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Network-Wide Anomalies

 Are bad:
 Router mis-configurations

 Border Gateway Protocol (BGP) policy modifications

 Device failures

 Or even malicious:
 DDOS attacks

 Viruses, spam sending

 Port scanning

 But also just unpredictable
 Flash Crowds (mob) supercomputing

Lakhina et al.,
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Detection Problems in Enterprise 
Network

Do machines in my 

network participate 

in a Botnet to attack 

other machines?

victim

command

& control

Send at rate 

0.9*allowed

 to victim V

V

Operation 

Center

Coordinated Detection!

Data: Byte rate 

on a network 

link.

CAN’T AFFORD TO DO THE DETECTION CONTINUOUSLY !
For efficient and scalable detection, push data processing to the 

edge of network!

Approximate but 

accurate detection!
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We shall talk about:

 Lakhina et al.'s centralized algorithm

 Decentralized anomaly detection

 Slack determination

 Evaluation

 Open Discussion



Huang et al., presented by Agmon Ben-Yehuda 5

Towards Decentralized Detection

5

 Lakhina et al.: Distributed Monitoring & Centralized 

Computation
 Stream-based data collection

 Periodically evaluate detection function over collected data

 Doesn’t scale well in network size, timescale, detection 

delay

 Huang et al.: Decentralized Detection
 Continuously evaluate detection function in a decentr. way

 Low-overhead, rapid response, accurate and scalable

 Detection accuracy controllable by a “tuning knob”

 Provable guarantee on detection error (false alarm rate)

 Flexible tradeoff between overhead and accuracy
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Detection of Network-wide Anomalies

 A volume anomaly is a sudden change in 

an Origin-Destination flow (i.e., point to point 

traffic)

 Given link traffic measurements, detect the 

volume anomalies

                  H1

H2

The backbone network

Regional network 1

Regional network 2
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The Data Collected by Monitors

data(t)

12 9 45

7

24 31

63

72

Y=

M timesteps

N nodes = N time series

 Routers: volume traffic per 

second per link.

 Firewalls: number TCP 

connect request per 

second.

 Servers: number of DNS 

transactions per minute.
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Flow vs. Link (Lakhina et al.)

Observed network link 

data  = aggregate of 

application-level flows

Each link is a dimension

Anomalies in (unobserved) 

flow data

Finding anomalies 

in high-dimensional, 

noisy data is difficult!

Lakhina et al.,
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Traffic on Link 1

T
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Principal Component Analysis (PCA)

y

Anomalous traffic usually results in a large value of 

: principal components: minor components

Principal components are 

top eigenvectors of 

covariance matrix.

 

They are also directions of 

maximal variance.

They form the subspace 

projection matrices Cno and 

Cab 

Y Y
T
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The Subspace Method (Lakhina’04)

 An approach to separate normal from anomalous 

traffic based on Principal Component Analysis (PCA)

 Normal Subspace     :  space spanned by the top  k 

principal components

 Anomalous Subspace    :  space spanned by the 

remaining components

 Then, decompose traffic on all links by projecting 

onto     and      to obtain:

Traffic vector of all 

links at a particular 

point in time
Normal traffic

vector

Residual traffic

vector
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Link Traffic Variance of Principle Components

 Link matrices have low dimensionality
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Projections onto Principle 
Components – 
normal and abnormal traffic variation

Lakhina et al.,
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Detection Illustration

Value of
over time 

(all traffic)

over time
Value of

Q
α

Red dots: anomalies            Blue curve: traffic data

Lakhina et al.,

1-α=99.9

99.9% of 

Alarms

Are

Real,

But

More

Anomalies

Go 

undetected 

1-α=99.5

Only

99.5% of

Alarms

Are real

But many

Anomalies

Are 

detected

This small spike

is not an anomaly 

we wished to detect

This axis is 

The squared projection error

NOT

The false alarm rate!! 
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Detection Threshold

          is a threshold on the Squared Projection Error (SPE). It 

guarantees a false alarm rate of less than α.

 Jackson & Mudholkar: computed threshold based on the 

abnormal eigenvalues of the covariance matrix.

 No matter where the distinction is made (how many components 

are considered normal).

 No matter what the mean amount of traffic is.

 For multivariate Gaussian distribution only.

 Jensen & Solomon: In practice, holds for different 

distributions.

 Lakhina et al. Believe traffic is multivariate Gaussian.

 but have not verified this.

