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Abstract

High performance for numerical linear algebra often comes at the expense of stability. Computing
the LU decomposition of a matrix via Gaussian Elimination can be organized so that the computation
involves regular and efficient data access. However, maintaining numerical stability via partial pivoting
involves row interchanges that lead to inefficient data access patterns. To optimize communication effi-
ciency throughout the memory hierarchy we confront two seemingly contradictory requirements: partial
pivoting is efficient with column-major layout, whereas a recursive layout is optimal for the rest of the
computation. We resolve this by introducing a shape morphing procedure that dynamically matches the
layout to the computation throughout the algorithm, and show that Gaussian Elimination with partial
pivoting can be performed in a communication efficient and cache-oblivious way. Our technique extends
to QR decomposition, where computing Householder vectors prefers a different data layout than the rest
of the computation.
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1 Introduction

Do we need to trade off numerical stability for high performance? This has been the most important question
in numerical linear algebra for at least 20 years. It has motivated an enormous body of deep research. In this
paper we show that for one very famous computation in numerical linear algebra, the answer is no: Gaussian
Elimination with partial pivoting can be performed in a communication avoiding way.

High performance computers do not resemble simple computational models like the RAM model. They
rely on parallelism and complex memory hierarchies to deliver high performance. In the past, such archi-
tectures were confined to supercomputers, but today they are ubiquitous. To run fast, an algorithm must be
able to utilize many processors concurrently and to avoid communication as much as possible.

Out of all the effective algorithms for a given problem, only a subset exhibits high levels of parallelism
and requires little communication between processors and/or between levels of the memory hierarchy. Does
this subset always contain algorithms that are as stable as the best ones for the problem, or do we need
to trade off stability for high performance? Consider Csanky’s algorithm for matrix inversion: it has long
been a classic example of a highly parallel but highly unstable algorithm; no stable algorithm is as parallel.
Twenty years ago, one of the authors suggested in an influential paper that even in practice, we must trade
off stability in return for useful amounts of parallelism [5]. That paper has motivated a huge amount of
research, with two main focal points. One has been the stability of so-called fast (Strassen-like) algorithms;
this research has so far culminated in algorithms that are stable and fast in theory, but it remains to be seen
whether they are also fast in practice [4]. The other focal point has been in algorithms that perform as little
communication as possible, culminating in the definition of communication avoidance [3] and in a class of
algorithms with that property.

An algorithm is called communication avoiding if it performs asymptotically as little communication as
possible in two metrics: the total volume of data measured in words transferred between processors or levels
of the memory hierarchy (the bandwidth it consumes), and the number of messages or block-transfers that
carry this data (and therefore the number of times the message or cache-miss latency impacts the execution).
To show that an algorithm is communication avoiding, one must exhibit a communication lower bound. For
many matrix algorithms, lower bounds of the form Ω

(
f/
√
M
)

have been established on the total volume of

communication and Ω(f/M1.5) on the number of messages, where f is the number of arithmetic operations
performed by the algorithm and M is the size of the fast memory in a hierarchy or the local memory in a
distributed memory parallel computer [3, 14].

Minimizing the volume of communication while preserving numerical stability has proved relatively
easy for many problems. For Gaussian Elimination with partial pivoting (using the largest-magnitude ele-
ment in a column to eliminate the rest of the column), a 1997 algorithm with a recursive schedule did the
trick [13, 17] for the sequential (memory-hierarchy) case; this algorithm is also cache oblivious, in the sense
that its schedule does not depend on M .

Minimizing the number of block-transfers while maintaining stability has proved much harder. The first
communication avoiding algorithm for Gaussian Elimination [11] used a pivoting rule called tournament
pivoting that was both more complicated and less stable than partial pivoting. A second-generation commu-
nication avoiding Gaussian Elimination algorithm [15] was even more complicated, but also more stable.
The fundamental challenge that required the new pivoting rules is that partial pivoting steps works well
when the matrix is stored by column, whereas updating the reduced matrix works well when the matrix is
stored with contiguous blocks. The question of whether the simple, elegant, and stable partial pivoting rule
can be used in a communication avoiding algorithm remained open.

