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Abstract

This paper presents a general high level estimation

model of communication throughputfor the implementation

of a given communication protocol. The model, which is

part of a larger model that includes component price, soft-

ware driver object code size and hardware driver area, is

intended to be general enough to be able to capture the

characteristics of a wide range of communication protocols

and yet to be sufficiently detailed as to allow the designer or

design tool to efficiently explore tradeoffs between through-

put, bus widths, burst/non-burst transfers and data packing

strategies. Thus it provides a basis for decision making with

respect to communication protocols/components and com-

munication driver design in the initial design space explo-

ration phase of a co-synthesis process where a large number

of possibilities must be examined and where fast estimators

are therefore necessary. The full model allows for addi-

tional (money)cost, software code size and hardware area

tradeoffs to be examined.

1. Introduction

This paper presents the underlying estimation model for
a communication estimation tool which extends the current

communication estimation capabilities of the LYCOS [2]
co-synthesis system. The model is the basis of a high level
communication library that for each supported process-
ing unit and for each supported protocol captures perfor-
mance/area/price and other characteristics of the necessary
drivers and of the communication channel. Our aim is to

utilize this library in a communication estimation tool that
will work together with the other estimation/partitioning
toolsin LYCOS as part of the design space exploration/co-
synthesis cycle. Most current approaches to co-synthesis
considercommunication synthesis to be a final step in the
co-synthesistrajectory [1][3][4]. For instance, [1] presents
communication synthesis as an allocation problem to be
solvedafter system-level partitioning whereas we integrate

communicationsynthesis with design space exploration and
system level partitioning. For example, we wish to be able
to trade off a fast and expensive communication protocol
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for a slow but cheaper protocol and a faster co-processor,
if that is feasible. This should not be done after system
level partitioning as the level of communication overhead
between system components influences what the best par-
tition is. For this we need fast estimators of the kind pre-
sented in this paper. [6] models communication at various
levels of abstraction which enables multi-level system sim-

ulation to verify correct behavior given the selected com-
munication components/protocols, but the question of how
to select the best combination of communication compo-
nents/protocols still needs to be addressed. Our communi-
cation model in combination with the estimation tool helps
the designer/design tool answer this question.

2. The communication model
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Figure 1. Communication model overview.

Figure 1 shows our model of point to point commu-
nication. The figure shows communication in a proces-
sor/coprocessor target architecture, but the model is not lim-
ited to this architecture - it can be used to model and esti-

mate communication overhead in any architecture where a

connection between two processing elements has been es-
tablished. The time overhead of establishing such a connec-
tion (arbitration, etc.) is currently not modeled/estimated.
Note that, in contrast to prior work, we consider the
possible performance degradation imposed by the hard-
ware/software drivers, and not only the characteristics of
the channel.

For simplicity, we consider communication in one di-
rection only in this paper. In general, some of the model
parameters will depend on the transmission direction. For
instance, a PCI bus master read is slower than a write, so

the parameters that model channel transmission delay exist
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in both a "read" version and a "write" version in the full
model.

2.1. Driver transmission delay model

Figure 2 defines the parameters which are used to esti-
mate driver transmission delay. The driver receives nt input

SWIHW

(]
Transmitting Driver

Clockfrequency: ft

Packing granularity: Wg
Processing cycles per

transmission word: Ctp

Channel

nc wordsof n
width.."- U

nt words of

width Wt ..

Driver call

cycles: Ctc

Figure 2. Driver transmission parameters.

words for transmission and produces ne channel words. In
order to do so, it may have to pack or split driver input words
in order to fit the channel bit width We and it may have to
perform other kinds of data processing. The packing gran-

ularity Wg influences the transmission processing delay and
is defined in section 2.6. Given the clock frequency of the
transmitting processor, ft, the number of cycles, Cte, it re-
quires to call the driver for transmission (transfer arguments
to, transfer execution flow to, etc.) and the number of trans-

mission processing (packing/splitting/etc.) cycles per driver
input word, Ctp,we can write the total driver transmission
delay as

ttd = (cte + Ctpnt)/ It

2.2. Channel transmission delay model
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Figure 3. Channel transmission parameters.

Assume that the number of transmitted channel words ne

and the number of required synchronization cycles Cesare
known (formulas for these will be derived in sections 2.5

and 2.6). Given the clock frequency of the channel Ie and
the number of transmission cycles per channel word Cet,the
total channel transmission delay is then calculated as

ted = (ces + Cetne)/ Ie

where we have assumed that a connection has already been

established between transmitter and receiver and thus ig-
nored bus arbitration and channel setup delays.