       Q
α

∥Cab y∥2Qα

Lakhina et al.,
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Y=
m 

(timestep)

n (nodeID)

Operation center

Y

The Centralized Algorithm

PCA  on  Y

The Network

Eigen values

Threshold

       Qα

Eigen vectors

Projection

      Cab

 Data matrix Dat

   1) Each link produces a column of m data 

over time.

   2) n links produce a row data y at each 

time instance.

∥Cab y∥2Qα

Detection by Squared 

Prediction Error (SPE):

Y1(t) Y2(t) Y3(t) Yn(t)

Periodically

Does not scale well

to large networks or 

to small timescales
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PCA-Based

Detection

Huang et al.: In-Network Detection Framework

data1(t)

data2(t)

datan(t)

Perturbation

Analysis

Adjust Filter

Parameters

original 

monitored 

time series

filtered_data1(t)

filtered_data2(t)

filtered_datan(t)

Coordinator

Alarms

user input: required

detection error: α,μ

δ
1

Distr. Monitors

δ
2δ
n

δ
1
,⋯, δ

n
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The Communication and Error Tradeoff

∥Cab
y∥2 Qα

data(t)

12 9 45

7

24 31

63

72

Y=

filtered_data(t)

Y

PCA on Y

∥Cab y∥2Qα

Full Info. 

PCA on YApproximate Info.

Difference?
The bigger the filtering parameter δi, 

the less the communication overhead, 

but the more the detection error!

The coordinator computes a set of good δ1, …, δn to manage this difference. 
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∣Yi t −Modi  t
¿ ∣δ i

The Protocol At Monitors

 Monitor i updates information if  

                are the filtering parameters

            can be based on any prediction model 

built on historical data.
 The prediction model is known to both monitor 

and coordinator.

 For example, the average of last 5 communicated 

signal values.

δ
1
,⋯, δ

n

Modi  t
¿ 
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The Protocol At Monitors



 Simple but enough to achieve 10x data reduction

Mod t ¿ 

Y  t 
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The Protocol at the Coordinator

 Create new time data from communication 

and predictions

 Update (cyclic) matrix: add new data, lose 

oldest

 Re-compute PCA (residual projection matrix, 

threshold)

 Detect anomalies, fire warnings

 Update slacks when needed (no details...)
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Parameter Design and Error Control

 Users specify an upper bound on false alarm rate, then 

we determine the filtering parameters δ’s

∥C
ab

y∥2Q
α
 vs .   ∥C

ab
y∥2 Q α

C
ab

, Q
α

 vs .    C
ab

,  Q α

Data vs. Model

Eigen error: L2 norm of the difference between 

the approximate eigenvalues and the actual ones

Actual Approximate

     vs .  

C
ab

, Q
α

 vs .    C
ab

,  Q α

Implicit solution:

Monte Carlo and fast 

binary search

Stochastic Matrix 

Perturbation Theory
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Parameter Design and Error Control (II)

 Detection Error µ  Eigen-Error ε
 Monte Carlo simulation to find the mapping from ε to µ

 For the given µ,  a fast binary search to find an ε
ε

µ
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From Eigen-Error to detection Deviation

Normalized form of

(Jensen & Solomon)

           

∥C ab y∥2
(1-α)-th  percentile

           

Upper bound on 

Estimated using max of 
Monte Carlo results

           

∣ X−X∣
Centralized

False

alarms

Distributed 

false alarms

Detection

 Error

ηx

CαCα+ηx
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Parameter Design and Error Control (III)
Eigen-Error ε  Filtering parameters δs

 Error Matrix:

 Elements of column vector       bound by 

 Assumptions:
       are independent, radially symmetric random 

vectors

 For each i, all elements of a column vector are 

i.i.d random variables with mean 0 and variance 

 The variance     is a function of the slacks

W=Y− Y

W i
i

W i

2

i
2
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Parameter Design and Error Control (III)

Theorem: Setting     to satisfy:

 

i

     Guarantees            with high probability.

 

¿

Tolerable
Eigen-Error

           

Average of
Perturbed

eigenvalues
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Absent:

A connection between

local variances and

local slacks
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Slack Allocation Methods

1. Homogeneous slack allocation: uniform distribution of 

errors in range 

●          , results in closed expression for

2. Homogeneous slack allocation: local variance 

estimation

●               , monitors approximate locally by fitting an (e.g., 

quadratic) function according to a recent window of data. 

Approximation sent to coordinator.