In this paper we answer this question in the affirmative for the sequential case using a technique we
call shape morphing: switching the data layout of parts of the matrix back and forth between column-major
layout and recursive block-contiguous layout. Doing so allows Gaussian Elimination to access contiguous
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memory locations both when searching for a pivot down a column and applying row interchanges, and when
computing the U factor and updating the reduced matrix (Schur complement). The shape morphing steps
add data movement overhead to the algorithm, but we show that the overall algorithm remains asymptotically
efficient. The algorithm is recursive and also cache-oblivious.

The same technique also produces communication avoiding algorithms for the related problem of QR
factorization. In addition, we present a communication efficient algorithm for solving a triangular system
where the right sides form a rectangular matrix. This subroutine is necessary inside SMLU, but is also used
in several other contexts.

Algorithm 1 SMLU, in words. See Figure 1 and Algorithm 8 for further details.

if one column then
solve the problem for a column

end if
recursively factor the left half
forward permute
reshape everything to recursive format
update right half with triangular solve and Schur update
reshape everything back to column format
recursively factor the right half
back permute
combine pivots

Algorithm 2 SMQR, in words. See Figure 2 for further details.

if one column then
solve the problem for a column

end if
recursively factor the left half
reshape everything to recursive format
update right half with triangular and general matrix multiplies
reshape right half back to column format
recursively factor the right half
reshape right half to recursive format
compute auxiliary triangular matrix T with triangular and general matrix multiplies
reshape everything back to column format

2 Machine Model

We model a sequential computer as having an infinite slow memory and a finite fast memory of size M .
All computation takes place in the fast memory, and we consider communication between the fast and slow
memory. We count both the number of words of data W (or bandwidth cost) and the number of messages S
(latency cost) transferred, and model the communication time as

α · S + β ·W,
where α and β are machine-dependent parameters. There is one more parameter, L, which is the size of the
maximum allowed message (or block-transfer size). We make no assumptions on the size of L beyond the
trivial requirements 1 ≤ L ≤M .
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It is instructive to contrast our model to the ideal-cache model of [10]. There, the authors make a “tall
cache” assumption that M = Ω(L2). We do not make this assumption, so latency optimality is a stricter
requirement in our model. Additionally, their model only allows messages of size L, which is equivalent to
setting β = 0 in our model.

One may also consider models where there is a hierarchy of memories, each faster and smaller than the
previous one, where the largest/slowest memory is infinite and the computation occurs only in the small-
est/fastest memory, and one wishes to minimize the communication costs across every level of the hierarchy.
A cache-oblivious algorithm is one that requires no tuning based on the machine parameters M and L. An
algorithm that is cache-oblivious and communication-optimal in the two-level model, such as the SMLU
algorithm that is the subject of this paper, is also communication-optimal with respect to every level of any
hierarchical model.

3 Data Layouts

We consider two main data layouts: column major (CM) and rectangular recursive (RR). The CM layout is
the layout used by standard libraries like LAPACK and stores each column contiguously with elements in a
column ordered from top to bottom and columns themselves ordered from left to right. The RR layout is a
generalization of Morton ordering [16], which is well-defined for square matrices with dimension a power
of two.

The main motivation for recursive layouts like RR is that they map well to recursive algorithms: at
every node in the recursion tree, the computation involves submatrices which are stored contiguously in
memory. The RR layout, illustrated in Figure 1b, corresponds to recursively splitting the largest dimension
of the matrix and storing each of the two submatrices contiguously in memory. Choosing how to break
ties for a square matrix (choosing whether to split horizontally or vertically) and deciding how to split odd
dimensions leads to several variations of the RR layout. Here, we choose to split square matrices into left
and right halves because that corresponds most closely to the CM layout, and for odd dimensions, we choose
to assign the extra row to top halves and the extra column to left halves. The latter decision is arbitrary but
the same choice must be made throughout the algorithm. When applied to square power-of-two matrices,
our choices lead to a standard

N
-Morton ordering.