2.3. Driver reception delay model

We assume that the receiving driver in addition to the

parameter ne also receives the parameters Wt and W9 so

Figure 4. Driver reception parameters.

that it knows how data was packed by the transmitting
driver). We will also assume that Wr ~ Wt and that each
unpacked/unsplit word of size Wt is put on a single output
word of bit width Wr. Given the clock frequency of the re-
ceiving processor Ir, the number of driver call cycles for
reception Creand the number of reception processing (un-
packing/unsplittingletc.) cycles per transmission driver in-

put word, crp, the formula for driver reception delay simply
becomes

trd = (cre + crpnt)/ Ir (3)

2.4. Total transmission delay

We assume that the driver production of channel words,
channel transmission and driver reception of channel words
occur in parallel in a pipelined fashion, which means that
it is the slowest part that determines the total transmission
delay tt. We set the maximum delay to

(1) tm = max(ttd, ted, trd)

and calculate the total transmission delay as

(4)

tt = tm + 2 tm
nt

(5)

where the last term is an approximation of the pipeline
startup/completion delay2.

2.5. Burst mode modelling - fie equation

The preceding sections have assumed that ne and Ces
were known. This section and section 2.6 give a detailed
derivation of these figures.

In order to be able to handle burst mode transfers, we

model ne to consist of (nb - 1) bursts of size Sb and a re-

mainder burst of size Sr, 0 ~ Sr < Sb:

ne = (nb - l)Sb + Sr (6)

(2)
The burst elements all have bit width We. We let the variable

bm denote one of three supported burst transfer types, fixed

1Of course this will not be necessary in the case where the drivers only

support fixed values of Wt and Wg - these values can then be hard coded
in the drivers.

2As the number of channel words may differ from the number of trans-

mission/reception words, the pipeline startup/completion delay is not mod-

eled accurately by the given term. An exact derivation is outside the scope

of this paper - however, it is important to include an estimate of the delay

as it may have significance for small transfers.
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(each burst has a fixed size), max (there is a maximum on
the burst size, but smaller bursts are allowed) and inf (there
is no limit on the burst size). We can now calculate nb and
Sr as follows:3

where ned is the number of actual channel data values corre-

sponding to the nt driver input words of bit width Wt which

have been packed/split to fit the channel width We. An equa-

tion for ned is derived in section 2.6.

Given the number of synchronization cycles per burst Csb

(possibly a fraction) and the number of synchronization cy-

cles per transfer session CBS,we can now write the number

of channel synchronization cycles Ces as

Ces = rnbCsb 1+ CBS

With these definitions, the equations for ne and Ces model

the following four variants of burst transfers:

1. Non-burst mode: This is modeled by setting bm =
fixed (or max) and the burst size Sb to 1 which results

in nb = ned, Sr = 1 and ne = ned. The number of
synchronization cycles becomes Ces = rnedCsb 1+ cBS

where Csb should now be interpreted as the number of

synchronization cycles per channel data word.

2. Burst mode with fixed burst size Sb. This is modeled by

setting bm = fixed which forces the last burst to be of

size Sb regardless of how many values in that burst are
actual data values.

3. Burst mode with maximum burst size Sb. This is mod-

eled by setting bm = max. The last burst (if any) has

size Sr < Sb, but it will still require the same number

of burst synchronization cycles as the preceding bursts.

4. Burst mode with unlimited burst size. This is modeled

by setting bm = inf and Sb = O. Then nb becomes

I indicating a single burst, Sr = ned, indicating that
ned data values are to be transferred in the single burst,

and ne = ned. The number of synchronization cycles
becomes Ces= rCsb1+ cBSso we only spend time on
a single set of burst synchronization cycles.

Example 1: (PCI burst mode modelling). Consider a PCI
bus [5] master read transaction of ned = 1000 words of

width We = 32 on a 32 bit wide, 33 Mhz PCI-bus. The

PCI-bussupports burst transfers with maximum, fixed as
wellas unlimited size.

3In the following, rx 1 denotes the smallest integer larger than or equal

to x (truncating upwards). lxJ denotes the largest integer smaller than or
equal to x (truncating downwards).

