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Communication-Efficient Federated Learning
with Compensated Overlap-FedAvg
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Abstract—While petabytes of data are generated each day by a number of independent computing devices, only a few of them can be
finally collected and used for deep learning (DL) due to the apprehension of data security and privacy leakage, thus seriously retarding
the extension of DL. In such a circumstance, federated learning (FL) was proposed to perform model training by multiple clients’
combined data without the dataset sharing within the cluster. Nevertheless, federated learning with periodic model averaging (FedAvg)
introduced massive communication overhead as the synchronized data in each iteration is about the same size as the model, and
thereby leading to a low communication efficiency. Consequently, variant proposals focusing on the communication rounds reduction
and data compression were proposed to decrease the communication overhead of FL. In this paper, we propose Overlap-FedAvg, an
innovative framework that loosed the chain-like constraint of federated learning and paralleled the model training phase with the model
communication phase (i.e., uploading local models and downloading the global model), so that the latter phase could be totally covered
by the former phase. Compared to vanilla FedAvg, Overlap-FedAvg was further developed with a hierarchical computing strategy, a
data compensation mechanism, and a nesterov accelerated gradients (NAG) algorithm. In Particular, Overlap-FedAvg is orthogonal to
many other compression methods so that they could be applied together to maximize the utilization of the cluster. Besides, the
theoretical analysis is provided to prove the convergence of the proposed framework. Extensive experiments conducting on both image
classification and natural language processing tasks with multiple models and datasets also demonstrate that the proposed framework
substantially reduced the communication overhead and boosted the federated learning process.

Index Terms—distributed computing, federated learning, overlap, efficient communication.
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1 INTRODUCTION

W Ith the rapid development of deep learning, tons of
daily generated data that were previously considered

useless can now be utilized to extract latent patterns through
deep learning (DL) [1], and thereby retrieving valuable
information. Similarly, owning abundant data resources is
a prerequisite for many innovative breakthroughs in terms
of academia across different fields, including Natural Lan-
guage Processing [2], [3] and Computer Vision [4], [5]. On
the other hand, thanks to the popularity of independent
computing devices [6] (e.g. smartphone, laptop) and edge
devices (e.g. router), each individual now can produce more
data than ever before, with gigabytes or even terabytes ex-
pected to be generated every day. However, these fresh data
are tied to different facilities, resulting in data fragmentation
(i.e. isolated data islands problem). In other words, since
separated facilities like smartphones are mostly equipped
with lots of sensors (e.g. camera, microphone, GPS), and
common users generally have no idea either what appli-
cations are collecting information through these sensors or
how this collected information would be used for, these
users will take considerable risks when they decide to share
this information with others. As a result, while the demand
for data and the speed of creating data have both been
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increased dramatically, it is still extremely difficult to gather
these data together, processing, and making the most of
them into a collection for learning, especially considering
privacy is increasingly valued.

To tackle this problem, federated learning (FL) [7] was
proposed to introduce a new promising centralized dis-
tributed training method [8] that allows multiple clients
(e.g. mobile clients or servers from different enterprises) to
coordinately train a deep neural network model on their
combined data, without any of the participants having to
reveal its local data to the central server or other partic-
ipants. Specifically, the workflow of the federated learning
with FederatedAveraging (i.e., FedAvg [7]), as Figure 1 illus-
trated, has 4 steps: I. The central server initializes the global
model and pushes the global model to every participating
client. II. Clients train the received global model on its local
data. After that, they return the essential information Ikt
that is beneficial to the evolving of the global model (i.e.,
mostly is model weights, but could be gradients) to the
server, where k is the index of the client and the t indicates
the iteration index, respectively. III. The central server uti-
lizes all clients’ information by

∑
k I

k
t to update the global

model. IV. Repeat step II and step III until convergence.
Particularly, it can be seen that federated learning omits the
data collection step, and conversely utilizing Ikt that is not
explicitly related to clients’ local data to evolve the global
model, which not only integrates fragmented data, but also
offers as much privacy as possible.

Nonetheless, preserving data privacy by not revealing
each client’s local data in federated learning comes at a
price, especially considering the fact that deep learning is
basically built on top of huge chunks of data. In such a
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Fig. 1: A general federated learning workflow. Each client
always keeps its data private and only shares essential
information that could help improve the global model with
others, be it gradients or model weights.

circumstance, the price for federated learning [9] is low
communication efficiency due to overloaded bandwidth
since the client-server communication occurs at the end of
every training iteration. In detail, referring to the workflow
of federated learning as shown in Figure 1, we can see
that at each iteration, every client has to communicate a Ikt
which commonly has the same size as the model. Given that
nowadays the model size can be easily reached hundreds of
megabytes [2], [10], [11] or even gigabytes, plus the model
in the federated learning generally takes hundreds of thou-
sands of iterations to converge, the overall data transfer size
during the training process may exceed petabytes readily
[12]. Hence, in comparison to non-privacy-preserving train-
ing, federated learning usually takes much more time to
converge due to the time-consuming communication phase,
and it may become even slower when the network condition
is relatively poorer.

To reduce the communication cost of federated learning,
various methods were proposed to explore the possible
solutions, which can be mainly divided into two different
categories in this paper. Specifically, the first category is
the model averaging with a large communication inter-
val. Some work [7], [13] tried to drastically decrease the
communication overhead by enlarging the communication
interval, yet it also degraded the model’s final accuracy
and the best communication step size is hard to capture.
The second category is data compression. Some work [14]–
[18] attempted to compress the Ikt before transmitting it.
However, the compressing phase needs to consume a lot of
time as well, especially when performing federated learning
on battery-sensitive (e.g. smartphone) or low-performance
(e.g. netbook, gateway) devices.

In this paper, we propose a new novel framework named
Overlap-FedAvg to alleviate this problem, which paralleled
the model training phase with the model uploading and
downloading phase, so that the latter phase could be totally
covered by the former phase. Compared to the vanilla Fe-
dAvg, Overlap-FedAvg was firstly further developed with

a hierarchical computing strategy to accomplish the paral-
lelism. Nevertheless, this strategy also brought the gradient
staleness problem so a gradient compensation mechanism
was therefore employed to alleviate this issue and keep the
convergence of the proposed Overlap-FedAvg framework.
Additionally, a nesterov accelerated gradients (NAG) [19],
[20] algorithm was also established to accelerate the con-
vergence speed of the federated learning. Besides, Overlap-
FedAvg is orthogonal to other compression methods so
that it could collaborate with others to further improve the
efficiency of the federated learning.

The contributions of this proposal are the followings:

• To improve the communication efficiency of feder-
ated learning, we propose a novel communication-
efficient framework called Overlap-FedAvg by par-
alleling the communication with computation. To
the best of our knowledge, it is the first work that
focuses on improving the communication efficiency
of federated learning by an overlapping approach,
and it is totally compatible with many other data
compression methods.

• In order to alleviate the gradients staleness prob-
lem brought by the parallelism in Overlap-FedAvg
and keep the convergence speed of the federated
learning, taylor series expansion was utilized as a
compensation mechanism. Additionally, the essential
theoretical analysis of the proposed Overlap-FedAvg
algorithm is provided.

• To achieve higher accuracy, NAG was employed to
further accelerate the federated learning. Compared
with previous similar work, our proposal was not
only effective but also intuitive and easy to im-
plement. Note that theoretically, not only the NAG
algorithm but all acceleration algorithms (e.g. Adam
[21], RMSProp [22], etc.) could be applied to the
Overlap-FedAvg framework readily.

