
Efficient Asynchronous Verifiable Secret Sharing and Multiparty

Computation ∗

Arpita Patra1 Ashish Choudhury2 † C. Pandu Rangan3

1Department of Computer Science

ETH Zurich, Switzerland

arpita.patra@inf.ethz.ch, arpitapatra10@gmail.com

2Department of Computer Science

University of Bristol, United Kingdom

Ashish.Choudhary@bristol.ac.uk, partho31@gmail.com

3Department of Computer Science and Engineering

Indian Institute of Technology Madras, India

rangan@cse.iitm.ac.in, prangan55@gmail.com

Abstract

Secure Multi-Party Computation (MPC) providing information theoretic security allows a set of n
parties to securely compute an agreed function F over a finite field F, even if t parties are under the

control of a computationally unbounded active adversary. Asynchronous MPC (AMPC) is an important

variant of MPC, which works over an asynchronous network. It is well known that perfect AMPC is

possible if and only if n ≥ 4t + 1, while statistical AMPC is possible if and only if n ≥ 3t + 1. In

this paper, we study the communication complexity of AMPC protocols (both statistical and perfect)

designed with exactly n = 4t+ 1 parties. Our major contributions in this paper are as follows:

1. Asynchronous Verifiable Secret Sharing (AVSS) is one of the main building blocks for AMPC.

In this paper, we design two AVSS protocols with 4t + 1 parties: the first one is statistically

secure and has non-optimal resilience, while the second one is perfectly secure and has optimal

resilience. Both these schemes achieve a common interesting property, which was not achieved by

the previous schemes. Specifically, our AVSS schemes allow to share a secret through a polynomial

of degree at most d, where t ≤ d ≤ 2t. In contrast, the existing AVSS schemes can share a secret

only through a polynomial of degree at most t. The new property of our AVSS simplifies the

degree reduction step for the evaluation of multiplication gates in an AMPC protocol.

2. Using our statistical AVSS, we design a statistical AMPC protocol with n = 4t + 1 which com-

municates O(n2) field elements per multiplication gate. Though this protocol has non-optimal re-

silience, it significantly improves the communication complexity of the existing statistical AMPC

protocols.

3. We then present a perfect AMPC protocol with n = 4t + 1 (using our perfect AVSS scheme),

which also communicates O(n2) field elements per multiplication gate. This protocol improves

on our statistical AMPC protocol as it has optimal resilience. To the best of our knowledge, this is

the most communication efficient perfect AMPC protocol in the information theoretic setting.

∗A preliminary version of this paper appeared in [39].
†The work in this paper was partially supported by EPSRC via grant EP/I03126X/1, and by the European Commission through

the ICT Programme under Contract ICT2007216676 ECRYPT II.

1

1 Introduction

Threshold Multi-Party Computation (MPC) [45, 29, 17, 9, 42] allows a set of n mutually distrusting par-

ties to securely compute an agreed function F over a finite field F, even if t out of the n parties are under

the control of a computationally unbounded active adversary At. MPC is one of the most important and

fundamental problems in secure distributed computing. Over the past three decades, the problem has been

studied extensively in different settings [45, 29, 9, 17, 41, 2, 23, 6, 8, 10, 5]. In any general MPC protocol,

the function F is expressed as an arithmetic circuit over F, consisting of input, linear (e.g. addition), mul-

tiplication, random and output gates over F. The evaluation of multiplication gates require the maximum

communication among the parties and so the communication complexity of any general MPC protocol is

usually expressed in terms of the communication complexity per multiplication gate.

The MPC problem has been studied extensively over the synchronous networks where it is assumed

that there exists a global clock and the delay of any message in the network is bounded. However, though

theoretically impressive, such networks do not model adequately real life networks like the Internet. Thus a

new line of research was initiated and dedicated for MPC in the asynchronous networks [8, 44, 5, 10, 38],

where the messages are allowed to be delayed arbitrarily.

Unlike synchronous MPC protocols, designing asynchronous MPC (AMPC) protocols has received less

attention due to their inherent difficulty. Roughly speaking, the main difficulty in designing asynchronous

protocols is that we cannot distinguish between a slow but honest party, whose messages are delayed in

the network and a corrupted party, who did not send messages at all. Due to this, at any stage of an asyn-

chronous protocol, no party can afford to wait to receive the communication from all the n parties and so

the communication from t (potentially slow but honest) parties may have to be ignored. In this paper, our

focus is on the protocols achieving information theoretic security (that is security against a computationally

unbounded adversary). Such AMPC protocols can be categorized mainly into two types:

1. Perfectly Secure AMPC or Perfect AMPC: The protocols of this type do not involve any error in the

computation. In [8], it is shown that perfectly secure AMPC is possible if and only if n ≥ 4t+1. Thus

any perfectly secure AMPC protocol designed with exactly n = 4t+1 parties is said to be an optimally

resilient perfectly secure AMPC protocol. Optimally resilient, perfectly secure AMPC protocols are

reported in [8, 44, 5]. Among these, the AMPC protocol of [5] provides the best communication

complexity, which is O(n3 log(|F|)) bits per multiplication gate, where the computation is done over

a finite field F, such that |F| > n.

2. Statistically Secure AMPC or Statistical AMPC: The protocols of this type can incur a negligible error

(specified by a given error parameter ǫ) in the computation. From [10], it is known that statistically

secure AMPC is possible if and only if n ≥ 3t + 1. Thus any statistical AMPC protocol designed

with exactly n = 3t+1 parties is said to be an optimally resilient statistically secure AMPC protocol.

Optimally resilient, statistically secure AMPC protocols are reported in [10, 38]. Among these, the

AMPC protocol of [38] provides the best communication complexity of O(n5 log |F|) bits per multi-

plication gate, where the protocol works over a field F = GF (q), where q > max (n, 2κ), such that

κ = log 1
ǫ
.

From the above discussion, we find that optimally resilient statistical AMPC protocols require higher com-

munication in comparison to their perfect counterpart. This is quite intriguing because it is easier to design

protocols that involve negligible error, in comparison to the error free protocols. There are two reasons

behind this anomaly: First, the corruption threshold is different for statistical and perfect protocols. Namely,

perfect protocols can only tolerate t < n/4 corruptions, while in comparison, statistical protocols have to

tolerate more corruptions, namely t < n/3. It is well-known that asynchronous verifiable secret sharing

(AVSS) is a major building block used in the design of information theoretically secure AMPC protocols.

2

The second reason for the anomaly stems from the difficulty in designing statistical AVSS with n = 3t+ 1
parties, whose communication complexity matches the communication complexity of perfect AVSS proto-

cols with n = 4t+ 1. An excellent informal description of this difficulty is outlined in [16].

An interesting approach used to obtain a communication efficient statistical AMPC is to trade the re-

silience for efficiency. That is, to design communication efficient statistical AMPC protocols tolerating a

smaller number of corruptions. This approach is not new as it has been used earlier in the synchronous

settings to achieve efficiency (see for example [22, 23]). In the asynchronous settings, this approach was

reported in [40], where the authors presented a statistical AMPC protocol with n = 4t+1. Most recently, in

[31], the authors presented a statistical AMPC protocol with n = 4t+1 (we will show later that this protocol

is flawed). The communication complexity (per multiplication gate) of the best known AMPC protocols is

summarized in Table 1.

Table 1: Communication complexity (CC) in bits per multiplication gate of the known AMPC protocols.

For the perfect protocols |F| > n, while for the statistical protocols F = GF (q), where q > max (n, 2κ),
such that κ = log 1

ǫ

Reference Type Resilience CC in bits

[8, 15] Perfect t < n/4 (optimal) O(n6 log |F|)
[44] Perfect t < n/4 (optimal) Ω(n5 log |F|)
[5] Perfect t < n/4 (optimal) O(n3 log |F|)

[10] Statistical t < n/3 (optimal) Ω(n11(log |F|)4)
[38] Statistical t < n/3 (optimal) O(n5 log |F|)
[40] Statistical t < n/4 (non-optimal) O(n4 log |F|)
[31] Statistical t < n/4 (non-optimal) O(n2 log |F|)

This article Statistical t < n/4 (non-optimal) O(n2 log |F|)
This article Perfect t < n/4 (optimal) O(n2 log |F|)

Recently in [7], communication efficient MPC protocols over networks that exhibit partial asynchrony were

presented. Such networks are synchronous up to a “certain point” and then behave in a completely asyn-

chronous way afterwards. In another work, Damgård et al. [21] have reported an efficient MPC protocol

over a network that assumes the concept of a “synchronization point”; i.e. the network is asynchronous

before and after the synchronization point. We will not consider the protocols of [7] and [21] for further

discussion as they are not designed in a completely asynchronous setting which we consider in this article.

1.1 Our Contributions for AMPC

In this paper our focus is on AMPC with 4t+ 1 parties. Our main contributions are as follows:

1. From Table 1, we find that the most communication efficient statistical AMPC protocol is due to [31].

However, we show that this protocol is flawed.

2. We design a new statistically secure AMPC protocol with n = 4t+1, which communicates O(n2 log |F|)
bits per multiplication gate. Our protocol achieves its goal without using the player elimination frame-

work of [30], which is used in [31]. We note that our statistical AMPC protocol has non-optimal

resilience.

3. We present a perfectly secure AMPC protocol with n = 4t+1 which communicates O(n2 log |F|) bits

per multiplication gate. Our perfect AMPC protocol has optimal resilience. From Table 1, the best

known perfect AMPC with optimal resilience [5] communicates O(n3 log |F|) bits per multiplication.

3

Hence our AMPC protocol provides the best communication complexity among all the known AMPC

protocols.

To achieve the above AMPC protocols, we present two AVSS schemes with n = 4t + 1: the first one is

statistically secure (has non optimal resilience and is used in our statistical AMPC), while the second one

is perfectly secure (has optimal resilience and is used in our perfect AMPC). Both these AVSS schemes

achieve some interesting properties, which are not achieved by the previous schemes. Despite of the fact

that both the statistical and perfect AVSS protocol achieve the same communication complexity, we decided

to present them due to the fact that they employ completely different techniques. In the next section we

informally discuss about AVSS and the properties achieved by our AVSS schemes.

1.2 Verifiable Secret Sharing (VSS)

Verifiable Secret Sharing (VSS) is one of the fundamental building blocks for many secure distributed com-

puting tasks, such as MPC, Byzantine Agreement (BA) [25, 16, 33, 1, 37], etc. Any VSS scheme consists

of two phases: the sharing phase and the reconstruction phase and is implemented by a pair of protocols

(Sh,Rec). Here Sh is the protocol for the sharing phase, while Rec is the protocol for the reconstruction

phase. Protocol Sh allows a special party called the dealer (denoted as D), to share a secret s among a set

of n mutually distrusting parties in a way that later allows for a unique reconstruction of s by every party

using the protocol Rec. Moreover, if D is honest, then the secrecy of s is preserved till the end of Sh.

Over the last three decades, active research has been carried out in this area and many interesting and

significant results have been obtained dealing with high efficiency, security against general adversaries,

security against mixed type of corruptions, long-term security, provable security, etc (see [18, 24, 9, 17, 41,

20, 10, 16, 42, 26, 28, 32, 35, 4, 6] and their references). However, almost all these solutions are for the

synchronous model, where it is assumed that every message in the network is delayed by a given constant.

This assumption is very strong because a single delayed message can completely break the overall security

of the protocol. Therefore, VSS protocols for the synchronous model are not well suited for use in the real

world networks. Hence a new line of research on VSS over the asynchronous networks was initiated. VSS

protocols that are designed to work over the asynchronous networks are called Asynchronous VSS or AVSS.

We are interested in AVSS schemes for the threshold access structure. Informally, such an AVSS scheme

shares the secret in a way that any set of t or less parties does not get any information about the secret (in

the information theoretic sense) from their shares, while any set of t+1 or more (correct) shares are enough

to reconstruct the secret. Moreover, we want the scheme to be linear, meaning that the shares are computed

as a linear function of the secret and the associated randomness. Such an AVSS scheme is what is typically

used in the information theoretically secure AMPC protocols, as it allows the parties to locally perform any

linear computation on shared values.

Information theoretically secure AVSS (for the threshold access structures) can be categorized into two

classes:

1. Perfectly Secure AVSS or Perfect AVSS: A scheme of this type satisfies the properties of an AVSS

without any error. Perfectly secure AVSS is possible if and only if n ≥ 4t+ 1 [8, 15]. Hence, we call

any perfectly secure AVSS protocol designed with exactly n = 4t+1 parties as an optimally resilient,

perfectly secure AVSS protocol. Such AVSS protocols are proposed in [8, 15, 5].

2. Statistically Secure AVSS or Statistical AVSS: A scheme of this type satisfies the properties of an AVSS

except with a negligible error (specified by a given error parameter ǫ). Statistical AVSS is possible if

and only if n ≥ 3t+ 1 [16, 10]. To the best of our knowledge, the AVSS protocols of [16, 10, 37, 38]

are the only known optimally resilient statistical AVSS protocols (i.e. with n = 3t+ 1).

4

The AVSS schemes based on the polynomial interpolation are the most popular ones and they have been

used for the AMPC protocols in the literature (all the papers referred above follow the polynomial based

implementation). Such schemes are linear and allow to share a secret using polynomials. In the rest of the

paper, we consider AVSS schemes with polynomial based implementation. Before we discuss about our

AVSS schemes, the new properties that they achieve and how the newly attained properties bring efficiency

in evaluating the multiplication gates in the AMPC protocol, it is important to see how AVSS schemes are

used in the AMPC protocols. Therefore we dedicate the rest of this section to describe how AVSS serves in

AMPC protocols.

The AVSS schemes (based on polynomials) are one of the important building blocks for designing

information theoretically secure AMPC protocols. The sharing phase of such an AVSS scheme enforces the

dealer to t-share a value (even if the dealer is corrupted). Informally, an element v is said to be d-shared

among n parties P1, . . . , Pn, if there exists a polynomial f(x) of degree at most d such that f(0) = v and

every (honest) party Pi has a share Shi = f(i) of v. We denote such a sharing by [v]d. The AVSS schemes

are used in the AMPC protocols at two places: first to make the parties commit and share their inputs and

second to generate sharings of random values (satisfying some conditions) which are used to evaluate the

multiplication gates of the circuit. The general approach followed in the AMPC protocols is that every party

Pi first t-share his input xi, where xi is Pi’s input for the computation. Then the parties agree on a set of

(n− t) parties, denoted as C, such that [xi]t has been generated for every Pi ∈ C (in any AMPC protocol,

the inputs of all the n parties cannot be considered for the computation due to the asynchronous nature of the

network, as it may result in infinite waiting). The input xi of each honest party Pi ∈ C remains information

theoretically secure because for every such xi, the adversary obtains at most t shares.

Once the set C is agreed upon, the computation of the function F is performed gate-by-gate in a shared

fashion, following the classical approach of [9]. More specifically, the parties interact according to the

protocol to generate t-sharing of the output of each gate from t-sharing of the input(s) of the gate. Once

t-sharing of the final output is generated, the parties reveal their output shares and an error correction mech-

anism is applied to identify the corrupted shares and the final output is robustly reconstructed. The robust

reconstruction is guaranteed due to the fact that AMPC demands at least 3t+1 parties and the reconstruction

of a t-shared value with at least 3t+ 1 parties is robust. Intuitively, the secrecy of the entire computation is

preserved, as each intermediate value in the computation remains t-shared.

In more detail, the shared computation of the circuit is done in the following fashion: the linear gates,

for example, the addition gates, can be evaluated locally by the parties, without any interaction, due to the

linearity property of t-sharing. More specifically, given [c]t and [d]t, the t-sharing of e = (c + d) can be

locally generated as [e]t = [c]t + [d]t. However, the multiplication gates cannot be evaluated locally, as

[c] · [d]t = [e]2t, instead of [e]t. If [e]2t is not converted to [e]t then further multiplication of e with another

t-shared value will raise the degree of the sharing, which makes it impossible to robustly reconstruct the

value. So the major bottleneck in the shared evaluation of the circuit is to evaluate the multiplication gates.

To generate [e]t from [c]t and [d]t (where e = c · d), the parties have to interact with each other. The amount

of interaction varies from protocol to protocol and actually depends upon the method used to reduce the

degree of the sharing of e from 2t to t. And this is why, the communication complexity of any MPC/AMPC

protocol is usually expressed in terms of the communication done to evaluate a single multiplication gate.

The most common method to generate [e]t from [c]t and [d]t is the well known Beaver’s circuit random-

ization method [3], where the multiplication gates are evaluated using t-sharing of pre-computed random

multiplication triples (which can be generated in a pre-processing stage, prior to the beginning of the compu-

tation). This approach is used in al most all the MPC schemes (both synchronous as well as asynchronous)

proposed in the recent years ([4, 23, 6]). An alternative of the above mentioned approach proposed in [5] and

used by us in this paper is to evaluate the multiplication gates using pre-computed (t, 2t)-sharing of random

values. A (t, 2t)-sharing [5] of a value r ∈ F consists of a t-sharing and a 2t-sharing of r using independent

polynomials of degree at most t and 2t respectively. So both [r]t, as well as [r]2t will be available to the

5

parties. Given (t, 2t)-sharing of a pre-computed random value r, the parties can generate [e]t from [c]t and

[d]t as follows: the parties first locally generate [e]2t = [c]t · [d]t and then [δ]2t = [e]2t − [r]2t. The later

computation follows from the linearity property of 2t-sharing. The above step is followed by the robust

reconstruction of δ, which is possible with n = 4t + 1. Notice that reconstructing δ does not compromise

the secrecy of e, c and d because r is random. Once δ is publicly known, the parties can locally generate

[e]t = [δ]t + [r]t (the parties consider a default t-sharing of δ using the constant polynomial of degree 0).

So the problem of efficiently evaluating the multiplication gates boils down to the problem of either

efficiently generating (t, 2t)-sharing of random values or t-sharing of random triples. The evaluation cost of

a multiplication gate in both the approaches is nearly the same. For the triple based approach, it requires the

reconstruction of two t-shared values (see [3]), while for the (t, 2t)-sharing based approach, it requires the

reconstruction of a single 2t-shared value. We note that the triple based approach is robust when n ≥ 3t+1
(as it requires robustly reconstructing t-shared values). However, n ≥ 4t+1 is required to make the (t, 2t)-
sharing based approach to be robust (as it requires robustly reconstructing 2t-shared values). Since we deal

with n = 4t + 1, we attack the problem of efficiently evaluating the multiplication gates by asking how

efficiently we can generate a (t, 2t)-sharing. In what follows, we show how the existing AVSS schemes

have been used to generate (t, 2t)-sharing of a random value and how the AVSS schemes introduced in this

article allow us to achieve the same goal with more efficiency.

In [5], an approach to generate (t, 2t)-sharing of a random value from t-sharing of (3t + 1) random

values has been described. The t-sharing of a value can be generated by using any existing AVSS scheme.

Thus the existing approach of generating a (t, 2t)-sharing requires t-sharing of (3t+1) values which in turn

requires to invoke AVSS (3t+ 1) times. We bring down the complexity of generating a (t, 2t)-sharing by a

factor of n by noting that a (t, 2t)-sharing can be generated from a t-sharing and a (2t − 1)-sharing (more

on this in the sequel) and by introducing AVSS schemes that can produce a d-sharing for any given d, where

t ≤ d ≤ 2t. We emphasize that prior to our work, there was no AVSS scheme to produce a d-sharing, for any

given d, where d > t. Our AVSS schemes not only achieve this new property, but it does so with the same

communication complexity as the best known existing AVSS scheme of [5], which generates t-sharing.

Our Contributions for AVSS: We present two AVSS schemes with 4t+ 1 parties; one is statistically se-

cure (non-optimally resilient) and the other one is perfectly secure (optimally resilient). Both these schemes

have an interesting property: the sharing phase of these schemes allows the dealer (possibly corrupted) to

d-share a value v, for a given d, where t ≤ d ≤ 2t. More specifically, given a value v ∈ F
1 to be shared

and a given degree d for sharing v, where t ≤ d ≤ 2t, at the end of the sharing phase, there will exist a

polynomial over F, say f(x), of degree at most d, such that f(0) = v and every honest Pi will possess a

share Shi = f(i) of v. Moreover, we also enhance our basic AVSS schemes that generate d-sharing of a

single value and make them generate d-sharing of several values (specifically ℓ values, where ℓ ≥ 1) simul-

taneously, such that each individual value is d-shared. The advantage of the enhanced schemes that give

simultaneous sharing of several values over several instances of the basic schemes for individual generation

of the sharings is that the former allows us to combine the broadcast (public) communication for all the val-

ues and therefore the broadcast communication remains independent of the number of values shared. This

is important since implementing broadcast by a protocol in the asynchronous settings [14] is expensive and

we must keep the broadcast communication independent of the the number of values to be shared. In the

paper, we first present the basic AVSS schemes for simplicity and later enhance them for multiple values.

Subsequently, we use the enhanced schemes to efficiently generate (t, 2t)-sharing of several values simulta-

neously in an amortized sense (the details will be available later). Table 2 gives a comparison of our AVSS

schemes with the existing AVSS schemes (with 4t+ 1 parties) in the literature.

Now we highlight how our AVSS schemes can be looked at from two different perspective, the first one

1For the perfect scheme |F| > n, while for the statistical scheme F = GF (q), where q > max (n, 2κ), such that κ = log 1
ǫ

.

6

Table 2: Comparison of our AVSS protocols with the existing AVSS protocols designed with 4t+1 parties.

Reference Type Number of Secrets Degree of the Communication Complexity

Shared Sharing In Bits

[8] Perfect 1 Only t-sharing O(n3 log(|F|))
[5] Perfect ℓ, where ℓ ≥ 1 Only t-sharing O(ℓn2 log(|F|))

This article Statistical ℓ, where ℓ ≥ 1 d-sharing, for any given O(ℓn2 log(|F|))
d, where t ≤ d ≤ 2t

This article Perfect ℓ, where ℓ ≥ 1 d-sharing, for any given O(ℓn2 log(|F|))
d, where t ≤ d ≤ 2t

being the way we presented them so far: (a). They generate d-sharing of ℓ values where ℓ ≥ 1 at the cost

of O(ℓn2 log(|F|)) bits; (b). They share ℓ(d− t+ 1) values in the sense of “packed secret sharing” [27] at

the cost of O(ℓn2 log(|F|)) bits for ℓ ≥ 1. The two different perspectives have two different implication.

The first perspective allows us to design a method for generating (t, 2t)-sharing of random values with

cheaper cost than the existing method of [5]. The second perspective implies that the amortized cost of

sharing a single value tolerating malicious adversaries is O(n) field elements which matches the complexity

of sharing a single value tolerating a passive adversary (e.g. consider the Shamir secret sharing [43]). For

designing our AMPC protocols, we use the first perspective of our AVSS schemes. We elaborate more in

the following:

1. Efficient generation of (t, 2t)-sharing of random values: We start with the method of [5] to generate

(t, 2t)-sharing of a single random value from t-sharing of 3t + 1 random values. Let r0, r1, . . . , r3t

be the 3t + 1 random values which are t-shared. Then consider the polynomials P (x) = r0 + r1 ·
x + . . . + rt · xt and Q(x) = r0 + rt+1 · x + . . . + r3t · x2t of degree at most t and 2t respectively.

It is easy to see that [r0]t using P (x) and [r0]2t using Q(x) gives a (t, 2t)-sharing of r0 because

P (0) = Q(0) = r0. Both [r0]2t and [r0]t can be computed given [r0]t, [r
1]t, . . . , [r

3t]t. To obtain

t-sharing of 3t + 1 random values, that is, [r0]t, [r
1]t, . . . , [r

3t]t, each party in [5] is asked to act as

a dealer and t-share (3t + 1) random values. This step is followed by some additional “randomness

extraction” steps. Using the AVSS scheme of [5], this costs O(n3 log |F|) bits for one party (by

substituting ℓ = (3t + 1) and t = Θ(n) in the second row of Table 2) and O(n4 log |F|) bits2 for n
parties.