3. Heterogeneous slack allocation.

●Assume uniform distribution of errors in range 

●Minimize communication; Solve using Lagrange multipliers.

i=
δ i

2

3

[−i ,i]


i=i 
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Evaluation:Accuracy and Cost

 Given user-specified false alarm rate, evaluate 

the actual detection accuracy and communication 

overhead

 Experiment setup
 Abilene backbone network data of one week: 

 121 flows, 41 links, 1008 10 minute periods

 Traffic matrices of size 1008 X 41

 Set uniform slack            for all monitors

 Injected: 60 small “bursts” +60 large “anomalies”

 Threshold corresponding 0.5% false alarm rate

 How many experiments (repetitions)?
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Evaluation Metrics

 False alarm rate = false alarms/ bursts

 Missed detection rate = missed 

detections/anomalies

 Cost = num/(n*m) = messages per monitor 

per sampled time points
 num = all exchanged messages

 n = number of monitors

 M = number of time series points
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Evaluation Results

Monitor

Slack

Communication

Cost (fraction of 

centralized 

completely 

updated)

Actual 

Detection

Errors

Deviation of false alarms rate μ
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Observations

 Homogenous variance estimation 

outperforms Homogenous Uniform, but not 

by much (5%-10%).

 Homogenous Uniform method is simple.

 Homogenous Uniform might be “good 

enough”.

 80%-90% of the transferred data can be 

saved without hurting performance.
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ROC – Receiver Operating Characteristic Curve

Update rate

Of PCA 

(data is always full)
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Evaluation of Scalability 

 BRITE topology generator

 100-1000 links

 Up to 500*500 Origin-Destination flows

 4 weeks of realistic data, based of statistical 

characteristics of Abilene

 In each experiment on n nodes: 5 repetitions, 

on n randomly picked nodes.
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Graceful Scalability by number of 
monitors: 
coordinator communication

Slope=1

Slope=0.09

Slope=0.15
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Summary
 A communication-efficient framework that

 detects anomalies at desired accuracy level
 with minimal communication cost

 A distributed protocol for data processing
 Local monitors decide when to update data to 

coordinator
 Coordinator makes global decision and feedback to 

monitors

 An algorithmic framework to guide the tradeoff 
between communication overhead and detection 
accuracy
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Weaknesses (My Opinion)

 Symmetry + Independence 

 Experiments
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symmetry + independence

 Is the symmetry + independence assumption 

valid? 

 Correlation may result from simultaneous 

errors upon surprising data changes, or from 

(cyclic?) bursts induced by the updating 

algorithm.
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Experiments

Single Experiment 

Quantization error:

1/60=0.016

(means one alarm)
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Experiments: Lack of Trend


Experiments do not show a statistically significant 

trend (dependency) of “tolerated deviation from 

false alarm rate”and actual false alarm rate.


Estimations are too loose, or 


Experiments are too synthetic


Between the lines: user is expected to trust 

experiment results.
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My Summary

 The decentralized algorithm works well in 

practice according to insufficient experiments.

 The tuning knob was not proved to work in 

experiments (to be connected to practical 

accuracy guarantees).

 Noisier experiments are needed.
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           Backup 
Slides
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Operation 

Center

Traditional Distributed Monitoring

 Large-scale network monitoring and detection systems
 Distributed and collaborative monitoring boxes

 Continuously generating time series data

 Existing research focuses on data                      

streaming
 Centrally collect, store and                                               

aggregate network state

 Well suited to answering

approximate queries and 

continuously recording 

system state

 Incur high overhead!

Monitor 1

Monitor 2

Monitor 3

Local 
Network 2

Local 
Network 3

Local 
Network 1

Bandwidth

Bottleneck! Overloaded

!
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Our Distributed Processing Approach

 A coordinator
 Is aggregation, correlation and detection center

 A set of distributed monitors             
 Each produces a time series signals

 Processes data locally, only sends needed info. to coordinator

 No communication among monitors

 Coordinator tells monitors the level of accuracy for signal 

updates

Filters
x

“push”

Filters
x

adjust

Hosts/Monitors

CoordinatorDetection

Accuracy

δ
1
,⋯, δ

n
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Performance

µ Missed Detections False Alarms Data Reduction

Week 1 Week 2 Week 1 Week 2 Week 1 Week 2

0.01 0 0 0 0 75% 70%

0.03 0 1 1 0 82% 76%

0.06 0 1 0 0 90% 79%

Data Used: Abilene traffic matrix, 2 weeks, 41 links.

error tolerance = upper bound on error
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