• To investigate the effectiveness of the proposed
Overlap-FedAvg, extensive experiments were con-
ducted on four benchmark datasets with 8 DNN
models to compare its potentiality with the baseline
algorithm FedAvg. The results demonstrated that our
proposed Overlap-FedAvg could effectively improve
the accuracy of federated learning and decrease the
communication cost. The source code and hyper-
parameters of all experiments are open-sourced for
reproducibility1. In addition, we discuss whether
the proposed Overlap-FedAvg would damage the
privacy security of federated learning.

The rest of this paper is organized as follows. A literature
review is illustrated in Section 2, where some background
information and related work are introduced. In Section 3,
the implementations of the proposed Overlap-FedAvg algo-
rithm are presented. Then the essential convergence analysis
is described in Section 4. The experiment design and result
analysis are detailedly documented in Section 5. Finally,
the discussion and conclusion of this paper are drawn in
Section 6.

1. https://github.com/Soptq/Overlap-FedAvg

https://github.com/Soptq/Overlap-FedAvg
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2 LITERATURE REVIEW

In this section, we give a brief introduction of federated
learning, and some related work that accelerates the training
process of federated learning by improving communication
efficiency.

2.1 Federated Learning

Federated learning generally describes a distributed frame-
work that allows the cluster to perform model training on all
clients’ combined datasets without leaking their respective
local data to others. This is accomplished by letting every
participating client only sends information that could help
evolve the global model, instead of its plainly local dataset,
to the central server. Federated learning is originated from
distributed deep learning [23]–[25], but with mainly four
additional features. Firstly, the training data of different
clients used in federated learning is expected to be heavily
unbalanced. Namely, each client’s local data tend to be
both Non-IID (Independent and Identically Distributed) and
unequal in amounts, and will not be unveiled to others
during the training process. As a result, any node in the
cluster, including the central server, cannot determine the
data distribution of any other nodes. Secondly, federated
learning has a relatively small training batch size. Virtually,
federated learning was initially designed to make use of
the data on battery-sensitive or low-performance devices,
which usually also have a relatively small memory size.
Consequently, the batch size of the model needs to be small
enough so that the memory would not run out. Third, the
network bandwidth of the clients in federated learning is al-
ways considerably small compared to the vanilla distributed
training, where gigabytes bandwidth is commonly used.
Hence, numerous communications produce massive com-
munication overhead and take much time, resulting in low
communication efficiency. Moreover, network connections
of clients can be even lost during the training, indicating the
system has to be robust enough to handle these exceptions.
Forth, clients in federated learning are unreliable, meaning
it is very potential that malicious clients send carefully
constructed information to the central server to poison the
global model, and eventually making the global model
unusable. Extensive work was proposed to address the is-
sues aforementioned [26]–[30] while we focus on alleviating
the massive communication overhead problem of federated
learning in this article.

2.2 Related Work

Various work had been proposed to address the massive
communication overhead problem during federated learn-
ing, which can be roughly divided into two groups: reduc-
ing communication rounds and data compression

1) Reducing communication rounds: In vanilla feder-
ated learning, the communication phase happened
at the end of every iteration (i.e., the communication
interval is 1). Considering a typical federated DNN
training process usually takes hundreds of thou-
sands of iterations, one can easily think of enlarging
the communication interval to significantly reduce

Algorithm 1 FederatedAveraging. In the cluster there
are N clients in total, each with a learning rate of η. The set
containing all clients is denoted as S, the communication
interval is denoted as E, and the fraction of clients is
denoted as C
Central server do:

1: Initialization: global model w0.
2: for each global iteration t ∈ 1, ..., iteration do
3: # Determine the number of participated clients.
4: m← max(C ·N, 1)
5: # Randomly choose participated clients.
6: Sp = random.choice(S,m)
7: for all each client k ∈ Sp do in parallel
8: # Get clients improved model.
9: wkt+1 ← TrainLocally(k,wt)

10: end for
11: # Update the global model.
12: wt+1 ←

∑N
k=0 pkw

k
t+1

13: end for

TrainLocally(k, w0):
14: for each client iteration e ∈ 1, ..., E do
15: # Do local model training.
16: we ← we−1 − η∇F (we−1)
17: end for
18: return wE

the communication overhead. As a result, Federate-
dAveraging (FedAvg) [7] and its variants [13] were
proposed to allow clients do multiple iterations of
local training before making a global model update,
as Algorithm 1 illustrated, where pk = nk

n is the
weight of the k-th client. The experiments suggested
that FedAvg massively increased the convergence
speed with respect to wall-clock time due to the
reduction of communication rounds. In addition,
several work provided the theoretical analysis of
FedAvg, advocating that it is not only convergent
on both IID and Non-IID data with decaying learn-
ing rate, but also has linear speed-up [31], [32].
However, The communication interval in FedAvg is
controlled by a hyper-parameter E, which is greatly
influential to the final accuracy of the model and
is shifty based on the characteristic of both the
model and the dataset. In fact, the choice of E is
a trade-off between the final accuracy of DNN and
the training efficiency: the smaller the E is, the
better the model’s final accuracy generally would
be, and conversely the bigger the E is, the faster
the model generally would converge. Therefore,
an experienced engineer needs to be employed to
fine-tune the communication interval E in order to
extract the best performance of the model.

2) Data compression: Apart from decreasing com-
munication rounds, another approach to reduce
the communication overhead is to reduce the data
transfer size, namely data compression. Following
this direction, there are mainly two kinds of meth-
ods to effectively compress the data: quantization
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[14]–[16] and sparsification [17], [18], where the
former one aims to represent the original data by
a low-precision data type with a smaller size (e.g.
int8 or bool), and the latter one intentionally only
transmits essential values at each communication
(about 1% of the total number of values). In detail,
quantization with error feedback is experimentally
and theoretically effective [33], but its compression
rate is considerably low as the maximum com-
pression ratio is limited to 1

32 (the common data
type used in deep learning is 32-bit). Moreover,
with fewer bits carrying information, quantization
tends to converge much slower. On the other hand,
sparsification is capable of achieving a compression
rate of 1

100 easily without significantly damaging
the model’s convergence speed and final accuracy.
Nevertheless, sparsification inevitably introduces
extra phases during the training process, including
sampling, compressing, encoding, decoding, and
decompressing, which could potentially affect the
overall training efficiency, especially on battery-
sensitive (e.g. smartphone) or low-performance (e.g.
netbook, gateway) devices.

In this paper, we propose Overlap-FedAvg that at-
tempted to overlap the communication with computation
in federated learning to boost the training from a structural
perspective. In fact, the idea of communication-computation
overlap had been explored extensively in High-Performance
Computing (HPC) [34]–[36]. However, they generally as-
sumed the data and the computation is independent of
each other so that data can be transmitted as soon as it is
available. Nonetheless, in the training process of a DNN,
each iteration of training seriously related to the data of
the last iteration, leading to a chain-like structure that is
hard to split. Consequently, ideas in the HPC domain fail
to be directly applied to federated learning. To accelerate
the training of federated learning, the Overlap-FedAvg is
proposed, which is the first overlapping work in federated
learning to our best knowledge. Particularly, the depen-
dency problem was addressed by relaxing the chain-like
constraint and a data compensation mechanism, which will
be detailedly discussed in the latter section.

Moreover, compared to above-mentioned related work
and the corresponding shortcomings, Overlap-FedAvg
firstly does not require experts to carefully design E. Con-
trarily, E in the Overlap-FedAvg is automatically deter-
mined by the environment (i.e. network condition, band-
width, etc) with the hierarchical computing strategy. In
other words, if the environment permits a more frequent
communication, E will be automatically tuned smaller, and
vise versa. Secondly, Overlap-FedAvg does not compress
any data during the training process. That is, there is no
reduced convergence rate or extra time-consuming phases
brought by Overlap-FedAvg in terms of compression. More-
over, Overlap-FedAvg is compatible with those compression
methods, so that they can be applied together to the training
process to further accelerate the training speed.

