
Distrib. Comput. (2018) 31:489–501
https://doi.org/10.1007/s00446-017-0315-1

Communication-efficient randomized consensus

Dan Alistarh1,2 · James Aspnes3 · Valerie King4,5,6 · Jared Saia7

Received: 20 April 2015 / Accepted: 10 September 2017 / Published online: 14 October 2017
© The Author(s) 2017. This article is an open access publication

Abstract We consider the problem of consensus in the
challenging classic model. In this model, the adversary is
adaptive; it can choose which processors crash at any point
during the course of the algorithm. Further, communication
is via asynchronous message passing: there is no known
upper bound on the time to send a message from one pro-
cessor to another, and all messages and coin flips are seen
by the adversary. We describe a new randomized consen-

J. Aspnes: Supported in part by NSF Grants CCF-0916389, CCF-
1637385, and CCF-1650596.

J. Saia: Supported in part by NSF CAREER Award 0644058 and NSF
CCR-0313160.

A preliminary version of this work appeared in the Proceedings of the
28th International Symposium on Distributed Computing (DISC
2014).

Electronic supplementary material The online version of this
article (doi:10.1007/s00446-017-0315-1) contains supplementary
material, which is available to authorized users.

B Dan Alistarh
dan.alistarh@inf.ethz.ch

James Aspnes
aspnes@cs.yale.edu

1 IST Austria, Klosterneuburg, Austria

2 ETH Zurich, Zurich, Switzerland

3 Department of Computer Science, Yale University, New
Haven, CT, USA

4 University of Victoria, Victoria, BC, Canada

5 Simons Institute for the Theory of Computing, Berkeley, CA,
USA

6 Institute for Advanced Study, Princeton, NJ, USA

7 Department of Computer Science, University of New Mexico,
Albuquerque, NM, USA

sus protocolwith expectedmessage complexityO(n2 log2 n)

when fewer than n/2 processes may fail by crashing. This
is an almost-linear improvement over the best previously
known protocol, and within logarithmic factors of a known
�(n2) message lower bound. The protocol further ensures
that no process sends more than O(n log3 n) messages in
expectation, which is again within logarithmic factors of
optimal. We also present a generalization of the algorithm
to an arbitrary number of failures t , which uses expected
O(nt + t2 log2 t) total messages. Our approach is to build a
message-efficient, resilient mechanism for aggregating indi-
vidual processor votes, implementing the message-passing
equivalent of a weak shared coin. Roughly, in our protocol,
a processor first announces its votes to small groups, then
propagates them to increasingly larger groups as it generates
more and more votes. To bound the number of messages
that an individual process might have to send or receive,
the protocol progressively increases the weight of generated
votes. The main technical challenge is bounding the impact
of votes that are still “in flight” (generated, but not fully prop-
agated) on the final outcome of the shared coin, especially
since such votes might have different weights. We achieve
this by leveraging the structure of the algorithm, and a tech-
nical argument based on martingale concentration bounds.
Overall, we show that it is possible to build an efficient
message-passing implementation of a shared coin, and in
the process (almost-optimally) solve the classic consensus
problem in the asynchronous message-passing model.

1 Introduction

Consensus [25,26] is arguably themostwell-studied problem
in distributed computing. The FLP impossibility result [23],
showing that consensus could not be achieved deterministi-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-017-0315-1&domain=pdf
http://dx.doi.org/10.1007/s00446-017-0315-1

490 D. Alistarh et al.

cally in an asynchronous message-passing system with even
one crash failure, sparked a flurry of research on overcoming
this fundamental limitation, either by adding timing assump-
tions, e.g. [21], employing failure detectors, e.g. [16], or
by relaxing progress conditions to allow for randomization,
e.g. [13].

In particular, a significant amount of research went into
isolating time and space complexity bounds for randomized
consensus in the shared-memory model, e.g. [3,5,9,10,12,
14,22], developing elegant and technically complex tools in
the process. As a result, the time complexity of consensus in
asynchronous shared memory is now well characterized: the
tight bound on total number of steps is �(n2) [12], while the
individual step bound is �(n) [7].1 Somewhat surprisingly,
the complexity of randomized consensus in the other core
model of distributed computing, the asynchronous message-
passing model, is much less well understood. In this model,
communication is via full-information, asynchronous mes-
sage passing: there is no known upper bound on the time
to send a message from one processor to another, and all
messages are seen by the adversary. Further, as in the shared
memorymodel, the adversary is adaptive; it can choosewhich
processors crash at any point during the course of the algo-
rithm. We refer to this as the classic model.

While simulations exist [11] allowing shared-memory
algorithms to be translated to message-passing, their over-
head in terms ofmessage complexity is at least linear in n, the
number of nodes. Specifically, to our knowledge, the best pre-
viously known upper bound for consensus in asynchronous
message-passing requires expected�(n3)messages, by sim-
ulating the elegant shared-memory protocol of Attiya and
Censor-Hillel [12], using the simulation from [11]. It is
therefore natural to ask if message-efficient solutions for
randomized consensus can be achieved, and in particular if
quadratic shared-memory communication cost for consensus
can be also achieved in message-passing systems against a
strong, adaptive adversary.
Contribution In this paper, we propose a new random-
ized consensus protocol with expected message complexity
O(n2 log2 n) against a strong (adaptive) adversary, in an
asynchronousmessage-passingmodel in which less than n/2
processes may fail by crashing.2 This is an almost-linear
improvement over the best previously known protocol. Our
protocol is also locally-efficient, ensuring that no process
sends or receives more than expected O(n log3 n) mes-
sages, which is within logarithmic factors of the linear
lower bound [12]. We also provide a generalization to an
arbitrary known number of failures t < n/2, which uses
O(nt + t2 log2 t) messages.

1 We consider a model with n processes, t < n/2 of which may fail by
crashing.
2 In the following, logarithms are taken base 2.

Our general strategy is to construct a message-efficient
weak shared coin. A weak shared coin with parameter δ > 0
is a protocol in which for each possible return value ±1,
there is a probability of at least δ that all processes return
that value. We then show that this shared coin can be used in
a message-efficient consensus protocol modeled on a classic
shared-memory protocol of Chandra [15].

Further, we present a more efficient variant of the proto-
col for the case where t is known to be o(n), based on the
observation that we can “deputize” a subset of 2t + 1 of
the processes to run the consensus protocol, and broadcast
their result to all n processes. The resulting protocol has total
message complexity O(nt + t2 log2 t), and O(n + t log3 t)
individual message complexity.

Overall, we show that it is possible to build message-
efficient weak shared coins and consensus in asynchronous
message-passing systems. An interesting aspect of our con-
structions is that message sizes are small: since processes
only communicate vote counts, whose meaning is clarified
later, messages only require O(log n) bits of communication.
Technical background Since early work by Bracha and
Rachman [14], implementations of weak shared coins for
shared-memory systems with an adaptive adversary have
generally been based on the idea of voting: each process
generates locally votes of±1, communicates them, and then
takes the sign of the sum of received votes. Generating a
vote consists of flipping a local coin, and for the purposes
of analysis, we track the sum of these generated votes as
they are produced whether they are communicated immedi-
ately or not. In the simplest version of this voting method,
if processes between them generate n2 votes of ±1, then
the absolute value of the sum of these votes will be at least
n with constant probability. Assuming a process writes out
each vote before generating another, the adversary can only
hide up to f < n votes by delaying or crashing processes.
So when the generated vote has absolute value at least n, the
total vote seen by the survivors will still have the same sign
as the actual total vote.