On the other hand, we generate (t, 2t)-sharing of a random value from t-sharing of a random value

and (2t−1)-sharing of a random value. Specifically, assume that we are given [r]t for a random value

r and [s]2t−1 for another random value s. Moreover, let f(x) and g(x) be the polynomials of degree

at most t and 2t − 1 respectively that define [r]t and [s]2t−1 respectively. It is easy to note that [r]2t
can be obtained using the polynomial h(x) = f(x) + x · g(x) of degree at most 2t. Every party can

locally compute its share of [r]2t by computing h(i) = f(i) + i · g(i). This gives us a (t, 2t)-sharing

of r. To obtain [r]t and [s]2t−1 for a random r and s, we ask every party to act as a dealer and invoke

two instances of our AVSS scheme to generate a t-sharing and a (2t − 1)-sharing of random values.

This step is followed by some additional randomness extraction steps. This costs O(n2 log |F|) bits

for one party (by substituting ℓ = 1, d = t and ℓ = 1, d = (2t−1) in the last two rows of Table 2) and

O(n3 log |F|) bits 3 for n parties. Thus, we note a reduction of Θ(n) over [5]. This saving of Θ(n)
further allows our AMPC protocols to gain Θ(n) in the communication complexity over the AMPC

protocol of [5]. We stress that the gain of Θ(n) is not merely due to our different way of generating a

2In [5], this cost is reduced by a factor of n by using additional tricks.
3This cost is further reduced by a factor of n by using additional tricks as in [5]. The details will be presented later.

7

(t, 2t)-sharing. The approach used by us is not applicable to [5] because neither the AVSS of [5], nor

any prior AVSS can be used to generate (2t− 1)-sharing of a value.

2. Packed secret sharing in the asynchronous settings: Our AVSS schemes allow the dealer to share a

value using a polynomial of degree d, where d can be at most 2t. If the dealer is honest then at most

t points on the polynomial will be known to the adversary. Intuitively, this implies that from the view

point of the adversary, (d − t) + 1 coefficients of the polynomial are “free” and hence secure in the

information theoretic sense. This further implies that using a single polynomial of degree at most d, an

honest dealer can share (d−t)+1 secrets. This is the reminiscent of packed secret sharing, introduced

in [27] for the synchronous settings. Our constructions provide packed secret sharing schemes in the

asynchronous settings for the first time in the literature. We show that using our packed secret sharing,

the amortized cost of sharing a single element from F is O(n) field elements, even in the presence

of an active adversary. This matches the cost of sharing a single element from F in the presence of a

passive adversary (for example, the Shamir secret sharing scheme [43]).

Our schemes are useful in applications where a party needs to share multiple values. For example,

common coin [15] is known as an important primitive for unconditionally secure asynchronous Byzan-

tine Agreement (ABA) protocols. In a common coin protocol, every party needs to share/commit n
values. In the existing common coin protocols, a party does so by invoking n instances of a secret

sharing protocol (specifically, an AVSS protocol). Using our packed secret sharing, a party can share

n values using ℓ = n/(d− t+1) polynomials, each of degree at most d (through a single polynomial,

the party can share (d− t+ 1) values). Substituting the maximum value of d = 2t and using the fact

that t = Θ(n), we find that ℓ = n/(d− t+ 1) = O(1). This implies that each party can now share n
values by invoking a single instance of AVSS by setting ℓ = n/(d− t+ 1). This overall reduces the

communication complexity of the ABA protocol4.

We conclude this section with a brief comparison of our proposed AVSS schemes and from now onwards,

we focus on the first perspective of our AVSS schemes.

Comparison of the two AVSS Protocols: In this paper, we present two AVSS schemes that share the

following common properties:

1. Designed with n = 4t+ 1;

2. Generates d-sharing of a value for any given d, where t ≤ d ≤ 2t.

3. Have the same communication complexity of O(ℓn2 log(|F|)) bits for sharing ℓ values.

However, our first AVSS scheme is statistical (thus has non-optimal resilience) while the second one is per-

fect (thus has optimal resilience). Technique wise, both the schemes are completely independent. We further

believe that some of the techniques may lead to an improved AVSS scheme that will allow achieving linear

communication complexity per multiplication gate in an AMPC protocol. Once we have a statistical/perfect

AVSS scheme that generates d-sharing for any t ≤ d ≤ 2t, we can obtain a statistical/perfect AMPC by

using the approach outlined earlier. It is the underlying AVSS (either statistical or perfect) which makes

the resulting AMPC either statistical or perfect. We next informally discuss the approach used in our AVSS

schemes.

4Since giving the exact details of the common coin and ABA is out of scope of the current article, we avoid any further discussion

of it.

8

1.3 Approach Used in Our AVSS Schemes

For simplicity, we explain the underlying ideas of our AVSS schemes assuming that they share a single

secret. We use the idea of sharing a secret by a bi-variate polynomial, as used in several existing schemes

(see for example [20, 26, 28, 32, 36]). In the existing schemes, the dealer D selects a random bi-variate

polynomial F (x, y) of degree at most t in x and y, subject to the condition that F (0, 0) = s. We observe

that given n = 4t+1, the dealer can use a bi-variate polynomial of degree at most d in x and t in y for all d
with t ≤ d ≤ 2t, to share a secret s. This of course does not come for free and certainly calls for new ideas

on top of the existing schemes. By being able to hide the secret in a bi-variate polynomial of degree-(d, t)
(we use this notation to denote bi-variate polynomials with degree at most d in x and t in y), we achieve a

d-sharing of the secret. Our discussion below clarifies that it is not necessary to use polynomials of degree-

(d, d) in order to generate d-sharing. In fact, we take advantage of the fact that the degree of one of the

variables remains t.
So our scheme starts with the dealer D selecting a random bi-variate polynomial F (x, y) of degree-

(d, t) with F (0, 0) = s and handing the univariate polynomials fi(x) = F (x, i) of degree at most d and

gi(y) = F (i, y) of degree at most t to every party Pi. Let us first assume that D is honest. In this case, we

can view the above distribution of information as if s is shared using a matrix M consisting of n×n values,

as shown in Fig. 1, where every party Pi receives the ith row and the ith column of M via polynomial

fi(x) and gi(y) respectively. This distribution allows the secret s to be d-shared through the univariate

polynomial f0(x) = F (x, 0) of degree at most d where every (honest) party Pi has its share Shi = f0(i) =
F (i, 0) = gi(0) of the secret s. Moreover, each share Shi is t-shared among the n parties through the

polynomial gi(y), where every party Pj has the share-share Shij = gi(j) of the share Shi. Thus the

bi-variate polynomial F (x, y) facilitates two-level sharing of s (see Fig. 1): at the top level, s will be d-

shared through the polynomial f0(x) and then in the second level, every share Shi is t-shared through the

polynomial gi(y). Reconstruction of the secret s can be ensured by asking every party to reveal his share of

s and then by applying the error correction on the revealed shares. Since n = 4t + 1 and d ≤ 2t, the error

correction will be robust, ensuring the correct reconstruction of f0(x) and hence s.

F (1, 1) · · · F (i, 1) · · · F (j, 1) · · · F (n, 1) =⇒ f1(x)
F (1, 2) · · · F (i, 2) · · · F (j, 2) · · · F (n, 2) =⇒ f2(x)

...
...

...
...

...
...

...
...

...

F (1, i) · · · F (i, i) · · · F (j, i) · · · F (n, i) =⇒ fi(x)
...

...
...

...
...

...
...

...
...

F (1, j) · · · F (i, j) · · · F (j, j) · · · F (n, j) =⇒ fj(x)
...

...
...

...
...

...
...

...
...

F (1, n) · · · F (i, n) · · · F (j, n) · · · F (n, n) =⇒ fn(x)

⇓
... ⇓

... ⇓
... ⇓

g1(y) · · · gi(y) · · · gj(y) · · · gn(y)

⇓
... ⇓

... ⇓
... ⇓

Sh1 = g1(0) · · · Shi = gi(0) · · · Shj = gj(0) · · · Shn = gn(0) =⇒ f0(x)

Figure 1: Matrix representation of the values distributed by (an honest) D in our AVSS schemes.

Although the second level sharing of the shares of the secret does not seem to serve any meaningful purpose

for an honest dealer D, they are required for two different reasons to deal with a corrupted D. First, they

9

ensure that D indeed d-shares (i.e. the underlying polynomial has degree at most d) the secret. Second, they

are required to “complete” d-sharing of s, since a corrupted D may not hand the share Shi of s to every

honest Pi. We use the second level t-sharing of Shi to reconstruct gi(y) for the party Pi and this enables Pi

to receive Shi = gi(0). Now it is important to note that the second level sharings are t-sharings. So we can

guarantee their robust reconstruction if we “ensure” that the t-sharing (of Shi’s) have been done among a

subset of 3t + 1 parties. Ensuring the above can be done with some additional ideas on top of the existing

schemes. Had we used a bi-variate polynomial of degree-(d, d), we could not claim the same if d > t. This

is because in this case, the second level sharings will have degree more than t and the impossibility of robust

reconstruction of such sharings with 3t+ 1 parties comes from the theory of error correction.

We now explain how the above idea is implemented in our schemes. After the dealer distributes the

univariate polynomials, the honest parties try to identify and agree on a set of 3t+ 1 parties, called CORE,

such that the fi(x) polynomials of the honest parties in CORE lie on a unique bi-variate polynomial, say

F (x, y), of degree-(d, t). Ideally, if D is honest then such a CORE always exists, as there are at least 3t+1
honest parties and in this case, F (x, y) = F (x, y). However, if such a CORE is identified even in the case

of a corrupted D, then it implies that D has distributed consistent polynomials to at least (2t + 1) honest

parties, namely the honest parties in CORE. These consistent polynomials will uniquely define the bi-variate

polynomial F (x, y) of degree-(d, t), which will be considered as D’s committed bi-variate polynomial and

the value s = F (0, 0) will be considered as D’s committed secret. To ensure that s is d-shared, it is enough

that every (honest) Pi possesses Shi = f0(i), where f0(x) = F (x, 0) (a polynomial of degree at most

d) and s = f0(0). Here we use the idea of “completing” the top level d-sharing of s with the help of the

second level t-sharing of each of its shares Shi. We note that each share Shi of s is shared among the

parties in CORE through the polynomial gi(y), where gi(y) = F (i, y) and has degree at most t. Since

|CORE| ≥ 3t+ 1, the parties in CORE can send their share-share of Shi to Pi and enable Pi to reconstruct

gi(y) robustly by applying the error correction.

An interesting aspect of the described approach is that even though D distributes information on a

bivariate polynomial of degree-(d, t) where d may be greater than t, we create a situation where the parties

are required to reconstruct polynomials of degree at most t in order to obtain their shares of the secret. Now

the main crux of our AVSS schemes is to identify and agree on a CORE. Once CORE is agreed upon, d-

sharing can be completed by reconstructing the second level t-sharings of the shares of the committed secret,

which is committed to the parties in CORE. We provide two methods to identify such a CORE: the first

method applies random checks on the univariate polynomials distributed by D and has a negligible chance

of incorrectly identifying a CORE. This results a statistical AVSS scheme. The second method identifies

a CORE without any error and results in a perfect AVSS scheme. The details of these techniques will be

available in the respective sections.

1.4 Organization of the Paper

The rest of the paper is organized as follows: in the next section, we describe the asynchronous network

model and the definition of AVSS and AMPC. We also briefly discuss the existing tools which are used

as building blocks in our AVSS and AMPC protocols. We present our AVSS schemes (both statistical and

perfect) for sharing a single secret in section 3. This is followed by the discussion on the modifications

required to extend these schemes to share multiple values simultaneously in section 4. The protocols for

generating (t, 2t)-sharing using our AVSS schemes are presented in section 5. In section 6, we present our

AMPC protocols, followed by a brief discussion on the application of our AVSS schemes in packed secret

sharing in section 7. In section 8, we discuss the proposed statistical AMPC protocol of [31] and show that

it is flawed. The paper ends with a few directions for future research.

10

2 Definitions and Preliminaries

2.1 Model

We follow the asynchronous network model of [15], where we have a set of n = 4t + 1 parties, say P =
{P1, . . . , Pn}, connected by point-to-point secure and authentic channels. A computationally unbounded

active adversary At can actively corrupt at most t out of the n parties and make them behave in any arbitrary

manner. The parties not under the influence of At are called honest or uncorrupted.

The underlying network is asynchronous, where the communication channels among the parties have

arbitrary, yet finite delay (i.e. the messages are guaranteed to reach eventually). To model the worst case

scenario, At is given the power to schedule the delivery of every message in the network. However, At

can only schedule the messages communicated between the honest parties, without having any access to

the content of these messages. In any asynchronous network, the inherent difficulty in designing a protocol

comes from the fact that when a party does not receive an expected message then he cannot decide whether

the sender is corrupted (and did not send the message at all) or the message is just delayed. So at any stage,

a party can not wait for the communication from every party, as waiting for all of them could turn out to

be endless. Hence the values from t (potentially honest) parties may have to be ignored. Due to this the

protocols in the asynchronous networks are generally involved in nature and require a new set of primitives.

For a comprehensive introduction to the asynchronous protocols, see [15].

For simplicity, we assume the adversary to be static, who decides the set of t parties to be corrupted

at the beginning of the protocol (obviously, the honest parties will not know the identity of the corrupted

parties). However, our protocols can be proved secure even in the presence of an adaptive adversary, who

can decide which parties to corrupt after analyzing the information obtained so far during the execution of

the protocol, provided that not more than t parties are under the control of the adversary.

2.2 Definitions

The computation in our protocols are performed over a finite field F, with the following conditions: for the

perfect AVSS and AMPC protocol, we require that |F| > n. On the other hand, for the statistical AVSS and

AMPC, we require F = GF (q), where q > max (n, 2κ), such that κ = log 1
ǫ
, for a given error parameter ǫ.

Moreover, without loss of generality, we assume that n = poly(κ). Every element from F can be represented

by log |F| bits.

We next recall the definition of AVSS from [8, 15].

Definition 1 (Asynchronous Verifiable Secret Sharing (AVSS) [8, 15]). Let (Sh,Rec) be a pair of protocols

in which a dealer D ∈ P shares a secret s ∈ F using Sh. We say that (Sh, Rec) is a t-resilient AVSS

scheme with n parties if the following hold for every possible At:

1. Termination:

(a) If D is honest then each honest party will eventually terminate the protocol Sh.

(b) If some honest party has terminated the protocol Sh, then irrespective of the behavior of D,

each honest party will eventually terminate Sh.

(c) If all honest parties have terminated Sh and all honest parties invoke the protocol Rec, then

each honest party will eventually terminate Rec.

2. Correctness:

(a) If D is honest then each honest party upon completing the protocol Rec, outputs the shared

secret s.

11

(b) If D is corrupted and some honest party has terminated Sh, then there exists a fixed s ∈ F, such

that each honest party upon completing Rec, will output s, irrespective of the behavior of the

corrupted parties. This property is also known as the strong commitment property and we often

say that D is committed to s.

3. Secrecy: If D is honest then the adversary’s view during the protocol Sh reveals no information about

s in the information theoretic sense. In other words, the adversary’s view is identically distributed for

all different values of s.

The above definition can be extended in a straight forward way for a secret S = (s1, . . . , sℓ), containing ℓ
elements from F, where ℓ > 1. We now dispose the definition of statistical and perfect AVSS.

Definition 2 (Statistical and Perfect AVSS). If an AVSS scheme satisfies the termination and the correctness

condition with probability at least (1 − ǫ), for a given error parameter ǫ, then such a scheme is called a

statistical AVSS. On the other hand, if the termination as well as the correctness condition is satisfied with

probability 1 then such a scheme is called a perfect AVSS.

Note that there is no compromise in the secrecy property for statistical AVSS. We now formally define

d-sharing and (t, 2t)-sharing.

Definition 3 (d-sharing and (t, 2t)-sharing [5]). We say that a value s ∈ F is d-shared among the n parties

if there exists a polynomial f(x) over F of degree at most d such that f(0) = s and every (honest) party Pi

holds a share Shi of s, where Shi = f(i). We denote by [s]d, the vector (Sh1, . . . , Shn) of shares of s.

A value s ∈ F is said to be (t, 2t)-shared among the n parties, denoted as [s]t,2t, if s is both t-shared

and 2t-shared among the n parties through independent polynomials.

Notice that d-sharing is linear in the sense that by applying any linear function to d-sharings, we obtain

a d-sharing as the output. This allows the parties to locally compute any linear function of the shares of

d-shared values. Specifically, let x(1), . . . , x(m) be m values which are d-shared among the parties, where

x
(1)
i , . . . , x

(m)
i denotes the ith share of x(1), . . . , x(m) respectively. Let H : Fm → F

m′
be a linear function,

such that H(x(1), . . . , x(m)) = (y(1), . . . , y(m
′)). Then the parties can locally apply the function H on

their shares of x(1), . . . , x(m) and compute their shares of (y(1), . . . , y(m
′)). That is, every (honest) party Pi

can locally compute (y
(1)
i , . . . , y

(m′)
i) = H(x

(1)
i , . . . , x

(m)
i), where y

(1)
i , . . . , y

(m′)
i denotes the ith share of

y(1), . . . , y(m
′) respectively. We then say that the parties (locally) compute/generate ([y(1)]d, . . . , [y

(m′)]d) =
H([x(1)]d, . . . , [x

(m)]d).
Throughout the paper, we say that a bi-variate polynomial F (x, y) over F has degree-(d, t) if the degree

of x in F (x, y) is at most d and the degree of y in F (x, y) is at most t.
We now proceed to present the definition of AMPC. The definition of secure AMPC in the “real-

world/ideal-world” paradigm was presented in [8]. Later [10] follows the same definition; though they

present the definition in the style of “property based” definition. In the information theoretic world, the defi-

nitions of [10] and [8] are in essence “equivalent”. All the papers on AMPC since then follow the definition

presented in [10] and we follow the same. Since the main aim of this article is to provide an efficient AMPC

protocol, to avoid making the paper complicated, we keep the formalities to a bare minimum and instead

prove the security of our protocols using the definition of [10] presented below. However, our protocols can

be proved secure according to the real world/ideal-world definition of [8], without affecting their efficiency.

Definition 4 (Secure Asynchronous Multi-Party Computation (AMPC)[10]). Let F : Fn → F
n be a publicly

known function and let party Pi has input xi ∈ F. Any asynchronous multiparty computation consists of

three stages. In the first stage, each party Pi commits to its input. Even if Pi is faulty, if he completed this

step, then he is committed to some value (not necessarily xi). Let x′i be the value committed by Pi. If Pi is

12

honest then x′i = xi. Then the parties agree on a subset C of size at least n − t of committed inputs. The

subset C will be the same for all honest parties. In the last stage the (honest) parties will compute the value

F(y1, . . . , yn), where yi = x′i if Pi ∈ C, otherwise yi = 0.

An asynchronous protocol Π among the n parties securely computes the function F if it satisfies the

following conditions for every possible behavior of At:

1. Termination: Every honest party will eventually terminate Π.

2. Correctness: Every honest party will correctly output F(y1, . . . , yn) after completing Π, irrespective

of the behavior of the corrupted parties.

3. Secrecy: The adversary obtains no additional information (in the information theoretic sense), other

than what is inferred from the input and the output of the corrupted parties.

Based on whether the above properties are achieved with negligible error or without any error, we obtain

statistical and perfect AMPC respectively.

Definition 5 (Statistical and Perfect AMPC). If an AMPC protocol satisfies the termination and the correct-

ness condition with probability at least (1− ǫ), for a given error parameter ǫ, then such a protocol is called

a statistical AMPC. On the other hand, if the termination as well as the correctness condition is satisfied

with probability 1 then such a protocol is called a perfect AMPC.

Note that there is no compromise in the secrecy property for statistical AMPC.

2.3 Primitives Used

A-cast: In our protocols, we use the asynchronous broadcast primitive, called A-cast, which was in-

troduced and elegantly implemented by Bracha [14] with 3t + 1 parties. Formally, A-cast is defined as

follows:

Definition 6 (A-cast [16]). Let Π be an asynchronous protocol initiated by a special party (called the

sender), having input m (the message to be broadcast). We say that Π is a t-resilient A-cast protocol if the

following hold, for every possible behavior of At:

• Termination:

1. If the sender is honest and all honest parties participate in the protocol, then each honest party

will eventually terminate the protocol.

2. Irrespective of the behavior of the sender, if any honest party terminates the protocol then each

honest party will eventually terminate the protocol.

• Correctness: If the honest parties terminate the protocol then they do so with a common output m∗.

Furthermore, if the sender is honest then m∗ = m.

For the sake of completeness, we recall the Bracha’s A-cast protocol from [15] and present it in Fig. 2.

Theorem 1 ([15]). Protocol A-cast requires a private communication of O(ℓn2) bits to broadcast an ℓ bit

message.

In the rest of the paper, we use the following notation while invoking the A-cast protocol:

Notation 1. We say that party Pj receives m from the A-cast of Pi, if Pj (as a receiver) completes the

execution of Pi’s A-cast (the instance of the A-cast protocol where Pi is the sender), with m as the output.

13

Figure 2: Bracha’s A-cast protocol with n = 3t+ 1.

A-cast

CODE FOR THE SENDER S (WITH INPUT m): only S executes this code

1. Send the message (MSG,m) privately to all the parties.

CODE FOR THE PARTY Pi: every party in P executes this code

1. Upon receiving a message (MSG,m), send (ECHO,m) privately to all the parties.

2. Upon receiving (n− t) messages (ECHO,m∗) that agree on the value of m∗, send (READY,m∗) privately to all

the parties.

3. Upon receiving (t + 1) messages (READY,m∗) that agree on the value of m∗, send (READY,m∗) privately to

all the parties.

4. Upon receiving (n− t) messages (READY,m∗) that agree on the value of m∗, send (OK,m∗) privately to all the

parties, accept m∗ as the output message and terminate the protocol.

Agreement on a Common Subset (ACS): The next primitive we discuss is the ACS primitive [8, 10],

which is used in all the existing AMPC protocols (including ours). It allows the (honest) parties to agree on

a common set of (n − t) parties satisfying “certain” property, say Q. To make the ACS protocol work, we

must guarantee Q to be such that:

1. Every honest party will satisfy Q eventually. However, there are no restrictions for the corrupted

parties. A corrupted party may or may not choose to satisfy Q.

2. If some honest party Pj ∈ P finds some party (probably corrupted) Pα to satisfy Q, then every other

honest party in P will also eventually find Pα to satisfy Q.

Later in this article, we point out a flaw in the AMPC protocol of [31] that stems from the fact that [31]

overlooked the second precondition on Q for employing an ACS instance.

For a better understanding, we consider the following scenario when ACS can be employed: Assume

that every party in P is asked to A-cast a value and the property Q is whether a party has A-cast or not.

The termination property of A-cast ensures that if some honest Pj finds some party, say Pα, to satisfy Q
(that is Pα A-casted a value), then every other honest party in P will also eventually find Pα to satisfy Q.

Thus using the ACS protocol, the (honest) parties can eventually agree on a common set of (n − t) parties

who have broadcast some value.

The idea behind the ACS protocol is to execute n instances of asynchronous Byzantine Agreement

(ABA) [15], one on the behalf of each party to decide whether it will be in the common set. For the sake of

completeness, we present the description of the protocol ACS (taken from [10]) in Fig. 3.

Theorem 2 ([10]). Using the protocol ACS, the (honest) parties in P can agree on a common subset of

at least (n − t) parties, who will eventually satisfy the property Q. The communication complexity of the

protocol is O(poly(n)).

The communication complexity of the ACS protocol depends on the cost of the underlying ABA protocol.

Since ACS is invoked constant number of times in our AMPC protocols, we choose not to be explicit on its

communication complexity.

Online Error Correction (OEC) [15, 5]: The next primitive we discuss is the online error correction,

which can be viewed as the method of applying the Reed-Solomon (RS) error correction [34] in the asyn-

chronous settings. Given a value which is τ -shared among a set of parties P ⊆ P with τ < (|P| − 2t), the

14

Figure 3: Protocol for the agreement on a common subset with n = 4t+ 1.