I
- -~_'::::..._-

(9)

We assume a maximum size (bm = max) burst trans-

fer of size Sb = 32. This ensures a low bus latency that
allows other, higher priority, units on the bus to interrupt
the transfer. We assume that the bus arbitration latency
is 2 clock cycles and that the bus is initially IDLEso that
the bus acquisition latency is 0 clock cycles. We set slave
device select (DevSel) delay to I clock cycle. As the ad-
dress bus an<Jdata bus are multiplexed, the PCI burst trans-
fer consists of an address transfer followed by the (up to)
32 data transfers. For a read transaction, a turnaround cy-
cle is required between the address transfer and the data
transfers in order to avoid bus contention. After com-

pletion of the burst, an additional IDLEcycle is required.
The address transfer and the data transfers each last one

clock cycle (assuming zero wait state transfers), except
for the first data transfer which lasts 4 clock cycles. We
see that the number of synchronization cycles per burst is
Csb = 2 + 0 + I(DevSel cycle) + 1(turnaround cycle) +
3(extra cycles for first data transfer) + I(IDLEcycle) = 8.
Using (7) and (8), we can now calculate nb = rned/Sb1 =
LI000/32j = 32 and Sr = ned - (nb - l)sb = 1000 - 31.
32 = 8. As we set the number of synchronization cycles

per session, CBS,to zero, we can now use (6) to calculate the
number of actually transmitted channel words, ne. and (9)
to calculate the number of channel synchronization cycles
Ces:

ne (32 - 1) .32 + 8 = 1000

r32 . 81 + 0 = 256

=
Ces =

As the number of transmission cycles per channel word is
Cet = 1, we now use (2) to calculate the channel transmis-
sion delay to

ted = (0 + 1 . 1000 + 256 + 0)/(33. 106) = 3811-s

0

2.6. Data packing/splitting

In this section we show how the number of channel

data words ned is determined for various packing/splitting
schemes.

2.6.1 Oed equation: packing (Wt :::;we)

We generalize the process of packing the nt smaller driver
input words of width Wt into the ned larger channel data
words of width We to be a two-step process:

1. First split the input words into nl fragments of bit

width Wg, Wg :::;We. If Wg 2:Wi, one input word is
put on each fragment as shown in figure S.C.

2. Then pack as many as possible (n2) of these fragments
onto each channel word.
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nb =
{ ned/ Sb1

if bm = inf
(7)

if bm =fixed, max

Sr =
{Sb

if bm =fixed
(8)

ned - (nb - l)sb if bm = max,inf



Thereason for introducing the intermediate first step is that

we can then model optimal as well as fast packing with the

same equation, as shown below.

Each driver input word occupies rwt! w91 fragmentsof
width Wg, so we need to pack a total of nl = nt rwt!Wg1
fragments. Each channelword can hold nz = lwe/wgJ
fragments. The number of requiredchannelwordsis thus
rnI/nzl whichexpandsto

-
r

nt IWt/Wgl
1ned - lWc/WgJ ' Wg::; We, Wt ::; We (10)

Figure 5 gives an example of data packing for three different

values of Wg:
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Figure 5. Packing with different granularities.

Optimal packing (Wg = 1). Optimal packing is
achieved by packing the driver input words in a bit-wise
manner. This corresponds to setting the packing granularity
Wg to 1. Slack is only possible in the last-channel word.
(10) reduces to

\ ned = r(ntwt)/wel (11)

Medium fast packing (Wg = wt>. Mediumfast pack-
ing is achieved by packing the driver input words in a per
input-word manner, i.e. only as many whole input words
that can fit in a channel word are put on each channel word.

This corresponds to setting the packing granularity Wgequal
to Wt. Slack can now occur in each channel word. (10) re-
duces to

ned = rnt!lwe/wdl (12)

Fast packing (Wg = we). Fast packing is achieved by
packing each input word onto a single channel word. This

corresponds to setting the packing granularity Wg equal to

We. Slack will occur in every channel word if We > Wi'

Naturally (10) reduces to

ned = nt (13)

2.6.2 Oed equation: splitting (We::; Wi)

Figure 6 gives an example of data splitting for two different

values ofw;.
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Figure 6. Splitting with different granularities.

We follow the same two-step approach as in the packing
phase and find that equation for ned becomes identical to
(10). This means that (10) covers packing as well as split-

ting with the only requirement that Wg ::; We.
This implies that the equation for optimal splitting (w 9 =

1) is identical to (11) and the equation for medium fast split-
ting (Wg = we) is identicalto (12). There is no "fast split-
ting" (Wg = Wi) case as we cannot in general fit a whole
driver data word into the smaller channel words (only when
Wt = we).

2.6.3 Resulting Oed equation

The final equation for ned which covers both packing and
splitting can now be written as

- rnt,wt/Wgll,ned - lwc/wgJ Wg ::; We (14)

This equation models both fast, medium fast and optimal

packing/splitting, depending on the parameter Wg. The

packing/splitting time in general depends on Wg, so the

transmission processing delay Ctp in (1) and the reception

processing delay crp in (3) are not actually constants but

functions of Wg:

Ctp = Ftp(wg), Crp = Frp(Wg) (15)

The communication model library should provide separate

values of Ctpand crp for each supported value of Wgor pro-
vide the functions Ftp and Frp as expressions.