Such algorithms can be translated to a message-passing
setting directly using the classic Attiya–Bar-Noy–Dolev
(ABD) simulation [11]. The main idea of the simulation is
that a write operation to a register is simulated by distribut-
ing a value to a majority of the processes (this is possible
because of the assumption that a majority of the processes
do not fail). Any subsequent read operation contacts a major-
ity of the processes, and because the majorities overlap, this
guarantees that any read sees the value of previous writes.

The obvious problemwith this approach is that itsmessage
complexity is high: because ABD uses �(n) messages to
implement a write operation, and because each vote must be
written before the next vote is generated ifwe are to guarantee
that only O(n) votes are lost, the cost of this direct translation

123

Communication-efficient randomized consensus 491

is �(n3) messages. Therefore, the question is whether this
overhead can be eliminated.
Techniques To reduce both total and local message complex-
ity, we employ two techniques. The first is an algorithmic
technique to reduce the message complexity of distributed
vote counting by using a binary tree of process groups called
cohorts, where each leaf corresponds to a process, and each
internal node represents a cohort consisting of all processes
in the subtree. Instead of announcing each new vote to all
participants, new ±1 votes are initially only announced to
small cohorts at the bottom of the tree, but are propagated to
increasingly large cohorts as more votes are generated. As
the number of votes grows larger, the adversary must crash
more and more processes to hide them. This generalizes the
one-crash-one-vote guarantee used in shared-memory algo-
rithms to a many-crashes-many-votes approach.

At the same time, this technique renders the algorithm
message-efficient. Given a set of generated votes, the delayed
propagation scheme ensures that each vote accounts for
exactly one update at the leaf, 1/2 updates (amortized) at the
2-neighborhood, and in general, 1/2i (amortized) updates at
the i th level of the tree. Practically, since the i th level cohort
has 2i members, the propagation cost of a vote is exactly one
message per tree level. In total, that is log n messages per
vote, amortized.

A limitation of the above scheme is that a fast process
might have to generate all the �(n2) votes itself in order to
decide, which would lead to high individual message com-
plexity. The second technical ingredient of our paper is a
procedure for assigning increasing weight to a processes’
votes, which reduces individual complexity. This general
idea has previously been used to reduce individual work
for shared-memory randomized consensus [5,7,10]; how-
ever, we design and analyze a new weighting scheme that
is customized for our vote-propagation mechanism.

In our scheme, each process doubles the weight of its
votes every 4n log n votes, and we run the protocol until
the total reported variance—the sum of the squares of the
weights of all reported votes—exceeds n2 log n. Intuitively,
this allows a process running alone to reach the threshold
quickly, reducing per-process message complexity. This sig-
nificantly complicates the termination argument, since a large
number of generated votes, of various weights, could be still
making their way to the root at the time when a process
first notices the termination condition. We show that, with
constant probability, this drift is not enough to influence the
sign of the sum, by carefully bounding the weight of the
extra votes via the structure of the algorithm and martin-
gale concentration bounds. We thus obtain a constant-bias
weak shared coin. The bounds on message complexity fol-
low from bounds on the number of votes generated by any
single process or by all the processes together before the
variance threshold is reached.

The vote-propagation mechanism is organized using a
message-passing implementation of a shared object called a
max register [6,8]. In brief, a max register is a shared object
maintaining a value v, and supporting MaxRead and Max-
Update operations, whereMaxRead simply returns the value
of the object, and MaxUpdate(u) only updates u if u > v.
Each cohort is assigned a max register implemented across
the processes in that cohort. As long as fewer than half of
those processes fail, the max register will report the most
complete total of votes that has been written to it. Because
processes will not generate new votes until they have prop-
agated votes as required by the algorithm, we can show that
the total in a cohort’s max register is likely to be reasonably
close to the actual total of all votes that have been generated
by processes within the cohort. This is true even if the max
register fails: non-faulty processes in the cohort will eventu-
ally stop generating new votes, and all but a few older votes
that precede the failure will already have been propagated to
some higher-level max register representing a larger cohort.
In the analysis of the protocol, we show that even adding up
all the sources of errors across all the cohorts still leaves the
reported total in the root max register close to the actual sum
of all of the votes that have ever been generated, whether
those votes are announced or not.

Finally, we convert the shared coin construction into a
consensus algorithm via a simple framework inspired by
Chandra’s shared-memory consensus protocol [15], which
in turn uses ideas from earlier consensus protocols of Chor,
Israeli, and Li [20] and Aspnes and Herlihy [9]. Roughly, we
associate each of the two possible decision values for consen-
suswith amessage-passing implementation of amax register,
whose value is incremented by the “team” of processes sup-
porting that value for the shared coin. If a process sees that
its own team has fallen behind, it switches to the other team,
and once one of the max register’s value surpasses the other
by two, the corresponding team wins. Ties are broken (even-
tually) by having processes that do not observe a clear leader
execute a weak shared coin. This simple protocol gives the
consensus protocol the same asymptotic complexity as the
shared coin in expectation.

2 System model and problem statement

Asynchronous message-passing We consider the standard
asynchronous message-passing model, in which n processes
communicate with each other by sending messages through
channels. We assume that there are two uni-directional
channels between any pair of processes. Communication is
asynchronous, in that messages can be arbitrarily delayed
by a channel, and in particular may be delivered in arbitrary
order. However, we assume that messages are not corrupted
by the channel.

123

492 D. Alistarh et al.

Computation proceeds in a sequence of steps. At each
step, a process checks incoming channels for new messages,
then performs local computation, and sends newmessages. A
processmaybecome faulty, inwhich case it ceases to perform
local computation and to send new messages. A process is
correct if it takes steps infinitely often during the execution.
We assume that at most t < n/2 processes may be faulty
during the execution.
Adversary and cost Message delivery and process faults are
assumed to be controlled by a strong (adaptive) adversary. At
any time during the computation, the adversary can examine
the entire state of the system (in particular, the results of
process coinflips), and decide on process faults andmessages
to be delivered.

The (worst-case) message complexity of an algorithm is
simply the maximum, over all adversarial strategies, of the
total number of messages sent by processes running the
algorithm. Without loss of generality, we assume that the
adversary’s goal is to maximize the message complexity of
our algorithm.
Consensus In the (binary) randomized consensus problem,
each process starts with an input in {0, 1}, and returns a
decision in {0, 1}. A correct protocol satisfies agreement:
all processes that return from the protocol choose the same
decision, validity: the decision must equal some process’s
input, and probabilistic termination: every non-faulty pro-
cess returns after a finite number of steps, with probability
1.

A max register object maintains a value v, which is read
using the MaxRead operation, and updated using the Max-
Update operation. A MaxUpdate(u) operation changes the
value only if u is higher than the current value v.

3 Related work

The first shared-memory protocol for consensus was given
by Chor et al. citeChorIL87 for a weak adversary model, and
is based on a race between processors to impose their pro-
posals. Abrahamson [1] gave the first wait-free consensus
protocol for a strong adversary, taking exponential time.Asp-
nes and Herlihy [9] gave the first polynomial-time protocol,
which terminates in O(n4) expected total steps. Subsequent
work, e.g. [3,10,14,27], continued to improve upper and
lower bounds for this problem, until Attiya and Censor [12]
showed a tight �(n2) bound on the total number of steps
for asynchronous randomized consensus. In particular, their
lower bound technique implies an �(t (n − t)) total mes-
sage complexity lower bound and a�(t) individual message
complexity lower bound for consensus in the asynchronous
message-passing model. Our (n/2 − 1)-resilient algorithms
match both lower bounds within logarithmic factors, while

the t-resilient variant matches the first lower bound within
logarithmic factors.