Protocol ACS

CODE FOR THE PARTY Pi: Every party in P executes this code

1. For each Pj ∈ P such that Q(j) = 1 (i.e. Pj satisfies the property Q), participate in ABAj with input 1. Here for

j = 1, . . . , n, ABAj denotes the instance of ABA executed for Pj ∈ P to decide whether Pj will be in the common

set.

2. Upon terminating (n− t) instances of ABA with output 1, enter input 0 to all other instances of ABA, for which you

have not entered a value yet.

3. Upon terminating all the n ABA protocols, let your SubSeti be the set of all indices j for which ABAj had output 1.

4. Output the set of parties corresponding to the indices in SubSeti and terminate ACS.

goal is to make some party, say Pα, reconstruct the value robustly (actually OEC allows Pα to reconstruct

the entire polynomial through which the value is τ -shared). In a synchronous network, this can be achieved

by asking every party in P to send its share to Pα, who can apply the RS error correction to reconstruct the

value. Given the condition τ < (|P| − 2t), the reconstruction will be robust. In an asynchronous network,

achieving the same goal requires a bit of trick as explained in the OEC of [15].

The intuition behind the OEC is that Pα keeps waiting till he receives τ + t + 1 values, all of which

lie on a unique polynomial of degree τ . This step requires applying the RS error correction repeatedly. We

denote an RS error correcting procedure as RS − DEC(τ, r,W) that takes as input a vector W of shares

(probably incorrect) of a τ -shared value (that we would like to reconstruct) and tries to output a polynomial

of degree τ , by correcting at most r errors in W . Coding theory [34] says that RS − DEC can correct r
errors in W and correctly interpolate the original polynomial provided that |W | ≥ τ + 2r + 1. There are

several efficient implementations of RS−DEC (for example, the Berlekamp-Welch algorithm [34]). Once

Pα receives τ + t + 1 values that lie on a unique polynomial of degree τ (returned by RS − REC), then

that unique polynomial is the actual polynomial, say P (x), of degree τ that defines τ -sharing of P (0). This

is because at least τ +1 values out of the τ + t+1 values are from the honest parties, which uniquely define

the original polynomial P (x). Note that the corrupted parties in P may send wrong values to Pα. But there

are at least |P| − t ≥ (τ + t+1) honest parties in the set P whose values will be eventually received by Pα

and so Pα will eventually terminate the process. The above procedure is nothing but applying the RS error

correction algorithm in an “online” fashion.

The steps for the OEC are now presented in Fig. 4. The current description is inspired from [15]

(skipping several other formal details).

Theorem 3 ([15, 5]). OEC achieves the following properties:

1. Correctness: Eventually party Pα will be able to correctly reconstruct the τ -sharing when τ < (|P|−
2t).

2. Privacy: If Pα is honest and the value s = P (0) was information theoretically secure then s remains

to be information theoretically secure at the end of OEC.

PROOF: Let At corrupts r̂ ≤ t parties in P . During the r̂th iteration, Pα receives τ + t + 1 + r̂ distinct

values on P (x), of which r̂ are corrupted. Since |Ir̂| = τ + t + 1 + r̂ ≥ τ + 2r̂ + 1, RS − DEC will

correct r̂ errors and will return P (x) in this iteration. Thus P (x) will be output in the r̂th iteration and all the

previous iterations up to the iteration r̂ will be unsuccessful, as either no polynomial of degree τ is output

or the output polynomial will not satisfy τ + t+ 1 values in Ir. This proves the correctness property.

15

Figure 4: Steps for the OEC.

Protocol OEC

Setting: A set of parties P ⊆ P hold τ -sharing of some value defined by a polynomial P (x) of degree τ , where

τ < (|P| − 2t). Namely, party Pi ∈ P holds vi = P (i). A party, say Pα ∈ P , expects to reconstruct the τ -sharing (i.e. the

polynomial P (x)).

CODE FOR THE PARTY Pα: For r = 0, . . . , t, party Pα does the following in iteration r:

1. Let W denote the set of parties in P from whom Pα has received the values and Ir denote the values received from

the parties in W , when W contains exactly τ + t+ 1 + r parties.

2. Wait until |W| ≥ τ + t+1+r. ApplyRS−DEC(τ, r, Ir) to get a polynomial P ′(x) of degree τ . If no polynomial

is output, then skip the next step and proceed to the next iteration.

3. If for at least τ + t + 1 values vi ∈ Ir it holds that P ′(i) = vi, then Pα outputs P ′(x) and terminates. Otherwise,

Pα proceeds to the next iteration.

It is easy to see that if Pα is honest and s = P (0) was information theoretically secure, then even at the

end of OEC, s will remain information theoretically secure. This is because the (honest) parties in P only

send the values to Pα. So no additional information about s or the values of P (x) is revealed to At. ✷

Randomness Extraction: Here, we discuss about a well known method for randomness extraction in

the information theoretic settings. We are given a set of values from F, say a1, . . . , aN , such that at least

K out of these N values are selected uniformly and randomly from F and are information theoretically

secure. The exact identity of those K values are not known. The goal is to compute K values b1, . . . , bK
from a1, . . . , aN , which are uniformly distributed over FK and are information theoretically secure. This

is achieved through the following well-known method introduced in [13, 12]: let f(x) be a polynomial of

degree at most N − 1, such that f(i) = ai+1, for i = 0, . . . , (N − 1). Then set b1 = f(N), . . . , bK =
f(N + K − 1) (of course we require |F| ≥ N + K for this). We call this algorithm Ext and invoke

it as (b1, . . . , bK) = Ext(a1, . . . , aN). Notice that Ext is a linear function of its inputs as it is based on

polynomial interpolation.

Finding (n, t)-star: The last primitive we discuss here is finding an (n, t)-star in an undirected graph. We

exploit some interesting properties of (n, t)-star in order to build our perfect AVSS protocol. An (n, t)-star

is defined as follows:

Definition 7 ((n, t)-star[15, 8]). Let G be an undirected graph with the n parties in P as its vertex set. We

say that a pair (C,D) of sets with C ⊆ D ⊆ P is an (n, t)-star in G, if the following hold:

1. |C| ≥ n− 2t;

2. |D| ≥ n− t;

3. For every Pj ∈ C and every Pk ∈ D the edge (Pj , Pk) exists in G.

In [8], the authors have presented an elegant and efficient algorithm for finding an (n, t)-star, provided the

graph contains a clique of size n− t. The algorithm, called Find-STAR outputs either an (n, t)-star or the

message star-Not-Found. Whenever the input graph contains a clique of size n−t, Find-STAR always

outputs an (n, t)-star in the graph.

Actually, the algorithm Find-STAR takes the complementary graph G of G as input and tries to find

an (n, t)-star in G where an (n, t)-star is a pair (C,D) of sets with C ⊆ D ⊆ P , satisfying the following

conditions:

16

1. |C| ≥ n− 2t;

2. |D| ≥ n− t;

3. There are no edges between the nodes in C and the nodes in D in G.

Clearly, a pair (C,D) representing an (n, t)-star in G, is an (n, t)-star in G. Recasting the task of Find-

STAR in terms of the complementary graph G, we say that Find-STAR outputs either an (n, t)-star, or

the message star-Not-Found. Whenever, the input graph G contains an independent set of size n − t,
algorithm Find-STAR always outputs an (n, t)-star. For simple notation, we denote G by H . The algorithm

Find-STAR is presented in Fig. 5.

Figure 5: Algorithm for finding an (n, t)-star.

Find-STAR(H)

1. Find a maximum matching M in H . Let N be the set of matched nodes (namely, the endpoints of the edges in M),

and let N = P \N .

2. Compute output as follows (which could be either an (n, t)-star or the message star-Not-Found):

(a) Let T = {Pi ∈ N |∃Pj , Pk s.t (Pj , Pk) ∈ M and (Pi, Pj), (Pi, Pk) ∈ E}. T is called the set of triangle-

heads.

(b) Let C = N \ T .

(c) Let B be the set of matched nodes that have neighbours in C. So B = {Pj ∈ N |∃Pi ∈ C s. t. (Pi, Pj) ∈ E}.

(d) Let D = P \B. If |C| ≥ n− 2t and |D| ≥ n− t, output (C,D). Otherwise, output star-Not-Found.

Lemma 1 ([15]). If Find-STAR outputs (C,D) on input graph H , then (C,D) is an (n, t)-star in H .

This completes our discussion on the tools and the preliminaries that are required for the rest of the article.

3 AVSS for Sharing a Single Secret

In this section, we present AVSS schemes that allow a dealer D ∈ P (the dealer can be any party from

P) to d-share a secret s ∈ F among the n parties, for a given d, where t ≤ d ≤ 2t. In the next section,

we will show how to extend these schemes to share multiple secrets concurrently. We call our statistical

AVSS scheme as SAVSS, while our perfect AVSS scheme is called PAVSS. In the rest of the paper, we

distinguish the names of the statistical and perfect protocols/sub-protocols by their first character (‘S’ for

statistical and ‘P’ for perfect). Some of the protocols (for example the protocol for the reconstruction phase)

will be common for both the statistical as well as the perfect scheme. The names of such common protocols

are not prefixed by ‘S’ or ‘P’.

Structurally, the sharing protocol (SAVSS-Share and PAVSS-Share) of both the AVSS schemes is

divided into a sequence of three phases as presented below. The sub-protocols implementing these phases

are such that every honest party eventually terminates them when D is honest. On the other hand, if D is

corrupted and some honest party terminates these phases, then every other honest party will also eventually

terminate them.

1. Distribution by D: The protocols for this phase are called S-Distr (resp. P-Distr). Here D, on having

a secret s and a publicly known degree of sharing d, distributes information to the parties in P to d-share

17

s. Specifically, as discussed in Sec.1.3, D selects a random bi-variate polynomial F (x, y) of degree-(d, t),
with s as the constant term. In protocol S-Distr, D hands the ith polynomial fi(x) = F (x, i) to Pi. In

addition to these polynomials, D will also distribute some “additional” information, which will be used in

the later phases (of the statistical scheme) for some probabilistic checks. In protocol P-Distr, D hands the

polynomial fi(x) and gi(y) = F (i, y) to Pi and no “additional” information is distributed to the parties.

From now onwards, we call the fi(x) and gi(y) polynomial as the ith row and column polynomial respec-

tively (in connection with Fig. 1).

2. Verification & Agreement on CORE: The protocols for this phase are called S-Ver-Agree and P-Ver-

Agree respectively. Though the goal is same, these two protocols are completely independent and are

implemented with different techniques. In this phase, on receiving the information from D, the parties

check whether D has distributed consistent information to the “enough” number of parties. For this, the

statistical protocol S-Ver-Agree applies random checks on the row polynomials distributed by D and the

protocol involves a negligible chance of incorrectly identifying such a “consistent set” of parties. On the

other hand, in the perfect protocol P-Ver-Agree, each pair of parties exchange “common information” on

their row and column polynomials and then we exploit some interesting properties of (n, t)-star to check

the consistency of the information distributed by D. Protocol P-Ver-Agree identifies such a consistent set

of parties without any error.

On a high level, the goal of the (honest) parties in this phase is to verify and agree on a set of at least 3t+1
parties, called CORE, such that the row polynomials fi(x) of the honest parties in CORE define a unique

bivariate polynomial, say F (x, y), of degree-(d, t). That is, fi(x) = F (x, i) should hold for every honest

Pi ∈ CORE. Moreover, we also require that if D is honest, then the secrecy of s is still preserved during

this verification process. If D is honest, then such a CORE always exists, as in this case F (x, y) = F (x, y)
and for every honest Pi, fi(x) = fi(x). Moreover, there are at least 3t+ 1 honest parties in P .

A common but crucial fact from the linear algebra used in S-Ver-Agree, as well as in P-Ver-Agree (to

identify CORE) is as follows: given a set of at least (t+ 1) univariate polynomials of degree at most d and

another set of at least (d+ 1) univariate polynomials of degree at most t, which are “pair-wise consistent”,

then all these polynomials lie on a unique bi-variate polynomial of degree-(d, t). More formally:

Lemma 2. Let f1(x), . . . , fl(x) be l polynomials of degree at most d over F and let g1(y), . . . , gm(y) be m
polynomials of degree at most t over F, where l ≥ (t + 1) and m ≥ (d + 1), such that for every 1 ≤ i ≤ l
and for every 1 ≤ j ≤ m, we have fi(j) = gj(i). Then there exists a unique bi-variate polynomial F (x, y)
over F of degree-(d, t), such that F (x, i) = fi(x) and F (j, y) = gj(y), for 1 ≤ i ≤ l and 1 ≤ j ≤ m.

PROOF: The proof is very similar to the proof of Lemma 4.26 of [15]. For the sake of completeness, the

proof is given in APPENDIX A. ✷

3. Generation of d-sharing: The goal of this phase is to enable every honest party Pi to receive his share

Shi of the secret. If the parties agree on a CORE of size at least 3t+1 in the previous phase, then it implies

that there exists some bi-variate polynomial, say F (x, y) of degree-(d, t), such that F (x, i) = fi(x) for

every honest Pi in CORE, where fi(x) is the row polynomial held by Pi. We consider s = F (0, 0) as D’s

committed secret. If D is honest then F (x, y) = F (x, y) and s = s. Now we note that the univariate

polynomial f0(x) = F (x, 0) is of degree at most d and s = f0(0). So d-sharing of s with Shi = f0(i)
being the ith share of s can be completed if every (honest) party Pi holds f0(i). This can be easily achieved

since each Shi is t-shared among the parties in CORE through the polynomial gi(y), where gi(y) = F (i, y)
and Shi = gi(0) since gi(0) = f0(i). In order words, the second level t-sharing of the shares of s is already

done among the parties in CORE. Since |CORE| ≥ 3t + 1, OEC allows Pi to reconstruct gi(y). Party Pi

now gets his share Shi = gi(0). The protocol for this phase is common for both the AVSS schemes. We

call this protocol as Gen and present it in Fig. 6.

18

Figure 6: Protocol for the generation of d-sharing phase. The protocol is common for the sharing phase of

both the statistical and the perfect AVSS scheme.

Protocol Gen

Setting: The parties in P have agreed on CORE, where |CORE| ≥ 3t + 1. Party Pi ∈ CORE holds the row polynomial

fi(x) received from the dealer D during the distribution by D phase. Moreover, the row polynomials of the honest parties

in CORE define a unique bi-variate polynomial, say F (x, y) of degree-(d, t). The goal is to make every party Pi ∈ P
reconstruct the polynomial gi(y) = F (i, y) and its share of the secret F (0, 0).

CODE FOR Pi: Every party executes this code

1. If Pi ∈ CORE, then for j = 1, . . . , n, privately send fi(j) to the party Pj . Recall that gj(i) = fi(j). So Pi actually

sends a value on gj(y) to Pj .

2. Apply the protocol OEC on fj(i)’s received from Pj’s belonging to CORE to privately reconstruct the polynomial

gi(y) of degree at most t, output Shi = gi(0) and terminate.

We state the following lemma for the protocol Gen.

Lemma 3. Assume that every honest party has agreed upon CORE. Then protocol Gen satisfies the follow-

ing properties:

1. Protocol Gen generates d-sharing of s = F (0, 0). If D is honest, then s = s where s is D’s secret.

2. Protocol Gen requires a private communication of O(n2 log |F|) bits.

PROOF: The property of CORE implies that the row polynomial fi(x) of every (honest) Pi ∈ CORE lies on a

bi-variate polynomial F (x, y) of degree-(d, t). Moreover, if D is honest then F (x, y) is the same bi-variate

polynomial F (x, y) selected by D in the first phase. Let f0(x)
def
= F (x, 0), s

def
= F (0, 0) and gi(y)

def
=

F (i, y). The polynomial gi(y) is of degree at most t and |CORE| ≥ 3t + 1. Substituting P = CORE and

τ = t in the protocol OEC (see Fig. 4), we find that each honest Pi will eventually compute Shi = gi(0)
from the fj(i)’s (which are same as gi(j)’s) received from the parties in CORE. Moreover, gi(0) = f0(i).
So s will be d-shared through the polynomial f0(x). If D is honest then f0(x) = f0(x) = F (x, 0).

In the protocol, every party in CORE does a private communication of n elements from F. So this

requires a total private communication of O(n2 log |F|) bits. ✷

The protocols for the sharing phase and the reconstruction phase of our AVSS schemes are presented in

Fig. 7. By substituting appropriate protocol for a phase (presented in the sequel), we get either the statistical

AVSS scheme SAVSS or the perfect AVSS scheme PAVSS.

In the sequel, we describe the protocols S-Distr and S-Ver-Agree, followed by the description of their

perfect counter parts P-Distr and P-Ver-Agree. Before that, we state the property of the protocol Rec,

which is the common protocol for the reconstruction phase of both the AVSS schemes.

Lemma 4. Let s be a value which is d-shared among the n parties, where t ≤ d ≤ 2t. Then by executing

the protocol Rec, every honest party will eventually reconstruct s and terminate. The protocol requires a

private communication of O(n2 log |F|) bits.

PROOF: Follows when we substitute |P| = |P| = 4t+ 1 and τ = d ≤ 2t in the protocol OEC. In protocol

Rec, every party sends its share to every other party resulting in O(n2 log |F|) bits of communication. ✷

3.1 Sub-Protocols for the Statistical AVSS Scheme

We now present the protocols S-Distr and S-Ver-Agree.

19

Figure 7: The AVSS scheme for sharing a single secret. Here s is the secret, D is the dealer and d is the

degree of the sharing.

Protocol for the Sharing Phase

1. Distribution by D Phase: D either executes the protocol S-Distr (for SAVSS) or the protocol P-Distr (for PAVSS).

2. Verification & Agreement on CORE Phase: The parties check the existence of CORE and agree on it if it exists by

executing the protocol S-Ver-Agree (for SAVSS) or P-Ver-Agree (for PAVSS).

3. Generation of d-sharing Phase: If CORE is generated and agreed upon in the previous phase, then the parties execute

the protocol Gen.

Protocol Rec for the Reconstruction Phase

CODE FOR Pi: every party executes this code

1. Privately send Shi, the ith share of the secret to every Pj ∈ P .

2. Apply the OEC on the received Shj’s, reconstruct the secret and terminate.

3.1.1 Protocol S-Distr

Here D on having a secret s, selects a random bivariate polynomial F (x, y) of degree-(d, t) with the constant

term s and sends to Pi the ith row polynomial. In addition, D also distributes some “additional” information

which will be used to preserve the secrecy of s during the probabilistic checks performed in protocol S-Ver-

Agree. Precisely, D distributes the shares of (t + 1)n random univariate polynomials of degree at most t.
Since these polynomials will be used for “masking” later, we call them as the masking polynomials. The

reason for taking (t + 1)n masking polynomials will be clear when we present the protocol S-Ver-Agree.

Now the protocol S-Distr is presented in Fig. 8.

Figure 8: Protocol S-Distr. Here D is the dealer, s is the secret and d is the degree of the sharing.

Protocol S-Distr

CODE FOR D: Only D executes this code

1. Select a random bivariate polynomial F (x, y) of degree-(d, t) over F, such that F (0, 0) = s. For i = 0, . . . , n, let

fi(x)
def
= F (x, i) and gi(y)

def
= F (i, y).

2. Select (t+ 1)n random masking polynomials of degree at most t over F, denoted by m(Pi,1)(y), . . . ,m(Pi,t+1)(y),
for i = 1, . . . , n.

3. For i = 1, . . . , n, send the following to the party Pi:

(a) The row polynomial fi(x);

(b) For j = 1, . . . , n, the ith shares m(Pj ,1)(i), . . . ,m(Pj ,t+1)(i) of the masking polynomials.

We make the following claim about S-Distr, that trivially follows from the protocol description.

Claim 1. In protocol S-Distr, D privately communicates O((nd + n3) log |F|) bits. Since d ≤ 2t, the

communication complexity is O(n3 log |F|) bits.

20

3.1.2 Protocol S-Ver-Agree

Recall that the goal of the protocol S-Ver-Agree is to enable the (honest) parties in P to check whether

there exists a set CORE of at least 3t + 1 parties, such that the row polynomials of the honest parties in

CORE lie on a unique bi-variate polynomial of degree-(d, t) and if such a set exists then the parties agree

on it. Let fi(x) be the row polynomial of degree at most d, received by Pi from D. If D is honest then

fi(x) = fi(x). The properties of bi-variate polynomial of degree-(d, t) say that if indeed such a CORE

exists then the points {fi(j) : Pi ∈ CORE} will define some polynomial, say gj(y), of degree at most t, for

every j = 1, . . . , n. So the goal of protocol S-Ver-Agree is to enable the parties to check whether D has

distributed the row polynomials in such a way that the jth point on the row polynomials of at least (3t+ 1)
parties define polynomials of degree at most t. Such a set of 3t+ 1 parties can be considered as CORE.

To check the above, we use the following known fact about probabilistic checks on polynomials: if a

random linear combination of a set of polynomials has degree at most t, then with very high probability,

each individual polynomial in the set has also degree at most t. Formally,

Lemma 5. Let h0(y), . . . , hl(y) be polynomials where l ≥ 1 and let r be a random, non-zero element from

F. Assuming ℓ = poly(κ), if the polynomial hcom(y)
def
= h0(y)+rh1(y)+ . . .+rlhl(y) is of degree at most

t, then except with probability 2−Ω(κ) ≈ ǫ, each polynomial h0(y), . . . , hl(y) has also degree at most t.

PROOF: For the sake of completeness, the proof is given in APPENDIX A. ✷

In more detail, consider a set of at least 3t+1 parties, say ReceivedSet, who claimed to receive their row

polynomials fi(x) and their shares of the masking polynomials (recall that (t+1)n masking polynomials are

also shared in the distribution phase). Let the points {fi(j) : Pi ∈ ReceivedSet} define some polynomial

gj(y). In order to check if each of the polynomials gj(y) for j = 1, . . . , n is of degree at most t, we

check if the polynomial E(y) = m(y) + rg1(y) + . . . + rngn(y) is of degree at most t. Here m(y)
is a masking polynomial. And r is a random combiner, which is made public, after D’s delivery of the

row polynomials to the (honest) parties in ReceivedSet (we will show in the sequel how such an r will be

available). We ask D to publish E(y) and every Pi ∈ ReceivedSet to publish the random linear combination

m(i)+rfi(1)+ . . .+rnfi(n). If D’s published polynomial has degree at most t and there are at least 3t+1
parties in ReceivedSet such that their published points lie on D’s published polynomial of degree at most

t, then except with probability 2−Ω(κ) ≈ ǫ, the polynomials gj(y) for every j = 1, . . . , n are of degree at

most t. This holds since D had no idea about the random r when he distributed the row polynomials and the

shares of the masking polynomials to the (honest) parties in ReceivedSet. The set of parties in ReceivedSet

whose points match with D’s polynomial constitute a candidate for CORE when the set admits a size of at

least 3t+ 1.

The secrecy of the row polynomials of the honest parties in ReceivedSet will be preserved during the

above probabilistic check due to the use of the masking polynomial m(y). Having said the core idea, we

now disclose some crucial issues that we face when we try to implement the above idea in the asynchronous

settings. The issues are when and how to generate the random combiner r and who decides a ReceivedSet

and how many such candidate ReceivedSet need to be examined to finally get a CORE. We must generate

the random r in such a way that it remains secret from D during his distribution of the row polynomials

and shares of the masking polynomials to the parties in ReceivedSet. Otherwise, a corrupted D can go

undetected even after distributing inconsistent polynomials of higher degree to the parties in ReceivedSet.

We solve this issue by asking some party V ∈ P to act as the verifier and select the random challenge r. If V
is honest and the parties in ReceivedSet receive their row polynomials and points on masking polynomials

before V makes r public, then the above described probabilistic check works. However, it is difficult to

identify an honest verifier V and so we ask every party in P to individually play the role of a verifier. So we

first construct a protocol navigated by a single verifier V . The protocol outputs a number of candidates for

CORE, which are indeed “true” candidates for CORE, if V is honest. Later when running this single verifier

21

protocol for each of the verifiers in P , we show how to choose the CORE from many candidates, making

sure that it is “approved” by at least one honest verifier. Our first goal is thus to construct a protocol for a

single verifier V .