3 METHODOLOGY

In this section, we firstly show an overview of the proposed
Overlap-FedAvg framework, then we present its details
as well as implementations, and finally we introduce the
gradients compensation mechanism and the application of
the NAG algorithm.

3.1 Overview

To alleviate the massive communication problem, we pro-
pose a novel framework named Overlap-FedAvg, which
decoupled the model uploading and downloading phase
with the model training phase by employing a separate pro-
cess dedicating to data transmission on each client. In this
way, clients’ local model training phases can be freed from
the interruptions of the frequent communication. However,
while this decoupling made the training phase capable of
doing continuous model training without any blocking, it
also introduced staleness to the synchronized data, which
will be detailedly explained in Section 3.3. Observed that
the weights of the model are generally equivalent to the
aggregation of the gradients, we decomposed the vanilla
FedAvg’s model updating rule, abstracting the gradients,
utilizing taylor series expansion and fisher information ma-
trix to analyze the gap between the stale gradients and the
up-to-date gradients, and thereby properly compensating
the stale model weights. Moreover, with the decomposition
and the abstraction of the gradients, many parameters op-
timizing acceleration algorithms can be easily applied to
further increase the converge speed of federated learning,
for example, momentum accelerated SGD, NAG, or even
Adam [21].

In general, Overlap-FedAvg’s workflow consists of five
steps. I. Initiate the global model on the central server and
push it to every participating client. II. Each participating
client does E iterations of local model training on their
respective data. Note that E here is no longer a constant
hyper-parameter that needs to be manually setup, but a
dynamic variable that adapts to the changing circumstances.
III. When the local training is finished, clients instantly
continue the next iteration of local training, while com-
manding another process to push their local model to the
central server. IV. When the central server receives clients’
improved models, it firstly uses taylor series expansion and
fisher information matrix to compensate the model weights,
then with the compensated weights, the central server cal-
culates the nesterov momentum and updates the global
model. V. The central server pushes the latest global model
to the participating clients. For the architecture, the biggest
difference between the Overlap-FedAvg and vanilla FedAvg
is step III, where we relaxed the chain-like requirements,
meaning the central server is not guaranteed for receiv-
ing the latest model from each client, which unavoidably
brought staleness problem to our setting. Consequently, step
IV managed to address the issue of stale model weights.

3.2 Overlapping of the Communication

At the beginning of the federated learning in Overlap-
FedAvg, each client will initialize two processes: a process
focusing on local model training (denoted as Ppro) and a
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Fig. 2: Elementary SGD was used in vanilla FedAvg for
model iterating, which in the meantime restricted the train-
ing phase from paralleling with the communication phase,
as the training phase required the model weights that
the communication phase is transmitting. To decouple the
training phase and communication phase, Overlap-FedAvg
loosed this restriction and employed two model iterative
formulas to the training process: self update and global update,
where the former one was used when the required model
weights for a global model updating are not received yet,
and the latter one was used when the required model
weights are successfully received.

process dedicating to communicating (denoted as Pcom).
It is worth noting that the central server will also spawn
two processes, where its Ppro is used to do global model
updating, and its Pcom is used to receive clients’ improved
models and pushes the latest global model to the clients.
Since both feed-forward and back-propagation in model
training is heavily depends on the solution of its previous
step (i.e. wt is requisite for wt+1 = wt − η∇F (wt)), we
came to the conclusion that the model training process is
strongly consecutive and real-time (i.e. chain-like). As a
result, under vanilla FedAvg’s setting, the model training at
iteration t+1 will only begin after successfully receiving wt,
namely, after finishing the time-consuming communication
phase at iteration t. Hence, in order to successfully decouple
the model training phase from communicating, the real-time
condition of vanilla FedAvg needs to be relaxed.

The diagram of Overlap-FedAvg’s model iterating pro-
cess is presented in Figure 2. In each iteration, Pcom will
fetch the model before Ppro has not even started training
(i.e. pre-download the global model), and it will also handle
the model uploading task after the local model is improved,
so that Ppro can instantly continue the next iteration of local
model training without caring the matters of communicat-
ing. From the diagram, we can see that the communication
interval E of Overlap-FedAvg is determined by the com-
munication time and the training time. When Pcom commu-
nicates, Ppro, like vanilla FedAvg, utilizes elementary SGD
and its local training data to update the local model. On
the other hand, when Pcom finished communicating and
received the latest model, unlike vanilla FedAvg that sim-
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Fig. 3: Compared to Figure 2, here the timestamp of w will
only increase after performing a global update. In other
words, from the central server’s perspective, E iterations
of clients’ local model training are considered as one global
model training in order to simplify the staleness analysis.

ply calculates the weighted aggregation as the new global
model, Overlap-FedAvg use the function φ(·) to update the
global model, which will be detailedly discussed in the latter
section. The pseudocode of Overlap-FedAvg is illustrated in
Algorithm 2.

Algorithm 2 Overlap-FedAvg.

Central server do:
1: Initialization: global model w0.
2: for each global iteration t ∈ 1, ..., iteration do
3: for all each client k ∈ 1, ..., N ) do in parallel
4: # Get clients improved model.
5: TrainLocally(k,wt)
6: end for
7: if pcom received models then
8: # Update the global model.
9: wt+1 = φ(wt, p0, w

0
t−E , p1, w

1
t−E , ..., pN , w

N
t−E)

10: end if
11: end for

TrainLocally(k, w0):
12: while pcom is communicating do
13: # Do self update
14: we ← we−1 − η∇F (we−1)
15: end while
16: # Command pcom to send latest model
17: p com send(wE)

3.3 Gradients Compensation

The overlapping of the communication and training phase
in the Overlap-FedAvg is promising because the communi-
cation is successfully hidden. However, the communication
phase inevitably takes time, and from our observation, it is
actually very likely to take much more time than a iteration
of local model training. As a result, when the server/client
finally received/uploaded the model, this model is probably
from several iterations ago. Simply considering weighted
aggregation of these stale models like FedAvg will mostly
result in a degradation of model performance in Overlap-
FedAvg.

To simplify the analysis of the degradation, we treat
clients’ E iterations of local model training as one global
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model training, as Figure 3 illustrated, where wkt,i is defined
as the k-th client’s model weights at the i-th local iteration
in the t-th global iteration. Consequently, the staleness of the
model is limited to 1 global iteration (i.e. E local iterations).
Then, we represent the FedAvg’s updating rule in Equality
1 for the latter comparison, since it does not produce stale
models at all, and is what Overlap-FedAvg pursues for.

wt+1 =
N∑
k=0

pkw
k
t+1 = wt −

wk
t+1=wt−µ

∑
e∇F (wk

t,e)︷ ︸︸ ︷
η

N∑
k=0

pk

E−1∑
e=0

∇F (wkt,e)︸ ︷︷ ︸
Global Model Updating

, (1)

However, in Overlap-FedAvg, both wkt+1 and ∇F (wkt,e)
are not accessible when the central server updating
the global model to wt+1 due to the communication-
computation overlap. Instead, only wkt can be retrieved at
that specific time. Thus, in Overlap-FedAvg, the updating
rule is shown in Equality 2.

wt+1 = φ(wt, p0, w
0
t , p1, w

1
t , ..., pN , w

N
t ). (2)

where φ(·) is the core function to produce latest global
model weights, and its goal is to generate outcomes that
approach results from Equality 1 at the same timestamp as
much as possible. Considering wt−1 can be readily obtained
from history, and wkt = wt−1−µ

∑
e∇F (wkt−1,e), Equality 2

can be further decomposited into Equality 3

wt+1 = φ(wt, ..., pk, w
k
t , w

k
t−1, ...,

∑
e

∇F (wkt−1,e), ...). (3)

From the decomposition, we can see that in vanilla
FedAvg,wt+1 is updated bywt and each client’s gradients at
wkt (i.e.∇F (wkt,e)), which is expected. However, in Overlap-
FedAvg, wt+1 is improved by wt and the gradients at
wt−1, leading to the gradients staleness problem in Overlap-
FedAvg. Hence, it is clear that our goal finally turns into
estimating ∇F (wkt ) by ∇F (wkt−1).