To our knowledge, the best previously known upper bound
for consensus in asynchronous message-passing requires
�(n3) messages. This is obtained by simulating the elegant
shared-memory protocol of Attiya and Censor-Hillel [12],
using the simulation from [11]. A similar bound can be
obtained by applying the same simulation to an O(n)-
individual-work algorithm of Aspnes and Censor [7].

A parallel line of research studied themessage complexity
of synchronous fault-tolerant consensus [17–19]. This work
strongly relies on the fact that processors proceed in lock-
step, and therefore the techniques would not be applicable in
our setting.

4 A message-passing max register

To coordinate the recording of votes within a group, we use a
message-passing max register [6]. The algorithm is adapted
from [8], and is in turn based on the classic ABD implemen-
tation of a message-passing register [11]. The main change
from [8] is that we allow the max register to be maintained
by groups of g < n processes.
Description We consider a group G of g processes, which
implement the max register R collectively. Each process pi
in the group maintains a current value estimate vi locally.
The communicate procedure [11] broadcasts a request to
all processes in the group G, and waits for at least �g/2�
replies. Since t < n/2 processes may crash, and g may be
small, a process may block while waiting for replies. This
only affects the progress of the protocol, but not its safety.
Our shared coin implementationwill partition then processes
intomax register groups, with the guarantee that some groups
always make progress.

To perform a MaxRead operation, the calling process
communicates a MaxRead(R) request to all other pro-
cesses, setting its local value vi to be the maximum value
received. Before returning this value, the process commu-
nicates an additional MaxReadACK(R, vi) message. All
processes receiving such a message will update their cur-
rent estimate of R, if this value was less than vi . If it receives
at least �g/2� replies, the caller returns vi as the value read.
This ensures that, if a process pi returns vi , no other process
may later return a smaller value for R.

A MaxUpdate with input u is similar to a MaxRead: the
process first communicates a MaxUpdate(R, u) message to
the group, and waits for at least �g/2� replies. Process pi
sets its estimate vi to the maximum between u and the maxi-
mum value received in the first round, before communicating
this value once more in a second broadcast round. Again, all
processes receiving this message will update their current

123

Communication-efficient randomized consensus 493

estimate of R, if necessary. The algorithm ensures the fol-
lowing properties.
Lemma 1 The max register algorithm above implements
a linearizable max register. If the communicate procedure
broadcasts to a group G of processes of size g, then the mes-
sage complexity of each operation is O(g), and the operation
succeeds if at most �g/2� processes in the group are faulty.

The proof of this Lemma is virtually identical to the proof
of correctness of the message-passing max register of [8,
Theorem 5.1]. The only difference is that our construction
may use a variable number of participants g < n; hence, we
omit the proof here.

5 The weak shared coin algorithm

Wenow build amessage-efficient asynchronous weak shared
coin. Processes generate randomvotes,whoseweight increases
over time, and progressively communicate them to groups of
nodes of increasing size. This implements a shared coin with
constant bias, which in turn can be used to implement con-
sensus.

1 Let K = n2 log n
2 Let T = 4n log n
3 count ← 0
4 var ← 0
5 total ← 0
6 for k ← 1, 2, . . . ,∞ do
7 Let wk = 2�(k−1)/T �
8 Let vote = ±wk with equal probability
9 count ← count + 1

10 var ← var + w2
k

11 total ← total + vote
12 Write 〈count, var, total〉 to max register for my leaf
13 for j ← 1 . . . log n do
14 if 2 j does not divide k then
15 break /* exit the loop */

16 Let s be my level- j ancestor, with children s� and sr
17 in parallel do

/* read left and right counts */
18 〈count�, var�, total�〉 ← ReadMax(Rs�)

19 〈countr , varr , totalr 〉 ← ReadMax(Rsr)

/* update the parent */
20 WriteMax(s, 〈count� + countr , var� + varr , total� + totalr 〉)

21 if n divides k then
22 〈countroot, varroot, totalroot〉 ← ReadMax(Rroot)

/* if the root variance exceeds the
threshold */

23 if varroot ≥ K then
24 return sgn(totalroot) /* return sign of root

total */

Algorithm 1: Shared coin using increasing votes.

Vote propagation The key ingredient is a message-efficient
construction of an approximate distributed vote counter,

which allows processes to maintain an estimate of the total
number of votes generated, and of their sum and variance.
This distributed vote counter is structured as a binary tree,
where each process is associated with a leaf. Each subtree of
height h is associated with a cohort of 2h processes, corre-
sponding to its leaves. To each such subtree s, we associate
a max register Rs , implemented as described above, whose
value is maintained by all the processes in the corresponding
cohort. For example, the value at each leaf is onlymaintained
by the associated process, while the root value is tracked by
all processes.

The max register Rs corresponding to the subtree rooted
at s maintains a tuple consisting of three values: the count,
an estimate of the number of votes generated in the subtree;
var, an estimate of the variance of the generated votes; and
total, an estimate of the sum of generated votes. These tuples
are ordered lexicographically, with the count as the most sig-
nificant position. This ensures that processes always adopt a
tuple with maximum count. As it happens, the correctness of
the algorithm depends only on the fact that tuples with high
counts overwrite tuples with lower counts, so the use of the
other components to break ties is an arbitrary choice.

A process maintains max register estimates for each sub-
tree it is part of. Please see Algorithm 1 for the pseudocode.
In the kth iteration of the shared coin, the process generates
a new vote with weight ±wk chosen as described in the next
paragraph. After generating the vote, the process will prop-
agate its current set of votes up to the level corresponding
to the highest power of two which divides k (line 15). At
each level from 1 (the level of the leaf’s parent) up to r , the
process reads the max registers of its left and right children,
and updates the 〈count, total, var〉 of the parent to be the
sum of the corresponding values at the child max registers
(lines 17–20).

Note that there is noguarantee that the reads of the children
occur at the same time, or that the order in which different
processes read two sibling registers are consistent: the only
thing required for the analysis is that whatever value is ulti-
mately stored in each max register has a high total count.

If n divides k, then the process also checks the count at
the root. If the root variance is greater than the threshold of
K votes, the process returns the sign of the root total as its
output from the shared coin.Otherwise, the process continues
to generate votes.
Vote generation Each process generates votes with values
±wk in a series of epochs, each epoch consisting of T =
4n log n loop iterations. Within each epoch, all votes have
the same weight, and votes are propagated up the tree of max
registers using the schedule described above.

After T loop iterations in an epoch, the weight of the
votes doubles, and a new epoch begins. This ensures that
only O(log n) epochs are needed until a single process can
generate votes with enough variance by itself to overcome

123

494 D. Alistarh et al.

the offsets between the observed vote and the generated vote
due to delays in propagation up the tree.

Because votes have differing weights, we track the total
variance of all votes included in a max register in addition to
their number, and continue generating votes until this total
variance exceeds a threshold K = n2 log n, at which point
the process returns the sign of the root total (line 24).