Protocol for the Navigation by a Single Verifier: Since V generates the random challenge r, it must

ensure that indeed the (honest) parties in ReceivedSet already received their values from D; otherwise the

probabilistic check is of no use if a corrupted D is able to know r before distributing the values to the honest

parties in ReceivedSet. For this, we let every party inform V when they receive their values from D and let

V to construct and decide the ReceivedSet, based on from whom he receives responses, before it generates

the challenge for the set. Now an interesting question is the following: Is it enough for V to generate a single

ReceivedSet containing the 3t+ 1 parties who respond to V and stopping immediately? Does this allow to

stumble on a candidate CORE? The answer is no. Specifically, ReceivedSet may contain t corrupted parties,

who can reveal incorrect linear combination of the points on their row polynomials. Even when D is honest,

we can only guarantee that the honest parties in ReceivedSet (say exactly 2t+1) respond correctly and thus

agree with D’s published polynomial. But recall that in order to be considered as a candidate for CORE, the

set of parties who agree with D’s published polynomial should admit a size of at least 3t+ 1. This implies

that V cannot find a candidate for CORE by examining a single ReceivedSet.

As a remedy for the above problem, we ask V to start with a ReceivedSet of size 3t + 1 and keep

“expanding” the ReceivedSet as in when it receives confirmations from more parties about their receipt of

row polynomial and shares of the masking polynomials. Whenever ReceivedSet is expanded, V generates

a new random challenge r and makes the corresponding version of ReceivedSet and the newly generated

random r public. When a ReceivedSet and random challenge r is made public by V , the dealer D as well as

the parties in that ReceivedSet respond to the challenge. Specifically, D broadcasts the linearly combined

polynomial and the parties in ReceivedSet publish the linearly combined points. This can be perceived as

a game between D and the parties in ReceivedSet, navigated by the verifier V , who decides ReceivedSet,

creates the challenge and then asks D and ReceivedSet to play the game. In the game, D wishes to convince

everyone that the information that he handed to the parties in ReceivedSet are consistent (without violating

the privacy of s). Clearly, if a ReceivedSet has at least 3t+ 1 parties such that the linearly combined points

of those parties match with the polynomial published by D, then such a set of 3t+ 1 parties is a contender

for CORE. We denote by AgreeSet the set of parties in ReceivedSet, whose linear combination of points

matches the linear combination of polynomials published by D.

For an honest D and V , we are guaranteed to eventually see at least one candidate for CORE, namely

when all the honest parties will be in ReceivedSet, whose response will match the polynomial published

by D. We further note that with very high probability, a corrupted D can not cheat when V is honest,

since V creates r only after getting the confirmation of the receipt of row polynomials and the shares of the

masking polynomials from the parties in ReceivedSet and more importantly, a random r is chosen for every

new (expanded) version of ReceivedSet. Our final observation is that there can be at most t + 1 different

versions of ReceivedSet, since the initial version may have 3t+ 1 parties and the final version may have all

the 4t + 1 parties. So V may need to generate a random challenge at most t + 1 times and the checking

game will be performed at most t+1 times. Each time the game is played between D and a distinct version

of ReceivedSet, using the associated random challenge r, published along with the version of ReceivedSet.

This clearly implies that in order to maintain the privacy of the row polynomials of the honest parties during

the probabilistic checks, every time a different masking polynomial is to be used. Thus we require t + 1
masking polynomials on the behalf of a single V (and total (t + 1)n masking polynomials for n verifiers).

We now present the protocol Single-Verifier in Fig. 9 that captures the above discussion for a verifier V .

We next prove some important properties of the protocol Single-Verifier: the first property is that if

D and V are honest, then eventually some AgreeSet(V,β) will be generated (Lemma 6). This property

22

Figure 9: Verification with respect to a verifier V ∈ P

Protocol Single-Verifier

i. CODE FOR Pi: Every party in P , including D and V , executes this code

1. Wait to receive the row polynomial fi(x) and the shares m(Pj ,1)(i), . . . ,m(Pj ,t+1)(i) of the masking polynomials,

for j = 1, . . . , n from D.

2. Check if fi(x) is a polynomial of degree at most d. If yes, then privately send an (ECHO,i) signal to V .

ii. CODE FOR V (TO GENERATE THE CHALLENGE): Only V executes this code

1. Wait to receive (ECHO,i) signal from 3t+1 parties. Put the identity of these 3t+1 parties in the set ReceivedSet(V,1).

Select a random, non-zero value r(V,1) from F and A-cast (r(V,1),ReceivedSet(V,1)).
/* ReceivedSet(V,1) denotes the first set of 3t+ 1 parties, who in V ’s view have received their row polynomials and

shares of the masking polynomials from D. */

2. After the previous step, for every new receipt of (ECHO,i) signal from a party Pi 6∈ ReceivedSet(V,β−1), where

1 < β ≤ t + 1, construct ReceivedSet(V,β) = ReceivedSet(V,β−1) ∪ {Pi}, select a random, non-zero r(V,β) ∈ F

and A-cast (r(V,β),ReceivedSet(V,β)).
/* This step is for the expansion of ReceivedSet and the challenge generation for the expanded set. */

iii. CODE FOR D (TO RESPOND TO THE CHALLENGE OF V): Only D executes this code

1. If (r(V,β),ReceivedSet(V,β)) is received from the A-cast of V , then A-cast the linear combination E(V,β)(y) of the

masking polynomial m(V,β)(y) and the n column polynomials g1(y), . . . , gn(y), where

E(V,β)(y)
def
= m(V,β)(y) + r(V,β)g1(y) + . . .+ rn(V,β)gn(y).

/* D broadcasts the linear combination E(V,β)(y) of the polynomials in response to the challenge r(V,β) to publicly

demonstrate that the row polynomials of the parties in ReceivedSet(V,β) satisfy the properties of CORE. */

iv. CODE FOR Pi (TO RESPOND TO THE CHALLENGE OF V): Every party in P executes this code

1. If (r(V,β),ReceivedSet(V,β)) is received from the A-cast of V , then check if Pi ∈ ReceivedSet(V,β). If yes, then

A-cast the linear combination e(V,β,i) of the share m(V,β)(i) of the masking polynomial m(V,β)(y) and the points

fi(1), . . . , fi(n) on the row polynomial fi(x), where

e(V,β,i)
def
= m(V,β)(i) + r(V,β)fi(1) + . . .+ rn(V,β)fi(n).

/* This step denotes that every party Pi in ReceivedSet(V,β) broadcasts the linear combination e(V,β,i) of the points

on his row polynomial and the appropriate masking polynomial, in response to the challenge r(V,β). Ideally, the point

e(V,β,i) should lie on the polynomial E(V,β)(y). */

2. Consider a party Pj to agree with D with respect to the pair (r(V,β),ReceivedSet(V,β)), where β ∈ {1, . . . , t + 1},

if all the following holds:

(a) E(V,β)(y) A-casted by D is a polynomial of degree at most t;

(b) Pj ∈ ReceivedSet(V,β) and

(c) e(V,β,j) = E(V,β)(j), where e(V,β,j), E(V,β)(y) and (r(V,β),ReceivedSet(V,β)) are received from the A-casts

of Pj , D and V respectively.

/*This step checks if the row polynomial of a party Pj ∈ ReceivedSet(V,β) satisfies the challenge r(V,β). */

3. With respect to the pair (r(V,β),ReceivedSet(V,β)), when there are 3t + 1 Pj’s who agree with D, add such Pj’s in

the set AgreeSet(V,β).

/*Here AgreeSet(V,β) denotes a set of 3t+1 parties in ReceivedSet(V,β), whose row polynomials satisfy the random

challenge r(V,β). */

is essential to guarantee the termination of the protocol S-Ver-Agree (where Single-Verifier is used as a

black-box) when D is honest. We then show that if V is honest and some AgreeSet(V,β) is generated, then the

23

jth point on the row polynomials of the honest parties in AgreeSet(V,β) indeed define polynomials of degree

at most t (Lemma 7). This will further imply that the row polynomials of the honest parties in AgreeSet(V,β)
lie on a unique bivariate polynomial of degree-(d, t) (Lemma 8), implying that AgreeSet(V,β) is a candidate

for CORE. Finally, we show that if D is honest, then the secret s remains information theoretically secure

at the end of Single-Verifier, even if V is corrupted. This will ensure information theoretic security for s in

protocol S-Ver-Agree.

Lemma 6. In protocol Single-Verifier, if V and D are honest, then eventually an AgreeSet(V,β) with

|AgreeSet(V,β)| ≥ 3t+ 1 will be generated, where β ∈ {1, . . . , t+ 1}.

PROOF: If D is honest, then eventually the set of (at least) 3t + 1 honest parties will correctly receive

their row polynomials and these polynomials will satisfy any random challenge r generated by an honest V .

That is, the linear combination of the points revealed by these parties will lie on the corresponding linear

combination of the polynomials revealed by D. Thus, for some β ∈ {1, . . . , t + 1}, ReceivedSet(V,β) will

contain 3t+ 1 honest parties who will also appear in AgreeSet(V,β). ✷

Lemma 7. In protocol Single-Verifier, if V is honest and some AgreeSet(V,β) (containing at least 3t + 1
parties) has been generated, then the following holds with probability at least (1− ǫ):

1. For all j = 1, . . . , n, the jth point on the row polynomials of the honest parties in AgreeSet(V,β)
define some polynomial, say gj(y), of degree at most t.

2. The shares of the masking polynomial m(V,β)(y) held by the honest parties in AgreeSet(V,β) define

some polynomial of degree at most t.

PROOF: If D is honest, then the lemma will be true, without any error. Hence we consider the case when

D is corrupted. So let us assume that an AgreeSet(V,β), where |AgreeSet(V,β)| ≥ 3t + 1 is generated

from ReceivedSet(V,β) and let H(V,β) denote the set of honest parties in AgreeSet(V,β). Since V is honest,

a corrupted D while distributing the row polynomials and the shares of the masking polynomials to the

(honest) parties in ReceivedSet(V,β), is oblivious of the random challenge r(V,β). The challenge r(V,β) is

generated when V receives the (ECHO, ⋆) signal from every (honest) party in ReceivedSet(V,β). Let the

shares {m(V,β)(i) : Pi ∈ H(V,β)} define the polynomial m(V,β)(y) and let for j = 1, . . . , n, the points

{fi(j) : Pi ∈ H(V,β)} define the polynomial gj(y). Then the value e(V,β,i), broadcasted by Pi ∈ H(V,β) in

response to the challenge r(V,β) is:

e(V,β,i) = m(V,β)(i) + r(V,β)g1(i) + . . .+ rn(V,β)gn(i).

We will now show that except with probability ǫ, the polynomials m(V,β)(y), g1(y), . . . , gn(y) are of degree

at most t. On the contrary, if at least one of these (n + 1) polynomials has degree more than t, then we

can show that the minimum degree polynomial, say Emin(y), defined by the points {e(V,β,i) : Pi ∈ H(V,β)}
will have degree more than t with probability at least (1− ǫ). This will clearly imply E(V,β)(y) 6= Emin(y)
and hence e(V,β,i) 6= E(V,β)(i) will hold for at least one Pi ∈ H(V,β). This will be a contradiction, as

e(V,β,i) = E(V,β)(i) holds for every Pi ∈ AgreeSet(V,β) and H(V,β) is a subset of AgreeSet(V,β).

So we proceed to prove that Emin(y) will be of degree more than t with probability at least (1 − ǫ),
when one of the polynomials m(V,β)(y), g1(y), . . . , gn(y) has degree more than t. For this, we show the

following:

1. We first claim that if one of the polynomials m(V,β)(y), g1(y), . . . , gn(y) has degree more than t, then

with probability at least (1−ǫ), the polynomial Edef (y)
def
= m(V,β)(y)+r(V,β)g1(y)+. . .+rn(V,β)gn(y)

will also have degree more than t, for any random, non-zero challenge r(V,β). This follows from the

property of polynomials, as stated in Lemma 5.

24

2. We next claim that Emin(y) = Edef (y). For this, we first observe that in the protocol, every e(V,β,i)
broadcasted by every Pi ∈ H(V,β) lies on the polynomial Edef (y) (this condition has to be satisfied for

Pi to be in the AgreeSet(V,β)). Now consider the difference polynomial dp(y) = Edef (y)−Emin(y).
Clearly, dp(y) = 0, for all y = i, where Pi ∈ H(V,β). Thus dp(y) will have at least |H(V,β)| roots.

On the other hand, the maximum degree of dp(y) could be |H(V,β)| − 1. This is because Edef (y) is

defined by the points on the row polynomials held by the parties in H(V,β) and so the maximum degree

of Edef (y) can be |H(V,β)| − 1. These two facts together imply that dp(y) is the zero polynomial,

implying that Edef (y) = Emin(y) and so Emin(y) will have degree more than t. ✷

Lemma 8. In protocol Single-Verifier, if V is honest and some AgreeSet(V,β) (containing at least 3t + 1
parties) has been generated, then with probability at least (1−ǫ), there exists a unique bi-variate polynomial,

say F (x, y), of degree-(d, t), such that the row polynomial fi(x) held by every honest Pi ∈ AgreeSet(V,β)

satisfies F (x, i) = fi(x). Moreover, if D is honest then F (x, y) = F (x, y).

PROOF: Without loss of generality, let AgreeSet(V,β) contains the first 3t+1 parties P1, . . . , P3t+1. The set

AgreeSet(V,β) will contain at least 2t+1 honest parties and again without loss of generality, let these be the

first 2t + 1 parties P1, . . . , P2t+1. Then from Lemma 7, the existence of AgreeSet(V,β) implies that except

with probability (1 − ǫ), the points {fi(j) : i ∈ {1, . . . , 2t + 1}} define some polynomial, say gj(y) of

degree at most t, for j = 1, . . . , n. Thus, we have 2t + 1 polynomials f1(x), . . . , f2t+1(x), each of degree

at most d and n polynomials g1(y), . . . , gn(y), each of degree at most t, such that fi(j) = gj(i) holds for

all i = 1, . . . , 2t + 1 and all j = 1, . . . , n. So from Lemma 2, there is a unique bi-variate polynomial, say

F (x, y), of degree-(d, t), such that F (x, i) = fi(x) holds for i = 1, . . . , 2t+ 1. It is easy to see that if D is

honest then F (x, y) = F (x, y). ✷

Lemma 9. If D is honest then s will remain information theoretically secure in protocol Single-Verifier.

PROOF: To recover the secret s, the adversary At has to learn the polynomial F (x, y) and this requires

(t + 1)(d + 1) distinct points on F (x, y). Without loss of generality, let At control the first t parties

P1, . . . , Pt. So At learns the row polynomials f1(x), . . . , ft(x). Knowing f1(x), . . . , ft(x) also implies that

At learns t distinct points on the column polynomials g1(y), . . . , gn(y) (only d+1 of them are independent

polynomials), each of degree at most t. So the adversary learns t(d + 1) distinct points on F (x, y). The

adversary still lacks (t + 1)(d + 1) − t(d + 1) = (d + 1) points to uniquely reconstruct F (x, y). We next

claim that the polynomials that are made public during the probabilistic checks give no extra information

about F (x, y). The adversary At learns the polynomial E(V,β)(y), for β = 1, . . . , t + 1. However, each

E(V,β)(y) = m(V,β)(y) + r(V,β)g1(y) + . . .+ rn(V,β)gn(y), where m(V,β)(y) is the masking polynomial and

is independent of g1(y), . . . , gn(y). The adversary will know r(V,β) and t points on m(V,β)(y), which is of

degree at most t and so At cannot uniquely reconstruct m(V,β)(y). Thus learning E(V,β)(y) adds no new

information about F (x, y) to the adversary’s view. Moreover, each E(V,β)(y) uses an independent masking

polynomial of degree at most t. Thus overall, At lacks (d + 1) points to uniquely reconstruct F (x, y),
implying information theoretic security for s = F (0, 0). ✷

Towards the Computation of CORE: So far, we concentrated on the action that is to be carried out with

respect to a single verifier V . We proved that if V is honest then protocol Single-Verifier can provide us

with a candidate solution for CORE (Lemma 6-8). Since we do not know the identity of the honest parties,

we can not place our confidence on any particular party and ask him to play the role of the verifier. Thus we

repeat the protocol Single-Verifier on behalf of every party in P , considering it as a verifier. But again since

we do not know the exact identity of the honest verifiers, we can not pick any arbitrary AgreeSet(⋆,⋆) as

CORE. Thus CORE construction requires additional tricks, which are based on some interesting properties

of AgreeSet(⋆,⋆), which we prove in the sequel. We first show that if there are two different AgreeSets

25

that are generated with respect to an honest verifier V , then the row polynomials of the honest parties in

each AgreeSet define the same bi-variate polynomial of degree-(d, t) (Lemma 10). We further show that

corresponding to two different honest verifiers Vα and Vδ, the row polynomials of the honest parties in

AgreeSet(Vα,⋆) and AgreeSet(Vδ ,⋆)
also define the same bi-variate polynomial of degree-(d, t) (Lemma 11).

Lemma 10. Let V be an honest verifier and assume that AgreeSet(V,γ) and AgreeSet(V,δ) are generated

where γ, δ ∈ {1, . . . , t + 1} and AgreeSet(V,γ) 6= AgreeSet(V,δ). Then the row polynomials held by the

honest parties in AgreeSet(V,γ), as well as in AgreeSet(V,δ), define the same bi-variate polynomial of degree-

(d, t).

PROOF: By Lemma 8, if V is honest, then the row polynomials held by the honest parties in AgreeSet(V,γ)

as well as in AgreeSet(V,δ) define unique bi-variate polynomials of degree-(d, t), say F (x, y) and F̂ (x, y)

respectively. Now F (x, y) = F̂ (x, y), as there are at least (t + 1) common honest parties in AgreeSet(V,γ)
and AgreeSet(V,δ), whose row polynomials define a unique bi-variate polynomial of degree-(d, t). ✷

Lemma 11. For any two honest verifiers Vα and Vδ, the row polynomials of the honest parties in any

AgreeSet(Vα,⋆) and AgreeSet(Vδ ,⋆)
define the same bi-variate polynomial of degree-(d, t).

PROOF: The proof again follows from the fact that there will be at least (t + 1) common honest parties in

AgreeSet(Vα,⋆) and AgreeSet(Vδ ,⋆)
, whose row polynomials define a single bi-variate polynomial of degree-

(d, t). ✷

Using Lemma 10 and 11, we suggest to check the presence of CORE as follows: We check whether

there is a set of 3t + 1 parties, who are present in AgreeSets, corresponding to at least (t + 1) verifiers. If

so, then such a set of 3t + 1 parties is considered as CORE. The intuition is that at least one of the (t + 1)
verifiers, say Vhon, will be honest and if the selected 3t + 1 parties belong to some AgreeSet(Vhon,⋆)

, then

indeed the row polynomials of the honest parties in the selected set of 3t+1 parties lie on a unique bi-variate

polynomial of degree-(d, t). This intuition is captured formally in the protocol S-Ver-Agree, presented in

Fig. 10.

We now prove the properties of the protocol S-Ver-Agree.

Lemma 12. In protocol S-Ver-Agree, the following holds:

1. The parties A-cast O(n3 log |F|) bits.

2. If D is honest, then s will remain information theoretically secure.

3. If D is honest then eventually every honest party will agree on a CORE, such that the row polynomials

of the honest parties in CORE lie on the bi-variate polynomial F (x, y).

4. If D is corrupted and some honest party has accepted a CORE, then every other honest party will

also eventually accept the same CORE. Moreover, except with probability ǫ, the row polynomials of

the honest parties in CORE will lie on a unique bi-variate polynomial of degree-(d, t).

PROOF: In protocol S-Ver-Agree, n instances of Single-Verifier are executed. In a single instance of

Single-Verifier, the parties may have to do the following communication at most (t+1) times: A-cast of a

random challenge from F by V ; A-cast of the linear combination of its column polynomials and a masking

polynomial by D; A-cast of the linear combination of the points on its row polynomial and the share of a

masking polynomial by every party Pi. This accounts for a total A-cast of O(n2 log |F|) bits for a single

instance of Single-Verifier and so for n instances, it is O(n3 log |F|) bits.

The information theoretic security for s follows from Lemma 9 and the fact that in each instance of

Single-Verifier, independent masking polynomials are used.

26

Figure 10: Protocol for the Verification & Agreement on CORE phase for the statistical scheme.

Protocol S-Ver-Agree

VERIFICATION AND CORE CONSTRUCTION:

i. CODE FOR Pi: Every party including D executes this code

1. Acting as a verifier, execute an instance of Single-Verifier.

2. Participate in all the instances of Single-Verifier, executed on the behalf of every verifier Pj ∈ P .

3. Add a verifier Pα to the set VerifierSeti if some AgreeSet(Pα,β), where β ∈ {1, . . . , t + 1}, is generated in the

instance of the Single-Verifier, executed on behalf of the verifier Pα.

4. Check whether |VerifierSeti| ≥ t+ 1 and if so, then perform the following computation:

(a) For every Pα ∈ VerifierSeti, compute AgreeSetPα
= ∪βAgreeSet(Pα,β).

/*This denotes taking the union of all AgreeSet(Pα,⋆), generated in the instance of the Single-Verifier, exe-

cuted on behalf of the verifier Pα. */

(b) Compute COREi = {Pj | Pj belongs to AgreeSetPα
of at least t+1 P ′

αs in the VerifierSeti}.

(c) Wait for the new updates (such as the generation of new AgreeSet(Pk,⋆)
’s, expansion of the existing

AgreeSet(Pk,⋆)
’s, etc.) and repeat the same computation (i.e. steps 2-4((a),(b))) to update COREi after ev-

ery new update.

ii. CODE FOR D: This code is executed only by D

1. A-cast CORE = CORED , as soon as |CORED| = 3t+ 1.

AGREEMENT ON CORE: CODE FOR Pi: Every party executes this code

1. Wait to receive a CORE from the A-cast of D, such that |CORE| = 3t+ 1.

2. Wait until CORE ⊆ COREi and then accept CORE and terminate.

If D is honest, then the set of 3t + 1 honest parties will be present in every AgreeSet(Pα,⋆) eventually,

corresponding to every verifier Pα. Moreover, every honest verifier will be included in the set VerifierSeti
of every honest Pi eventually. If D is honest, then D will construct a CORED of size 3t + 1 eventually. It

then A-casts that set and by the property of the A-cast, it will be received by every honest party. Moreover,

every honest Pi will find that CORED ⊆ COREi and will accept it as CORE. It is easy to see that the row

polynomials of the honest parties in CORE will define the original polynomial F (x, y) selected by D.

If D is corrupted and some honest Pi has accepted a CORE, then it implies that Pi has received CORE

from the A-Cast of D. Moreover, Pi must have found the condition CORE ⊆ COREi to hold. From the

properties of the A-cast, every other honest party Pj will also eventually receive the same CORE from the

A-cast of D. Moreover, from the steps for the construction of COREi, we find that eventually, COREi ⊆
COREj will hold and so Pj will also find that CORE ⊆ COREj and hence will accept CORE. We now show

that except with probability ǫ, the row polynomials of the honest parties in CORE lie on a unique bi-variate

polynomial of degree-(d, t). By Lemma 10, the row polynomials held by the honest parties in AgreeSetPα

corresponding to an honest verifier Pα, define a unique bi-variate polynomial, say F (x, y), of degree-(d, t),
with probability at least (1 − ǫ). Next by Lemma 11, the row polynomials held by the honest parties in

the union of all the AgreeSetPα
’s, corresponding to the honest Pα’s, will also define the same polynomial

F (x, y) with probability at least (1−ǫ). By the construction of CORE, every party in CORE is guaranteed to

be present in at least one AgreeSetPα
, where the verifier Pα is honest. This implies that the row polynomials

held by the honest parties in CORE define F (x, y) with probability at least (1− ǫ). ✷

In the next section, we present the statistical AVSS scheme for sharing a single value and prove its

properties.