There are several alternatives for generalizing Morton ordering [7, 8, 9, 12]. The simplest approach is to
pad both rows and columns with zeros to obtain a square power-of-two matrix. However this can increase
the number of matrix elements by a factor of 4 times the ratio of large dimension to small dimension. This
approach is explored in [9], where the authors avoid the extra space and computation on padded rows and
columns using “decorations” which denote full, partial, and zero submatrices. Hybrid layouts are also often
used, storing small blocks in column or row-major layout and ordering the blocks using a Morton ordering.
One can view our RR layout as the “recursive block column layout” from [7] with 1× 1 block sizes.

We consider another alternative for generalizing Morton ordering to a specific class of rectangular matri-
ces. If the smaller dimension of a rectangular matrix is a power of two and the larger dimension is a multiple
of the smaller dimension, then the matrix can be divided up into several square power-of-two matrices. In
this case, the elements within the square submatrices can be stored in standard Morton ordering, and the
squares themselves can be ordered from top to bottom or left to right. This layout is illustrated in Figure 1a.
For the purposes of LU and QR factorizations, if the original matrix is square with power of two dimension,
then all submatrices encountered can be stored in this layout. To preserve generality and avoid padding the
original matrix, we describe our algorithms with the RR layout instead of this “stack of squares” layout.
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(a) Stacks of squares layout for a 12 × 4 matrix. The
3 square 4 × 4 blocks are stored contiguously, each in
Morton order.

(b) Rectangular recursive (RR) order for a 11×5 matrix.
At the first level, the top 6 rows are split from the bottom
5. At the second level, the top 6 × 5 block is split into
two 3× 5 blocks, whereas the bottom 5× 5 block is split
into a 5× 3 block and a 5× 2 block.
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Figure 1: Cartoon of rectangular recursive algorithm for LU [17]. Shaded areas correspond to computation.
In SMLU, the first and fourth steps assume column-major ordering, and the second and third steps assume
rectangular recursive ordering.

4 Rectangular Recursive Algorithms for LU and QR

Many recursive algorithms for linear algebra computations are cache-oblivious, but in order to minimize
latency costs the data layout must be chosen carefully. Morton ordering works very well for the recursive
matrix multiplication algorithm, where the eight recursive subproblems involve matrix quadrants. The nat-
ural extension of Morton ordering to symmetric matrices also maps nicely to the square recursive algorithm
for Cholesky decomposition [1, 2, 13]. In this algorithm, subroutines and recursive subproblems involve
matrix quadrants (which may be symmetric, triangular, or dense).

For LU decomposition, the analogous square recursive algorithm (and standard Morton ordering) is not
sufficient. In order to maintain numerical stability, row (and possibly column) interchanges are necessary.
Partial pivoting, the most common scheme, involves at each step of the algorithm selecting the maximum
element in absolute value in a column and interchanging the corresponding row with the diagonal element’s
row. For this reason, the square recursive algorithm for Cholesky does not generalize to nonsymmetric ma-
trices: the top left quadrant of the matrix cannot be factored without accessing (and possibly interchanging)
rows from the bottom left quadrant of the matrix.

In order to respect the column-access requirement of partial pivoting, Toledo [17] and Gustavson [13]
developed a “rectangular recursive” algorithm which recursively splits the matrix into left and right halves
instead of quadrants. The steps of the computation are shown in Figure 1. Given an m × n input matrix,
recursive subproblems are of sizem× n

2 and
(
m− n

2

)
× n

2 , and algorithms for triangular solve with multiple
right hand sides (TRSM) and matrix multiplication are used as subroutines. Because the recursion splits the
matrix into left and right halves, the base of the recursion consists of factoring single columns with partial
pivoting: finding the maximum element, swapping it with the diagonal, and scaling the column with its
reciprocal.