6 Complete algorithm analysis

In this section, we prove correctness of the weak shared coin
algorithm in Sect. 5. Fix an adversary strategy, and given an
execution of the algorithm under the control of this adver-
sary, define Us[t] as the contents of the max register Rs

corresponding to a subtree s at time t , for some particular
linearization consistent with the observed execution order-
ing. We will compare this to an idealized value V s[t] that
tracks all the votes that have been generated in s up to time
t , whether or not they have been reported to anybody. The
idea is that when a vote is generated by some process p, it
immediately contributes its value to V s[t].total for all sub-
trees s that contain p, but may only contribute toUs[t].total
at some later time, when this vote is finally propagated to Rs .

The variable Us[t] may depend in a complicated way on
the schedule, because the adversary has a lot of freedom
in choosing which values from smaller subtrees are com-
bined together to produce values written to Rs . The variable
V s[t] also depends on the schedule, because the weight of
the next vote generated by some process in s depends on
how many votes have previously been generated by that
process, but it has an important property that Us[t] lacks:
the sequence of values V s[t] form a martingale, which is a
sequence of random variables S0, S1, . . . with the property
that E

[
Si | S0, . . . , Si−1

] = Si−1. The intuition is that even
though the distribution in V s[t]−V s[t−1]might depend on
the choices of the adversary (which we take to be determined
by the outcome of previous coin-flips in the algorithm), the
expected increment produced by a fair w vote is zero.

Whatmakesmartingales useful for our purpose is that they
generalize in many ways sums of independent random vari-
ables while allowing some limited dependence. Like sums
of independent random variables, martingales have many
well-understood convergence properties that constrain how
far they are likely to drift from their starting points.

In particular, a martingale version of the Central Limit
Theorem [24, Theorem 3.2] is used to show that, the gen-
erated vote V root[t].total is normally distributed in the
limit when V root[t].var crosses the variance threshold K
(Lemma 6). So with constant probability it will be far from
the origin: the margin of victory of the majority sign will be
large. As in previous shared-memory shared coin protocols,
we next argue that this large margin means that when each

process gets around to reading U root.total[t ′] at some later
time t ′, it sees the same sign. This requires showing that the
value of V root[t ′].total doesn’t change too much between t
and t ′, and that the difference between U root[t ′].total and
V root[t ′].total is also small.

Showing that U root[t ′].total is close to V root[t ′].total is
the trickiest part of the analysis, and makes extensive use
of a version of the Azuma–Hoeffding inequality from [10]
(Lemma 8), which constrains how far a sequence of votes is
likely to drift as a function of a bound on their total variance.
To apply this inequality, we first observe that if s is a subtree
with left and right subtrees � and r , thenUs[t] is always equal
to U �[t�] + Ur [tr] for some earlier times t� and tr . These
times are when whatever process p wrote the value Us[t] to
Rs previously read R� and Rr . The difference between V s[t]
and Us[t] can then be accounted for by (a) the sum of all
votes generated in � and r during the intervals following t�
and tr , respectively; and (b) the sum of all votes generated in
� and r before t� and tr that are not included in U �[t�] and
Ur [tr]. Expanding out (b) recursively gives that the total error
inUs[t] is equal to a sum of intervals of type (a) (Lemma 7).
The rest of the argument involves using the length of these
intervals to bound the variance of the votes included in them,
and then apply Azuma–Hoeffding to show that these missing
votes donot add toomuch error even ifwe allow the adversary
to choose the boundaries of the intervals after seeing the
votes.

We now give the details of the argument.
The first step in the analysis requires some straightfor-

ward lemmas about howmany votes can be generated within
a subtree before they are propagated to the max register at
its root. For simplicity, we assume that the number of pro-
cesses n is a power of two. If this is not the case, we build a
sparse truncated tree, where each leaf still has height log n,
and maintain the property that the max register at a node is
maintained by the nodes in the corresponding subtree.
Vote propagation The algorithm is based on the idea that,
as processes take steps, counter values for the cohorts get
increased, until, eventually, the root counter value surpasses
the threshold, and processes start to return. We first provide
a way of associating a set of generated votes to each counter
value.

We say that a process pi registers a number xi of (consec-
utive) locally-generated votes to node s if, after generating
the last such vote, process pi updates the max register Rs at
s in its loop iteration. See Fig. 1 for an illustration. We prove
that this procedure has the following property:

Lemma 2 Consider a subtree rooted at node s withm leaves,
and let x1, x2, . . . , xm be the number of votes most recently
registered by member processes q1, q2, . . . , qm at node s,
respectively. Then the value of the count component of the
max register Rs at s is at least

∑m
j=1 x j .

123

Communication-efficient randomized consensus 495

Fig. 1 Structure of the cohorts. A process maintains count and sum
estimates for each cohort it is a member of

Proof We proceed by induction on the height of the subtree
rooted at s, proving the following claim: Given the subtree
rooted at swith correspondingprocessesq1, q2, . . . , qm ,with
x1, x2, . . . , xm being the number of votes most recently reg-
istered by each process at node s, there exists a process qi
with 1 ≤ i ≤ m that performs a MaxUpdate with value at
least

∑m
j=1 x j on the max register Rs when registering votes

xi at s.
If s is a leaf, the claim is straightforward, since each pro-

cess writes the vote count, total, and variance at its leaf after
generating the vote. (We can regard the single-writer register
at the leaf as a max register.) For the induction step, let �

be the left child of s, and r be the right child. By the induc-
tion hypothesis, there exists a process pi which updates the

left child max register to
∑m/2

j=1 x j , and a process pk which
updates the right child max register to

∑m
j=m/2+1 x j .

We now focus on the value of the max register Rs at s
after both processes pi and pk complete their MaxUpdate
operations at s. Crucially, notice that, since both processes
first read the max register R� at �, then the one at r , one of the
operations must necessarily “see” the value the other wrote
at the corresponding child. Therefore, one of the processes,
say pi , must write a value of at least

∑m
j=1 x j to the max

register Rs , as claimed. �
Technical resultsWe now give a few technical results which
will be useful in bounding the weight of votes generated by
processors globally, and by individual processors. This will
then be useful in bounding the individual message cost of
the algorithm. Define ni as the number of votes generated
by process pi during an execution. We first analyze the total
variance of generated votes, the maximum weight of a vote,
and the maximum number of votes generated by a processor.

Lemma 3 Fix an arbitrary execution of Algorithm 1. Then
the following hold:

1. The total variance of generated votes satisfies

n∑

i=1

ni∑

j=1

w2
j ≤ K + 2n2

1 − 8n/T
= O(n2 log n). (1)

2. For any process pi ,

wni ≤
√

1 + 4K + 8n2

T − 8n
= O(

√
n), (2)

and

ni = O(n log2 n). (3)

Proof Examining the algorithm, we see that every n votes,
process pi both propagates all of its votes to the root max
register and checks the total variance against K . It follows
that (a) the root max register includes all but at most n votes
for each process, and (b) each process generates at most n
additional votes after varroot passes K . Since each of these 2n
missing and extra votes from process pi has weight bounded
by wni , we get a bound
n∑

i=1

ni∑

j=1

w2
j ≤ K +

n∑

i=1

2nw2
ni

(a)≤ K +
n∑

i=1

2n

⎛

⎝1 + 4

T

ni∑

j=1

w2
j

⎞

⎠

(b)= K + 2n2 + 8n

T

n∑

i=1

ni∑

j=1

w2
j ,

where (a) follows by noticing that T consecutive weights are
equal, and (b) follows by simple expansion. Rearranged, the
previous relation gives (1). The asymptotic bound follows by
calculation.