Inspired by the delay compensation in asynchronous
distributed deep training [37], taylor series expansion and
fisher information matrix were utilized to alleviate the
gradients staleness problem. Specifically, by taylor series
expansion, ∇F (wkt ) can be approximately represented by
∇F (wkt−1):

∇F (wkt ) ≈ ∇F (wkt−1) + H(F (wt−1))� (wt − wt−1), (4)

where H(·) is the hessian matrix of ·. However, the
hessian matrix is generally very difficult to compute and
is against the lightweight characteristic of federated learn-
ing. Therefore, a cheap hessian matrix approximator was
introduced with fisher information matrix [38]:

εt , Ey|x,w∗ ||G(wt)−H(F (wt))|| → 0, t→ +∞, (5)

where G(wt) is the outer product matrix of the gradients
at wt.

Additionally, in order to control the variance of the ap-
proximator, λ was imported. Thus, ∇F (wkt ) can be cheaply
approximated by ∇F (wkt−1) as:

∇F (wkt ) ≈ ∇F (wkt−1)+λ∇F (wt−1)�∇F (wt−1)�(wt−wt−1).
(6)

Consequently, we had an asymptotically unbiased and
cheap approximator to represent the F (wkt ) from F (wkt−1).

3.4 Application of NAG
Compared to local model training with pre-collected data
or vanilla distributed deep learning, federated learning ob-
tained good privacy, but lost the relatively fast convergence
speed. As a result, some work was recently investigating
the possibility of utilizing momentum in federated learning
[39], [40] to accelerate its convergence speed. However, this
work was focusing on representing the momentum with
model weights wt, which is slightly against the instinct as
momentum is essentially describing the trend of gradients.
Hence, their algorithms are relatively difficult to understand
compared to normal momentum-based acceleration meth-
ods (e.g. NAG, Adam [21]) as momentum is superficially
unrelated to the model weights.

In Overlap-FedAvg, with the decomposition of the orig-
inal model updating rule and the abstraction and estima-
tion of the latest gradients from the stale model weights,
many parameters optimizing acceleration techniques can
be applied to the Overlap-FedAvg intuitively and easily.
Particularly, the NAG, one of the most popular approaches
to speed-up the training process of the DNN, was utilized
to accelerate the Overlap-FedAvg in this proposal as a
example. The details and analysis are provided.

In detail, the normal NAG updating rule in SGD is
illustrated as follows:

{
vt+1 = βvt +∇F (wt) + β(∇F (wt)−∇F (wt−1))

wt+1 = wt − ηvt+1.
(7)

Since we already had the unbiased estimation of∇F (wt)
with∇F (wt−1), the NAG updating rule in Overlap-FedAvg
could be written as:


vt+1 = βvt +∇F ah(wt−1)

+β(λ∇F (wt−1)�∇F (wt−1)� (wt − wt−1))

wt+1 = wt − ηvt+1,
(8)

where∇F ah(·) is denoted as the compensated gradients
with (·).

3.5 The overall model updating formula
Overall, when the central server updated the global model
in the Overlap-FedAvg, the following procedures were exe-
cuted:

1) Restoring the gradients of received model weights
by ∇F (wt−1) = wt−1−wt

η . This step treated several
iterations (say E iterations) of clients’ local training
as one global model training with the same learn-
ing rate but E times larger gradient values. This
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behavior was expected because we want Overlap-
FedAvg to have an identical learning speed regard-
less of how the adaptive E variants, and it matches
the chain-like characteristic of SGD. Although the
gradient values are scaled up (if E is not equal to
1), the scaling factor is a fixed constant (namely E)
and can be extracted with ease, and we argue that it
is not a big problem to the latter transformation.

2) Compensating ∇F (wt−1) to ∇F ah(wt−1) with the
formula proposed in Section 3.3.

3) With the unbiased estimation of the gradients on the
current model weights, the NAG algorithm was em-
ployed to speed up the federated learning process.

Specifically, we had the updating function φ(·) shown in
Algorithm 3:

Algorithm 3 φ(wt, p0, w
0
t−E , p1, w

1
t−E , ..., pN , w

N
t−E).

1: # Restore the gradients of the last global iteration.
2: for k ∈ 1, ..., N do
3: ∇F (wkt−1) =

wk
t−1−wt

η
4: end for

5: # Calculate the weighted gradients for the central server.
6: ∇F (wt−1) =

∑N
k=0 pk∇F (wkt−1)

7: # Compensate the stale gradients
8: ∇F ah(wt−1) = ∇F (wt−1)+λ∇F (wt−1)�∇F (wt−1)�

(wt − wt−1)

9: # Update the momentum and update the globla model
10: vt+1 = βvt+∇F ah(wt−1)+(∇F ah(wt−1)−∇F (wt−1))
11: wt+1 = wt − ηvt+1

4 THEORETICAL ANALYSIS

In this section, we provide the theoretical analysis of the
proposed Overlap-FedAvg framework. Specifically, the goal
of the Overlap-FedAvg is to solve the following generic
optimization problem, which is formulated as Equation 9:

min
w

{
F (w) ,

N∑
k=1

pkFk(w)

}
, (9)

where N is the number of devices, pk is the aggregation
weight of the k-th client satifying pk ≥ 0 and

∑N
k=1 pk = 1,

Fk(·) refers to clients’ local objective function defined by
Equation 10:

Fk(w) ,
1

nk

nk∑
i=1

L(w;xk,i), (10)

where xk,i refers to the k-th client’s i-th local training
data, nk is the size of the k-th client’s training data and L(·)
is the loss function.

In Overlap-FedAvg, each client will perform E iterations
of local training whereE is self-adaptive to the environment
instead of manually configured in vanilla FedAvg, and then
perform a local improved model uploading procedure to the
central server for it to update the global model. Therefore,

from the perspective of the central server, considering E
iterations of clients’ local model training as one iteration of
central server’s global model training (which is explained
in Section 3.3), the global model’s update rule can be illus-
trated in Equation 11:

∇F ahk (wt−1) = ∇Fk(wt−1)+

λ∇Fk(wt−1)�∇Fk(wt−1)� (wt − wt−1)

(11)

wt+1 = wt − ηt
N∑
k=1

pk∇F ahk (wt−1). (12)

In order to present our theorem, some mild assumptions
need to be made.

Assumption 4.1. For the k-th client, where k ∈ range(1, N),
Fk is L1-smooth. That is, for all x and y:

Fk(y) ≤ Fk(x) + (y − x)T∇Fk(x) +
L1

2
||y − x||22 . (13)

Assumption 4.2. [41] [42] For the k-th client, where k ∈
range(1, N), ∇Fk is L2-smooth. That is, for all x and y:

∇Fk(y) ≤ ∇Fk(x)+(y−x)TH(Fk(x))+
L1

2
||y − x||22 . (14)

where H(·) is the second order derivative.

Assumption 4.3. For the k-th client, where k ∈ range(1, N),
Fk is µ-strongly convex. That is, for all x and y:

Fk(y) ≥ Fk(x) + (y − x)T∇Fk(x) +
µ

2
||y − x||22 . (15)

A recent work [37] had demonstrated the convergence
rate of delay compensated asynchronous SGD under dis-
tributed deep learning’s setting, and Theorem 4.1 is derived
from its main theorem.