Example 2: (Bit level serial communication modelling).
We consider serial RS-232 communication using a serial
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communicationscontroller, for instance a Zilog Z8530 SCC
[7]whichis configured to perfonn 8-bit asynchronous com-
municationusing 1stop bit and 1parity bit. We set the baud
rateto 19600,and assume that we wish to write nt = 1000

words of bit width Wt = 32. We consider each channel data

elementto be a singlebit, so We= Wg = 1. (14)givesus
the number of channel data words, ned:

ned= r(1O00r32/11)/(Ll/IJ)1 = 32000

Wemodelthe channeltransfersto consistof burstsof size

Sb = 8 and set bm = fixed. There will only be three syn-
chronizationcyclesper burst (for the implicitstart bit and
thestopand paritybits) as there is no need to reconfigure
thesee for a write operationeach time we transfera byte
andthereis no delay betweenburst (byte) transfersas we
canreloadthe writeregister whilethe previousbyte is be-
ing transferred, so Cab = 3. Equations (7) and (8) give us
nb = rned/81 = 4000 and Sr = Sb = 8. Weassumethat
thesee is alreadyproperlyconfiguredandset Css=O.(6)
nowgives us ne = (4000 - 1) .8 + 8 = 32000 and (9)
gives us Ces = r4000 . 31 + 0 = 12000. Each data element

(bit) transfer lasts Ct = 1 clock cycle and the channel clock

frequencyis Ie = 19600. We can now use (2) to calculate
thechannel transmission delay to

ted = (1 .32000 + 12000)/19600= 2.2s

0

2.7. Design space exploration

The preceding examples have focused on demonstrating
themodellingcapabilities of the communication model. We
here give an example of how the model can be used in the
designspace exploration phase of system level co-synthesis.

I

I

I

Example 3: Consider communication of (nt = 1000) 16
bit words (Wt = 16) via an Ie = 32 Mhz channel of width

We = 32 using a proprietary protocol with no burst mode
(bm = fixed, Sb = 1) and a multiplexed address/data bus
withone address transfer per data transfer (Csb= 1) and one
clock cycle per transfer (cet = 1). The receiving processor
operatesat clockfrequencyIr = 200Mhz.

First we considera configurationwhere we use a fast
(andexpensive)It = 100Mhz transmittingprocessorthat
canpacktwo 16bit valueson each 32 bit channelwordus-
ing seven processing cycles per transmission word (Wg =
16,Ctp = 7). The receiving processor also uses crp = 7

cycles per transmission word to unpack the received chan-
nel words. All other parameters are set to zero. For this
configuratiCJlwe find that ned = 500, nb = 500, Sr = 1,
Ces= 500 and ne = 500 and can now calculate the trans-

mitting driver delay, channel delay and receiving driver de-
lay to (ttd = 70/ls, tcd = 31.25/ls, trd = 35/ls). We see
that the transmitting driver is the communication bottle-
neck (tm = ttd = 70/ls) and find, using (5) the resulting

transmission delay to be tt = 70/ls + 2 . (70/ls/1O00) =
70.14/ls.

We now consider a configuration where we use a slow

(and cheaper) It = 50 Mhz transmitting processor that only

packs one 16 bit value on each 32 bit channel word (i.e.
fast packing) thus using only three processing cycles per

transmission word (Wg = 32,Ctp = 3). The receiving pro-
cessor also uses crp = 3 unpackingcycles per transmis-
sion word. All other parameters are the same as in the
previous configuration. We now find that ned = 1000,
nb = 1000, Sr = I, Ces = 1000 and ne = 1000 which re-

sults in (ttd = 60/ls, tcd = 62.5/ls, trd = 15/ls). Here,
tm = 62.5/ls whichresultsin a total transmissiondelayof
tt = 62.5/ls + 2 . (62.5/ls/1O00) = 62.6/ls.

We can conclude that in this case the best choice of trans-

mission processor is the cheap and slow processor, even
though it does not utilize the full bus bandwidth and chan-
nel transmission time is larger than before. The fact that it
spends less time on packing data makes it the better choice.
Though being artificial, the example demonstrates that the
perfonnanceofthe drivers have to be balanced with the per-
fonnance of the channel in order to find the best system
configuration. 0

3. Conclusion

We have presented a high level communication esti-
mation model suitable for design space exploration in co-
synthesis and have demonstrated its modelling capabilities
and intended use. Future work will focus on extending the
model to include bus arbitration/acquisition delay in case of
buses with multiple drivers and to integrate the communi-
cation estimator with partitioning and design space explo-
ration in the LYCOS system.
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