Next, we combine the preceding results to bound themax-
imum weight of any vote. We have

w2
ni ≤ 1 + 4

T

ni∑

j=1

w2
j

≤ 1 + 4

T
· K + 2n2

1 − 8n/T

= 1 + 4K + 8n2

T − 8n
,

where the second inequality follows from Eq.1. The stated
bound follows by taking the square root of both sides. Finally,
we bound the total number of votes ni generated by processor
pi during the execution. Notice that this is constrained by

wni = 2�(ni−1)/T � = O(
√
n),

where the latter bound follows by Eq.2. This gives:

ni = O(T log(
√
n)) = O(n log2 n),

which concludes the proof. �

123

496 D. Alistarh et al.

We now turn our attention to the sum, over all processes,
of the square of maximum votes. This will turn out to be
useful later, and also gives a slightly better bound on the
total number of generated votes than simply multiplying the
bound in Eq.3 by n.

Lemma 4 For any execution of Algorithm 1, the following
hold.

1. The squares of maximum votes satisfy
n∑

i=1

w2
ni ≤ n + 4K + 8n2

T − 8n
= O(n). (4)

2. The total number of generated votes satisfies
n∑

i=1

ni = O(n2 log n). (5)

Proof To prove the first claim, we notice that

n∑

i=1

w2
ni ≤

∑

i

⎛

⎝1 + 4

T

ni∑

j=1

w2
j

⎞

⎠

≤ n + 4

T
· K + 2n2

1 − 8n/T

= n + 4K + 8n2

T − 8n
.

For the proof of the second item, we notice that we have

n∑

i=1

w2
ni =

∑

i

4�(ni−1)/T)� ≤ an,

for sufficiently large n and some constant a, where the equal-
ity follows by definition, and the inequality follows by the
previous claim. The floor is inconvenient, so we remove it by
taking

n∑

i=1

4(ni−1)/T−1 ≤
n∑

i=1

4�(ni−1)/T)� ≤ an.

Convexity of 4(x−1)/T−1 implies that we can apply Jensen’s
inequality, to obtain

n · 4
(
1
n

∑n
i=1 ni−1

)
/T−1 ≤

n∑

i=1

4(ni−1)/T−1 ≤ an,

which gives

n∑

i=1

ni ≤ n(T (1 + log4 a) + 1) = O(n2 log n).

�

Tracking delayed votes With all this technical machinery in
place, we now turn your attention to bounding the difference
between the sum of votes generated in the tree, and the sum
of votes visible at the root. More precisely, for any adversary
strategy A, let τA be a stopping time corresponding to the
first time t at which U root[t].var ≥ K . We will use a mar-
tingale Central Limit Theorem to show that V root[τA].total
converges to a normal distribution as n grows, when suitably
scaled. This will then be used show that all processes observe
a pool of common votes whose total is likely to be far from
zero.

In particular, we use the following simplified version

of [24, Theorem 3.2], taken from [7]. The notation X
p−→ Y

means that X converges in probability to Y , and Y
d−→ Y

means that X converges in distribution to Y .

Lemma 5 Let {Smt ,Fmt }, 1 ≤ t ≤ km, m ≥ 1 be a martin-
gale array where for each fixed m, {Smt ,Fmt } is a zero-mean
martingale with difference sequence Xmt = Smt − Sm,t−1. If

1. maxt |Xmt | p−→ 0,

2.
∑

t X
2
mt

p−→ 1,
3. E

[
maxt X2

mt

]
is bounded in m, and

4. Fm,t ⊆ Fm+1,t for 1 ≤ t ≤ km, m ≥ 1,

then Smt
d−→ N (0, 1), where N (0, 1) has a normal distribu-

tion with zero mean and unit variance.

Lemma 6 Let {An} be a family of adversary strategies, one
for each number of processes n ∈ N. Let τn = τAn be as
above. Then

V root[τn].total√
K

d−→ N (0, 1). (6)

Proof Let Ynt be the t-th vote generated in the execution
governed by An , and let Xnt = Ynt/

√
K if t ≤ τn and 0

otherwise. Then

V root[τn].total√
K

=
τn∑

t=1

Ynt/
√
K =

∞∑

t=1

Xnt = lim
t→∞ Snt .

So to prove (6), we need only verify that the random
variables Xnt satisfy the conditions of Lemma 5 for an appro-
priate choice of σ -algebras Fn,t . That each Xnt has zero
mean is immediate from their definition. Again following
the approach of [7], we will let Fn,t be generated by the
signs of the first t votes. We also let the i-th vote have the
same sign for all values of n, so thatFn,t = Fn′,t for all n, n′.
This trivially satisfies the last condition.

123

Communication-efficient randomized consensus 497

For the first condition, from Lemma 3 we have

max
t

|Xnt | ≤ max
i

wni√
K

≤
√

1

K
+ 4 + 8n2/K

T − 8n

=
√

1

n2 log n
+ 4 + 8/ log n

4n log n − n
.

Since the denominator dominates the numerator in both frac-
tions under the square root, this converges to zero always.

For the second condition, observe that K
∑

t X
2
nt is the

sum of the squares of theweights of all votes generated by τn .
This quantity is at least K (as otherwiseU root[τn].var could
not have reached K), and is at most K+2n2

1−8n/T by Lemma 3.
Dividing by K shows

1 ≤
∑

t

X2
nt ≤ 1 + 2n2/K

1 − 8n/T
= O

(
1 + O(1/ log n)

1 − O(1/ log n)

)

which converges to 1 always.
Finally, for the third condition, we have already shown

that maxt |Xnt | converges to 0, and since X2
nt = |Xnt |2 for

all n, t , we have that X2
nt also converges to 0 for any fixed t ;

boundedness follows. �
Bounding unreported votes The next lemma characterizes
the unreported votes that together make up the differ-
ence between Us[ts].total and V s[ts].total for each time ts .
Though ts is an arbitrary time, we label it by the node s to
easily distinguish it from similar earlier times corresponding
to the contributions toUs[ts] from the children of s. Observe
that any value Us[ts] for an internal node s is obtained from
values U �[t�] and Ur [tr] read from the left and right sub-
trees � and r of s at some earlier times t� and tr , these times
being the linearization times of the read operations carried
out by whatever process wrote Us[ts]. These subtree values
are in turn constructed from the values of deeper subtrees
(possibly by different processes), which means that for each
proper subtree s′ of s, there is some specific observation time
ts′ such that the valueUs′ [ts′] is included in the computation
of Us[ts]. We show that the votes omitted from Us[ts] are
precisely accounted for by summing the votes that were gen-
erated between time ts′ and time tparent(s′) for each of these
subtrees.

Lemma 7 For each subtree s and time ts , let Ds[ts] =
V s[ts].total−Us[ts].total be the difference between the gen-
erated votes in s at time ts and the votes written to the max
register corresponding to s at time ts . For each subtree s′ of s,
define ts′ as the time for which the value of Us′ [ts′] included
in Us[ts] was observed.

Then

Ds[ts] =
∑

s′

(
V s′ [tparent(s′)].total − V s′ [ts′].total

)
, (7)

where s′ ranges over all proper subtrees of s.

Proof Let � and r be the left and right subtrees of s, and let
t� and tr be the times at which the values added to produce
Us[ts].total were read from these subtrees.

