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We present a method to correct for finite size errors in coupled cluster theory calculations of

solids. The outlined technique shares similarities with electronic structure factor interpolation

methods used in quantum Monte Carlo calculations. However, our approach does not require

the calculation of density matrices. Furthermore we show that the proposed finite size correc-

tions achieve chemical accuracy in the convergence of second-order Møller-Plesset perturba-

tion and coupled cluster singles and doubles correlation energies per atom for insulating solids

with two atomic unit cells using 2 × 2 × 2 and 3 × 3 × 3 k-point meshes only. Published by AIP

Publishing. [http://dx.doi.org/10.1063/1.4964307]

I. INTRODUCTION

Correlated wave function based methods are a promising

tool for the accurate solution of the many-electron Schrödinger

equation on an ab initio level. However, in contrast to

computationally much cheaper mean-field theories, these

methods are limited in terms of applicability due to their

relatively large computational cost.1–4 Moreover the relatively

large computational cost gets further increased in practice by

the slow convergence of calculated properties with respect

to the treated system sizes. Many properties such as the

binding energy of molecules on a surface converge slower than

their counterparts calculated using mean-field theories. This

originates from the fact that correlated wave function based

theories capture more longer ranged electronic correlation

effects such as dispersion interaction explicitly. Therefore it

is important to develop methods that improve the rate of

convergence.

Quantum Monte Carlo (QMC) calculations of solids also

suffer from a slow convergence of calculated properties with

respect to the treated system sizes. However, QMC methods

employ correction schemes to reduce the finite size errors

originating from the evaluation of the kinetic and potential

energy operators in the many-electron Hamiltonian.5–7 The

most notable corrections include structure factor interpolation

techniques and twist-averaging. The latter is employed to

reduce finite size errors originating from the one-electron

operators. In passing we note that these errors can often be

kept very small in quantum chemical (QC) wave function

based theory calculations because the corresponding energy

contributions can already be captured to a large extent on the

level of Hartree–Fock (HF) theory. On the other hand, finite

size errors originating from the two-electron operator are

equally problematic in QMC and QC calculations of solids.

These errors can successfully be reduced using electronic

structure factor interpolation methods.

a)Electronic mail: a.grueneis@fkf.mpg.de

In this work, we will outline a similar approach to

the electronic structure factor interpolation method that is

suitable for correlated quantum chemical wave function

based theories in solids. We will show that the proposed

technique does not require the prior calculation of any

density matrices as needed for the calculation of the electronic

structure factor. Furthermore the method is also capable of

achieving rapidly convergent electronic correlation energies

for insulating solids.

II. THEORY

In coupled cluster theory calculations, the total energy

is usually expressed as a sum of the Hartree–Fock energy

and the coupled cluster correlation energy, calculated from

the Hartree–Fock orbitals. The coupled cluster singles and

doubles (CCSD) correlation energy can be written as2

Ec =


i j



ab

Tab
i j W ab

i j , (1)

where Tab
i j
= tab

i j
+ ta

i
tb
j

and W ab
i j
= 2V ab

i j
− V ba

i j
. ta

i
and tab

i j
are

singles and doubles amplitudes obtained from solution of the

corresponding amplitude equations.2 The indices i, j and a, b

are understood to be shorthands for the spatial orbital index

and the Bloch wave vector. The two-electron integrals are

calculated using V ab
i j
=


G Ca
i
(G)v(G)C

j

b

∗

(G), where Ca
i
(G)

is defined by


G Ca
i
(G)eiGr = φi(r)φ

∗

a(r).
8–11 We stress that

the orbital overlap charge density φi(r)φ
∗

a(r) is approximated

in the projector augmented wave method using Eq. (2.87) of

Ref. 12 as implemented in the Vienna ab initio simulation

package (VASP).13–15 The Coulomb kernel in reciprocal space

is defined as v(G) = 4π

G2 . G corresponds to the sum of a Bloch

wave vector and a reciprocal lattice vector. In this work, we

will only consider Γ-centered k-point meshes.

