Orna Agmon Ben-Yehuda

Presents

Communication-Efficient Online Detection of Network-Wide Anomalies

Ling Huang* XuanLong Nguyen* Minos Garofalakis[§] Joe Hellerstein* Michael Jordan* Anthony Joseph* Nina Taft[§] *UC Berkeley [§]Intel Research

Coming on Spring 2011 to a

Seminar 236803 on Processing and Mining Distributed Data

Near you

Network-Wide Anomalies

- Are bad:
 - Router mis-configurations
 - Border Gateway Protocol (BGP) policy modifications
 - Device failures
- Or even malicious:
 - DDOS attacks
 - Viruses, spam sending
 - Port scanning
- But also just unpredictable
 - Flash Crowds (mob) supercomputing

We shall talk about:

- Lakhina et al.'s centralized algorithm
- Decentralized anomaly detection
- Slack determination
- Evaluation
- Open Discussion

Towards Decentralized Detection

- Lakhina et al.: Distributed Monitoring & Centralized Computation
 - Stream-based data collection
 - Periodically evaluate detection function over collected data
 - Doesn't scale well in network size, timescale, detection delay
- Huang et al.: Decentralized Detection
 - Continuously evaluate detection function in a decentr. way
 - Low-overhead, rapid response, accurate and scalable
 - Detection accuracy controllable by a "tuning knob"
 - Provable guarantee on detection error (false alarm rate)
 - Flexible tradeoff between overhead and accuracy

Detection of Network-wide Anomalies

- A volume anomaly is a sudden change in an Origin-Destination flow (*i.e.*, point to point traffic)
- Given link traffic measurements, detect the volume anomalies

Huang et al., presented by Agmon Ben-Yehuda 6

The Data Collected by Monitors

- Routers: volume traffic per second per link.
- Firewalls: number TCP connect request per second.
- Servers: number of DNS transactions per minute.

Flow vs. Link (Lakhina et al.)

Principal Component Analysis (PCA)

Traffic on Link 1

Traffic on Link 2

Anomalous traffic usually results in a large value of \mathbf{y}_{ab}

The Subspace Method (Lakhina'04)

- An approach to separate normal from anomalous traffic based on Principal Component Analysis (PCA)
- Normal Subspace S: space spanned by the top k principal components
- Anomalous Subspace \tilde{S} : space spanned by the remaining components
- Then, decompose traffic on all links by projecting onto \mathcal{S} and $\tilde{\mathcal{S}}$ to obtain:

Link Traffic Variance of Principle Components

Link matrices have low dimensionality

Figure 2: Fraction of total link traffic variance captured by each principal component.

Lakhina et al., Huang et al., presented by Agmon Ben-Yehuda 11

Projections onto Principle Components – normal and abnormal traffic variation

Figure 3: Projections onto principal components showing normal and anomalous traffic variation.

Detection Illustration

Detection Threshold $\|C_{ab} y\|^2 > Q_{\alpha}$

- Q_α is a threshold on the Squared Projection Error (SPE). It guarantees a false alarm rate of less than α .
- Jackson & Mudholkar: computed threshold based on the abnormal eigenvalues of the covariance matrix.
 - No matter where the distinction is made (how many components are considered normal).
 - □ No matter what the mean amount of traffic is.
 - □ For multivariate Gaussian distribution only.
- Jensen & Solomon: In practice, holds for different distributions.
- Lakhina et al. Believe traffic is multivariate Gaussian.
 - but have not verified this.

The Centralized Algorithm

Does not scale well to large networks or to small timescales Data matrix Dat

1) Each link produces a column of m data over time.

2) n links produce a row data y at each time instance.

Detection by Squared Prediction Error (SPE):

Huang et al., presented by Agmon Ben-Yehuda 15

Huang et al.: In-Network Detection Framework

Huang et al., presented by Agmon Ben-Yehuda 16

The Communication and Error Tradeoff

The coordinator computes a set of good $\delta_1, ..., \delta_n$ to manage this difference.

The Protocol At Monitors

Monitor i updates information if

 $|\mathbf{Y}_{i}(t) - \mathrm{Mod}_{i}(t^{i})| > \delta_{i}$

 $\delta_1, \cdots, \delta_n$ are the *filtering parameters*

- Mod_i(tⁱ) can be based on any prediction model built on historical data.
 - The prediction model is known to both monitor and coordinator.
 - For example, the average of last 5 communicated signal values.

The Protocol At Monitors

Simple but enough to achieve 10x data reduction

Huang et al., presented by Agmon Ben-Yehuda 19

The Protocol at the Coordinator

- Create new time data from communication and predictions
- Update (cyclic) matrix: add new data, lose oldest
- Re-compute PCA (residual projection matrix, threshold)
- Detect anomalies, fire warnings
- Update slacks when needed (no details...)

Parameter Design and Error Control

 Users specify an upper bound on false alarm rate, then we determine the filtering parameters δ's

Eigen error: L₂ norm of the difference between

the approximate eigenvalues and the actual ones

Parameter Design and Error Control (II)

- Detection Error $\mu \rightarrow$ Eigen-Error ϵ
 - ^{\Box} Monte Carlo simulation to find the mapping from ε to μ

^{\Box} For the given μ , a fast binary search to find an ϵ

Huang et al., presented by Agmon Ben-Yehuda 23

Parameter Design and Error Control (III) Eigen-Error $\varepsilon \rightarrow$ Filtering parameters δs

- Error Matrix: $W = Y \hat{Y}$
- Elements of column vector W_i bound by δ_i
- Assumptions:
 - W_i are independent, radially symmetric random vectors
 - $^{\rm o}$ For each i, all elements of a column vector are i.i.d random variables with mean 0 and variance $\sigma^{\rm 2}$
- The variance σ^2 is a function of the slacks δ_i

Parameter Design and Error Control (III)Theorem: Setting δ_i to satisfy:Average of
Perturbed
eigenvalues $2\sqrt{\frac{\bar{\lambda}}{m} \cdot \sum_{i=1}^{n} \sigma_i^2} + \sqrt{\left(\frac{1}{m} + \frac{1}{n}\right)\sum_{i=1}^{n} \sigma_i^4} = \epsilon$

Guarantees $\epsilon^{i} < \epsilon$ with high probability.