Then

Ds[ts] = V s[ts].total −Us[ts].total
= (V �[ts].total + V r [ts].total)

−(U �[t�].total +Ur [tr].total)
= (V �[ts].total + V r [ts].total)

−(V �[t�].total + V r [tr].total)
+(D�[t�] + Dr [tr])

= (V �[ts].total − V �[t�].total)
+(V r [ts].total − V r [tr].total)
+D�[t�] + Dsr [tr].

Iterating this recurrence gives

Ds[ts] =
∑

s′

(
V s′ [tparent(s′)].total − V s′ [ts′].total

)
,

as claimed. �
Tobound the right-hand side of (7),we consider each (hor-

izontal) layer of the tree separately, and observe that themiss-

ing interval of votes
(
V s′ [tparent(s′)].total − V s′ [ts′].total

)

for each subtree s in layer h consists of at most 2h votes by
each of at most 2h processes. For each process pi individ-
ually, the variance of its 2h heaviest votes, using Lemma 3,

is at most 2h
(
1 + (4/T)

∑ni
j=1 w2

j

)
, so if we sum the total

variance of at most 2h votes from all processes, we get at
most

2h

⎛

⎝n2 + (4/T)

n∑

i=1

ni∑

j=1

w2
j

⎞

⎠ ≤ 2h
(
n2 + K + 2n2

1 − 8n/T

)
,

using Lemma 3.
Wewould like to use this boundon the total variance across

all missing intervals to show that the sum of the total votes
across all missing intervals is not too large. Intuitively, if we
can apply a bound to the total variance on a particular inter-
val, we expect the Azuma–Hoeffding inequality to do this for
us. But there is a complication in that the total variance for
an interval may depend in a complicated way on the actions
taken by the adversary during the interval. So instead, we
attack the problem indirectly, by adopting a different char-
acterization of the relevant intervals of votes and letting the
adversary choose between them to obtain the actual intervals
that contributed to Droot[t].

123

498 D. Alistarh et al.

We will use the following extended version of the classic
Azuma–Hoeffding inequality from [10]:

Lemma 8 ([10, Theorem 4.5]) Let {S0,F0}, 0 ≤ i ≤ n be a
zero-mean martingale with difference sequence {Xi }. Let wi

be measurable Fi−1, and suppose that for all i , |Xi | ≤ wi

with probability 1; and that there exists a bound W such that∑n
i=1 w2

i ≤ W with probability 1. Then for any λ > 0,

Pr [Sn ≥ λ] ≤ e−λ2/2W . (8)

Fix an adversary strategy. For each subtree s, let Xs
1, X

s
2, . . .

be the sequence of votes generated in s. For each s, t ,
and W , let Y tsW

i = Xs
i if (a) at least t votes have been

generated by all processes before Xs
i is generated, and (b)(∑

j<i (Y
tsW
j)2

)
+ (Xs

i)
2 ≤ W ; otherwise let Y tsW

i be 0. If

we let Fi be generated by all votes preceding Xs
i , then the

events (a) and (b) are measurable Fi , so {Y tsW
i ,Fi } forms

a martingale. Furthermore, since only the sign of Y tsW
i is

unpredictable, we can define wi = (Y tsW
i)2 for the purposes

of Lemma 8, and from (b) we have
∑

w2
i ≤ W always. It

follows that, for any c > 0,

Pr

[
n∑

i=1

Y tsW
i ≥ √

2cW ln n

]

≤ e−c ln n = n−c.

There are polynomially many choices for t , s, and W ;
taking a union bound over all such choices shows that,
for c sufficiently large, with high probability

∑n
i=1 Y

tsW
i is

bounded by
√
2cW ln n for all such intervals.

We can use this to show:

Lemma 9 For any adversary strategy and sufficiently large
n, with probability 1 − o(1), it holds that at all times t,

∣∣∣V root[t].total −U root[t].total
∣∣∣ ≤ 6n

√
log n.

Proof Weare trying to bound Droot[t] = ∑
s(V

s[tparent(s)]
− V s[ts]), where s ranges over all proper subtrees of the
tree and for each subtree s with 2h leaves, the interval
(ts, tparent(s)] includes at most 2h votes for each process.

Suppose that for each t , s, W , it holds that Y tsW ≤√
9W ln n. By the preceding argument, each such event

fails with probability at most n−9/2. There are O(n2 log n)

choices for t , O(n) choices for s, and O(n2 log n) choices
for W , so taking a union bound over all choices of Y tsW

not occurring shows that this event occurs with probability
O(n−1/2 log2 n) = o(1).

If all Y tsW are bounded, then it holds deterministically
that

∑

s

(V s [tparent(s)] − V s [ts]) =
log n−1∑

h=0

∑

s,|s|=2h

(V s [tparent(s)] − V s [ts])

=
log n−1∑

h=0

∑

s,|s|=2h

Y ts sWs .

Define Ws as the total variance of the votes generated by
s in the interval (ts, tparent(s)]. Then we have

log n−1∑

h=0

∑

s,|s|=2h

Y ts sWs ≤
log n−1∑

h=0

∑

s,|s|=2h

√
2cWs ln n

= √
2c ln n

log n−1∑

h=0

∑

s,|s|=2h

√
Ws .

Note that this inequality does not depend on analyzing
the interaction between voting and when processes read and
write the max registers. For the purposes of computing the
total offset between U root[t].total and V root[t].total, we are
effectively allowing the adversary to choose what intervals it
includes retrospectively, after carrying out whatever strategy
it likes for maximizing the probability that any particular
values Y tsW are too big.

Because each process pi corresponding to the subtree
rooted at s generates at most 2h votes, and each such vote
has variance at most w2

ni , we have

Ws ≤ 2h
∑

i∈s
w2
ni .

Furthermore, the subtrees at any fixed level h partition the
set of processes, so applying Lemma 4 gives

∑

s,|s|=2h

Ws ≤
∑

s,|s|=2h

2h
∑

i∈s
w2
ni

= 2h
∑

s,|s|=2h

∑

i∈s
w2
ni = 2h

∑

i

w2
ni

≤ 2h
(
n + 4K + 8n2

T − 8n

)
.

By concavity of square root,
∑ √

xi ismaximized for non-
negative xi constrained by a fixed bound on

∑ √
xi by setting

all xi equal. Setting all n/2h values Ws equal gives

Ws ≤ 2h
n · 2h

(
n + 4K+8n2

T−8n

)

= 22h
(
1 + 4K+8n2

Tn−8n2

)

and thus

√
Ws ≤ 2h

√

1 + 4K + 8n2

Tn − 8n2

123

Communication-efficient randomized consensus 499

which gives the bound

√
9 ln n

log n−1∑

h=0

∑

s,|s|=2h

√
Ws

≤ √
9 ln n

log n−1∑

h=0

2h

√

1 + 4K + 8n2

Tn − 8n2

=
√

9 ln n

(
1 + 4K + 8n2

Tn − 8n2

) log n−1∑

h=0

2h

= 3(n − 1)
√
ln n

√

1 + 4K + 8n2

Tn − 8n2
.

= 3(n − 1)
√
ln n

√

1 + log n + 2

log n − 2

≤ 6n
√
log n,

when n is sufficiently large.
The last step uses the fact that for K = n2 log n and T =

4n log n, the value under the radical converges to 2 in the
limit, and 3

√
2/ ln 2 < 6. �

Bounding extra votes For the last step, we need to show that
the extra votes that arrive after K variance has been accumu-
lated are not enough to push V root[t] close to the origin. For
this, we use Kolmogorov’s inequality, a martingale analogue
to Chebyshev’s inequality, which says that if we are given a
zero-mean martingale {Si ,Fi } with bounded variance, then

Pr [∃i ≤ n : |Si | ≥ λ] ≤ λ2

Var[Sn] .