27

3.1.3 Statistical AVSS Scheme for a Single Secret

The sharing protocol SAVSS-Share for the statistical scheme SAVSS is presented in Fig. 11.

Figure 11: Protocol for the sharing phase of the statistical AVSS scheme.

Protocol SAVSS-Share

1. D executes S-Distr.

2. The parties execute S-Ver-Agree.

3. If CORE is generated and agreed upon, then the parties execute Gen.

Theorem 4. Protocols (SAVSS-Share, Rec) constitute a statistical AVSS scheme that generates d-sharing

of s. In SAVSS-Share, the parties privately communicate O(n3 log(|F|)) bits and A-cast O(n3 log |F|)
bits. In Rec, the parties privately communicate O(n2 log |F|) bits.

PROOF: If D is honest, then every honest party will eventually terminate SAVSS-Share with his share

of the secret s. This follows from Lemma 12(3) and Lemma 3(1). From Lemma 12(4), if D is corrupted

and some honest party has accepted a CORE, then every other honest party will accept the same CORE.

Moreover, except with probability ǫ, the row polynomials of the honest parties in CORE will lie on a unique

bi-variate polynomial of degree-(d, t). So from Lemma 3(1), executing the protocol Gen generates d-

sharing. If the honest parties execute Rec, then s will be reconstructed correctly. This follows from the

Lemma 4. This proves the correctness and the termination condition.

For secrecy, we have to consider an honest D. Without loss of generality, let P1, . . . , Pt be under the

control of At. From Lemma 12(2) and Lemma 9, by the end of the protocol S-Ver-Agree, At learns t(d+1)
distinct points on the polynomial F (x, y) from t row polynomials of degree at most d. At the end of the

protocol Gen, the adversary gets the column polynomials g1(y), . . . , gt(y), which provide him t additional

points on F (x, y). So in total, At learns t(d+ 1) + t distinct points on F (x, y). This implies that At lacks

(t+ 1)(d+ 1)− t(d+ 1)− t = d+ 1− t points on F (x, y) to uniquely reconstruct F (x, y). Since d ≥ t,
we obtain information theoretic security for s.

The communication complexity follows from Claim 1, Lemma 12(1), Lemma 3(2) and Lemma 4. ✷

This marks the end of our discussion on the statistical AVSS scheme for sharing a single secret.

3.2 Sub-Protocols for the Perfect AVSS Scheme

We now present the protocols P-Distr and P-Ver-Agree which are the sub-protocols for our perfect AVSS

scheme PAVSS.

3.2.1 Protocol P-Distr

The protocol is similar to the protocol S-Distr with the following differences: D will not share any masking

polynomial. Moreover, he will distribute both row, as well as column polynomials to the parties (recall that

in S-Distr, only the row polynomials were distributed by D). Protocol P-Distr is presented in Fig. 12.

The following claim about P-Distr trivially follows from the protocol description.

Claim 2. In protocol P-Distr, D privately communicates O((nd+ n2) log |F|) bits, which is O(n2 log |F|)
for d ≤ 2t.

28

Figure 12: Protocol for the distribution by D phase of the perfect AVSS scheme. Here D is the dealer, s is

the secret to be shared and d is the degree of the sharing.

Protocol P-Distr

CODE FOR D: Only D executes this code

1. Select a random bivariate polynomial F (x, y) of degree-(d, t) over F, such that F (0, 0) = s. For i = 0, . . . , n, let

fi(x)
def
= F (x, i) and gi(y)

def
= F (i, y).

2. For i = 1, . . . , n, send the row polynomial fi(x) and the column polynomial gi(y) to the party Pi.

3.2.2 Protocol P-Ver-Agree

The goal of the protocol P-Ver-Agree is to enable the (honest) parties identify and agree on CORE. Recall

that in protocol S-Ver-Agree, several random checks are applied on the row polynomials and the masking

polynomials distributed by D to check the presence of CORE and the process involved a negligible error

probability. In protocol P-Ver-Agree, we cannot apply such random checks. Instead we proceed as follows:

we ask the parties to interact with each other and check the consistency of their common values (on the

polynomials received from D). Specifically, every pair (Pi, Pj) of parties check whether fi(j) = gj(i),
which should ideally hold, if D,Pi and Pj are honest. Here fi(x) and gi(y) denote the row and column

polynomial received by Pi. The parties broadcast OK signals if the consistency check passes. Using these

signals, we construct a consistency graph with the edges representing pair-wise consistency and check for the

presence of an (n, t)-star (see Section 2.3). The intuition is that if D is honest, then eventually every honest

party will receive his row and column polynomial, which will be pair-wise consistent with the polynomials

of every other honest party and eventually there will be a clique of size at least (n − t) in the consistency

graph. So eventually we should find an (n, t)-star in the consistency graph. Let (C,D) be such a star. Our

first observation is that the row polynomials of the honest parties in C and the column polynomials of the

honest parties in D will be pair-wise consistent and thus they lie on a unique bi-variate polynomial, say

F (x, y), of degree-(d, t). This is due to Lemma 2 and the fact that there will be at least (t+ 1) and (2t+ 1)
honest parties in C and D respectively. Moreover if D is honest then F (x, y) = F (x, y).

The next obvious question is: does the the presence of (C,D) implies the existence of CORE? Recall

that we want CORE to be of size 3t + 1. Clearly C is not qualified to be CORE. On the other hand, even

though D is of size 3t+ 1, it cannot be considered as CORE. This is because we want the row polynomials

of the honest parties in CORE to lie on a unique bi-variate polynomial; whereas an (n, t)-star ensures that

the column polynomials of the honest parties in D lie on a unique bi-variate polynomial. If we consider D

as CORE, then we cannot “complete” the d-sharing by executing the protocol Gen on D. So we cannot

directly confirm the presence of CORE from the presence of an (n, t)-star. However, we observe that if

indeed the dealer D is honest then there will be “additional” honest parties, apart from the honest parties in

C, whose row polynomial will also lie on F (x, y). The reason is that we have at least (3t+1) honest parties.

We search for these “additional” honest parties using the following two-fold, non-intuitive strategy:

• We first try to “expand” the set D by identifying additional parties not in D whose column polynomial

also lie on F (x, y). The expanded set, denoted by F, includes all the parties having edges with at least

(2t + 1) parties in C in the consistency graph. The parties in D will be automatically in F. It is easy

to note that the column polynomial of an honest Pj ∈ P \ D satisfying the above condition will lie

on F (x, y). This is because the honest Pj ensures that its column polynomial has degree at most t
and since Pj will have edge with at least (2t+1) parties in C, this implies that its column polynomial

is pair-wise consistent with the row polynomial of at least (t + 1) honest parties in C, which lie on

F (x, y).

29

• We then try to “expand” the set C. Specifically, we search for the parties Pj , who have edges with at

least (d + t + 1) parties in F in the consistency graph. The idea is that the row polynomial of such a

Pj has degree at most d and out of the (d + t + 1) parties in F (with whom Pj has an edge), at least

(d + 1) will be honest. Thus, the row polynomial of Pj will be pair-wise consistent with the column

polynomials of at least (d+1) honest parties in F, which lie on F (x, y). So the row polynomial of Pj

will lie on F (x, y). We include all such Pj’s in a set E. Notice that all the parties in C will be included

in E.

If we find E to be of size 3t+ 1, then E is taken as CORE. It is easy to see that indeed the row polynomials

of all the honest parties in E will lie on F (x, y). However there is a subtle issue. In the above approach,

the honest parties may have to wait indefinitely for the “expansion” of D and C sets until E admits a size of

3t + 1. Consider the case when d = 2t and C and D are exactly of size (2t + 1) and (3t + 1) respectively,

such that they contain t corrupted parties. If the corrupted parties in C choose to be inconsistent with the

parties outside D, then the honest parties outside D will have only (t + 1) neighbours in C and will not be

included in the set F. So F = D. Similarly, if the corrupted parties in F choose to be inconsistent with the

parties outside C, then the honest parties outside C will have only (2t+1) neighbours in F and will be never

included in the set E. So it is possible that C may never expand from its initial size of 2t+ 1.

To deal with the above situation, we carefully look into the properties of the consistency graph and the

algorithm Find-STAR. We observe that if D is honest then eventually all honest parties (at least 3t+1) will

be consistent with each other and there will be a clique in the consistency graph involving all the honest

parties. We further note that if the Find-STAR algorithm is executed on “this” graph, containing a clique of

size at least 3t+1 involving the honest parties, then C component of the obtained (n, t)-star will have at least

2t+ 1 honest parties. When C contains at least 2t+ 1 honest parties, then eventually the set D will expand

to set F, which will contain all the 3t + 1 honest parties and eventually the set C will expand to the set E

containing at least 3t+1 parties. This crucial observation is at the heart of protocol P-Ver-Agree. However,

it is difficult to identify an instance of the consistency graph that contains a clique involving at least 3t + 1
honest parties. This problem is eliminated by repeating the star finding process and expansion of C and D

for every instance of the consistency graph. In a more detail, after every update in the consistency graph

(on receiving new OK signals), we check for the presence of a new (n, t)-star in the graph (which was not

found earlier) along with the corresponding F and E sets and update the existing F and E sets (corresponding

to all the previously generated (n, t)-stars). This is continued till we find an instance of E of size 3t + 1.

Such an E will be considered as CORE. Surely if D is honest, then we will get E with the desired size. We

let D to moderate these repetitions by asking it to repeat the star finding process and expansion of C and

D for every instance of the consistency graph. Upon finding the CORE, the dealer D makes all the parties

agree on CORE by broadcasting the star and the corresponding E and F sets. The parties then verify if the

broadcasted star and the sets are “valid” with respect to their local consistency graph.

This process of repetition after every update in the consistency graph is some what analogous to the

situation in the protocol S-Ver-Agree, where we have to keep expanding ReceivedSet till the “appropriate”

conditions are satisfied. However, unlike the protocol S-Ver-Agree, where each repetition requires com-

munication, in protocol P-Ver-Agree, each repetition requires only local computation by the parties. The

communication is required finally to make an agreement when CORE is found by D.

With the above intuition in mind, we present the protocol P-Ver-Agree in Fig. 13. In the protocol, the

pair (Cβ ,Dβ) denotes the βth instance of an (n, t)-star and the pair (Eβ ,Fβ) denotes the corresponding E

and F sets respectively. After every update in the consistency graph, (Eβ ,Fβ) may be updated. In the sequel,

we will show that there will be finite number of instances of (n, t)-star (and the corresponding E and F

sets) that can result from the consistency graph. We will also prove the three key observations on which the

protocol P-Ver-Agree is based upon:

1. If D is honest, then eventually some (n, t)-star (Cβ ,Dβ) will be generated, where Cβ will contain

30

at least 2t + 1 honest parties (Lemma 14). This crucial observation is at the heart of the protocol

P-Ver-Agree.

2. If D is honest and the C component of an (n, t)-star (Cβ ,Dβ) contains at least 2t+ 1 honest parties,

then CORE will be eventually generated from (Cβ ,Dβ) (Lemma 15).

3. For any (n, t)-star (Cβ ,Dβ), the row polynomials of the honest parties in Cβ define a unique bi-

variate polynomial of degree-(d, t), irrespective of D (Lemma 13). Moreover, if CORE is generated

from this (Cβ ,Dβ), then the row polynomials of the honest parties in CORE define the same bi-variate

polynomial (Lemma 17).

Figure 13: Protocol for the Verification & Agreement on CORE phase for the perfect AVSS scheme.

Protocol (P-Ver-Agree)

i. CODE FOR Pi: Every party (including D) executes this code.

1. Wait to receive the row polynomial fi(x) of degree at most d and the column polynomial gi(y) of degree at most t from

D. Upon receiving, send fij = fi(j) and gij = gi(j) to the party Pj , for j = 1, . . . , n.

2. Upon receiving fji and gji from Pj , check if fi(j)
?
= gji and gi(j)

?
= fji. If both the equalities hold, then A-cast the

signal OK(Pi, Pj).

3. Construct the undirected consistency graph Gi with P as the vertex set. Add an edge (Pj , Pk) in Gi upon receiving the

OK(Pk, Pj) signal and the OK(Pj , Pk) signal from the A-cast of Pk and Pj respectively.

ii. CODE FOR D (FOR GENERATING CORE). Only D executes this code: Let GD denote the consistency graph constructed

by D.

1. After every new receipt of some OK(⋆, ⋆) signal, update GD . If a new edge is added to GD , then execute Find-

STAR(GD). Let there are α ≥ 0 distinct (n, t)-stars that are found in the past, from different executions of Find-

STAR(GD).

(a) If an (n, t)-star is found from the current execution of Find-STAR(GD) that is distinct from all the previous α
(n, t)-stars (obtained earlier), do the following:

i. Call the new (n, t)-star as (Cα+1,Dα+1).

ii. Construct a set Fα+1 as follows: Add Pj to Fα+1 if Pj has at least 2t+ 1 neighbours in Cα+1 in GD .

iii. Construct a set Eα+1 as follows: Add Pj to Eα+1 if Pj has at least d+ t+ 1 neighbours in Fα+1 in GD .

iv. For β = 1, . . . , α, update the existing Fβ and Eβ as follows:

A. Add Pj to Fβ , if Pj 6∈ Fβ and Pj has now at least 2t+ 1 neighbours in Cβ in GD .

B. Add Pj to Eβ , if Pj 6∈ Eβ and Pj has now at least d+ t+ 1 neighbours in Fβ in GD .

(b) If an (n, t)-star that has been already found in the past is obtained, then execute the step (a).iv(A-B) to update

the existing Fβ’s and Eβ’s.

Let (Eγ ,Fγ) be the first pair among the generated (Eβ ,Fβ)’s such that |Eγ | ≥ 3t + 1 and |Fγ | ≥ 3t + 1. Assign

CORE = Eγ , A-cast ((Cγ ,Dγ), (Eγ ,Fγ)) and terminate.

iii. CODE FOR Pi (FOR VERIFYING THE CORE): Every party (including D) executes this code.

1. Wait to receive ((Cγ ,Dγ), (Eγ ,Fγ)) from the A-cast of D, such that |Eγ | ≥ 3t+ 1 and |Fγ | ≥ 3t+ 1.

2. Wait until (Cγ ,Dγ) becomes an (n, t)-star in the consistency graph Gi. For this, wait to receive the corresponding OK

signals from the parties in Cγ and Dγ .

3. Wait until every party Pj ∈ Fγ has at least 2t+ 1 neighbours in Cγ in Gi.

4. Wait until every party Pj ∈ Eγ has at least d+ t+ 1 neighbours in Fγ in Gi.

Once the above conditions are satisfied, accept CORE = Eγ and terminate.

We now prove the properties of the protocol P-Ver-Agree.

31

Lemma 13. Let (C,D) be any (n, t)-star in the consistency graph Gk of an honest Pk. Then the row

polynomials held by the honest parties in C define a unique bivariate polynomial, say F (x, y), of degree-

(d, t), such that F (x, i) = fi(x) and F (j, y) = gj(y) will hold for every honest Pi and Pj in C and D

respectively. Moreover, if D is honest then F (x, y) = F (x, y).

PROOF: For any (n, t)-star (C,D), we know that |C| ≥ n − 2t and |D| ≥ n − t. So C and D contains at

least n − 3t ≥ t + 1 and n − 2t ≥ 2t + 1 honest parties, respectively. Moreover, every honest party Pi in

C will be pair-wise consistent with every honest party in D. That is, fi(j) = gj(i) and fj(i) = gi(j) will

hold for every honest Pi ∈ C and every honest Pj ∈ D. Furthermore, the row and column polynomials of

the honest parties will have degree at most d (where d ≤ 2t) and t respectively. The proof now follows from

Lemma 2. It is very easy to see that if D is honest, then F (x, y) = F (x, y). ✷

The next two lemmas are very crucial as they show that if D is honest then eventually every honest party

will agree on CORE and terminate the protocol P-Ver-Agree.

Lemma 14. If D is honest then eventually an (n, t)-star (Cβ ,Dβ) will be generated by D, such that Cβ will

contain at least 2t+ 1 honest parties.

PROOF: If D is honest then eventually the edges between each pair of honest parties will vanish in the

complementary graph GD. So each edge in GD will be eventually either (a) between an honest and a

corrupted party OR (b) between two corrupted parties. Moreover, the set of honest parties will form an

independent set of size at least (n − t). Let (Cβ ,Dβ) be the (n, t)-star which is obtained while applying

the Find-STAR algorithm on GD, when GD contains edges of only the above two types. Now, by the

construction of Cβ (see Algorithm Find-STAR), it excludes the parties in N (the set of parties that are

associated with the maximum matching M) and T (the set of parties that are associated with the triangle-

heads). An honest Pi belonging to N implies that (Pi, Pj) ∈ M for some Pj and hence Pj is corrupted (as

we are considering the instance when GD does not have any edge between two honest parties). Similarly, an

honest party Pi belonging to T implies that there is some (Pj , Pk) ∈ M such that (Pi, Pj) and (Pi, Pk) are

edges in GD. This clearly implies that both Pj and Pk are surely corrupted. So for every honest Pi outside

Cβ , at least one (if Pi belongs to N , then one; if Pi belongs to T , then two) corrupted party also remains

outside Cβ . As there are at most t corrupted parties, Cβ may exclude at most t honest parties. So Cβ is

bound to contain at least 2t+ 1 honest parties.

To complete the proof, we now have to show that GD will contain the edges of the above two types after

finite number of steps. We observe that an honest D may compute O(n2) distinct (n, t)-stars in GD. This is

because D applies Find-STAR on GD every time when an edge is added to GD and we know that there can

be O(n2) edges in GD. Now (Cβ ,Dβ) with Cβ containing at least 2t + 1 honest parties will occur among

these O(n2) (n, t)-stars. ✷

Lemma 15. In protocol P-Ver-Agree, if D is honest, then eventually CORE will be generated by D and

every honest party will accept CORE and terminate the protocol P-Ver-Agree.

PROOF: By Lemma 14, if D is honest then eventually it will obtain an (n, t)-star (Cβ ,Dβ) in the consistency

graph GD, such that Cβ will contain at least 2t + 1 honest parties. Moreover, every honest party will

eventually have an edge with every other honest party in GD. So every honest party in P will eventually

have an edge with all the honest parties in Cβ . This implies that every honest party in P will eventually

have at least 2t+1 neighbours in Cβ and so they will be included in Fβ . Following similar argument, every

honest party in P will eventually have at least d + t + 1 neighbours in Fβ and so they will be included

in Eβ . So D will find that |Eβ | ≥ (3t + 1) and |Fβ | ≥ (3t + 1) and will take Eβ as CORE and A-cast

((Cβ ,Dβ), (Eβ ,Fβ)) and terminate. By the property of the A-cast, every honest party Pi will receive these

sets correctly from D and will eventually find that (Cβ ,Dβ) is an (n, t)-star in the consistency graph Gi.

This is because if an honest D has included the edges between the parties in Cβ and Dβ in his consistency

32

graph GD, then the same edges will also be eventually included by every honest Pi in his consistency graph

Gi. Due to the same reason, an honest Pi will find that every party in Fβ has at least (2t+ 1) neighbours in

Cβ in the graph Gi and similarly, every party in Eβ has at least d + t + 1 neighbours in Fβ in the graph Gi

eventually. So Pi will accept CORE and terminate the protocol P-Ver-Agree. ✷

The previous two lemmas ascertained that the honest parties will eventually terminate the protocol P-

Ver-Agree if D is honest. The next lemma shows that even if D is corrupted and some honest party has

terminated the protocol P-Ver-Agree then every honest party will also eventually do the same.

Lemma 16. If D is corrupted and some honest party Pi terminates the protocol P-Ver-Agree after accept-

ing CORE, then every other honest party Pj will also eventually do the same.

PROOF: If an honest Pi has accepted CORE, then this implies that it has received ((Cγ ,Dγ), (Eγ ,Fγ)) from

the A-cast of D and verified the following in his consistency graph Gi: (a) (Cγ ,Dγ) is an (n, t)-star; (b)

every party in Fγ has at least (2t + 1) neighbors in Cγ and (c) every party in Eγ has at least (d + t + 1)
neighbors in Fγ . From the properties of the A-cast, every other honest party Pj will also receive the same

((Cγ ,Dγ), (Eγ ,Fγ)) from the A-cast of D. Moreover, Pj will also find that eventually the above three

conditions are also met in his consistency graph Gj . So Pj will also eventually accept CORE and terminate

the protocol P-Ver-Agree. ✷

The next lemma shows that if a CORE is generated then indeed the row polynomials of the honest parties

in CORE define a unique bi-variate polynomial of degree-(d, t).

Lemma 17. If an honest Pi has accepted CORE, then the row polynomials of the honest parties in CORE

define a unique bivariate polynomial, say F (x, y), of degree-(d, t). Moreover if D is honest then F (x, y) =
F (x, y).

PROOF: If an honest Pi has accepted CORE, then it implies that he has received ((Cγ ,Dγ), (Eγ ,Fγ)) from

the A-cast of D and checked their validity with respect to his own consistency graph Gi. This means that

(Cγ ,Dγ) is an (n, t)-star in Gi. Lemma 13 implies that the row polynomials of the honest parties in Cγ

define a unique bivariate polynomial, say F (x, y), of degree-(d, t). Recall that Eγ is obtained by expanding

the set Cγ . To complete the proof we need to show that even the row polynomials of the honest parties in

Eγ \ Cγ lie on F (x, y). We do so in two stages: we first claim that the column polynomial gj(y) of every

honest Pj in Fγ lie on F (x, y). This is because by the construction of Fγ , every honest Pj ∈ Fγ has at least

2t+1 neighbors in Cγ , which implies that fkj = fk(j) = gj(k) for at least 2t+1 Pk’s in Cγ . Moreover the

degree of gj(y) is at most t. Now out of the (2t+1) Pk’s in Cγ (with whom Pj has an edge), at least (t+1)
are honest. Also the row polynomials of those Pk’s lie on F (x, y). This clearly implies that gj(y) = F (j, y).

Next we claim that the row polynomial fj(x) of every honest party Pj ∈ Eγ also lies on F (x, y). By

the construction of Eγ , every such Pj has at least d + t + 1 neighbors in Fγ , which means that fj(k) =
gkj = gk(j) for at least (d + t + 1) Pk’s in Fγ . Moreover the degree of fj(x) is at most d. Now out of the

(d+ t+1) Pk’s in Fγ (with whom Pj has an edge), at least (d+1) are honest. Also the column polynomials

of those Pk’s lie on F (x, y). This clearly implies that fj(x) = F (x, j). Hence the row polynomials of the

honest parties in CORE define F (x, y). ✷

The next two lemmas are related to the privacy and the communication complexity of the protocol P-

Ver-Agree.

Lemma 18. In protocol P-Ver-Agree if D is honest then s will remain information theoretically secure.

PROOF: Without loss of generality, let P1, . . . , Pt be under the control of the adversary. So At will know

the row polynomials f1(x), . . . , ft(x) and the column polynomials g1(y), . . . , gt(y). The adversary will

also receive from the honest parties the common points on their row and column polynomials. However,

these points do not add any new information to the view of the adversary about F (x, y), as they can be

33

computed from the knowledge of f1(x), . . . , ft(x), g1(y), . . . , gt(y). The adversary is completely oblivious

of the communication done between the honest parties. So he has no information about the common points

exchanged between the honest parties. The knowledge of CORE does not add any information about F (x, y)
to the view of the adversary. So overall, At has f1(x), . . . , ft(x), g1(y), . . . , gt(y). From these polynomials,

he obtains t(d + 1) + t distinct points on F (x, y). However F (x, y) is of degree-(d, t). So the adversary

lacks (t+1)(d+1)− t(d+1)− t = d+1− t points to uniquely recover F (x, y). This implies information

theoretic security for the secret s. ✷

Lemma 19. Protocol P-Ver-Agree requires a private communication of O(n2 log |F|) bits and A-cast of

O(n2 log |F|) bits.