Theorem 4.1. Let Assumption 4.1 and Assumption 4.2 hold, if
the expectation of the ||·||22 norm of the ∇F ahk is upper bounded
by a constant G, and the diagonalization error of H(·) is upper
bounded by εD , then the difference between the real gradients and
approximated gradients at wt is∣∣∣∣∣∣∇Fk(wt)−∇F ahk (wt−1)

∣∣∣∣∣∣ ≤ Gηt(L1ηt
2

+ Cλ + εt), (16)

where Cλ = (1 − λ)L2
1 + εD , εt ,

E(y|x,w∗) ||∇Fk(wt)−H(Fk(wt))|| [38] and ηt is the learning
rate at iteration t.

Proof.∣∣∣∣∣∣∇Fk(wt)−∇F ahk (wt−1)
∣∣∣∣∣∣

=
∣∣∣∣∣∣∇Fk(wt)−∇Fhk (wt−1)

∣∣∣∣∣∣︸ ︷︷ ︸
A

+
∣∣∣∣∣∣∇Fhk (wt−1)−∇F ahk (wt−1)

∣∣∣∣∣∣︸ ︷︷ ︸
B

,

(17)

where ∇Fhk (·) is denoted as the first order approxima-
tion of ∇Fk(·).

For the term A, as ∇Fk is L2-smooth, we have Inequal-
ity 18 as:

A =
∣∣∣∣∣∣∇Fk(wt)−∇Fhk (wt−1)

∣∣∣∣∣∣
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≤ L2

2
||wt − wt−1||2 ≤

L1G

2
η2t . (18)

For the term B, we have Inequality 19 as:

B =
∣∣∣∣∣∣∇hk(wt−1)− F ahk (wt−1)

∣∣∣∣∣∣
≤ ||(λ∇Fk(wt−1)�∇Fk(wt−1)−H(F (wt−1)))(wt − wt−1)||
≤ (||λ∇Fk(wt−1)�∇Fk(wt−1)−∇Fk(wt−1)�∇Fk(wt−1)||

+ ||∇Fk(wt−1)�∇Fk(wt−1)−Diag(H(F (wt−1)))||
+ ||Diag(H(F (wt−1)))−H(F (wt−1))||)Gηt

≤ (Cλ + εt)Gηt, (19)

where Cλ = (1 − λ)L2
1 + εD . Taking Inequality 18 and

Inequality 19 into Equation 17, we have Inequality 20:∣∣∣∣∣∣∇Fk(wt)−∇F ahk (wt−1)
∣∣∣∣∣∣ ≤ Gηt(L1ηt

2
+ Cλ + εt), (20)

where Cλ = (1− λ)L2
1 + εD.

Recently another work [31] shared a theoretical analysis
of the vanilla FedAvg algorithm on the Non-IID and IID
dataset and gave a necessary condition for the vanilla Fe-
dAvg on Non-IID dataset to converge: η must decay. As The-
orem 4.1 shown, with η → 0,

∣∣∣∣∇Fk(wt)−∇F ahk (wt−1)
∣∣∣∣→

0 as well. Hence, intuitively Overlap-FedAvg converges
as long as FedAvg converge. We will prove this intuition
formally.

Another theoretical analysis of federated learn-
ing [31] defined vkt+1 = wkt − ηt∇Fk(wkt , ξ

k
t ), gt =∑N

k=1 pk∇Fk(wkt , ξ
k
t ), vt =

∑N
k=1 pkv

k
t , wt =

∑N
k=1 pkw

k
t

and gt =
∑N
k=1 pk∇Fk(wkt ) to help abstract the problem,

where ξkt is a sample uniformly chosen from the k-th client’s
local training dataset. We will inherit these notations to our
analysis. Furthermore, we denote the compensated gt as gaht
and compensated gt as gaht . Thus,

∣∣∣∣gaht − gt∣∣∣∣ ≤ εc
The main theorem of the literature [31] is heavily based

on its Key Lemma 1− 3. Among them the Key Lemma 1 is
the most important, and it is also the only lemma that will
be interfered by the introduction of εc. For the simplicity,
we will denote Gηt(

L1ηt
2 +Cλ + εt) as εc. Consequently, we

will only give a revised version of its Key Lemma 1 under
Overlap-FedAvg settings.

Theorem 4.2. Let Assumption 4.1 to 4.3 hold. If ηt ≤ 1
4L1

, we
have:

E ||vt+1 − w∗||2 ≤ (1− ηtµ)E ||wt − w∗||2

+ η2tE ||gt − gt||
2

+ 6L1η
2
tΓ + 2E

N∑
k=1

pk

∣∣∣∣∣∣wt − wkt ∣∣∣∣∣∣2
+ 2η2t εcG+ η2t ε

2
c + 2ηtεc ||wt − w∗|| , (21)

where Γ = F ∗−
∑N
k=1 pkF

∗
k ≥ 0 and εc = Gηt(

L1ηt
2 +Cλ+εt)

Proof. Because vt+1 = wt − ηtgaht , we have Equation 22 as:

||vt+1 − w∗|| =
∣∣∣∣∣∣wt − ηtgaht − w∗ − ηtgaht + ηtg

ah
t

∣∣∣∣∣∣2
=
∣∣∣∣∣∣wt − w∗ − ηtgaht ∣∣∣∣∣∣2︸ ︷︷ ︸

C

+ 2ηt
〈
wt − w∗ − ηtgaht , gaht − gaht

〉
︸ ︷︷ ︸

D

+ η2t

∣∣∣∣∣∣gaht − gaht ∣∣∣∣∣∣ , (22)

where w∗ is the model weights we are pursing. For the
second term D, because of Egaht = gaht , the expectation of
D is equal to 0. For the first term C , after splitting we will
have Equation 23:

C =
∣∣∣∣∣∣wt − w∗ − ηtgaht ∣∣∣∣∣∣2

= ||wt − w∗||2−2ηt
〈
wt − w∗, gaht

〉
︸ ︷︷ ︸

E

+ η2t

∣∣∣∣∣∣gaht ∣∣∣∣∣∣2︸ ︷︷ ︸
F

. (23)

From Assumption 4.1, it can be derived that∣∣∣∣∇Fk(wkt )
∣∣∣∣ ≤ 2L1(Fkw

k
t −F ∗k ). As a result, for the term F ,

we have Inequality 24:

F = η2t

∣∣∣∣∣∣gaht ∣∣∣∣∣∣2 ≤ η2t N∑
k=1

pk

∣∣∣∣∣∣∇F ahk (wkt )
∣∣∣∣∣∣2

≤ η2t
N∑
k=1

pk

∣∣∣∣∣∣∇Fk(wkt ) + εc

∣∣∣∣∣∣2
≤ η2t

N∑
k=1

pk(
∣∣∣∣∣∣∇Fk(wkt )

∣∣∣∣∣∣2 + 2
〈
∇Fk(wkt ), εc

〉
+ ||εc||2)

≤ 2L1η
2
t

N∑
k=1

pk(Fk(wkt )− F ∗k ) + 2η2t εc

N∑
k=1

pk∇Fk(wkt ) + η2t ε
2
c

≤ 2L1η
2
t

N∑
k=1

pk(Fk(wkt )− F ∗k ) + 2η2t εcG+ η2t ε
2
c . (24)

And thus F is successfully bounded. Next we target at
bounding the second term E, which is also not too difficult
as we only need to bring the disturbance εc to the equality.
Formally, for the second term E, we have Inequality 25:

E = −2ηt
〈
wt − w∗, gaht

〉
= −2ηt

N∑
k=1

pk
〈
wt − w∗,∇Fk(wkt )