The expression for the correlation energy can be rewritten

by rearranging the nested summations in Eq. (1) and the
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definition of W ab
i j

such that

Ec =


G

′

v(G)S(G), (2)

where S(G) =


i j


ab Tab

i j
(2Ca

i
(G)C

j

b

∗

(G) − Cb
i
(G)C

j
a

∗

(G)).

Equation (2) is a central equation for the present work.

We stress that S(G) depends only linearly on the doubles

amplitudes and does not correspond to the electronic structure

factor. The apostrophe indicates that the sum in Eq. (2)

includes only plane wave vectors for which Gmin ≤ |G| ≤ Gmax

holds. We note that Gmax corresponds to a plane wave vector

cutoff. Gmin is the length of the shortest plane wave vector

included in the basis set that is not equal to zero. In the

following, we will discuss finite size and finite basis set errors

with the help of Gmin and Gmax, respectively.

The finite basis set error vanishes only in the limit

of Gmax→ ∞.16 This observation is not surprising since

the leading order basis set error originates from the so-

called electron-electron cusp conditions, which are in real

space a short-ranged electronic correlation phenomenon.

Explicitly correlated methods help in reducing the finite basis

set error substantially.17,18 These methods as well as their

application to periodic systems have already been discussed

elsewhere.11,19,20

Finite size errors vanish in the limit of employing

increasingly dense k-point meshes in the calculation of solids,

concomitantly reducing Gmin. These errors originate from the

neglect of long range electronic correlation effects such as

van der Waals type interactions.21–23 Numerically it has been

shown that second-order Møller-Plesset (MP2) and coupled

cluster correlation energies of periodic solids converge as

1/Mk to the thermodynamic limit, where Mk refers to the

total number of k-points used to sample the first Brillouin

zone.4,24,25

We now return to Eq. (2) and seek to discuss the function

S(G) in greater detail. To this end we have calculated S(G)

using coupled cluster singles and doubles theory for the

carbon diamond crystal. Figure 1 shows S(G) retrieved as

a function of |G| for several k-point meshes Nk × Nk × Nk,

where Nk = 1,2,3, and 4. Numerically we find that S(G)

decays to zero for |G| → 0 and |G| → ∞. We note that

S(G) exhibits two relevant properties. First, S(|G|) is not

a smooth function due to the anisotropy of the diamond

structure. Second, S(|G|) converges rapidly with respect to Nk

in particular for long plane wave vectors. From the latter we

conclude that the dominant finite size error originates from

the region close the Coulomb singularity in reciprocal space,

which is neglected in the summation in Eq. (2) for coarse

k-point meshes.

We now discuss the reason for the asymptotic behaviour

of the correlation energy with respect to Mk. The vertical lines

in Fig. 1 depict that Gmin reduces as the employed k-point

mesh sampling density increases. We stress that S(G) and

v(G) converge to zero and∞ in the limit G → 0, respectively.

A Taylor series expansion of S(G) around G = 0 reveals that

the leading order nonzero term becomes ∝ G
2. Note that all

terms linear in G vanish as a result of Ca
i
(0) = 0 because of

the orthogonality between occupied and unoccupied orbitals.

FIG. 1. The convergence of MkS(G) for the carbon diamond crystal for a

range of k-point meshes including 1×1×1, 2×2×2, 3×3×3, and 4×4×4.

The vertical lines indicate the respective values for Gmin. The CCSD cal-

culations have been performed using 32 orbitals per k-point. The vertical

axis has been rescaled. The sum over plane wave vectors has been restricted

to all plane waves with a kinetic energy below 400 eV. The inset shows

MkSavg(|G|) using the same system and settings.

Therefore S(G)v(G) approaches a constant number at |G| = 0.