PROOF: In the protocol, the parties privately exchange the common points on their row and column poly-

nomials, which requires a private communication of O(n2 log |F|) bits. In addition, the parties also A-cast

OK(⋆, ⋆) signals, which requires A-cast of O(n2 log |F|) bits. Furthermore, the A-casting of ((Cγ ,Dγ), (Eγ ,
Fγ)) requires A-cast communication of O(n2 log |F|) bits.

In the next section, we present the perfect AVSS scheme and prove its properties.

3.2.3 Perfect AVSS Scheme for a Single Secret

The sharing protocol PAVSS-Share for the perfect scheme PAVSS is presented in Fig. 14.

Figure 14: Protocol for the sharing phase of the perfect AVSS scheme

Protocol PAVSS-Share

1. D executes P-Distr.

2. The parties execute P-Ver-Agree.

3. If CORE is generated and agreed upon, then the parties execute Gen and terminatea.

a We note that in PAVSS-Share the parties in CORE need not have to communicate the values on their

column polynomials during the protocol Gen (unlike in SAVSS-Share). This is because the parties

already exchange the common values on their row and column polynomials during the protocol P-

Ver-Agree. So once CORE is identified, every party can apply the OEC on the values received from

the parties in CORE and reconstruct their share of the secret as described in the protocol Gen. On the

contrary, in protocol S-Ver-Agree, the parties were not provided with their column polynomials and

so to reconstruct their column polynomials, the parties in CORE need to communicate values to the

parties in the protocol Gen, after CORE is identified.

Theorem 5. Protocols (PAVSS-Share, Rec) constitute a perfect AVSS scheme, which generates d-sharing

of s. During PAVSS-Share, the parties privately communicate O(n2 log(|F|)) bits and A-castO(n2 log |F|)
bits. During Rec, the parties privately communicate O(n2 log |F|) bits.

PROOF: If D is honest then every honest party will terminate the protocol PAVSS-Share. This follows

from the Lemma 15 and Lemma 3(1). If D is corrupted but some honest party terminates PAVSS-Share,

then every other honest party will also eventually terminate the protocol PAVSS-Share. This follows from

Lemma 16 and Lemma 3(1). Moreover, if the honest parties invoke the protocol Rec, then every honest party

will eventually terminate Rec. This follows from the Lemma 4. This completes the proof of termination.

34

If D is honest then at the end of PAVSS-Share, every honest party will have his share of s. This

follows from Lemma 17 and Lemma 3(1). Moreover, every honest party on terminating the protocol Rec

will output s. This follows from Lemma 4. On the other hand, even if D is corrupted and some honest party

terminates PAVSS-Share, then it implies that CORE is generated and agreed upon, which from Lemma 17

further implies that D has committed the polynomial F (x, y) and hence the value s = F (0, 0) to the honest

parties in CORE. The property of Gen (Lemma 3(1)) ensures that every honest party will have the share of

s. Moreover, the honest parties on terminating the Rec will output s. This proves the correctness property.

Information theoretic security of s for an honest D follows from the Lemma 18. Finally the communi-

cation complexity follows from Claim 2, Lemma 19, Lemma 3(2) and Lemma 4. ✷

This completes our discussion on the AVSS schemes for sharing a single secret.

4 AVSS for Sharing Multiple Secrets

The AVSS schemes that we discussed so far allow to d-share a single element from F. Now consider a

situation where we have to d-share S = (s1, . . . , sℓ) ∈ F
ℓ, where ℓ > 1 (indeed in our AMPC protocols,

every party has to share multiple values). One simple way to d-share S is to individually d-share each sl ∈ S
by executing an instance of SAVSS (resp. PAVSS). This will require a communication complexity which

is ℓ times the communication complexity of SAVSS (resp. PAVSS). We now show how to d-share all the

elements of S simultaneously, such that the private communication depends on ℓ but the A-cast communi-

cation is independent of ℓ. Since the A-cast is an expensive protocol5, we save a lot of communication in

our AMPC protocols by using our new AVSS schemes for sharing multiple secrets together.

The main idea behind making the A-cast communication independent of ℓ is the following: we observe

that in the sub-protocols dealing with a single secret, the steps which involve private communication among

the parties can be extended in a “natural” way to deal with ℓ values. For example, instead of taking a single

bi-variate polynomial, D now selects ℓ such polynomials and accordingly every party receives ℓ row and

column polynomials. However, we need not have to extend the steps involving broadcast in the same way

to deal with ℓ secrets. Instead, those steps can be “modified” to deal with all the ℓ values concurrently to

keep the A-cast communication independent of ℓ. In the sequel we elaborate on this. We do not present

the complete protocols, as this calls for un-necessary repetition; instead we only discuss the key steps that

are modified in the earlier sub-protocols for a single value to deal with ℓ values. We also do not present the

proofs for the new sub-protocols, as they trivially follow from the properties of the sub-protocols dealing

with a single value. The new sub-protocols have “MS” in their names, indicating that they deal with multiple

secrets. We first discuss the sub-protocols for the statistical scheme.

4.1 Sub-Protocols for the Statistical Scheme to Share ℓ Values

The statistical scheme is called SAVSS-MS, which consists of the protocol SAVSS-MS-Share for the

sharing phase and protocol Rec-MS for the reconstruction phase (this protocol is also the protocol for the

reconstruction phase of the perfect scheme for ℓ values). Now the sharing protocol SAVSS-MS-Share con-

sists of a sequence of three stages (similar to the protocol SAVSS-Share), each implemented by a specific

sub-protocol discussed below:

1. Protocol S-MS-Distr: This protocol implements the distribution by D phase. Here for each sl ∈ S, the

dealer D selects a random bi-variate polynomial Fl(x, y) of degree-(d, t) with the constant term as sl and

distributes the ith row polynomial fl,i(x) = Fl(x, i) to Pi. Thus each Pi receives ℓ row polynomials. In

addition, D shares (t+ 1)n masking polynomials, each of degree at most t, as in the protocol S-Distr (Fig.

5The best known perfect A-cast protocol is due to [14]. It communicates O(n2) bits to broadcast a single bit.

35

8). D does not distribute the column polynomials gl,i(y) = Fl(i, y) to Pi as in the protocol S-Distr.

2. Protocol S-MS-Ver-Agree: This protocol allows the parties to verify the presence of CORE and to agree

on a CORE of size at least 3t + 1 if it exists, where CORE has the following property: for l = 1, . . . , ℓ,
the row polynomials {fl,i(x) : Pi ∈ CORE and Pi is honest} define a unique bi-variate polynomial, say

F l(x, y), of degree-(d, t). Moreover, if D is honest then F l(x, y) = Fl(x, y). Here fl,i(x) denotes the

row polynomials received by Pi from D. The protocol uses another sub-protocol Single-MS-Verifier as

a black-box. This protocol is almost the same as the protocol Single-Verifier (Fig. 9) with the following

modifications: In step i, Pi waits to receive ℓ row polynomials f1,i(x), . . . , fℓ,i(x), each of degree at most

d from D. In step iii, D broadcasts the linear combination of ℓn column polynomials (instead of n column

polynomials) and a masking polynomial. Specifically, D broadcasts E(V,β)(y), where

E(V,β)(y)
def
= r0(V,β)m(V,β)(y)+r1(V,β)g1,1(y)+. . .+rn(V,β)g1,n(y)+. . .+r

(ℓ−1)n+1
(V,β) gℓ,1(y)+. . .+rℓn(V,β)gℓ,n(y).

Here gl,i(y) = Fl(i, y). Accordingly, in step iv.1, party Pi will broadcast a linear combination of the share

of a masking polynomial and n points on each of his ℓ row polynomial. Specifically, Pi broadcasts e(V,β,i),
where

e(V,β,i)
def
= r0(V,β)m(V,β)(i)+r1(V,β)f1,i(1)+ . . .+rn(V,β)f1,i(n)+ . . .+r

(ℓ−1)n+1
(V,β) fℓ,i(1)+ . . .+rℓn(V,β)fℓ,i(n).

The rest of the steps for the protocol Single-MS-Verifier are same as in the protocol Single-Verifier. Now

protocol S-MS-Ver-Agree is exactly the same as protocol S-Ver-Agree(Fig. 10), except that all instances

of Single-Verifier in S-Ver-Agree are now replaced with the instances of Single-MS-Verifier.

3. Protocol Gen-MS: If a CORE is generated and agreed upon then this protocol is invoked to complete

the d-sharing of the secrets in S. This protocol is a simple extension of the protocol Gen (Fig. 6): each

party Pi in CORE sends the jth points f1,i(j), . . . , fℓ,i(j) on his row polynomials to Pj , who then applies

the OEC on these points to reconstruct the column polynomials g1,j(y), . . . , gℓ,j(y) and hence the share

Shl,j = gl,j(0) of sl ∈ S, for l = 1, . . . , ℓ.

The reconstruction protocol Rec-MS is a straight forward extension of the protocol Rec (Fig. 7), where

for every sl ∈ S, every party Pi simply sends his share Shl,i of sl to every other party Pj and then by

applying the OEC, every party reconstructs sl. We now state the following theorem which follows from the

properties of the statistical scheme for sharing a single secret.

Theorem 6. Protocols (SAVSS-MS-Share, Rec-MS) constitute a statistical AVSS scheme SAVSS-MS,

which generates d-sharing of S = (s1, . . . , sℓ). In SAVSS-MS-Share, the parties privately communicate

O(ℓnd + n3 log(|F|)) = O(ℓn2 + n3 log(|F|)) bits and A-cast O(n3 log(|F|)) bits. During Rec-MS, the

parties privately communicate O(ℓn2 log |F|) bits.

We next discuss the sub-protocols for the perfect AVSS scheme to share ℓ values.

4.2 Sub-Protocols for the Perfect Scheme to Share ℓ Values

The extension of the perfect scheme PAVSS to PAVSS-MS is very simple. PAVSS-MS consists of the

protocol PAVSS-MS-Share for the sharing phase and protocol Rec-MS (discussed in the previous sec-

tion) for the reconstruction phase. Now the sharing protocol PAVSS-MS-Share consists of a sequence of

three stages (similar to the protocol PAVSS-Share), each implemented by a specific sub-protocol described

below:

36

1. Protocol P-MS-Distr: This protocol implements the distribution by D phase. Here for each sl ∈ S, the

dealer D selects a random bi-variate polynomial Fl(x, y) of degree-(d, t) with sl as the constant term and

distributes the ith row polynomial fl,i(x) = Fl(x, i) and the ith column polynomial gl,i(y) = Fl(i, y) to Pi.

Thus each Pi receives ℓ row and column polynomials.

2. Protocol P-MS-Ver-Agree: This protocol allows the parties to agree on a CORE and it is almost same

as the protocol P-Ver-Agree (Fig. 13), except that step i is extended to deal with ℓ values as follows: first,

each Pi waits to receive ℓ row polynomials f1,i(x), . . . , fℓ,i(x), each of degree at most d and ℓ column

polynomials g1,i(y), . . . , gℓ,i(y), each of degree at most t from D. After receiving, Pi proceeds to check

the pair-wise consistency of ℓ row and ℓ column polynomials with each Pj . Specifically, Pi sends ℓ values

fl,i,j = fl,i(j), for l = 1, . . . , ℓ on his row polynomials and another ℓ values gl,i,j = gl,i(j), for l = 1, . . . , ℓ
on his column polynomials to Pj . Now on receiving the ℓ values fl,j,i, for l = 1, . . . , ℓ and the ℓ values

gl,j,i, for l = 1, . . . , ℓ from Pj , party Pi checks fl,i(j)
?
= gl,j,i and gl,i(j)

?
= fl,j,i, for all l = 1, . . . , ℓ.

If the test passes for every l = 1, . . . , ℓ, then Pi A-cast the signal OK(Pi, Pj). The rest of the steps for

P-MS-Ver-Agree will be now same as in the protocol P-Ver-Agree.

3. Protocol Gen-MS: This protocol is the same as discussed in the previous section. The footnote mentioned

in the protocol PAVSS-Share (see the footnote in Fig. 14) applies here as well. That is, the parties in CORE

are not required to communicate in the protocol Gen-MS in the perfect AVSS scheme.

We now state the following theorem that follows from the properties of the perfect scheme for sharing a

single secret.

Theorem 7. Protocols (PAVSS-MS-Share, Rec-MS) constitute a perfect AVSS scheme PAVSS-MS,

which generates d-sharing of S = (s1, . . . , sℓ). In PAVSS-MS-Share, the parties privately communicate

O(ℓn2 log(|F|)) bits and A-cast O(n2 log |F|) bits. During Rec-MS, the parties privately communicate

O(ℓn2 log |F|) bits.

5 Protocol for Generating (t, 2t)-Sharing of ℓ Values

Once we have an AVSS scheme that can d-share ℓ values for any given d, where d ≤ 2t, generating (t, 2t)-
sharing of ℓ values can be done using the following simple idea (outlined earlier in the introduction): To

(t, 2t)-share S = (s1, . . . , sℓ), the dealer D first t-share S. In addition, he also (2t − 1)-share ℓ random

values, denoted by R = (r1, . . . , rℓ). This implies that each sl and rl is shared through polynomials, say

fl(x) and gl(x), of degree at most t and (2t−1) respectively, with every honest party holding its shares fl(i)
and gl(i) of sl and rl respectively. Now consider the polynomial hl(x) = fl(x) + x · gl(x). It has degree at

most 2t with the constant term as sl. Moreover, every party can locally compute hl(i) = fl(i) + i · gl(i). It

is easy to see that each sl is (t, 2t)-shared through the polynomials fl(x) and hl(x). To implement this idea,

the dealer has to invoke two instances of the sharing phase of our AVSS scheme (dealing with ℓ values). Now

depending upon whether he invokes the statistical AVSS scheme SAVSS-MS-Share or the perfect scheme

PAVSS-MS-Share, the resulting protocol will either have a negligible error or no error in the correctness

and in the termination. We call the resulting protocols as S-(t, 2t)-Share and P-(t, 2t)-Share respectively.

We present the protocol in Fig. 15.

We now state the properties of the protocol S-(t,2t)-Share and P-(t,2t)-Share, that follow from the

properties of the protocols SAVSS-MS-Share and PAVSS-MS-Share respectively.

Theorem 8. Protocol S-(t,2t)-Share achieves the following properties:

1. Termination: (a) If D is honest, then all honest parties will eventually terminate S-(t,2t)-Share.

37

Figure 15: Protocol for generating (t, 2t)-sharing of S = (s1, . . . , sℓ).

Protocol S-(t,2t)-Share / P-(t,2t)-Share

CODE FOR D (FOR SHARING S): Only D executes this code

1. Select R = (r1, . . . , rℓ) ∈ F
ℓ uniformly and randomly. In S-(t,2t)-Share, invoke two instances of SAVSS-MS-

Share to t-share and (2t−1)-share S andR respectively. On the other hand, in P-(t,2t)-Share, invoke two instances

of PAVSS-MS-Share to t-share and (2t− 1)-share S and R respectively.

CODE FOR Pi (TO OBTAIN THE SHARES OF S): Every party in P executes this code

1. In S-(t,2t)-Share, participate in the two instances of SAVSS-MS-Share and wait to terminate these two instances.

On the other hand, in P-(t,2t)-Share, participate in the two instances of PAVSS-MS-Share and wait to terminate

these two instances.

2. Let (ϕ1,i, . . . , ϕℓ,i) and (χ1,i, . . . , χℓ,i) be the ith shares obtained from the two instances of SAVSS-MS-

Share/PAVSS-MS-Share.

3. For l = 1, . . . , ℓ, locally compute ψl,i = ϕl,i + i · χl,i. Output (ϕ1,i, . . . , ϕℓ,i) and (ψ1,i, . . . , ψℓ,i) as the ith share

of (t, 2t)-sharing of S and terminate.

(b) If D is corrupted and some honest party terminates S-(t,2t)-Share, then all honest parties will

eventually terminate the protocol, except with probability ǫ.

2. Correctness: (a) If D is honest, then S will be (t, 2t)-shared among the parties in P . (b) If D
is corrupted and the honest parties terminate S-(t,2t)-Share, then there exist ℓ values, which are

(t, 2t)-shared among the parties in P , except with probability ǫ.

3. Communication Complexity: Protocol S-(t,2t)-Share requires a private communication of O((ℓn2+
n3) log |F|) bits and A-cast of O(n3 log |F|) bits.

PROOF: The proof follows from the properties of the protocol SAVSS-MS-Share (Theorem 6). ✷

The proof of the following theorem follows using the same arguments as used in the previous theorem,

except that we now depend on the properties of PAVSS-MS-Share instead of SAVSS-MS-Share.

Theorem 9. Protocol P-(t,2t)-Share achieves the following properties:

1. Termination: (a) If D is honest, then all honest parties will eventually terminate P-(t,2t)-Share.

(b) If D is corrupted and some honest party terminates P-(t,2t)-Share, then all honest parties will

eventually terminate P-(t,2t)-Share.

2. Correctness: (a) If D is honest, then S will be (t, 2t)-shared among the parties in P . (b) If D is

corrupted and the honest parties terminate P-(t,2t)-Share, then there exist ℓ values, which will be

(t, 2t)-shared among the parties in P .

3. Communication Complexity: Protocol P-(t,2t)-Share incurs a private communication of O(ℓn2 log |F|)
bits and A-cast of O(n2 log |F|) bits.

6 AMPC Protocol with n = 4t+ 1

Once we have an efficient protocol for generating (t, 2t)-sharing, we can design AMPC protocol following

the approach of [5]. Structurally, both our statistical and perfect AMPC protocol are divided into a sequence

of three phases. Depending upon the type of sub-protocols (with negligible error or without any error)

38

used in these phases, we get either a statistical AMPC or a perfect AMPC protocol. Let F be a publicly

known function over F, which is represented by an arithmetic circuit over F, consisting of input gates, linear

gates, multiplication gates, random gates and output gates of bounded fan-in. Without loss of generality, we

assume that the multiplication gates have fan-in two and the random gates have fan-in one. It is well known

that any arithmetic circuit can be represented like this. Let cI , cL, cM , cR and cO denote the number of

input, linear, multiplication, random and output gates respectively in the circuit representing F . We denote

by IGate, LGate, MGate, RGate and OGate the input, linear, multiplication, random and output gates

respectively. For simplicity, we assume that F : Fn → F
n, where each party Pi has the input xi ∈ F for the

computation and all the n parties receive the function output F(x1, . . . , xn). This implies that cI = n. The

three phases of our AMPC protocols are as follows:

1. Preparation Phase: The goal of this phase is to prepare the “raw material” to be used later during the

evaluation of the circuit. Specifically, in this phase, the parties interact to generate (t,2t)-sharing of

cM + cR uniformly random values from F, that are information theoretically secure.

2. Input Phase: In this phase, the parties share their actual inputs for the function F . For this, every party

t-share his input and then the parties agree on a common set of at least (n − t) parties, who t-shared

their inputs. Every honest party will eventually get shares of the inputs of the parties in this common

set.

3. Computation Phase: Here, based on the inputs of the parties in the common set (agreed in the previous

phase), the circuit will be evaluated gate by gate in a shared fashion, such that the output of each gate

remains t-shared among the parties.

We now present the protocols for each of the above phases.

6.1 Preparation Phase

Here the parties interact to generate (t, 2t)-sharing of cM + cR uniformly random values from F. The

shared values should also remain information theoretically secure. For this, every party in P acts as a

dealer and (t, 2t)-shares cM+cR
n−2t uniformly random values from F. The parties then agree on a common set

of at least (n − t) parties who indeed (t, 2t)-shared cM+cR
n−2t values. Out of these (n − t) parties, at least

(n−2t) are honest, who have indeed shared random values. The random values shared by the honest parties

are unknown to At. But the identities of the honest parties are unknown. So, we apply the information

theoretic randomness extraction function Ext (see Section 2.3) on the sharings done by the parties in the

common set to obtain (t, 2t)-sharing of cM + cR uniformly random values. In Fig. 16, we present the

protocol for this phase. Now depending upon whether the parties invoke the protocol S-(t, 2t)-Share

(having negligible error) or P-(t, 2t)-Share (having no error), we get the protocol S-Preparation or P-

Preparation respectively for the preparation phase.

We now prove the properties of the protocol S-Preparation and P-Preparation, which follows from

the properties of S-(t, 2t)-Share and P-(t, 2t)-Share respectively, along with the properties of Ext.

Lemma 20. Protocol S-Preparation satisfies the following properties:

1. Termination: All honest parties will eventually terminate the protocol, except with probability ǫ.

2. Correctness: The protocol outputs (t, 2t)-sharing of cM + cR uniformly random values, except with

probability ǫ.

3. Secrecy: For i = 1, . . . , n−2t and j = 1, . . . , cM+cR
n−2t , the values ri,j will be information theoretically

secure.

39

Figure 16: Protocol for the Preparation Phase.

Protocol S-Preparation / P-Preparation

SHARING RANDOM VALUES:CODE FOR Pi: Every party executes this code

1. Select L = cM+cR
n−2t

random elements Si = (si,1, . . . , si,L) from F. In S-Preparation, invoke S-(t, 2t)-Share as a

dealer, to (t, 2t)-share Si. Let this instance of S-(t, 2t)-Share be denoted as S-(t, 2t)-Sharei. On the other hand, in

P-Preparation, invoke P-(t, 2t)-Share as a dealer, to (t, 2t)-share Si and denote this instance as P-(t, 2t)-Sharei

2. For j = 1, . . . , n, participate in the instance S-(t, 2t)-Sharej / P-(t, 2t)-Sharej , depending upon whether it is S-

Preparation or P-Preparation.

AGREEMENT ON THE COMMON SET: CODE FOR Pi: Every party executes this code

1. Create an accumulative set Ci = ∅. Upon terminating the instance S-(t,2t)-Sharej / P-(t,2t)-Sharej , add Pj in Ci.

2. Participate in an instance of ACS with accumulative set Ci as the input.

Let C be the common set of size (n − t) obtained as the output of the ACS and without loss of generality, let

C = {P1, . . . , Pn−t}. For every k ∈ {1, . . . , L}, let (r1,k, . . . , rn−2t,k) = Ext(s1,k, . . . , sn−t,k). The parties then obtain

their shares corresponding to (t, 2t)-sharing of (r1,k, . . . , rn−2t,k) as follows:

GENERATION OF THE RANDOM (t, 2t)-SHARINGS: CODE FOR Pi: Every party executes this code

1. For every Pj in the common set C, obtain the ith shares (ϕj,1,i, . . . , ϕj,L,i) and (ψj,1,i, . . . , ψj,L,i), corresponding

to (t, 2t)-sharing of Sj .

2. For every k ∈ {1, . . . , L}, locally compute ([r1,k]t, . . . , [rn−2t,k]t) = Ext([s1,k]t, . . . , [sn−t,k]t) and

([r1,k]2t, . . . , [rn−2t,k]2t) = Ext([s1,k]2t, . . . , [sn−t,k]2t). That is, locally compute the ith shares

(ς1,k,i, . . . , ςn−2t,k,i) = Ext(ϕ1,k,i, . . . , ϕn−t,k,i) and (σ1,k,i, . . . , σn−2t,k,i) = Ext(ψ1,k,i, . . . , ψn−t,k,i) and ter-

minate.

The values r1,1, . . . , rn−2t,1, . . . , r1,L, . . . , rn−2t,L denote the cM + cR random values which are now (t, 2t)-shared.

4. Communication Complexity: The protocol privately communicates O(((cM + cR)n
2 + n4) log |F|)

bits, incurs A-cast of O(n4 log |F|) bits and requires one invocation of ACS.