〉
≤ −2ηt

N∑
k=1

pk
〈
wt − wkt ,∇Fk(wkt )

〉
+ 2ηt

N∑
k=1

pk
〈
wkt − w∗, εc

〉
+ 2ηt

N∑
k=1

pk
〈
wkt − w∗,∇Fk(wkt )

〉
≤ −2ηt

N∑
k=1

pk
〈
wt − wkt ,∇Fk(wkt )

〉
+ 2ηtεc ||wt − w∗||

− 2ηt

N∑
k=1

pk
〈
wkt − w∗,∇Fk(wkt )

〉
. (25)

Here we want to eliminate all ∇Fk(·). By Cauchy-
Schwarz inequality, AM-GM inequality and Assumption
4.3, the inequality can be formalized as Inequality 26:

E = −2ηt
〈
wt − w∗, gaht

〉
≤ ηt

N∑
k=1

pk

(
1

ηt

∣∣∣∣∣∣wt − wkt ∣∣∣∣∣∣2 + ηt

∣∣∣∣∣∣∇Fk(wkt )
∣∣∣∣∣∣2)

− 2ηt

N∑
k=1

pk

(
Fk(wkt )− Fk(w∗) +

µ

2

∣∣∣∣∣∣wkt − w∗∣∣∣∣∣∣2)
+ 2ηtεc ||wt − w∗|| .

(26)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE 1:
THE BASIC CONFIGURATION OF THE TRANSFORMER MODEL

Params
# of word # of # of Hidden # of Dropout

Embeddings Head Units Layers Rate

Value 200 2 200 2 0.2

Putting these terms back to C and following the induc-
tion in [31], we can derive the revised version of the Key
Lemma 1, which is Theorem 4.2 in this paper.

Comparing Theorem 4.2 with the Key Lemma 1 origi-
nated in literature [31], several terms that Overlap-FedAvg
introduced are strongly relevant to the learning rate ηt.
Therefore, with the decaying of the learning rate during the
federated training process on the IID or Non-IID dataset,
these introduced terms will gradually approach nearly zero
and eventually become negligible for the convergence of the
learning.

5 EXPERIMENTS

5.1 Experimental setup

We evaluated the effectiveness of the proposed Overlap-
FedAvg by applying it to extensive models and datasets.
For the base settings, the total number of the illustrative
clients in our experiments was set to 10, the max number
of global epoch (a epoch usually contains thousands of
iterations depending on the size of the dataset and the batch
size) to train was set to 500 and all experiments were done
under a Non-IID environment in order to simulate the real-
world scenario. Furthermore, the code of the experiments
was developed with Pytorch and Pytorch Distributed RPC2

Framework with GLOO backend3 from scratch. NCCL back-
end was not used in our experiments due to its limited
support for many edge devices without Nvidia GPU. To the
best of our knowledge, Overlap-FedAvg is the first attempt
to parallel the training phase and communication phase in
the federated learning process, and it is totally capable of
coping with other compression methods. As a result, in this

2. https://pytorch.org/docs/stable/rpc.html
3. https://github.com/facebookincubator/gloo

work, we just compared the efficiency of Overlap-FedAvg
with the vanilla FedAvg [7] (i.e., the metrics of FedAvg
were treated as the baseline). Particularly, the following
experiments shared the same experimental configurations.

5.2 Models and Partition of Non-IID Datasets

Several datasets were chosen to investigate the efficiency of
the Overlap-FedAvg, which covered two typical application
fields of deep learning. Specifically, Mnist [43], Fashion-
Mnist [44], EMnist [45], Cifar10 [46], and Cifar100 [46] were
benchmark datasets in Image classification and Wikitext-2
[47] was the benchmark dataset in NLP. In order to meet
the non-IID characteristic in real-world federated learning,
we manually divided each of these datasets into ten Non-
IID parts. The goal of this Non-IID partition was to make
each part be different in both quantity and classes from
other parts. The visualization of the partitioning is shown
in Figure. 4. Some clients had plenty of training samples
while some other clients only had a few, and in most clients,
there are some classes that were insufficient or even absent.

Moreover, there were six benchmark models unitized
to train on these datasets: Multi-Layer Perceptron (MLP),
MnistNet, CNNCifar, VGGR, ResNetR and Transformer
[48]. Among them, MLP and CNNCifar were also presented
in the reference [7] to testify the effectiveness of the vanilla
FedAvg, and here we utilized these two models to make
a comparison between the proposed Overlap-FedAvg and
the vanilla FedAvg. MnistNet, as a simplification from CN-
NCifar, was a standard model with only 2 convolutional
layers and 2 fully connected layers without any pooling.
Apart from that, the input of the MnistNet was also altered
to process 1 × 28 × 28 matrices instead of 3 × 32 × 32
matrices. Similarly, VGGR here was also a simplified version
of the original VGG11 [5], where all dropout layer and batch
normalization layer were removed and the fully connected
layers’ size as well as the number of convolutional filters
was reduced by half. This kind of simplification was also
unitized in another state-of-art work [30]. Furthermore, the
ResNetR model used in our experiments had its batch
normalization layers removed. Besides, all other layers re-
mained the same as the original ResNet18 [49]. Finally, the
basic configuration of the transformer model adopted from

TABLE 2:
ACCURACY COMPARISON BETWEEN VANILLA FEDAVG AND OVERLAP-FEDAVG WITH DIFFERENT λ AND FIXED β = 0.2

Model dataset η

FedAvg Overlap-FedAvg

Accuracy / PPL
λ = 0.0 λ = 0.2 λ = 0.5 λ = 0.8

Accuracy / PPL Accuracy / PPL Accuracy / PPL Accuracy / PPL

MLP Mnist 0.001 0.9711 0.9776 0.9775 0.9775 0.9777
MnistNet Fmnist 0.001 0.9130 0.9146 0.9145 0.9153 0.9143
MnistNet EMNist 0.001 0.8661 0.8672 0.8676 0.8673 0.8676
CNNCifar Cifar10 0.001 0.5088 0.4970 0.5060 0.5058 0.5058

VGGR Cifar10 0.0001 0.4321 0.4272 0.4247 0.4248 0.4247
ResNetR Cifar10 0.0001 0.4356 0.4341 0.4348 0.4345 0.4345
ResNetR Cifar100 0.0001 0.0895 0.0865 0.0866 0.0866 0.0866

Transformer Wikitext-2 0.0001 547.067 546.966 546.921 546.920 546.920

β = 0.0
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Fig. 4: Each sub-figure has two axes: a client axis and a label
(class) axis, and the color of each cell or bar represents the
magnitude of the assigned data. (a) The Non-IID partition
of the Cifar100 dataset, which has in total 100 classes and
50000 training samples. (b) The Non-IID partition of the
Fashion Mnist dataset and the Mnist dataset, which have in
total 10 classes and 60000 training samples. (c) The Non-IID
partition of the EMnist dataset, which has in total 47 classes
and 112800 training samples. (d) The Non-IID partition of
the Cifar10 dataset, which has in total 10 classes and 50000
training samples. (e) The Non-IID partition of the Wikitext2
dataset, which has over 16000 training samples.

pytorch4 is summarized in Table 1.

5.3 Comparison of accuracy
Firstly, we validated the efficacy of the hierarchical com-
puting strategy and the data compensation mechanism in
Overlap-FedAvg. Detailedly, we trained MLP on Mnist,

4. https://github.com/pytorch/examples/blob/master/word
language model/model.py
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Fig. 5: (a) The accuracy curve of MLP trained on Mnist. (b)
The accuracy curve of MnistNet trained on Fashion-Mnist.
(c) The accuracy curve of MnistNet trained on EMnist. (d)
The accuracy curve of CNNCifar trained on Cifar10.