Due to this and the discretisation of the integration over

G in Eq. (2), the contribution from the sampling point at

G = 0 decays as 1
Mk

. This explains the 1/Mk asymptotic

behaviour of the correlation energy. However, we note that

computationally it is difficult to use sufficiently dense k-point

meshes to observe a quadratic behavior in S(G). For coarse

k-point meshes, the retrieved function in Fig. 1 exhibits a linear

behaviour around Gmin, indicating that the quadratic term starts

to dominate only for very small G vectors corresponding to

3 × 3 × 3 or even denser k-point meshes. Furthermore we

note that the above argument for the asymptotic behaviour

will not hold in the case of metallic systems where orbitals

can become degenerate at the Fermi energy and divergences

occur.26

An interpolation of S(G) in the range of 0 < |G| < Gmin

would allow for calculating a finite size correction. In this

work, we perform a spherical averaging procedure of S(G)

for all radii that are equal to |G|, where G corresponds to any

grid point included in the employed basis set. Note that the

spherical averaging of S(G) at a given plane wave vector length

is complicated by the fact that the regular plane wave vector

grid is only dependent on the cutoff, k-point mesh, and unit

cell geometry. Therefore certain directions are oversampled at

a given |G|. To get a more accurate estimate of the spherical

average of S(G), we proceed as follows. A Fibonacci grid on

a sphere is constructed. The values for S(G) at the new grid

points are obtained from linear interpolation using the data of

the regular grid. Once obtained we can perform a spherical

averaging for any given radius |G|. The resultant function

Savg(|G|) is smooth and isotropic. The inset of Fig. 1 shows

the obtained Savg(|G|) for the example of a carbon diamond

crystal using coupled cluster singles and doubles theory. Once

Savg(|G|) is obtained, an interpolation of this function around

the Coulomb singularity in reciprocal space can be performed.

Note that Savg(0) = 0. We use cubic spline interpolation to get

an estimate of Savg(|G|) for the arbitrary values of |G| in the

range 0 < |G| < Gmin.
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We note that the cubic spline interpolation and the

calculated finite size correction strongly depend on the choice

for the derivative of Savg at |G| = 0. We investigate three

different choices for the derivative of Savg at |G| = 0: (i) the

finite size correction referred to as FSN employs the natural

boundary condition in cubic spline interpolation, which sets

the second derivative of Savg to zero at |G| = 0, (ii) the finite

size correction referred to as FSR fixes the derivative to a

value calculated from the random-phase approximation plus

second-order screened exchange theory (RPA+SOSEX),27 and

(iii) the finite size correction FS0 fixes the first derivative of

Savg at |G| = 0 to zero as suggested by analytical derivations.

We will employ FSR only for the correction of finite size

(FS) errors in CCSD theory. Note that the computational

cost of CCSD and RPA+SOSEX theory scales as O(N6) and

O(N5), respectively, where N is a measure for the system

size.

The central idea of the proposed finite size correction

is to correct the conventional correlation energy expression

given in Eq. (2) with an estimate of the correlation energy

contribution from the G = 0 volume element. To this end

we partition the Coulomb kernel in two parts, labelled short-

and long-range, respectively. We choose the kernels such

that

v(G) = vsr(G) + v lr(G), (3)

vsr(G) =
4π

G2
(1 − fwin(G)), (4)

v lr(G) =
4π

G2
( fwin(G)). (5)

The window function switches smoothly between vsr and v lr

and is defined as

fwin(G) =
cos(|G|/Gcπ) + 1

2
Θ(Gc − |G|). (6)

We will return to the discussion of Gc at the end of this section.

The above partitioning allows for splitting the correlation

energy contribution in two parts that are given by

Ec = Esr
c + Elr

c , (7)

Elr
c =


G

′

v lr(G)S(G), (8)

Esr
c =


G

′

vsr(G)S(G). (9)

Replacing S(G) with Savg(|G|) in Eq. (8) and integrating the

long-range contribution directly yield our final expression for

the correlation energy including the finite size correction

Ec = Esr
c +


|G|

MkΩSavg(|G|)v lr(G)dG. (10)

Ω refers to the unit cell volume. We now return to

the discussion of Gc. It seems natural to choose Gc = Gmin.

