )���22) (43)

≤ L

√
‖θk+1 − θ ∗ + θ ∗ − θk ‖22 + ���εbmax

(
дkm
)���∞

+

√√√
1

α2M2

D∑
d=1

ξd ‖θk+1−d − θk−d ‖22 + 3
(���εbmax−bkm

(
д̂k−1m

)���22 + ���εbmax−bkm (дkm )���22) (44)

≤ L

√
2‖θk+1 − θ ∗‖22 + 2‖θ ∗ − θk ‖22 + ���εbmax

(
дkm
)���∞

+

√√√
1

α2M2

D∑
d=1

ξd ‖θk+1−d − θk−d ‖22 + 3
(���εbmax−bkm

(
д̂k−1m

)���2∞ + ���εbmax−bkm (дkm )���2∞) . (45)

Under Assumption 2 with (13),���∇fm (θk+1) −Q
b̂k−1m

(
д̂k−1m

)���2∞
≤ 12L2

μ

[
f (θk+1) − f (θ ∗) + f (θk ) − f (θ ∗)

]
+ 3

���εbmax

(
дkm
)���2∞

+
3

α2M2

D∑
d=1

ξd ‖θk+1−d − θk−d ‖22 + 9
(���εbmax−bkm

(
д̂k−1m

)���2∞ + ���εbmax−bkm (дkm )���2∞) (46)

≤ 12L2

μ

⎡⎢⎢⎢⎢⎣f (θk+1) − f (θ ∗) + f (θk ) − f (θ ∗) +
μ

4L2α2M2

D∑
d=1

ξd ‖θk+1−d − θk−d ‖22
⎤⎥⎥⎥⎥⎦

+ 18Pτ 2
bmax−bkmσ

k−1
2 V(θ 1) + 3Pτ 2bmax

σk−1
2 V(θ 1). (47)

With α ≥ μ

4L2M2 ,
μξd

4L2α 2M2 ≤ ξd
α
≤ ∑D

j=d

ξ j
α
:

���∇fm (θk+1) −Q
b̂k−1m

(
д̂k−1m

)���2∞
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≤ 12L2

μ

⎡⎢⎢⎢⎢⎢⎣f (θk+1) − f (θ ∗) + f (θk ) − f (θ ∗) +
D∑
d=1

D∑
j=d

ξ j

α
‖θk+1−d − θk−d ‖22

⎤⎥⎥⎥⎥⎥⎦
+ 18Pτ 2

bmax−bkmσ
k−1
2 V(θ 1) + 3Pτ 2bmax

σk−1
2 V(θ 1)

≤ 12L2

μ

[
V(θk+1) + V(θk )

]
+ 18Pτ 2

bmax−bkmσ
k−1
2 V(θ 1) + 3Pτ 2bmax

σk−1
2 V(θ 1)

≤ 24L2

μ
σk−1
2 V(θ 1) + 18Pτ 2

bmax−bkmσ
k−1
2 V(θ 1) + 3Pτ 2bmax

σk−1
2 V(θ 1)

=

(
24L2

μP
+ 18τ 2

bmax−bkm + 3τ
2
bmax

)
Pσk−1

2 V(θ 1) ≤ Pσk
2 V(θ

1). (48)

Thus, ���εb (дkm )���2∞ ≤ τb
2 ���∇fm (θk+1) −Q

b̂k−1m

(
д̂k−1m

)���2∞ ≤ Pτb
2σk

2 V(θ
1). (49)

B SUPPLEMENTARY EXPERIMENTAL INFORMATION

B.1 Hyperparameters

Table 3. Hyperparameters in Training Process

Dataset MNIST CIFAR10

Model FC ResNet18

Hidden Size [784, 10] [64, 128, 256, 512]

Data Distribution IID non-IID IID non-IID

Global Epoch E 4,000 4,000 5,000 100

Local Batch Size B / / 100 10

Optimizer GD GD SGD SGD

Momentum / / 0.9 0.9

Weight Decay / / 5.00E-04 5.00E-04

Learning Rate η 0.02 0.02 0.1 0.1

B.2 Experiment Results with IID/Non-IID CIFAR10

Note that for experimentswith CIFAR10 and ResNet18, we adopt stochastic gradient descend (SGD)

and we add two state-of-the-art baselines: AdaQuantFL [14] and STC [24]. The two-level AQG

represents anAQG with 6/4 bit transmission for IID CIFAR10 and 5/3 bit transmission for non-IID

CIFAR10.

From Figures 11 and 12, we can conclude that the proposed AQG achieves a significant transmis-

sion reduction onmore complex datasets and models as compared with baselines, including QSGD,

fixed-bit LAQ, and AdaQuantFL. Specifically, the transmission reduction is 18.13% for IID CIFAR10

and 25.53% for non-IID CIFAR10, as shown in Figures 11(c) and 12(c), respectively. Note that since

STC fails to achieve the same convergence compared with other baselines, we do not include it in

the comparison for transmitted bits. The slow convergence of STC and 4-bit LAQ verifies the ne-

cessity and effectiveness of our well-designed precision selection criterion (5), which achieves fast

convergence with similar low-bit transmission but without degradation of model performance.
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Fig. 11. Convergence of loss function with ResNet18 and IID CIFAR10.

Fig. 12. Convergence of loss function with ResNet18 and non-IID CIFAR10.
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B.3 Comparison of Converged Accuracy

Table 4 compares the proposed AQG with several baselines in terms of converged test accuracy.

Table 4. Comparison of Converged Test Accuracy

Two-level AQG LAQ Q(S)GD FedAvg

IID-MNIST-FC 90.81% 90.82% 90.79% 90.77%

non-IID-MNIST-FC 90.78% 90.77% 90.77% 90.62%

IID-CIFAR10-ResNet18 92.95% 92.53% 93.39% 93.61%

non-IID-CIFAR10-ResNet18 69.38% 69.71% 70.41% 69.39%

FC denotes the 2-layer fully connected neural network adopted in the main text. The

quantization levels of two-level AQG is 4/2 bits for MNIST, 6/4 bits for IID CIFAR10 and 5/3 bits

for non-IID CIFAR10.

B.4 Heterogeneous Simulation Dataset

To simulate non-IID data distribution, a heterogeneous simulation dataset is used for logistic re-

gression. The three binary classification datasets listed in Table 5 are used together in order to

simulate non-IID data distribution as Chen et al. do in the evaluation of LAQ [7]. The number of

features is preprocessed to be equal to the minimal number of features among all three datasets,

and each dataset is uniformly distributed across six clients.

Table 5. Heterogeneous Simulation Datasets Used for Logistic

Regression

Dataset # features # samples client index

Adult fat [17] 113 1605 1,2,3,4,5,6

Ionosphere [26] 34 351 7,8,9,10,11,12

Derm [11] 34 358 13,14,15,16,17,18
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