MnistNet on Fasion-Mnist, MnistNet on EMnist and CN-
NCifar on Cifar10 with a learning rate η = 0.001. The
number of the client iteration E was set to a fixed constant 5
for vanilla FedAvg, while the upper limit number of the
client iteration was set to 5 for Overlap-FedAvg. That is
to say, in Overlap-FedAvg, although the communication
interval is adaptive to the environment, it can not exceed
5, which limits the worst performance of Overlap-FedAvg.

The accuracy curve of these experiments is shown in Fig-
ure 5. As we can see, when setting λ = 0 (i.e. do not compen-
sate the stale data at all), the final accuracy of the Overlap-
FedAvg was already surpassed vanilla FedAvg in some
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Fig. 6: The perplexity curve of Transformer trained on
Wikitext-2 dataset

https://github.com/pytorch/examples/blob/master/word_language_model/model.py
https://github.com/pytorch/examples/blob/master/word_language_model/model.py
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Fig. 7: (a) CNNCifar trained on Cifar10 and (b) ResNetR

trained on Cifar100. For Overlap-FedAvg, λ is fixed to 0.2.
It can be seen that the NAG implemented with compensated
gradients drastically boosted the convergence speed of the
federated learning.

lightweight experiments (i.e. experiments with lightweight
models or datasets). This phenomenon was caused by the
lower synchronization interval in Overlap-FedAvg. Namely,
these models were all relatively small, and when transmit-
ting such a small model, the communication interval of 5
is large, and therefore Overlap-FedAvg adaptively lowered
the communication interval to a suitable value that fitted the
current network and hardware condition, which proved the
adaptability of the hierarchical computing strategy. More-
over, although the communication interval was automati-
cally reconfigured to a more appropriate value, the model
parameters staleness problem still existed. Therefore, we
utilized the compensation method to alleviate this problem,
and the introduced hyper-parameter λ was used to adjust
the compensation. As shown in Figure. 5, it is clear that a
model with higher final accuracy can be obtained by fine-
tuning λ.

Moreover, we expanded our experiments to some large
models with complex datasets. Specifically, the VGGR was
trained on Cifar10, and ResNetR was trained on Cifar10,
Cifar100 with η = 0.0001, respectively. The results of
all the experiments were described in Table 2. With the
larger model size, the communication interval can not be

TABLE 3:
ACCURACY COMPARISON OF OVERLAP-FEDAVG WITH

DIFFERENT β AND FIXED λ = 0.2

Model dataset η β

Accuracy/PPL

50
iterations

500
iterations

MLP Mnist 0.001 0.0 0.9317 0.9775
MLP Mnist 0.001 0.1 0.9397 0.9793
MLP Mnist 0.001 0.5 0.9536 0.9805
MLP Mnist 0.001 0.8 0.9607 0.9781

MnistNet FMNist 0.001 0.0 0.8596 0.8676
MnistNet FMNist 0.001 0.5 0.8298 0.9145

MnistNet Emnist 0.001 0.0 0.8134 0.8676
MnistNet Emnist 0.001 0.1 0.7921 0.8651
MnistNet Emnist 0.001 0.5 0.8119 0.8647

CNNCifar Cifar10 0.001 0.0 0.2890 0.5060
CNNCifar Cifar10 0.001 0.5 0.2984 0.5252
CNNCifar Cifar10 0.001 0.6 0.3088 0.5769
CNNCifar Cifar10 0.001 0.7 0.3138 0.5958
CNNCifar Cifar10 0.001 0.8 0.3234 0.6323
CNNCifar Cifar10 0.001 0.9 0.3853 0.6564

VGGR Cifar10 0.0001 0.0 0.1003 0.4247
VGGR Cifar10 0.0001 0.5 0.1364 0.4615

ResNetR Cifar10 0.0001 0.0 0.1382 0.4345
ResNetR Cifar10 0.0001 0.5 0.1483 0.4388
ResNetR Cifar10 0.0001 0.9 0.2252 0.5164

ResNetR Cifar100 0.0001 0.0 0.0100 0.0866
ResNetR Cifar100 0.0001 0.5 0.0121 0.1116
ResNetR Cifar100 0.0001 0.6 0.0141 0.1354
ResNetR Cifar100 0.0001 0.7 0.0150 0.1611
ResNetR Cifar100 0.0001 0.8 0.0161 0.1814
ResNetR Cifar100 0.0001 0.9 0.0262 0.2341

Transformer Wikitext-2 0.001 0.0 1292.328 546.921
Transformer Wikitext-2 0.001 0.1 1234.023 529.433
Transformer Wikitext-2 0.001 0.5 1110.573 484.967
Transformer Wikitext-2 0.001 0.9 1177.568 385.708

λ = 0.2

decreased by Overlap-FedAvg for higher communication
efficiency as well as better final accuracy. However, the time
originally used for model uploading and model download-
ing can at least be saved by Overlap-FedAvg, which could
be still a large amount in some cases. From the Table, we
can see that when the λ was configured to 0, unlike previ-
ous lightweight experiments, Overlap-FedAvg had a lower
final accuracy compared to vanilla FedAvg due to the stale
model parameters problem. However, by adjusting the λ to
properly compensate the data, the gap between Overlap-
FedAvg and vanilla FedAvg can be greatly reduced.

Furthermore, we validated the Overlap-FedAvg’s feasi-
bility by applying it to gradients sensitive Natural Language
Processing (NLP) tasks. Specifically, we utilized transformer
to be trained on the wikitext-2 dataset, and used perplexity
to denote the model’s performance (the lower the better),
as drawn in Figure 6. With the additional assistance of the
hierarchical computing strategy and the data compensation
mechanism, Overlap-FedAvg with the stale problem was
also capable of achieving nearly the same convergence
speed with respect to the global iteration, and reaching a
very similar final accuracy compared to the vanilla FedAvg.

Then, to evaluate the effectiveness of the NAG algorithm
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implemented in Overlap-FedAvg, we fixed λ = 0.2 and
trained several DNN models with different β, which is
illustrated in Figure 7 and Table 3. From the Figure 7, we
can see that when the NAG was enabled, Overlap-FedAvg
significantly outperformed the convergence speed of vanilla
FedAvg, which strongly verified the usability of this acceler-
ation. Consequently, considering the implementation of this
acceleration was so intuitive and easy to implement, many
other acceleration methods originated in SGD, be it Adam
[21] or RMSProp [22], should be applied to Overlap-FedAvg
with minimal effects.

5.4 Comparison of Training Speed

In this section, we compared the training speed of the
Overlap-FedAvg and the vanilla FedAvg to demonstrate
the communication efficiency of the Overlap-FedAvg frame-
work. Specifically, the average wall-clock time for one iter-
ation of federated learning in all above-mentioned experi-
ments is presented in Figure 8 and Table 4.

From the Figure 8, it can be seen that in all experi-
ments, Overlap-FedAvg successfully lowered the wall-clock
time for each iteration training. Specifically, when training
lightweight models (e.g. MLP, MnistNet or CNNCifar), com-
pared to vanilla FedAvg, Overlap-FedAvg approximately
saveed 10% of the training time. When it came to train
some slightly heavier models (e.g. VGGR, ResNetR, Trans-
former), Overlap-FedAvg significantly boosted the training
process by at most 40%. Consequently, since the size of the
parameters from MLP to Transformer is increasing, which is
documented in Table 4, we concluded that Overlap-FedAvg
saveed more training time with heavier models.