Consider the martingale S1, S2, . . . where Si is the sum of
the first i votes after V root[i].var first passes K . Then from
Lemma 3,

Var[Si] ≤ K + 2n2

1 − 8n/T
− K = 8K (n/T) + 2n2

1 − 8n/T

= 2n2 + 2n2

1 − 2/(log n)
= O(n2).

So for any fixed c, the probability that |Si | exceeds cK for
any i is O(1/ log n) = o(1).
Putting the pieces together Finally, from Lemma 6, we
have that the total common vote V root[τn].total converges
in distribution to N (0, 1) when scaled by

√
K = n

√
log n.

In particular, for any fixed constant c, there is a con-
stant probability πc > 0 that for sufficiently large n,
Pr

[
V root[τn] ≥ cn

√
log n

] ≥ πc.
Let c be 7. Then with probability π7 − o(1), all of the

following events occur:

1. The common vote V root[τn].total exceeds 7n√
log n;

2. For any i , the next i votes have sum o(n
√
log n);

3. The vote U root[t].total observed by any process differs
from V root[t].total by at most 6n

√
log n.

If this occurs, then every process observes, for some t ,
U root[t].total ≥ 7n

√
log n − 6n

√
log n − o(n

√
log n) > 0.

In other words, all processes return the same value +1 with
constant probability for sufficiently large n. By symmetry,
the same is true for − 1. We have constructed a weak shared
coin with constant agreement probability.

Theorem 1 Algorithm1 implements aweak shared coinwith
constant bias, message complexity O(n2 log2 n), and with a
bound of O(n log3 n) on the number of messages sent and
received by any one process.

Proof We have just shown that Algorithm 1 implements a
weak shared coin with constant bias, and from Lemma 3 we
know that the maximum number of votes generated by any
single process is O(n log2 n). Because each process commu-
nicates with a subtree of 2h other processes every 2−h votes,
each level of the tree contributes �(1) amortized outgoing
messages and incoming responses per vote, for a total of
�(log n) messages per vote, or O(n log3 n) messages alto-
gether.

In addition,wemust countmessages received and sent by a
process p as part of themax register implementation.Here for
each process q in p’s level-h subtree, pmay incur O(1)mes-
sages every 2h votes done byq. Each such process q performs
atmost O(n log2 n) votes, and there are 2h such q, so p incurs
a total of O(n log2 n) votes from its level-h subtree. Sum-
ming over all log n levels gives the same O(n log3 n) bound
on messages as for max-register operations initiated by p.

This gives the bound of O(n log3 n)messages per process.
Applying the same reasoning to the bound on the total num-
ber of votes from Lemma 4 gives the bound of O(n2 log2 n)

on total message complexity. �

7 From a shared coin to consensus

For the last step, we must show how to convert a message-
efficient weak shared coin into message-efficient consensus.
Typically, a shared coin is used in the context of a larger
framework in which faster processes do not use the coin (to
ensure validity) while slower processes use the shared coin
(to ensure agreement after each round with constant prob-
ability). A direct approach is to drop the shared coin into
an existing message-passing agreement protocol like Ben-
Or’s [13]. However, as recently observed by Aguilera and
Toueg [2], this can produce bad outcomes when the failure
bound is large, because the adversary may be able to predict
the value of the shared coin before committing to the value

123

500 D. Alistarh et al.

of the faster processes. Instead, we adapt a shared-memory
consensus protocol, due to Chandra [15], which, like many
shared-memory consensus protocols has the early binding
property identified by Aguilera and Toueg as necessary to
avoid this problem.

Chandra’s protocol uses two long arrays of bits to track
the speed of processes with preference 0 or 1. The mecha-
nism of the protocol is similar to previous protocols of Chor,
Israeli, and Li [20] and Aspnes and Herlihy [9]: if a process
observes that the other team has advanced beyond it, it adopts
that value, and if it observes that all processes with differ-
ent preferences are two or more rounds behind, it decides on
its current preference secure in the knowledge that they will
switch sides before they catch up. The arrays of bits effec-
tively function as a max register, so it is natural to replace
them with two max registers m[0] and m[1], initially set to
0, implemented as in Sect. 4. Pseudocode for the resulting
algorithm is given in Algorithm 2.3

1 x ← input
2 for r ← 1 . . . ∞ do
3 WriteMax(m[x], r)
4 r ′ ← ReadMax(m[1 − x])
5 if r ′ ≥ r + 1 then
6 x ′ ← 1 − x
7 else if x ′ = x then
8 x ′ ← SharedCoinr ()
9 else if x ′ = x − 1 then

10 x ′ ← x
11 else
12 return x

13 x ′′ ← ReadMax(m[x])
14 if r ′′ < r + 1 then
15 x ← x ′

Algorithm 2: Consensus protocol

Theorem 2 Let SharedCoinr , for each r, be a shared
coin protocol with constant agreement parameter, individ-
ual message complexity T1(n), and total message complexity
T (n). Then Algorithm 2 implements a consensus protocol
with expected individual message complexity O(T1(n) + n)

and total message complexity O(T (n) + n2).

Proof Validity follows from the fact that, if all processes start
with the same preference x , then m[1 − x] never advances
beyond zero and no process ever changes its preference.

Agreement is more subtle, although the ability to read
the max register atomically makes the proof easier than the
original proof in [15]. Suppose that some process returns p.
Then this process previously read m[1 − x] ≤ r − 2 after

3 The presentation here is influenced by the simplified version of Chan-
dra’s original protocol given in [4].

writing m[x] ≥ r . At the time of this read, no other process
has yet written r − 1 or greater to m[1 − x], so any other
process with preference 1− x has not yet executed the write
at the start of round r − 1. It follows that each such process
sees m[x] ≥ (r − 1) + 1 and adopts x as its new preference
before reaching round r . Since all processes entering round
r agree on x , they all decide x after at most one more round.

For termination, it cannot be the case that processes with
different preferences both avoid the shared coin in round
r , because processes with both preferences x would need
to read m[1 − x] < r after writing m[x] = r , violating
the specification of the max register. Suppose that at least
one process with preference x does not execute the shared
coin in round r , and processes with preference 1 − x do.
For this to occur, the adversary must show the preference-x
process m[1 − x] ≤ r − 1 before any preference-(1 − x)
process writes r to m[1 − x], and thus before any process
(with either preference) initiates SharedCoinr . It follows
that SharedCoinr returns x to all processes with constant
probability, producing agreement in round r and termination
after at most two more rounds.

For a shared coin protocol with agreement parameter δ,
we have a probability of at least δ per round that the protocol
reaches agreement in that round. This gives an expected num-
ber of rounds of at most 1/δ + 2 = O(1). Each involves at
most three max-register operations for each process, impos-
ing a cost of O(n) messages on that process and O(1)
messages on each other process, plus an invocation of the
shared coin. The expected individual message complexity is
thus O(n) + T1(n) = O(T1(n) + n) as claimed. A similar
argument shows the bound for total message complexity. �

Using Algorithm 1 for the shared coin, T (n) dominates,
giving that each process sends and receives O(n log3 n)mes-
sages on average.