PROOF: For the termination property, we first notice that the invocation of ACS will indeed output a com-

mon set C of 3t + 1 parties. This is because there are at least 3t + 1 honest parties, who will invoke an

instance of S-(t, 2t)-Share and these instances will be eventually terminated by every honest party. We next

claim that every honest party will eventually terminate the S-(t, 2t)-Share instance of every party (dealer)

in C, except with probability ǫ. If C contains only honest parties then the claim is trivially true. We consider

the worst case, when C can contain t corrupted parties. The termination property of S-(t, 2t)-Share ensures

that the S-(t, 2t)-Share instance of each of these t corrupted dealers will be terminated except with proba-

bility ǫ. So the error probability that the S-(t, 2t)-Share instance of at least one corrupted dealer in C is not

terminated is at most t · ǫ. Assuming t · ǫ ≈ ǫ ensures that the S-(t, 2t)-Share instances of all the parties in

C will eventually terminate, except with probability ǫ. Alternatively, by appropriately setting the parameters

(the size of the field), we can execute each instance of S-(t, 2t)-Share to have an error probability of at

most ǫ
t
. This will bound the error probability in the termination property of S-Preparation by at most ǫ.

If the common set C contains only honest parties then the correctness property holds trivially without

any error. This is because each honest party indeed does (t, 2t)-sharing of random values. We now consider

the worst case, when C can contain t corrupted parties (dealers). Even in this case, there will be (n − 2t)
honest parties in C and they will (t, 2t)-share random values. The correctness property of S-(t, 2t)-Share

ensures that even a corrupted party in C does (t, 2t)-sharing of L values (probably non-random), except

with probability ǫ in his instance of S-(t, 2t)-Share. This implies that except with probability at most t · ǫ,
every corrupted party in C has done (t, 2t)-sharing of L values. Again, assuming that either t · ǫ ≈ ǫ or

40

by invoking each instance of S-(t, 2t)-Share to have an error probability of at most ǫ
t
, we can ensure that

except with probability at most ǫ, every party in C has done (t, 2t)-sharing of L values. Moreover, at least

(n − 2t) · L = cM + cR of these |C| · L values will be random. Now the property of Ext ensures that the

protocol outputs (t, 2t)-sharing of random values.

The secrecy property of S-(t, 2t)-Share ensures that the L values which are (t, 2t)-shared by the honest

parties in C are information theoretically secure. This implies that out of the total |C| · L values which are

shared by the parties in C, at least (|C| − t) ·L = cM + cR values are information theoretically secure. The

property of Ext ensures that for i = 1, . . . , n − 2t and j = 1, . . . , cM+cR
n−2t , the values ri,j are information

theoretically secure. In the protocol, other than the execution of the instances of S-(t, 2t)-Share, there is

no interaction among the parties. The function Ext is applied locally on the shares of the parties in C. This

implies that ri,j’s remain information theoretically secure.

In the protocol, each party executes an instance of S-(t,2t)-Share to (t, 2t) share L = cM+cR
n−2t values.

Substituting ℓ = L in Theorem 8, the total private communication of the protocol is O(
(
Ln3 + n4

)
log |F|)

bits. Since L = cM+cR
n−2t and n−2t = Θ(n), the total private communication is O(((cM+cR)n

2+n4) log |F|)

bits. Moreover, the protocol A-casts O(n4 log |F|) bits and requires one invocation of ACS. ✷

The proof of the following lemma follows using the same arguments as used in the previous lemma,

except that we now depend on the properties of P-(t,2t)-Share instead of S-(t,2t)-Share.

Lemma 21. Protocol P-Preparation satisfies the following properties:

1. Termination: All honest parties will eventually terminate the protocol.

2. Correctness: The protocol outputs (t, 2t)-sharing of cM + cR uniformly random values.

3. Secrecy: For i = 1, . . . , n−2t and j = 1, . . . , cM+cR
n−2t , the values ri,j will be information theoretically

secure.

4. Communication Complexity: the protocol privately communicates O((cM+cR)n
2 log |F|) bits, incurs

A-cast of O(n3 log |F|) bits and requires one invocation of the ACS.

6.2 Input Phase

In this phase, each party t-share his input xi (for the computation), by executing an instance of our AVSS

schemes. If the parties invoke the statistical protocol SAVSS-MS-Share, then the resultant protocol for the

input phase is called S-Input. On the other hand, if the parties use the perfect protocol PAVSS-MS-Share

to share their inputs, then the resultant protocol is called P-Input. The asynchrony of the network does not

allow the parties to wait for the termination of the SAVSS-MS-Share / PAVSS-MS-Share instances of

more than (n−t) parties. In order to agree on a common set C (this should not be confused with the common

set C of the previous phase) of parties whose instances of SAVSS-MS-Share / PAVSS-MS-Share have

terminated, one instance of the ACS is invoked. The parties then consider t-sharing of the inputs shared by

the parties in the common set C and substitute a default t-sharing of 0 corresponding to the inputs of the

parties not in C. The protocol for this phase is given in Fig. 17.

We now prove the properties of the protocol S-Input and P-Input, which follows from the properties of the

protocol SAVSS-MS-Share and PAVSS-MS-Share respectively.

Lemma 22. Protocol S-Input satisfies the following properties:

1. Termination: All honest parties will eventually terminate the protocol, except with probability ǫ.

2. Correctness: The protocol correctly outputs t-sharing of the inputs of the parties in the agreed com-

mon set C, except with probability ǫ.

41

Figure 17: Protocol for the Input phase.

Protocol S-Input / P-Input

SHARING THE INPUTS: CODE FOR Pi: Every party executes this code

1. On having the input xi ∈ F, invoke SAVSS-MS-Share / PAVSS-MS-Share as a dealer, to t-share xi. Let this

instance be denoted as SAVSS-MS-Sharei / PAVSS-MS-Sharei.

2. For j = 1, . . . , n, participate in the instance SAVSS-MS-Sharej / PAVSS-MS-Sharej .

AGREEMENT ON THE COMMON SET: CODE FOR Pi: Every party executes this code

1. Create an accumulative set Ci = ∅. Upon terminating the instance SAVSS-MS-Sharej / PAVSS-MS-Sharej , add

Pj in Ci.

2. Participate in an instance of ACS with the accumulative set Ci as input.

OUTPUT GENERATION: CODE FOR Pi: Every party executes this code

1. Wait until the ACS instance terminates with output C containing n − t parties. Output the shares corresponding to

t-sharing of the inputs of the parties in C. Substitute a default t-sharing of 0 for the inputs of the parties not in C and

terminate.

3. Secrecy: The inputs of the honest parties in the set C will remain information theoretically secure.

4. Communication Complexity: The protocol privately communicates O((cIn
2+n4) log |F|) bits, incurs

A-cast of O(n4 log |F|) bits and requires one invocation of ACS.

PROOF: Every honest party will t-share his input and his instance of SAVSS-MS-Share will be eventually

terminated by every honest party. Moreover, there are at least (n − t) honest parties. This implies that the

instance of ACS will eventually terminate with output C. To show the termination property, we require to

show that the SAVSS-MS-Share instance of the corrupted parties in C will be eventually terminated by

every honest party. However, this follows from the termination property of SAVSS-MS-Share.

Every honest party in C will correctly t-share his input in his instance of SAVSS-MS-Share. The

correctness property of SAVSS-MS-Share also ensures that even a corrupted Pi ∈ C will t-share a value

xi (which may or may not be his actual input; but the value shared by a party is considered as his intended

input). So the inputs of each party in C will be correctly t-shared.

The secrecy property of SAVSS-MS-Share ensures that the input xi of every honest Pi in C remains

information theoretically secure in the instance SAVSS-MS-Sharei. Apart from the execution of the in-

stances of SAVSS-MS-Share, the protocol does not involve any communication among the parties. This

implies that the inputs of the honest parties in the set C will remain information theoretically secure.

In the protocol, each party executes an instance of SAVSS-MS-Share to t-share his input xi ∈ F.

From Theorem 6, we find that this requires total private communication of O((cIn
2 + n4) log |F|) bits,

incurs A-cast of O(n4 log |F|) bits and requires one invocation of ACS. ✷

The proof of the following lemma follows using similar arguments as used in the previous lemma, except

that we now depend upon the properties of PAVSS-MS-Share, instead of SAVSS-MS-Share.

Lemma 23. Protocol P-Input satisfies the following properties:

1. Termination: All honest parties will eventually terminate the protocol.

2. Correctness: The protocol correctly outputs t-sharing of the inputs of the parties in the agreed com-

mon set C.

3. Secrecy: The inputs of the honest parties in the set C will remain information theoretically secure.

42

4. Communication Complexity: the protocol privately communicates O(cIn
2 log |F|) bits, incurs A-cast

of O(n3 log |F|) bits and requires one invocation of ACS.

6.3 Computation Phase

The protocol for this phase is the same for both the statistical as well as the perfect AMPC scheme. Here

the circuit is evaluated gate by gate, where all intermediate values during the computation remain t-shared.

As soon as a party holds his shares of the input values of a gate, he joins the evaluation of the gate. Due

to the linearity of the used t-sharing, linear gates can be evaluated locally by simply applying the linear

function to the shares of the inputs of the gate. With every random gate, one random (t, 2t)-sharing (from

the preparation phase) is associated. The t-sharing of the associated (t, 2t)-sharing is directly used as the

outcome of the random gate. With every multiplication gate, one random (t, 2t)-sharing is associated, which

is then used to compute t-sharing of the product, following the idea outlined earlier (in the introduction).

This approach of evaluating a multiplication gate is also used in the AMPC protocol of the [5]. The protocol

for this phase is called Computation, which is presented in Fig. 18.

Figure 18: Protocol for the computation phase to evaluate the circuit of F .

Protocol Computation

Let [r1]t,2t, . . . , [rcM+cR]t,2t be the cM + cR (t, 2t)-sharings which have been generated during the preparation phase.

EVALUATION OF THE CIRCUIT: CODE FOR Pi — Every party executes this code

For every gate in the circuit, wait until the ith share of each input of the gate is available. Now depending on the type of gate,

proceed as follows:

1. Input Gate: [s]t = IGate([s]t): Simply output Shi, the ith share of s.

2. Linear Gate: [e]t = LGate([c]t, [d]t, . . .): Compute and output ei = LGate(ci, di, . . .), the ith share of e =
LGate(c, d, . . .), where ci, di, . . . denotes the ith share of c, d,

3. Multiplication Gate: [e]t = MGate([c]t, [d]t): If this is the kth multiplication gate in the circuit, then the (t, 2t)-
sharing [rk]t,2t is associated with this gate. Let (ϕk,1, . . . , ϕk,n) and (ψk,1, . . . , ψk,n) denote the corresponding

t-sharing and 2t-sharing of rk, respectively.

(a) Locally compute [δ]2t = [c]t · [d]t − [r]2t. For this, compute δi = ci · di − ψk,i, where ci and di are the ith

shares of c and d respectively and δi is the ith share, corresponding to 2t-sharing of δ.

(b) To reconstruct δ, privately send the share δi to every party in P . Apply OEC on the received δj’s to privately

reconstruct δ.

(c) Locally compute [e]t = [r]t+[δ]t, where [δ]t = (δ, ..., δ(n times)). For this, compute and output ei = δ+ϕk,i,

the ith share of e.

4. Random Gate: [R]t = RGate(·): If this is the kth random gate in the circuit, then the (t, 2t)-sharing [rcM+k]t,2t
is associated with this gate. Let (ϕcM+k,1, . . . , ϕcM+k,n) and (ψcM+k,1, . . . , ψcM+k,n) denote the corresponding

t-sharing and 2t-sharing of rcM+k, respectively. Output Ri = ϕcM+k,i as the ith share of R.

5. Output Gate: x = OGate([x]t): Privately send xi, the ith share of x to every party in P . Apply OEC on the

received xj’s and output x.

Once all the output gates in the circuit are evaluated, terminate the protocol.

We now prove the properties of the protocol Computation.

Lemma 24. Given that cM + cR information theoretically secure random values are (t, 2t)-shared among

the parties and the inputs of all the parties are t-shared, protocol Computation satisfies the following

properties:

43

1. Termination: All honest parties will eventually terminate the protocol.

2. Correctness: The protocol correctly computes the output of the function F .

3. Secrecy: The adversary obtains no additional information about the intermediate values in the com-

putation (in the information theoretic sense), other than what is inferred from the input and the output

of the corrupted parties.

4. Communication Complexity: The protocol privately communicates O(n2(cM + cO) log |F|) bits.

PROOF: The circuit representing the function F is finite. To prove the termination property, we claim that

each honest party will eventually evaluate each gate of the circuit. The claim is trivially true for the input

gates and the random gates. The linearity property of t-sharing ensures that the claim is also true for the

linear gates. Now consider a multiplication gate: the property of OEC (Theorem 3) implies that every

honest party will eventually reconstruct δ during the evaluation of the multiplication gate. After this, the

evaluation of the multiplication gate involve local computation and so it will be done eventually by every

honest party. Similarly, the property of OEC ensures that each honest party will eventually obtain the value

of each output gate.

The linearity of t-sharing ensures that each linear gate is evaluated correctly by the honest parties.

Now consider a multiplication gate with inputs c, d and let r be the random value, whose (t, 2t)-sharing

is associated with the multiplication gate. It is easy to see that e = cḋ = (cḋ − r) + r = δ + r, where

δ = (cḋ − r), which also implies that [e]t = δ + [r]t, if δ is publicly known. The property of OEC

ensures that every honest party will correctly reconstruct δ, which implies that the multiplication gates will

also be evaluated correctly by the honest parties. The random gates will be evaluated correctly due to the

assumption that the associated (t, 2t)-sharing is correct. Now if all the gates in the circuit are evaluated

correctly, it implies that each honest party will have the correct share corresponding to t-sharing of the

function output (namely the output gates). So by the property of OEC, each honest party will correctly

reconstruct the value of each output gate and hence the function output.

To prove the secrecy, we claim the following for every intermediate gate (i.e. other than the output gates)

in the circuit: the evaluation of the gate reveals no additional information to the adversary (in the information

theoretic sense) about the sharings associated with the input(s) of the gate (the sharings of the output gates

are reconstructed by all the parties and hence they will be known to everyone). Our claim is trivially

true for the random gates, as to evaluate a random gate, no communication is done among the parties; the

parties simply associate t-sharing of a random value (which is already proven to be information theoretically

secure) with the gate. The claim is also true for any linear gate; the evaluation of the linear gates require only

local computation and no interaction among the parties. Now consider a multiplication gate, with inputs c
and d and let r be the random, information theoretically secure value, associated with the multiplication

gate, which is (t, 2t)-shared. Since r is (t, 2t)-shared, it implies that r is t-shared and 2t-shared through

independent polynomials of degree atmost t and 2t respectively, with the adversary knowing at most t
points on each polynomial. During the evaluation of the multiplication gate, the 2t-sharing of δ = (c ·d− r)
is revealed to the adversary (since it is reconstructed by every party). However, since r is random and

information theoretically secure, the reconstruction of δ does not add any extra information to the view

of the adversary. Specifically, from the viewpoint of the adversary, the reconstructed polynomial and its

constant term (which is δ) is completely random. Once δ is known, the evaluation of the multiplication gate

involves only local computation and so the adversary gains no extra information. This shows that during

the evaluation of the circuit, the adversary obtains no additional information about the intermediate values,

other than what is inferred from the input and the output of the corrupted parties 6.

6As mentioned earlier, we can prove the secrecy in the framework of real world/ideal world paradigm of [8]. However, we avoid

doing so, as it requires additional technicalities which will make the paper complicated.

44

The communication complexity follows from the fact that cM + cO values are reconstructed in the

protocol (one value per multiplication gate and one value per output gate) and to reconstruct a value, every

party sends his share to every other party, incurring a private communication of O(n2 log |F|) bits. ✷

In the next section, we finally present our statistical AMPC protocol.

6.4 Statistical AMPC Protocol with n = 4t+ 1

The statistical AMPC protocol SAMPC consists of the following three steps:

1. Invoke S-Preparation.

2. Invoke S-Input.

3. Invoke Computation.

We next state the properties of the protocol SAMPC.

Theorem 10. Protocol SAMPC is a statistical AMPC protocol, satisfying the Def. 5. The protocol privately

communicates O(((cI+cM+cR+cO)n
2+n4) log |F|) bits, incurs A-cast of O(n4 log |F|) bits and requires

two invocations of ACS.

PROOF: The proof follows from the properties of the protocol S-Preparation (Lemma 20), protocol S-

Input (Lemma 22) and the protocol Computation (Lemma 24). ✷

6.5 Perfect AMPC Protocol with n = 4t+ 1

The perfect AMPC protocol PAMPC consists of the following three steps:

1. Invoke P-Preparation.

2. Invoke P-Input.

3. Invoke Computation.

We next state the properties of the protocol PAMPC.

Theorem 11. Protocol PAMPC is a perfect AMPC protocol, satisfying the Def. 5. The protocol privately

communicates O((cI + cM + cR + cO)n
2 log |F|) bits, incurs A-cast of O(n3 log |F|) bits and requires two

invocations of ACS.

PROOF: The proof follows from the properties of the protocol P-Preparation (Lemma 21), protocol P-

Input (Lemma 23) and the protocol Computation (Lemma 24). ✷

7 Packed Secret Sharing: Another Perspective of Our AVSS Schemes

We now briefly discuss another important perspective of our AVSS schemes. For simplicity and concrete-

ness, we refer to our perfect AVSS scheme in the discussion below (although the discussion holds for the

statistical AVSS scheme as well). Consider the protocol PAVSS-Share that can d-share a single secret:

if D is honest in the protocol, then the following holds at the end of protocol; there exists a polynomial

f0(x) = F (x, 0) of degree at most d and every party Pi holds Shi = f0(i). Furthermore, the adversary

At knows at most t distinct points on f0(x) and he lacks (d − t) + 1 additional distinct points on f0(x)
to uniquely interpolate the polynomial f0(x). This fact suggests that from the view point of the adversary,

45

(d− t) + 1 coefficients of the polynomial f0(x) are “free” and hence random. So D can share (d− t) + 1
secrets using the single polynomial f0(x). This concept, known as the packed secret sharing was introduced

in [27], but for the synchronous settings 7. In what follows we show how the protocol PAVSS-Share can

be used as a packed secret sharing scheme where D can share (d − t) + 1 secrets simultaneously in the

information theoretic sense. Moreover, even if D is corrupted, there exist (d− t) + 1 values, to which D is

committed to at the end of the protocol.

Let s1, . . . , sk be the k values, which D wants to share among the parties, such that k = (d − t) + 1.

D selects a polynomial f(x) over F of degree at most d. The polynomial f(x) is an otherwise random

polynomial such that f(0) = s1, f(−1) = s2, . . . , f(−k + 1) = sk. D then selects a bi-variate polynomial

F (x, y) over F of degree-(d, t), which is an otherwise random polynomial such that F (x, 0) = f(x).

This implies that f0(x)
def
= F (x, 0) = f(x). D then invokes the protocol PAVSS-Share using the bi-

variate polynomial F (x, y) selected as above and the parties participate in this instance of PAVSS-Share.

If D is honest, then by the termination property of PAVSS-Share, every honest party Pi will eventually

terminate the protocol, with his share Shi = f(i). Notice that Shi is the share for the multi-secret s1, . . . , sk.

Moreover, s1, . . . , sk are information theoretically secure, since f(x) has degree at most d and the adversary

At gets at most t points on f(x). Interestingly, even if D is corrupted, there are k values, say s1, . . . , sk,

to which D is committed to at the end of PAVSS-Share. To recover s1, . . . , sk, the parties execute the

protocol Rec. From the property of Rec, every honest party will eventually reconstruct f(x) correctly and

will obtain the secrets s1, . . . , sk.

The above idea is also applicable for the protocol PAVSS-MS-Share, where D can use ℓ independent

bi-variate polynomials, each of degree-(d, t) and using each polynomial, he can share (d − t) + 1 values.

This implies that he can share total ℓ · ((d − t) + 1) values. The total cost for sharing these values will be

O(ℓn2 log |F|) bits of private communication and A-cast of O(n2 log |F|) bits (Theorem 7). Setting d = 2t
(the maximum allowed value of d), we see that PAVSS-MS-Share can share ℓ(t + 1) = Θ(ℓn) values by

privately communicating O(ℓn2 log |F|) bits and incurring A-cast communication of O(n2 log |F|) bits. As

the A-cast communication is independent of ℓ, we may ignore it and conclude that the amortized cost of

sharing a single secret using PAVSS-MS-Share is O(n log |F|) bits. The best known perfect AVSS of [5]

requires an amortized cost of O(n2 log |F|) bits for sharing a single secret. Hence PAVSS-MS-Share shows

a clear improvement over the AVSS of [5] when both are interpreted as a packed secret sharing scheme. We

further note that the amortized cost of sharing a single secret from F in PAVSS-MS-Share tolerating active

adversary matches the cost of sharing a single element in the presence of a passive adversary (for example,

the Shamir secret sharing scheme [43]).

Notice that the above discussion holds for the statistical protocol SAVSS-MS-Share as well. However,

the protocol SAVSS-MS-Share may involve a negligible error. On the other hand, protocol PAVSS-MS-

Share is perfect in all respect and does not involve any error.

8 Flaw in the Statistical AMPC of Huang et al.

We now recall the statistical AMPC protocol of [31] and show that it does not satisfy the correctness and

the termination condition. The AMPC protocol of [31] is divided into a sequence of three phases: the

Preparation Phase, the Input Phase and the Computation & Output Phase. We concentrate on the Preparation

Phase and show that it fails to satisfy the correctness and the termination property which are claimed in [31]

to hold. This will further imply that the AMPC of [31] does not satisfy the correctness and the termination

property.

Recall that cM is the number of multiplication gates in the circuit expressing the function F . The goal

7In [27], the concept was introduced in a slightly different way but the essence was the same.

46

of the Preparation Phase is to generate cM random multiplication triples (a1, b1, c1), . . . , (acM , bcM , ccM),
where for k = 1, . . . , cM , each ak, bk and ck are t-shared among the parties in P with ak and bk being

random and ck satisfying ck = ak ·bk. For this, the authors used the batch secret sharing scheme (BSS) from

[46]. In [46], the authors claimed that their BSS protocol correctly generates cM random multiplication

triples over F. Moreover, every honest party will eventually terminate BSS. However, we now show that

their BSS scheme does not satisfy the correctness property as well as the termination property. As a result,

the AMPC protocol of [31] (which uses the BSS scheme as a black box) does not satisfy the correctness and

the termination condition.

The BSS scheme of [46] is based on the player elimination framework [30], where the computation is

divided into a sequence of segments. To show the weakness in the BSS scheme of [46], we do not need to

get into the details of the player elimination framework. We concentrate only on the crucial steps (presented

in a simplified form for the ease of presentation) which are executed in a segment to generate t-sharing of

one multiplication triple (a, b, c). The main steps in the generation of such a triple are as follows:

1. The parties in P jointly generate t-sharing of a random a and b.

2. The parties in P then jointly generate t-sharing of c = ab.

Now a t-sharing of a and b in the BSS scheme of [46] is generated by executing the steps presented in Fig.

19.

Figure 19: Steps for generating t-sharing of a random a and b in the BSS scheme of Huang et al.

1. GENERATION OF t-SHARING OF a AND b: Code for the Party Pi ∈ P: Every party executes this code

(a) Select two random polynomials fi(x) and gi(x) of degree at most t and send fi(j), gi(j) to every Pj ∈ P .

After sending, A-cast 1 to indicate that you have finished the sharing.

(b) Participate in the ACS protocol and input 1 in ABAj (in ACS) if you have received 1 from the A-cast of Pj

and if you have privately received fj(i), gj(i) from Pj .

(c) Let C be the common set which is output by the ACS protocol, where |C| ≥ (n− t).

(d) Compute ai =
∑

Pj∈C fj(i) and bi =
∑

Pj∈C gj(i), as the ith share of a and b respectively.

2. VERIFYING WHETHER a AND b ARE t-SHARED: Here the parties perform some computation to verify whether a and

b are indeed shared through polynomials of degree at most t. If it is not the case then the segment fails and parties

execute another protocol for the fault localization (for details see [46]). However, the verification is carried out under

the assumption that every (honest) party Pi ∈ P will eventually possess the share ai and bi of a and b respectively.