MLP
Mnist

MnistNet
FMnist

MnistNet
EMnist

CNNCifar
Cifar10

VGGR

Cifar10
ResNetR

Cifar10
ResNetR

Cifar100
Transformer
Wikitext-2

0.0

0.2

0.4

0.6

0.8

1.0

W
al

l-C
lo

ck
 T

im
e 

(R
at

io
)

Average Time of A Epoch

FedAvg Overlap-FedAvg Max/Min

Fig. 8: The average wall-clock time for one iteration of feder-
ated learning in MLP on Mnist, MnistNet on FMnist, Mnist-
Net on EMnist, CNNCifar on Cifar10, VGGR on Cifar10,
ResNetR on Cifar10, ResNEtR on Cifar100 and Transformer
on Wikitext-2. We can see that the Overlap-FedAvg saved
more time with the increase of the model size.

We also compared the efficiency of the proposed
Overlap-FedAvg from the hardware’s perspective. Specifi-
cally, we recorded the utilization rate of the computation
during the federated learning process, and made a visual-
ization of it after the learning, which is shown in Figure
9. It can be seen that Overlap-FedAvg achieveed a much
higher hardware utilization rate compared to FedAvg due
to the continuous local training strategy. In fact, Overlap-
FedAvg almost made the best use of the computational
resource as the hardware utilization rate of the Overlap-
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Fig. 9: The hardware utilization rate during the federated
learning process. Overlap-FedAvg had a much higher uti-
lization rate compared to vanilla FedAvg.

FedAvg was nearly fixed at 100%, which further validates
the effectiveness of Overlap-FedAvg.

TABLE 4:
THE AVERAGE WALL-CLOCK TIME FOR ONE ITERATION OF

FEDERATED LEARNING

Model dataset Parameters
Time / Iteration (Second)

FedAvg Overlap-FedAvg

MLP Mnist 199,210 31.2 28.85 (↓7.53%)
MnistNet FMnist 1,199,882 32.96 28.31 (↓14.11%)
MnistNet Emnist 1,199,882 47.19 42.15 (↓10.68%)
CNNCifar Cifar10 878,538 48.07 45.33 (↓5.70%)

VGGR Cifar10 2,440,394 64.4 49.33 (↓23.40%)
ResNetR Cifar10 11,169,162 156.88 115.31 (↓26.50%)
ResNetR Cifar100 11,169,162 156.02 115.3 (↓26.10%)

Transformer Wikitext-2 13,828,478 133.19 87.9 (↓34.0%)

6 DISCUSSION

6.1 Privacy Security of OverLep-FedAvg
The main target for federated learning is to train the DNN
model without revealing any local data to others, including
the central server who coordinates the entire training pro-
cess. However, some researchers played the role of attackers
and tried to find ways to gain private information from
the intermediate data (e.g. model weights, gradients.) gen-
erated during the training process, which was regarded as
desensitized. Recently, some work [50], [51] pointed out that
gradients can be utilized to inversely generate the training
samples, which to some extent proved false of the previous
idea that gradients are not sensitive data in deep learning.
In other words, the transmission of the exposed weight in
federated learning may result in the privacy leakage of the
decentralized clients [52].

In vanilla FedAvg, the learning rate of each client was
configured by the central server, and the local DNN weights
trained by various clients were accumulated to compute the
global weights on the central server. Therefore, if the central
server is ”curious”, it is totally feasible for it to compute
the clients’ gradients from their weights with the known
learning rate, and then extracts the hidden training data
with the method proposed in references [50], [51], which
is no doubt detrimental to privacy security of the federated
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learning. Fortunately, since the learning rate is not really
involved when updating the global model in the vanilla
FedAvg, this issue can be resolved by letting clients generate
their own learning rate at the beginning of the training, since
currently the data restoring techniques in [50], [51] was basi-
cally faking a input and label, passing them into the model,
getting a fake gradients, utilizing back-propagation to cal-
culate the loss between the real gradients from the clients
and the fake gradients, and then using SGD to optimize the
input and label (i.e. L(·) = ||∇Ffake −∇Freal||). Thus, by
adding a unknown learning rate, the SGD has to optimize
two multiplied parameters (i.e. L(·) = ||η∇Ffake − wreal||),
which is theoretically impossible to optimize. In fact, we
think it is very crucial to make sure the clients’ learning rate
is not known to the central server. Therefore, as the Overlap-
FedAvg needs gradients to calculate the compensation, a
question emerges: will the Overlap-FedAvg work safely
without the central server knowing the clients’ learning
rate?

Yes, it will. Overlap-FedAvg indeed needs gradients,
but it does not need the real gradients since the learning
rate is a constant that can be extracted. In other words, no
matter what the real learning rate is in clients, the central
server can just assume it is 1.0, computing scaled gradients
and utilizing the scaled gradients to calculate the com-
pensation. Formally, presuming the clients’ learning rate is
ηc, and therefore the scaled gradients ∇F (wt−1)scaled =
ηc∇F (wt−1)real. When compensating, following the algo-
rithm we can derive the compensated gradients as Equa-
tion 27:

∇F (wt−1)ahscaled = ∇F (wt−1)ahscaled

+ λ∇F (wt−1)ahscaled �∇F (wt−1)ahscaled � (wt − wt−1)

= ηc∇F (wt−1)real

+ λη2c∇F (wt−1)real �∇F (wt−1)real � (wt − wt−1)

= ηc∇F (wt−1)ahreal,
(27)

which suggests that the compensated scaled gradients
is essentially equivalent to the compensated real gradients
multiplied by the unknown clients’ learning rate ηc, and can
be directly brought into the SGD updating rule to update the
global model. In summary, the privacy security of Overlap-
FedAvg is guaranteed without leaking the learning rate to
the central server.

7 CONCLUSIONS AND FUTURE WORK

Learning from massive data stored in different locations
is essential in many scenarios. To efficiently accomplish
the learning, federated learning was introduced to pro-
vide a practical and privacy-preserving approach for DNN
training. However, federated learning introduces massive
communication overhead resulted from the heavy commu-
nication of DNN weights and low bandwidth.

In this paper, we proposed a novel federated learn-
ing framework, named Overlap-FedAvg, to achieve
communication-efficient federated learning from the struc-
tural perspective. Comprehensively, Overlap-FedAvg firstly
parallels the training phase with communication phase to

allow continuous local model training without any blocking
caused by the frequent communicating. Then, Overlap-
FedAvg introduces a data compensation mechanism to re-
solve the stale data problem brought by the parallelism, and
ensures the same convergence rate in comparison with the
vanilla FedAvg under the same circumstance. Finally, an in-
tuitive and easy-to-implement NAG algorithm is described,
which could be coped with many other federated learning
algorithms. A theoretical analysis was provided to guar-
antee the convergence of the Overlap-FedAvg. Extensive
experiments also demonstrated that Overlap-FedAvg with
only parallelism and data compensation is already capable
to considerably speed up the federated learning process
while maintaining nearly the same model performance (i.e.
final accuracy) compared to FedAvg. Furthermore, with
the NAG enabled, Overlap-FedAvg massively surpassed
the vanilla FedAvg in accuracy metric concerning both the
number of training iteration and the wall-clock time, which
strongly validate the feasibility and effectiveness of our pro-
posed method, especially when the model is relatively big
and the network bandwidth of clients is slow or unstable.

Despite the good efficacy of Overlap-FedAvg, it in-
evitably introduced a new hyper-parameter λ in the data
compensation mechanism to properly estimate the Hessian
matrix of model weights by controlling the variance be-
tween estimated values and real values. Consequently, a
comprehensive sampling of the environment is required
to obtain an optimal λ, which is costly for both time and
computational resources. In future work, we would like to
investigate methods capable of adaptively selecting λ by
evolutionary algorithms or reinforcement learning to further
improve the practicability of the Overlap-FedAvg.
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