A similar algorithm for QR decomposition was developed by Elmroth and Gustavson [6]. The standard
Householder QR algorithm works column-by-column, computing a Householder vector that annihilates all
subdiagonal entries in the column and applying the orthogonal transformation to the trailing matrix. In
order to compute one Householder vector per column, a rectangular recursive algorithm is necessary so that
the base of the recursion consists of computing a single Householder vector to annihilate the entire column
below the diagonal. The basic steps of the computation are shown in Figure 2. In the rectangular recursive
QR algorithm, an auxiliary triangular matrix T is computed so that the update of the trailing matrix can be
done with matrix multiplication.

Abandoning the requirement that the orthogonal factor Q be computed with one Householder vector per
column allows for a square recursive algorithm for QR [9]. The square recursive algorithm maps nicely
onto standard Morton ordering, as each computation involves matrix quadrants. However, because the
orthogonalization is based on many Givens rotations per column instead of one Householder vector per
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Figure 2: Cartoon of rectangular recursive algorithm for QR [6]. Shaded areas correspond to computation.
The triangles correspond to the intermediate T factor. In SMQR, the first and fourth steps assume column-
major ordering, and the second and third steps assume rectangular recursive ordering.

Figure 3: One recursive step in converting from column-major to rectangular recursive order.

column, the standard trailing matrix update techniques do not apply. The approach from [9] is to explicitly
construct the orthogonal factor Q, using matrix multiplication to update the trailing matrix. This technique
leads to an increase in the total flop count of the decomposition compared to the standard algorithm, by a
factor of approximately 3×.

By using shape morphing, we show that the rectangular recursive algorithm of Elmroth and Gustavson
[6] can maintain the standard format of representing the orthogonal factor by its Householder vectors (one
per column) and still achieve cache-obliviousness, minimizing both words and messages. The rectangular
recursive algorithm also increases the flop count with respect to the standard algorithm, by about 17% for
tall skinny matrices and about 30% for square matrices. To limit the increase in computation, one can use
a hybrid algorithm, using the rectangular recursive algorithm on panels of sufficiently small width. Since
this tuning parameter prevents the algorithm from begin cache-oblivious, we do not consider the hybrid
algorithm here.
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5 Subroutines and Their Communication Costs

5.1 Converting Rectangular Recursive to Column Major and Back

The algorithm for reshaping a matrix from column-major order to rectangular recursive order is provided in
Algorithm 4. The algorithm is recursive; at each step it splits the matrix along its largest dimension and is
then recursively called on both submatrices. When the input is short and fat (m ≤ n), splitting the matrix
does not require any data movement, since in column-major order the left and right halves of the matrix are
already contiguous. When the input is tall and skinny (m > n), splitting the matrix requires “separating”
each column into its top and bottom halves. We perform this operation with the Separate function: since
it involves contiguously streaming through the input and contiguously writing to two output locations, the
communication cost is O(mn) words and O

(
mn
L

)
messages, as illustrated in Figure 3. The recurrence for

the communication cost is therefore

Reshape(n,m) =


2Reshape(m/2, n) +O((mn/L)α+mnβ) m > n and mn > M
2Reshape(m,n/2) m ≤ n and mn > M
O((mn/L+ 1)α+mnβ) mn ≤M

,

with solution

Reshape(n,m) = O
((mn

L
log

mn

M
+ 1
)
α+mn

(
log

mn

M
+ 1
)
β
)
.

Reshaping from rectangular recursive order to column-major order is described in Algorithm 10, and
has identical costs.

Algorithm 3
(
A1

A2

)
= Separate(A,m,n,m1)

Input: A is m× n in column-major order
Output: A1 is the first m1 rows of A in column-major order, A2 is the remaining m−m1 rows of A in column-major order

for j in 1:n do
A1(1 : m1, j) = A(1 : m1, j)
A2(1 : m−m1, j) = A(m1 + 1 : m, j)

end for

Algorithm 4 B = ReshapeToRecursive(A,m,n)
Input: A is m× n with m ≥ n in column-major order
Output: B is the same matrix in rectangular recursive order

if m = n = 1 then
B(1, 1) = A(1, 1)
return

end if
if m > n then

m1 = dm/2e, m2 = bm/2c(
B1

B2

)
= Separate(A,m,n,m1)