From Fig. 19, we find that step 2 that verifies whether a and b are indeed t-shared among the parties in P ,

will work if every (honest) Pi ∈ P holds ai and bi eventually. Clearly, this is possible if every (honest)

party Pi ∈ P eventually receives fj(i) and gj(i) from every Pj ∈ C. In [46], the authors claimed that by

executing the step 1 in Fig. 19, every (honest) Pi ∈ P will eventually receive fj(i) and gj(i) from every

Pj ∈ C and hence will be able to compute ai and bi. However, we now show that At may behave (specially

schedules the messages) in such a way that every honest Pi have to wait indefinitely to compute ai and bi.
Without loss of generality, let the first (n − t) parties in P (i.e. P1, . . . , Pn−t) be honest and the last t

parties in P be corrupted. Now consider the following behavior of a corrupted Pj ∈ P: Pj selects fj(x) and

gj(x) of degree higher than t and gives points on fj(x), gj(x) to only the first (n− 2t) honest parties and to

the t corrupted parties (but not to the remaining t honest parties in P). But still Pj A-casts 1 to indicate that

he has sent the points to every party in P . Moreover, At schedules the messages of Pj such that they reach

to their respective receivers immediately, without any delay. Now the first (n− 2t) honest parties and the t

47

corrupted parties will input 1 in ABAj in ACS, as they will receive points on fj(x) and gj(x) from Pj and

will also receive 1 from the A-cast of Pj . So in ABAj , there are (n− t) inputs, with value 1. Now assuming

that all the parties including the corrupted parties behave properly in ABAj , the property of ABA ensures

that every party in P will terminate ABAj with output 1 and hence Pj will be present in the common set

C. However, notice that the last t honest parties (to whom Pj has not sent the points on fj(x) and gj(x))
did not feed any input in ABAj . In fact, these honest parties will never receive their respective points on

fj(x) and gj(x), despite terminating ABAj with output 1. So even though a (corrupted) Pj is present in C,

potentially t honest parties may never receive their respective points on fj(x) and gj(x).
Now using a similar strategy, another corrupted Pk ∈ C (where Pk 6= Pj) may bar another set of t

honest parties in P , say the first t honest parties, from receiving their respective points on fk(x) and gk(x).
In the worst case, there can be t corrupted parties in C, who may follow a similar strategy as explained

above and can ensure that every honest party in P may wait indefinitely to receive their respective points

on the polynomials, corresponding to some corrupted party (ies) in C. Thus every honest Pi in P may wait

indefinitely to compute ai and bi.

The Technical Problem and a Possible Solution: From the description of ACS (see section 2.3), it

follows that the primitive ACS can be used to agree on a set of parties who will eventually satisfy the

property Q, where Q should have the following characteristic: “if some honest Pi finds some party Pj to

satisfy Q, then every other honest party will also eventually find Pj to satisfy Q”. However, in the steps

given in Fig. 19, the parties use an instance of ACS to agree on a set of parties satisfying some property Q
which does not satisfy the above characteristic. Specifically, in this case the property Q with respect to a

party P is as follows: P has delivered a point on each of his two polynomials to every party and A-casted 1.

Now as explained above, a corrupted Pj may not give points to all the honest parties and can still A-cast 1.

So even if some honest party may receive points on the polynomials from Pj and concludes that Pj satisfies

Q, it does not mean that every other honest party will also conclude the same, as they may never receive the

values from Pj . It is this subtle property of Q in ACS, which causes the BSS scheme of [46] and hence the

AMPC of [31] to fail to satisfy the termination (and the correctness) property.

A simple way to fix the above problem is to ask each Pj ∈ P to share two random values, say aj and bj
using the Sh protocol of some AVSS and then use the ACS primitive to agree on a common set of (n − t)
parties C whose instances of the Sh protocol will be eventually terminated by all the (honest) parties in P .

Then each party Pi can locally compute ai =
∑

Pj∈C
aj,i and bi =

∑
Pj∈C

bj,i, where aj,i and bj,i are the

ith share of aj and bj respectively. Now by the termination property of AVSS, every (honest) Pi ∈ P will

eventually terminate the Sh and thus will receive aj,i, bj,i corresponding to every Pj ∈ C and can compute

ai and bi finally. However, the current best AVSS protocol with n = 4t + 1 (prior to our work) is due to

[5], which requires a communication cost of O(ℓn2 log(|F|)) bits for concurrent sharing of ℓ values. If this

AVSS is used then the resultant AMPC protocol will have a communication complexity of Ω(n3 log(|F|) bits

per multiplication gate, which is clearly more than the communication complexity of our AMPC protocols.

9 Open Problems

This article presents information theoretically secure AMPC protocols that achieve the communication com-

plexity of O(n2 log(|F|)) bits per multiplication gate. Looking at the literature, we still see a gap between

the communication complexity of the synchronous and the asynchronous MPC protocols. The best known

optimally resilient perfect MPC protocol in the synchronous settings (i.e. with n = 3t + 1) [6] communi-

cates O(n log(|F|)) bits per multiplication gate. So there is a Θ(n) gap in the communication complexity

between the synchronous and asynchronous protocol. The situation for the statistical protocols is worse than

the perfect case. The best known optimally resilient statistical MPC protocol in the synchronous settings

48

(i.e. with n = 2t + 1) [11] communicates O(n log(|F|)) bits per multiplication gate. On the other hand,

the best known optimally resilient statistical AMPC protocol (i.e. with n = 3t + 1) [38] communicates

O(n5 log(|F|)) bits per multiplication gate8. So there is a gap of Θ(n3). An interesting research direction

is to further reduce the gap between the communication complexity of the optimally resilient synchronous

and asynchronous MPC protocols.

Acknowledgement: We would like to thank the anonymous referees of the Journal of Cryptology for their

valuable comments. The comments indeed helped to improve the overall presentation. We would also like

to sincerely thank Tal Rabin for suggesting the method for generating (t, 2t)-sharing and for giving her

valuable comments on earlier drafts of the paper. We would also like to thank Nigel Smart for giving his

insightful remarks on the revised version of the article.

References

[1] I. Abraham, D. Dolev, and J. Y. Halpern. An almost-surely terminating polynomial protocol for asyn-

chronous Byzantine Agreement with optimal resilience. In R. A. Bazzi and B. Patt-Shamir, editors,

Proceedings of the Twenty-Seventh Annual ACM Symposium on Principles of Distributed Computing,

PODC 2008, Toronto, Canada, August 18-21, 2008, pages 405–414. ACM Press, 2008.

[2] D. Beaver. Efficient multiparty protocols using circuit randomization. In J. Feigenbaum, editor, Ad-

vances in Cryptology - CRYPTO ’91, 11th Annual International Cryptology Conference, Santa Bar-

bara, California, USA, August 11-15, 1991, Proceedings, volume 576 of Lecture Notes in Computer

Science, pages 420–432. Springer Verlag, 1991.

[3] D. Beaver. Secure multiparty protocols and zero-knowledge proof systems tolerating a faulty minority.

Journal of Cryptology, 4(4):75–122, 1991.

[4] Z. Beerliová-Trubı́niová and M. Hirt. Efficient multi-party computation with dispute control. In

S. Halevi and T. Rabin, editors, Theory of Cryptography, Third Theory of Cryptography Conference,

TCC 2006, New York, NY, USA, March 4-7, 2006, Proceedings, volume 3876 of Lecture Notes in

Computer Science, pages 305–328. Springer Verlag, 2006.

[5] Z. Beerliová-Trubı́niová and M. Hirt. Simple and efficient perfectly-secure asynchronous MPC. In

K. Kurosawa, editor, Advances in Cryptology - ASIACRYPT 2007, 13th International Conference on

the Theory and Application of Cryptology and Information Security, Kuching, Malaysia, December

2-6, 2007, Proceedings, volume 4833 of Lecture Notes in Computer Science, pages 376–392. Springer

Verlag, 2007.

[6] Z. Beerliová-Trubı́niová and M. Hirt. Perfectly-secure MPC with linear communication complexity. In

R. Canetti, editor, Theory of Cryptography, Fifth Theory of Cryptography Conference, TCC 2008, New

York, USA, March 19-21, 2008, volume 4948 of Lecture Notes in Computer Science, pages 213–230.

Springer Verlag, 2008.

[7] Z. Beerliova-Trubiniova, M. Hirt, and J. B. Nielsen. Almost-asynchronous MPC with faulty minority.

Cryptology ePrint Archive, Report 2008/416, 2008.

8In [19], the authors presented a new AVSS protocol with reduced communication complexity and mentioned that the commu-

nication complexity of the AMPC protocol of [38] can be reduced to O(n4 log(|F|)) bits per multiplication gate by incorporating

the AVSS scheme of [19].

49

[8] M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous secure computation. In Proceedings of the

Twenty-Fifth Annual ACM Symposium on Theory of Computing, 1993, pages 52–61. ACM Press, 1993.

[9] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-

tolerant distributed computation (extended abstract). In Proceedings of the 20th Annual ACM Sym-

posium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 1–10. ACM Press,

1988.

[10] M. Ben-Or, B. Kelmer, and T. Rabin. Asynchronous secure computations with optimal resilience. In

Proceedings of the Thirteenth Annual ACM Symposium on Principles of Distributed Computing, Los

Angeles, California, USA, August 14-17, pages 183–192. ACM Press, 1994.

[11] E. Ben-Sasson, S. Fehr, and R. Ostrovsky. Near-linear unconditionally-secure multiparty computation

with a dishonest minority. Cryptology ePrint Archive, Report 2011/629, 2011.

[12] C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer. Generalized privacy amplification. IEEE

Transactions on Information Theory, 41(6):1915–1923, 1995.

[13] C. H. Bennett, G. Brassard, and J. Robert. Privacy amplification by public discussion. SIAM J. Com-

put., 17(2):210–229, 1988.

[14] G. Bracha. An asynchronous ⌊(n − 1)/3⌋-resilient consensus protocol. In Proceedings of the Third

Annual ACM Symposium on Princiles of Distributed Computing, Vancouver, B. C., Canada, August

27-29, 1984, pages 154 – 162. ACM Press, 1984.

[15] R. Canetti. Studies in Secure Multiparty Computation and Applications. PhD thesis, Weizmann Insti-

tute, Israel, 1995.

[16] R. Canetti and T. Rabin. Fast asynchronous Byzantine Agreement with optimal resilience. In Proceed-

ings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, pages 42–51. ACM Press,

1993.

[17] D. Chaum, C. Crépeau, and I. Damgård. Multiparty unconditionally secure protocols (extended ab-

stract). In Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988,

Chicago, Illinois, USA. ACM 1988, pages 11–19. ACM Press, 1988.

[18] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret sharing and achieving simultane-

ity in the presence of faults (extended abstract). In Proceedings of the 17th Annual ACM Symposium

on Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA, pages 383–395. ACM Press,

1985.

[19] A. Choudhury and A. Patra. Statistical asynchronous weak commitment scheme: A new primitive

to design statistical asynchronous verifiable secret sharing scheme. In WCC’11. Proceedings of the

Seventh International Workshop on Coding and Cryptography, April 11 - 15, Paris, France, 2011.

[20] R. Cramer, I. Damgård, S. Dziembowski, M. Hirt, and T. Rabin. Efficient multiparty computations

secure against an adaptive adversary. In J. Stern, editor, Advances in Cryptology - EUROCRYPT ’99,

International Conference on the Theory and Application of Cryptographic Techniques, Prague, Czech

Republic, May 2-6, 1999, Proceeding, volume 1592 of Lecture Notes in Computer Science, pages

311–326. Springer Verlag, 1999.

50

[21] I. Damgård, M. Geisler, M. Krøigaard, and J. B. Nielsen. Asynchronous multiparty computation:

Theory and implementation. volume 5443 of Lecture Notes in Computer Science, pages 160–179.

Springer Verlag, 2009.

[22] I. Damgård and Y. Ishai. Scalable Secure Multiparty Computation. In C. Dwork, editor, Advances in

Cryptology - CRYPTO 2006, 26th Annual International Cryptology Conference, Santa Barbara, Cal-

ifornia, USA, August 20-24, 2006, Proceedings, volume 4117 of Lecture Notes in Computer Science,

pages 501–520. Springer, 2006.

[23] I. Damgård and J. B. Nielsen. Scalable and unconditionally secure multiparty computation. In

A. Menezes, editor, Advances in Cryptology - CRYPTO 2007, 27th Annual International Cryptol-

ogy Conference, Santa Barbara, CA, USA, August 19-23, 2007, Proceedings, volume 4622 of Lecture

Notes in Computer Science, pages 572–590. Springer Verlag, 2007.

[24] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message transmission. JACM,

40(1):17–47, 1993.

[25] P. Feldman and S. Micali. An optimal algorithm for synchronous Byzantine Agreemet. In Proceedings

of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA,

pages 639–648. ACM Press, 1988.

[26] M. Fitzi, J. Garay, S. Gollakota, C. Pandu Rangan, and K. Srinathan. Round-optimal and efficient

verifiable secret sharing. In S. Halevi and T. Rabin, editors, Theory of Cryptography, Third Theory

of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006, Proceedings, volume

3876 of Lecture Notes in Computer Science, pages 329–342. Springer Verlag, 2006.

[27] M. K. Franklin and M. Yung. Communication Complexity of Secure Computation (Extended Ab-

stract). In S. R. Kosaraju, M. Fellows, A. Wigderson, and J. A. Ellis, editors, Proceedings of the

24th Annual ACM Symposium on Theory of Computing, May 4-6, 1992, Victoria, British Columbia,

Canada, pages 699–710. acm, 1992.

[28] R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. The round complexity of verifiable secret sharing

and secure multicast. In Proceedings on 33rd Annual ACM Symposium on Theory of Computing, July

6-8, 2001, Heraklion, Crete, Greece. ACM, pages 580–589. ACM Press, 2001.

[29] O. Golderich, S. Micali, and A. Wigderson. How to play a mental game– a completeness theorem

for protocols with honest majority. In Proceedings of the 19th Annual ACM Symposium on Theory of

Computing, 1987, New York, New York, USA, pages 218–229. ACM Press, 1987.

[30] M. Hirt, U. Maurer, and B. Przydatek. Efficient secure multiparty computation. In T. Okamoto,

editor, Advances in Cryptology - ASIACRYPT 2000, 6th International Conference on the Theory and

Application of Cryptology and Information Security, Kyoto, Japan, December 3-7, 2000, Proceedings,

volume 1976 of Lecture Notes in Computer Science, pages 143–161. Springer Verlag, 2000.

[31] Z. Huang, W. Qiu, Q. Li, and K. Chen. Efficient Secure Multiparty Computation Protocol in Asyn-

chronous Network. In J. H. Park, H. Chen, M. Atiquzzaman, C. Lee, T. Kim, and S. Yeo, editors,

Proceedings of Advances in Information Security and Assurance, Third International Conference and

Workshops, ISA 2009, Seoul, Korea, volume 5576 of Lecture Notes in Computer Science, pages 152–

158. Springer Verlag, June 2009.

[32] J. Katz, C. Koo, and R. Kumaresan. Improving the round complexity of VSS in point-to-point

networks. In L. Aceto, I. Damgård, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and

51

I. Walukiewicz, editors, Automata, Languages and Programming, 35th International Colloquium,

ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic, Seman-

tics, and Theory of Programming & Track C: Security and Cryptography Foundations, volume 5126

of Lecture Notes in Computer Science, pages 499–510. Springer Verlag, 2008.

[33] J. Katz and C. Y. Koo. On expected constant-round protocols for Byzantine Agreement. In C. Dwork,

editor, Advances in Cryptology - CRYPTO 2006, 26th Annual International Cryptology Conference,

Santa Barbara, California, USA, August 20-24, 2006, Proceedings, Lecture Notes in Computer Sci-

ence, pages 445–462. Springer Verlag, 2006.

[34] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error Correcting Codes. North-Holland Pub-

lishing Company, 1978.

[35] A. Patra, A. Choudhary, T. Rabin, and C. Pandu Rangan. The round complexity of verifiable secret

sharing revisited. In S. Halevi, editor, Advances in Cryptology - CRYPTO 2009, 29th Annual Inter-

national Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings, volume

5677 of Lecture Notes in Computer Science, pages 487–504. Springer Verlag, 2009.

[36] A. Patra, A. Choudhary, and C. Pandu Rangan. Round efficient unconditionally secure multiparty

computation protocol. In D. R. Chowdhury, V. Rijmen, and A. Das, editors, Progress in Cryptology -

INDOCRYPT 2008, 9th International Conference on Cryptology in India, Kharagpur, India, Decem-

ber 14-17, 2008. Proceedings, volume 5365 of Lecture Notes in Computer Science, pages 185–199.

Springer Verlag, 2008.

[37] A. Patra, A. Choudhary, and C. Pandu Rangan. Efficient asynchronous Byzantine Agreement with

optimal resilience. Submitted to Distributed Computing Journal. A preliminary version of this article

appeared in Proceedings of the 28th Annual ACM Symposium on Principles of Distributed Computing,

PODC 2009, Calgary, Alberta, Canada, August 10-12, pages 92-101, 2009.

[38] A. Patra, A. Choudhary, and C. Pandu Rangan. Efficient statistical asynchronous verifiable secret shar-

ing and multiparty computation with optimal resilience. Cryptology ePrint Archive, Report 2009/492,

2009.

[39] A. Patra, A. Choudhary, and C. Pandu Rangan. Communication Efficient Perfectly Secure VSS and

MPC in Asynchronous Networks with Optimal Resilience. In D.J. Bernstein and T. Lange, editors,

Advances in Cryptology - AFRICACRYPT’10, Third International Conference in Cryptology in Africa,

Stellenbosch, South Africa, May 3-6, 2009, Proceedings, volume 6055 of Lecture Notes in Computer

Science, pages 184–202. Springer Verlag, 2010.

[40] B. Prabhu, K. Srinathan, and C. Pandu Rangan. Trading players for efficiency in unconditional mul-

tiparty computation. In S. Cimato, C. Galdi, and G. Persiano, editors, Security in Communication

Networks, Third International Conference, SCN 2002, Amalfi, Italy, September 11-13, 2002. Revised

Papers, volume 2576 of Lecture Notes in Computer Science, pages 342–353. Springer Verlag, 2002.

[41] T. Rabin. Robust sharing of secrets when the dealer is honest or cheating. Journal of ACM, 41(6):1089–

1109, 1994.

[42] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority

(extended abstract). In Proceedings of the 21st Annual ACM Symposium on Theory of Computing,

May 14-17, 1989, Seattle, Washigton, USA, pages 73–85. ACM Press, 1989.

[43] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

52

[44] K. Srinathan and C. Pandu Rangan. Efficient asynchronous secure multiparty distributed computation.

In B. K. Roy and E. Okamoto, editors, Progress in Cryptology - INDOCRYPT 2000, First International

Conference in Cryptology in India, Calcutta, India, December 10-13, 2000, Proceedings, volume 1977

of Lecture Notes in Computer Science, pages 117–129. Springer Verlag, 2000.

[45] A. C. Yao. Protocols for secure computations. In Proceedings of 23rd Annual Symposium on Foun-

dations of Computer Science, Chicago, Illinois, 3-5 November 1982, pages 160–164. IEEE Computer

Society, 1982.

[46] H. Zheng, G. Zheng, and L. Qiang. Batch secret sharing for secure multi-party computation in asyn-

chronous network. Journal of Shanghai Jiaotong Univ. (Sci.), 14(1):112–116, 2009.

A Proof of the Technical Lemmas

Lemma 2: Let f1(x), . . . , fl(x) be l polynomials of degree at most d over F and let g1(y), . . . , gm(y) be m
polynomials of degree at most t over F, where l ≥ (t + 1) and m ≥ (d + 1), such that for every 1 ≤ i ≤ l
and for every 1 ≤ j ≤ m, we have fi(j) = gj(i). Then there exists a unique bi-variate polynomial F (x, y)
over F of degree-(d, t), such that F (x, i) = fi(x) and F (j, y) = gj(y), for 1 ≤ i ≤ l and 1 ≤ j ≤ m..

PROOF: Let V (k) denote the k × k Vandermonde matrix, where the ith column is [i0, . . . , ik−1]T , for

i = 1, . . . , k. Now consider the polynomials f1(x), . . . , ft+1(x) and let E be the (t+ 1)× (d+ 1) matrix,

where Eij is the coefficient of xj in fi(x), for i = 1, . . . , t+ 1 and j = 0, . . . , d. Thus, the (i, j)th entry in

E · V (d+1) is fi(j).

Let H = ((V (t+1))T)
−1

·E be a (t+1)×(d+1) matrix. Let for i = 0, . . . , d, the (i+1)th column of H
be [ri0, ri1, . . . , rit]

T . Now we define a degree-(d, t) bivariate polynomial F (x, y) =
∑i=d

i=0

∑j=t
j=0 rijx

iyj .
Then from the properties of bivariate polynomial, for i = 1, . . . , t+ 1 and j = 1, . . . , d+ 1, we have

F (j, i) = (V (t+1))T ·H · V (d+1) = E · V (d+1) = fi(j) = gj(i).

This implies that for i = 1, . . . , t + 1, the polynomials F (x, i) and fi(x) have same value at d + 1 values

of x. But since the degree of F (x, i) and fi(x) is at most d, this implies that F (x, i) = fi(x). Similarly,

for j = 1, . . . , d+ 1, we have F (j, y) = gj(y), as both these polynomials are of degree at most t and have

same value at (t+ 1) distinct points.

Next, we will show that for any t + 1 < i ≤ l, the polynomial fi(x) also lies on F (x, y). In other

words, F (x, i) = fi(x), for t+ 1 < i ≤ l. This is easy to show because according to the lemma statement,

fi(j) = gj(i), for j = 1, . . . , d+1 and g1(i), . . . , gd+1(i) lie on F (x, i) and uniquely define F (x, i). Since

both fi(x) and F (x, i) are of degree at most d, this implies that F (x, i) = fi(x), for t + 1 < i ≤ l. Now

using similar argument, we can show that F (j, y) = gj(y), for d+ 1 < j ≤ m. ✷

Lemma 5: Let h0(y), . . . , hl(y) be polynomials over where l ≥ 1 and let r be a random, non-zero ele-

ment from F. Assuming ℓ = poly(κ), if the polynomial hcom(y)
def
= r0h0(y) + . . .+ rlhl(y) is of degree at

most t, then except with probability 2−Ω(κ) ≈ ǫ, each polynomial h0(y), . . . , hl(y) has also degree at most t.

PROOF: On the contrary, assume that at least one of the polynomials h0(y), . . . , hl(y) has degree more than

t. Without loss of generality, let h1(y) has the maximal degree among h0(y), . . . , hl(y), with degree tmax,

where tmax > t (in our context tmax will be finite). Then we write every hi(y) as hi(y) = ciy
tmax + ĥi(y),

53

where ĥi(y) has degree lower than tmax. Then hcom(y)
def
= r0h0(y) + . . .+ rlhl(y) can be written as:

hcom(y) = r0[c0y
tmax + ĥ0(y)] + . . .+ rl[cly

tmax + ĥl(y)]

= ytmax(r0c0 + . . .+ rlcl) + Σl
j=0r

j ĥj(y)

= ytmaxccom +Σl
j=0r

j ĥj(y) where ccom = r0c0 + . . .+ rlcl

By our assumption, c1 6= 0, as h1(y) has degree tmax. It implies that the vector (c0, . . . , cl) is not a

complete 0 vector. Hence ccom = r0c0 + . . . + rlcl will be zero with probability at most l
|F| ≈ 2−Ω(κ) ≈ ǫ

(which is negligible). This is because the vector (c0, . . . , cl) can be considered as the set of coefficients of

a polynomial, say µ(x), of degree at most l and hence the value ccom is the value of µ(x) at x = r. Now

ccom will be zero if r happens to be one of the possible l roots of µ(x) (since the degree of µ(x) is at most

l). So if r is a non-zero element, selected uniformly and randomly from F, then except with probability ǫ,
ccom 6= 0 and so hcom(y) will have degree higher than t, which is a contradiction. ✷

54