This implies that we only correct for electronic correlation

effects that exceed the length scale of the employed simulation

(unit/super) cell. Furthermore this choice also ensures that the

finite size correction vanishes in the limit Nk → ∞.

III. RESULTS

Figure 2 shows the convergences of correlation energy

errors with respect to N−3
k

, where Nk refers to the number

of k-points used to sample the first Brillouin zone in each

direction. The errors are calculated with respect to a reference

value that has been obtained from a N−3
k

extrapolation. The

results are shown for the LiH, MgO, BN, and C crystals.

The correlation energies have been obtained on the level

of second-order Møller-Plesset perturbation theory (MP2),

coupled-cluster singles and doubles (CCSD) theory, and

the random-phase approximation plus second-order screened

exchange (RPA+SOSEX). Without finite size corrections the

correlation energies exhibit a 1/N3
k

asymptotic behaviour.

Figure 2(a) shows that the FSN correction substantially

increases the rate of convergence in MP2 theory. We note that

all points that lie within the grey area agree with the thermo-

dynamic limit results obtained from extrapolation to within

FIG. 2. Convergence of electronic correlation energy finite size errors for LiH, LiF, Si, and C solids obtained using MP2 theory (a), RPA+SOSEX

theory (b), and CCSD theory (c). The calculations employed 32 orbitals per k-point. All calculations have been performed using the projector augmented

wave method and a plane wave basis set as implemented in the Vienna ab initio simulation package (VASP).13–15 The sum over plane wave vectors

has been restricted to all plane waves with a kinetic energy below 400 eV. The lattice constants have been fixed to experimental equilibrium lattice

constants.
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chemical accuracy. All MP2-FSN correlation energies are

converged to within chemical accuracy (43 meV/atom) using

a 2 × 2 × 2 k-point mesh only compared to the thermodynamic

limit results. The FS0 correction underestimates the finite size

error at small k-point mesh sampling densities. However, both

methods improve upon the convergence compared to MP2

theory without finite size corrections.

Figure 2(b) shows that FSN also increases the rate

of convergence for RPA+SOSEX theory. However, FSN

overestimates the correction for the FS errors and yields

results that converge from below with the exception of

MgO. Chemical accuracy for all systems is only achieved

using 4 × 4 × 4 k-point meshes. On the other hand, FS0

yields underestimated finite size corrections. However, overall

both methods yield correlation energies that are significantly

closer to the converged results compared to their uncorrect

counterparts especially at coarse k-point meshes.

We now turn to the CCSD results depicted in Fig. 2(c).

CCSD including FSN overestimates the correction for the

finite size error in particular for BN and C. However, since

RPA+SOSEX theory is computationally cheaper than CCSD

theory, we can perform RPA+SOSEX theory calculations

using a 4 × 4 × 4 k-point mesh and the HF reference to get

an estimate of the slope of Savg at the corresponding Gmin.

The random-phase approximation is expected to give a very

accurate estimate of this slope, which is employed in the finite

size correction referred to as FSR. Figure 2(c) shows that

CCSD-FSR theory results exhibit a substantially improved

rate of convergence compared to CCSD and CCSD-FSN

theory. CCSD-FSR energies are converged to within chemical

accuracy for all systems using 3 × 3 × 3 k-point meshes only.

Furthermore we note that CCSD-FS0 theory achieves a similar

accuracy and improvement in convergence rate as CCSD-FSR

theory.

IV. CONCLUSION

In summary we have outlined a novel method to

correct for finite size errors in the calculation of correlation

energies using periodic MP2, RPA+SOSEX, and coupled

cluster theories. Chemical accuracy can be achieved in

the convergence of CCSD correlation energies using only

3 × 3 × 3 k-point meshes for two atomic unit cells. We

stress that the computational cost of canonical coupled cluster

theories scales as M4
k
. Therefore a twofold reduction of Mk

reduces the computational cost by an order of magnitude,

greatly simplifying the calculation of solids on the level of

CCSD theory. Future work will focus on the application of the

proposed finite size correction to metals and the combination

with F12 methods.
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