B1 = ReshapeToRecursive(B1,m1,n)
B2 = ReshapeToRecursive(B2,m2,n)

B =

(
B1

B2

)
else

n1 = dn/2e, n2 = bn/2c(
B1 B2

)
= A

B1 = ReshapeToRecursive(B1,m,n1)
B2 = ReshapeToRecursive(B2,m,n2)
B =

(
B1 B2

)
end if
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5.2 Rectangular Matrix Multiplication

The SMLU algorithm requires a recursive matrix multiplication algorithm for square matrices stored in
rectangular recorsive order. The communication costs of recursive matrix multiplication were first analyzed
in [10]. In our model they are worked out in [2] and are

GEMM(m,n, k) = O

((
mnk√
ML

+
mn+mk + nk

L
+ 1

)
α+

(
mnk√
M

+mn+mk + nk

)
β

)
,

where m,n, k are the three matrix dimensions. For completeness, the algorithm for rectangular recursive
layout appears in Algorithm 11.

5.3 Rectangular Triangular Solve

The SMLU algorithm requires a recursive triangular solve on matrices stored in Morton order. An algorithm
for square matrices with optimal communication costs is given in [2]. In Algorithm 5 we generalize to the
case of rectangular matrices. Let A be an m × n matrix, and L be a m ×m unit lower triangular matrix.1

At each recursive step, split the larger of m and n. Splitting m gives two recursive calls to TRSM and one
call to matrix multiplication. Splitting n gives two recursive calls to TRSM. Thus the communication cost
recurrence is:

TRSM(m,n) =


2TRSM(m/2, n) + GEMM(m,m, n) m > n and 2mn+m2 > M
2TRSM(m,n/2) n ≥ m and 2mn+m2 > M
O
(
((mn+m2)/L+ 1)α+ (mn+m2)β

)
2mn+m2 ≤M

,

with solution

TRSM(m,n) = O

((
m2n

L
√
M

+
mn+m2

L
+ 1

)
α+

(
m2n√
M

+mn+m2

)
β

)
.

5.4 Pivoting

The SMLU algorithm returns a pivot vector p of lengthm, where p(i) = j indicates that row j in the original
matrix has been pivoted to row i in the output. Two subroutines are required to manage the pivoting.

First, ApplyPivots, presented as Algorithm 6, applies a pivot vector to a matrix. It applies the pivot
vector to each column of the matrix in sequence. For each column, it applies the pivot vector recursively by
streaming through the entire column to separate entries between those that belong in the the top half from
those that belong in the bottom half of the permuted column, the calling itself on both the top and bottom
halves. If m < M , at least one column fits into memory and ApplyPivots needs to read the matrix only
once. If m > M , it reads and writes each column log(m/M) times. The communication costs are

ApplyPivots(m,n) = O
((mn

L

(
1 + log

m

M

)
+ 1
)
α+mn

(
1 + log

m

M

)
β
)
.

It is also necessary to combine two pivot vectors into one, which is done by CombinePivots, presented
in Algorithm 7. This is accomplished by two calls to ApplyPivots with n = 1, so the communication costs
are

CombinePivots(m) = O
((m

L

(
1 + log

m

M

)
+ 1
)
α+m

(
1 + log

m

M

)
β
)
.

1A non-unit lower triangular matrix changes only the base case computation.
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Algorithm 5 U = RecTRSM(A,L,m,n)
Input: A is m× n, L is m×m and unit lower triangular, both in rectangular recursive layout
Output: U = L−1A in rectangular recursive layout

if m = n = 1 then
U(1, 1) = A(1, 1)
return

end if
if m > n then

m1 = dm/2e, m2 = bm/2c(
L11

L21 L22

)
= L(

U1

U2

)
= U

U1 = RecTRSM(U1,L11,m1,n)
U2 = RecGEMM(L21,U1,U2,m2,m1,n)
U2 = RecTRSM(U2,L22,m2,n)