8 Variant for general failure parameter t

In this section,wedescribe avariant of the consensus protocol
which adapts to the number of failures t . The basic idea is to
reduce message complexity by “deputizing” a set of 2t + 1
processes to run the consensus protocol described in Sect. 7
and produce an output value,which they broadcast to all other
participants. We note that the failure upper bound t needs to
be known in advance by the protocol.
DescriptionFor this, we fix processes p1, . . . , p2t+1 to be the
group of processes running the consensus protocol, whichwe
call the deputies.When executing an instance of the protocol,
each process first sends a Start message to the deputies. If
the process is a deputy, it waits to receive Start notifications
from n− t processes. Upon receiving these notifications, the
process runs the algorithm from Sect. 7, where the only par-

123

Communication-efficient randomized consensus 501

ticipants are processes p1, . . . , p2t+1. Upon completing this
protocol, each deputy broadcasts a 〈Result, value〉 message
to all processes, and returns the decided value. If the process
is not a deputy, then it simplywaits for aResultmessage from
one of the deputies, and returns the corresponding value.
Analysis This construction guarantees the following proper-
ties. The proof follows from the argument in Sect. 7.

Theorem 3 Let n, t > 0 be parameters such that t < n. The
algorithm described above implements randomized consen-
sus using O(nt + t2 log3 t) expected total messages, and
O(n + t log3 t) expected messages per process.

9 Conclusions and future work

We have described a randomized algorithm for consensus
with expected message complexity O(n2 log2 n) that toler-
ates t < n/2 crash faults; this algorithm also has the desirable
property that each process sends and receives expected
O(n log3 n) messages on average, and message size is loga-
rithmic. We also present a generalization that uses expected
O(nt + t2 log2 t) messages.

Two conspicuous open problems remain. The first is
whether we can close the remaining poly-logarithmic gap
for the message cost of consensus in the classic model. Sec-
ond, can we use techniques from this paper to help close the
gap for message-cost of Byzantine agreement in the clas-
sic model? To the best of our knowledge, the current lower
bound for message cost of Byzantine agreement is �(n2),
while the best upper bound is O(n6.5)—a significant gap.

Acknowledgements Open access funding provided by Institute of Sci-
ence and Technology (IST Austria).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Abrahamson, K.: On achieving consensus using a shared memory.
In: Proceedings of the Seventh Annual ACM Symposium on Prin-
ciples of Distributed Computing, PODC ’88, pp. 291–302, New
York, NY, USA. ACM (1988)

2. Aguilera, M.K., Toueg, S.: The correctness proof of Ben-Or’s ran-
domized consensus algorithm. Distrib. Comput. 25(5), 371–381
(2012)

3. Aspnes, J.: Lower bounds for distributed coin-flipping and random-
ized consensus. J. ACM 45(3), 415–450 (1998)

4. Aspnes, J.: Randomized protocols for asynchronous consensus.
Distrib. Comput. 16(2–3), 165–175 (2003)

5. Aspnes, J., Attiya, H., Censor, K.: Randomized consensus in
expected O(n log n) individual work. In: PODC ’08: Proceedings

of the Twenty-Seventh ACM Symposium on Principles of Dis-
tributed Computing, pp. 325–334 (2008)

6. Aspnes, J., Attiya, H., Censor-Hillel, K.: Polylogarithmic concur-
rent data structures frommonotone circuits. J. ACM 59(1), 2 (2012)

7. Aspnes, J., Censor, K.: Approximate shared-memory counting
despite a strong adversary. ACM Trans. Algorithms 6(2), 1–23
(2010)

8. Aspnes, J., Censor-Hillel, K.: Atomic snapshots in O(log3 n) steps
using randomized helping. In: Proceedings of the 27th International
Symposium on Distributed Computing (DISC 2013), pp. 254–268
(2013)

9. Aspnes, J., Herlihy, M.: Fast randomized consensus using shared
memory. J. Algorithms 11(3), 441–461 (1990)

10. Aspnes, J., Waarts, O.: Randomized consensus in expected
O(n log2 n) operations per processor. SIAM J. Comput. 25(5),
1024–1044 (1996)

11. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in
message-passing systems. J. ACM 42(1), 124–142 (1995)

12. Attiya, H., Censor, K.: Tight bounds for asynchronous randomized
consensus. J. ACM 55(5), 20:1–20:26 (2008)

13. Ben-Or, M.: Another advantage of free choice (extended abstract):
completely asynchronous agreement protocols. In: Proceedings of
the Second Annual ACM Symposium on Principles of Distributed
Computing, PODC ’83, pp. 27–30, New York, NY, USA. ACM
(1983)

14. Bracha, G., Rachman, O.: Randomized consensus in expected
O(n2log n) operations. In: Toueg, S., Spirakis, P.G., Kirousis, L.M.
(eds.) WDAG, volume 579 of Lecture Notes in Computer Science,
pp. 143–150. Springer (1991)

15. Chandra, T.D.: Polylog randomized wait-free consensus. In: Pro-
ceedings of the Fifteenth Annual ACM Symposium on Principles
of Distributed Computing, pp. 166–175, Philadelphia, Pennsylva-
nia, USA, 23–26 May 1996

16. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable
distributed systems. J. ACM 43(2), 225–267 (1996)

17. Chlebus, B.S., Kowalski, D.R.: Robust gossiping with an applica-
tion to consensus. J. Comput. Syst. Sci. 72(8), 1262–1281 (2006)

18. Chlebus, B.S., Kowalski, D.R.: Time and communication efficient
consensus for crash failures. In: Dolev, S. (ed.) Distributed Com-
puting, pp. 314–328. Springer, Berlin (2006)

19. Chlebus, B.S., Kowalski, D.R., Strojnowski, M.: Fast scalable
deterministic consensus for crash failures. In: Proceedings of the
28th ACM symposium on Principles of distributed computing, pp.
111–120. ACM (2009)

20. Chor, B., Israeli, A., Li, M.: On processor coordination using asyn-
chronous hardware. In: Proceedings of the Sixth Annual ACM
Symposium on Principles of Distributed Computing, PODC ’87,
pp. 86–97, New York, NY, USA. ACM (1987)

21. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence
of partial synchrony. J. ACM 35(2), 288–323 (1988)

22. Fich, F., Herlihy, M., Shavit, N.: On the space complexity of ran-
domized synchronization. J. ACM 45(5), 843–862 (1998)

23. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of dis-
tributed consensus with one faulty process. J. ACM 32(2), 374–382
(1985)

24. Hall, P., Heyde, C.C.:Martingale Limit Theory and Its Application.
Academic Press, Cambridge (1980)

25. Lamport, L., Shostak, R., Pease, M.: The byzantine generals prob-
lem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

26. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the
presence of faults. J. ACM 27(2), 228–234 (1980)

27. Saks, M., Shavit, N., Woll, H.: Optimal time randomized
consensus—making resilient algorithms fast in practice. In: Pro-
ceedings of the 2nd ACM Symposium on Discrete Algorithms
(SODA), pp. 351–362 (1991)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Communication-efficient randomized consensus
	Abstract
	1 Introduction
	2 System model and problem statement
	3 Related work
	4 A message-passing max register
	5 The weak shared coin algorithm
	6 Complete algorithm analysis
	7 From a shared coin to consensus
	8 Variant for general failure parameter t
	9 Conclusions and future work
	Acknowledgements
	References