Absent:

A connection between local variances and local slacks

Slack Allocation Methods

1. Homogeneous slack allocation: uniform distribution of errors in range $[-\delta_i, \delta_i]$ • $\sigma_i = \frac{\delta_i^2}{3}$, results in closed expression for δ 2. Homogeneous slack allocation: local variance

estimation

- $\sigma_i = \sigma_i(\delta)$, monitors approximate locally by fitting an (e.g., quadratic) function according to a recent window of data. Approximation sent to coordinator.
- 3. Heterogeneous slack allocation.
 - Assume uniform distribution of errors in range
 - Minimize communication; Solve using Lagrange multipliers.

Evaluation: Accuracy and Cost

- Given user-specified false alarm rate, evaluate the actual detection accuracy and communication overhead
- Experiment setup
 - Abilene backbone network data of one week:
 - 121 flows, 41 links, 1008 10 minute periods
 - Traffic matrices of size 1008 X 41
 - Set uniform slack $\delta_i = \delta$ for all monitors
 - Injected: 60 small "bursts" +60 large "anomalies"
 - Threshold corresponding 0.5% false alarm rate
 - How many experiments (repetitions)?

Evaluation Metrics

- False alarm rate = false alarms/ bursts
- Missed detection rate = missed detections/anomalies
- Cost = num/(n*m) = messages per monitor per sampled time points
 - num = all exchanged messages
 - n = number of monitors
 - □ M = number of time series points

Evaluation Results

Fig. 6. Monitor slacks, communication cost and accrued detection. The dashed line is the detection error of centralized approach with complete data.

Observations

- Homogenous variance estimation outperforms Homogenous Uniform, but not by much (5%-10%).
- Homogenous Uniform method is simple.
- Homogenous Uniform might be "good enough".
- 80%-90% of the transferred data can be saved without hurting performance.

ROC – Receiver Operating Characteristic Curve

Evaluation of Scalability

- BRITE topology generator
- 100-1000 links
- Up to 500*500 Origin-Destination flows
- 4 weeks of realistic data, based of statistical characteristics of Abilene
- In each experiment on n nodes: 5 repetitions, on n randomly picked nodes.

Graceful Scalability by number of monitors: coordinator communication

Summary

- A communication-efficient framework that
 - detects anomalies at desired accuracy level
 - with minimal communication cost
- A distributed protocol for data processing
 - Local monitors decide when to update data to coordinator
 - Coordinator makes global decision and feedback to monitors
- An algorithmic framework to guide the tradeoff between communication overhead and detection accuracy

References

[Huang'07] Communication-Efficient Online Detection of Network-Wide Anomalies. L. Huang, X. Nguyen, M. Garofalakis, J. Hellerstein, M. Jordan, A. Joseph and N. Taft. To appear in INFOCOM'07.

[Lakhina'04] *Diagnosing Network-Wide Traffic Anomalies*. A. Lakhina, M. Crovella and C. Diot. In SIGCOMM '04.

[Jensen & Solomon] A Gaussian approximation for the distribution of definite quadratic forms. D.R. Jensen and H. Solomon, In J. Amer. Stat. Assoc., 67:898-902 (1972).

[Jackson & Mudholkar] Control Procedures for Residuals Associated with Principal Component Analysis. J. E. Jackson and G. S. Mudholkar, Technometrics, pages 341–349,

1979.

Weaknesses (My Opinion)

- Symmetry + Independence
- Experiments

symmetry + independence

- Is the symmetry + independence assumption valid?
- Correlation may result from simultaneous errors upon surprising data changes, or from (cyclic?) bursts induced by the updating algorithm.

Experiments: Lack of Trend

Experiments do not show a statistically significant trend (dependency) of "tolerated deviation from false alarm rate" and actual false alarm rate.

Estimations are too loose, or

Experiments are too synthetic

Between the lines: user is expected to trust experiment results.

Error propagation	
Parameter design	

My Summary

- The decentralized algorithm works well in practice according to insufficient experiments.
- The tuning knob was not proved to work in experiments (to be connected to practical accuracy guarantees).
- Noisier experiments are needed.

Backup Slides

Traditional Distributed Monitoring

- Large-scale network monitoring and detection systems
 - Distributed and collaborative monitoring boxes
 - Continuously generating time series data
- Existing research focuses on data streaming
 - *Centrally* collect, store and aggregate network state
 - Well suited to answering approximate queries and continuously recording system state
 - Incur high overhead!

Our Distributed Processing Approach

- A coordinator
 - Is aggregation, correlation and detection center
- A set of distributed monitors
 - Each produces a time series signals
 - Processes data locally, only sends needed info. to coordinator
 - No communication among monitors
 - Coordinator tells monitors the level of accuracy for signal updates

Performance

μ	Missed Detections		False Alarms		Data Reduction	
	Week 1	Week 2	Week 1	Week 2	Week 1	Week 2
0.01	0	0	0	0	75%	70%
0.03	0	1	1	0	82%	76%
0.06	0	1	0	0	90%	79%

 \rightarrow error tolerance = upper bound on error

Data Used: Abilene traffic matrix, 2 weeks, 41 links.