U =

(
U1

U2

)
else

n1 = dn/2e, n2 = bn/2c(
U1 U2

)
= U

U1 = RecTRSM(U1,L,m,n1)
U2 = RecTRSM(U2,L,m,n2)
U =

(
U1 U2

)
end if

Algorithm 6 ApplyPivots(A,P ,m,n)
Input: A is m× n in column-major order, P is a pivot vector
Output: The rows of A are pivoted according to P

if m = n = 1 then
return

end if
if n = 1 then

m1 = dm/2e, m2 = bm/2c
c1 = new array of length m1

c2 = new array of length m2

P1 = new array of length m1

P2 = new array of length m2

j = 1; k = 1
for i in 1 : n do

if thenP (i) ≤ m1

c1(j) = A(i)
P1(j) = P (i) j = j + 1

else
c2(j) = A(i)
P2(j) = P (i)−m1 k = k + 1

end if
end for
ApplyPivots(c1,P1,m1,1)
ApplyPivots(c2,P2,m2,1)

else
n1 = dn/2e, n2 = bn/2c(
A1 A2

)
= A

ApplyPivots(A1,P ,m,n1)
ApplyPivots(A2,P ,m,n2)

end if
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Algorithm 7 P = CombinePivots(PL,PR,mL,mR)
Input: PL, PR are left and right pivot vectors
Output: P is the combined pivot vector

// Convert the size of the right pivot vector
k = mL −mR

P ′R = new vector of length mL

P ′R(1 : k) = 1 : k
P ′R(k + 1 : mL) = PR + k

// Combine pivots
PI = ApplyPivots(1 : mL,PL,mL,1)
P = ApplyPivots(P ′R,PI ,mL,1)

5.5 Analysis of SMLU

Detailed pseudocode for SMLU appears in Algorithm 8. Each call to SMLU has two recursive calls to
itself, two calls to ApplyPivots, four calls each to ReshapeToRecursive and ReshapeToColMajor, one call to
RecTRSM, one to RecGEMM, and one call to CombinePivots. The recursive communication costs are thus

SMLU(m,n) ≤ 2SMLU
(
m,

n

2

)
+ 2ApplyPivots

(
m,

n

2

)
+ 8Reshape

(
m,

n

2

)
+ TRSM

(n
2
,
n

2

)
+

+ GEMM
(
m,

n

2
,
n

2

)
+ CombinePivots(m)

= 2SMLU
(
m,

n

2

)
+O

((
mn2√
M

+mn log
mn

M
+mn

)(
β +

α

L

))
.

If M < m, one column of the matrix does not fit in fast memory, so the base case costs are SMLU(1,m) =
m
(
β + α

L

)
). If M ≥ m, then M/m columns fit into fast memory at once, so the base case costs are

SMLU
(
M
m ,m

)
= M

(
β + α

L

)
. The solution to the recurrence is

SMLU(m,n) =

 O
((

mn2

M1/2 +mn log mn
M log n

) (
β + α

L

)
+ α

)
M < m

O
((

mn2

M1/2 +mn
(
log mn

M

)2
+mn

) (
β + α

L

)
+ α

)
M ≥ m

Recall that the communication lower bound for LU [3], which is attainable for LU without pivoting, is

LU(m,n) = Ω

((
mn2

M1/2
+mn

)(
β +

α

L

)
+ α

)
.

Compared to this lower bound, SMLU has an extra polylogarithmic factor on the mn term. In the square
case, m = n, SMLU asymptotically matches the lower bound except in the tiny range

n2

(log(mn))4
< M < n2.

In the rectangular case, SMLU may be larger than the lower bound by a logarithmic factor in a larger range

n2

(log(mn))4
< M < mn.

Compared to the original rectangular recursive algorithm for LU [13, 17], with partial pivoting but without
shape morphing, SMLU has a communication cost with an extra log(mn/M) on themn term. Thus, outside
the ranges given above, shape morphing does not increase the communication costs asymptotically.
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Algorithm 8 P = SMLU(A,m, n)

if n = 1 then
P = 1 : m
i = ArgMax(|A|)
Swap(A(1), A(i))
Swap(P (1), P (i))
Scale(A(2 : m), 1/A(1))

else

// set submatrix dimensions
n1 =

⌈
n
2

⌉
n2 = n− n1

m1 = n1

m2 = m−m1

// recurse on left half(
A1 A2

)
= A

PL = SMLU(A1,m, n1)

// forward pivot
ApplyPivots(A2, PL,m, n2)

// separate top m1 rows from bottom m2 rows(
A11

A21

)
= Separate(A1,m,n1,m1)(

A12

A22

)
= Separate(A2,m,n2,m1)

// convert each quadrant to Morton ordering
ReshapeToRecursive(A11,m1, n1)
ReshapeToRecursive(A12,m1, n2)
ReshapeToRecursive(A21,m2, n1)
ReshapeToRecursive(A22,m2, n2)

// triangular solve with Morton ordered arrays
A12 = RecTRSM(A12, A11, n1, n2)

// Schur update with Morton ordered arrays
A22 = RecGEMM(A21, A12, A22,m2, n1, n2)

// convert quadrants back to column major
A11 = ReshapeToColMajor(A11,m1, n1)
A12 = ReshapeToColMajor(A12,m1, n2)
A21 = ReshapeToColMajor(A21,m2, n1)
A22 = ReshapeToColMajor(A22,m2, n2)

// recurse on (bottom of) right half
PR = SMLU(A22,m2, n2)

// back pivot
ApplyPivots(A21, PR,m2, n1)

// combine pivots
P = CombinePivots(PL, PR,m,m2)
A = Combine(

(
A11 A12

)
,
(
A21 A22

)
,m,n,m1)

end if
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A Supplementary Algorithms

Algorithm 9 A = Combine(A1,A2,m,n,m1)
Input: A1 is m1 × n and A2 is m−m1 × n both in column-major order
Output: A is m× n, the first m1 rows are from A1 and the remaining rows are from A2

for j in 1:n do
A(1 : m1, j) = A1(1 : m1, j)
A(m1 + 1 : m, j) = A2(1 : m−m1, j)

end for

Algorithm 10 B = ReshapeToColMajor(A,n,m)
Input: A is m× n with m ≥ n in rectangular recursive order
Output: B is the same matrix in column-major order

if m = n = 1 then
B(1, 1) = A(1, 1)
return

end if
if m > n then

m1 = dm/2e, m2 = bm/2c(
B1

B2

)
= A

B1 = ReshapeToColMajor(B1,m1,n)
B2 = ReshapeToColMajor(B2,m2,n)
B = Combine(B1,B2,m,n,m1)

else
n1 = dn/2e, n2 = bn/2c(
B1 B2

)
= A

B1 = ReshapeToColMajor(B1,m,n1)
B2 = ReshapeToColMajor(B2,m,n2)
B =

(
B1 B2

)
end if
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Algorithm 11 C = RecGEMM(A,B,C,m,k,n)
Input: A is m× k, B is k × n, C is m× n, all in rectangular recursive layout
Output: C = C −A ·B

if m = 0 or n = 0 or k = 0 then
return

end if
if m = n = k = 1 then

C(1, 1) = C(1, 1)−A(1, 1) ·B(1, 1)
return

end if
if k ≥ m and k > n then

k1 = dk/2e, k2 = bk/2c(
A1 A2

)
= A(

B1

B2

)
= B

RecGEMM(A1,B1,C,m,n,k1)
RecGEMM(A2,B2,C,m,n,k2)

end if
if m > k and m > n then

m1 = dm/2e, m2 = bm/2c(
A1

A2

)
= A(

C1

C2

)
= C

RecGEMM(A1,B,C1,m1,n,k)
RecGEMM(A2,B,C2,m2,n,k)

C =

(
C1

C2

)
end if
if n ≥ k and n ≥ m then

n1 = dn/2e, n2 = bn/2c(
B1 B2

)
= B(

C1 C2
)
= C

RecGEMM(A,B1,C1,m,n1,k)
RecGEMM(A,B1,C2,m,n1,k)
C =

(
C1 C2

)
end if
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