Communication in Networks for Coordinating Behavior

Paul Cuff
Stanford University

June 5, 2009

Cellular Communication Systems

Distributed Sensing and Control

Competitive Settings

Parallel Processing in the Brain

Regions of the Human Brain

Data Centers

Data Center

Computations can be divided among computers in a data center.

Overview - Coordinating Actions in a Network

Network of nodes with communication:

Other work moving information in networks:

- The Gossiping Dons Problem [Bollobas, The Art of Mathematics]
- Distributed Average Consensus [Tsitsiklis, Bertsekas, Athans 84]
- Communication Complexity [Yao 79]
- Function Computation [Ayaso, Shah, \& Dahleh 08]

Overview - Coordinating Actions in a Network

Network of nodes with communication:

Other work moving information in networks:

- The Gossiping Dons Problem [Bollobas, The Art of Mathematics]
- Distributed Average Consensus [Tsitsiklis, Bertsekas, Athans 84]
- Communication Complexity [Yao 79]
- Function Computation [Ayaso, Shah, \& Dahleh 08]

Two Nodes

Tasks are identified by numbers.

Two Nodes

Tasks are identified by numbers.

Buffer of Tasks

Example $\left(R=\frac{1}{4}, k=5\right)$:

Tasks assigned to X :
$X_{1} \quad X_{2} \ldots$ each independent

Sample realization: 312

5
3
5
2
4

Buffer of Tasks

Example $\left(R=\frac{1}{4}, k=5\right)$:

Tasks assigned to $X: \quad X_{1} \quad X_{2} \quad$.. \quad each independent
Sample realization:
Message bits:

$$
\begin{array}{ccrrrrr}
3 & 1 & 2 & 5 & 5 & 2 & 4 \\
& b_{1} b_{2}=01
\end{array}
$$

Buffer of Tasks

Example $\left(R=\frac{1}{4}, k=5\right)$:

Tasks assigned to X : $\quad X_{1} \quad X_{2}$... each independent
Sample realization: $\begin{array}{lllllllll}3 & 1 & 2 & 5 & 3 & 5 & 2 & 4\end{array}$
Message bits:

$$
b_{1} b_{2}=01
$$

	b_{1}	b_{2}	Y_{1}	Y_{2}	Y_{3}	Y_{4}	Y_{5}	Y_{6}	Y_{7}	Y_{8}
	0	0	1	2	3	4	5	1	2	3
Codebook:	0	1	2	4	1	3	5	2	4	1
	1	0	\ldots							
	1	1	\cdots							

Two Nodes

Tasks are identified by numbers.

Concept from Rate-distortion Theory

To generate correlated actions $\sim p(x, y)$,

$$
R \geq I(X ; Y) \text { is required }
$$

$$
\begin{aligned}
I(X ; Y) & =H(X)+H(Y)-H(X, Y), \\
H(X) & =\mathbb{E} \log \frac{1}{p(X)} .
\end{aligned}
$$

Concept from Rate-distortion Theory

To generate correlated actions $\sim p(x, y)$,

$$
R \geq I(X ; Y) \text { is required }
$$

$$
\begin{aligned}
I(X ; Y) & =H(X)+H(Y)-H(X, Y) \\
H(X) & =\mathbb{E} \log \frac{1}{p(X)}
\end{aligned}
$$

Choose $(X, Y) \sim \operatorname{Unif}\{(i, j): i \neq j\}$.

$$
R_{\min }=\log \left(\frac{k}{k-1}\right)
$$

Three Node Network

Ideas for assigning tasks uniquely (i.e. $X \neq Y_{1} \neq Y_{2} \neq X$).
Assign Y_{1} first: $R_{1}=\log \left(\frac{3}{2}\right)$.
Assign Y_{2} using full rate: $R_{2}=\log 3$.
$R_{\text {ave }}=\log _{2} 3-1 / 2$.

Three Node Network

Ideas for assigning tasks uniquely (i.e. $X \neq Y_{1} \neq Y_{2} \neq X$).
Assign $Y_{1} \in\{1,3\}: R_{1}=H\left(\frac{1}{3}\right)$.
Assign $Y_{2} \in\{2,3\}: R_{2}=H\left(\frac{1}{3}\right)$.
$R_{\text {ave }}=\log _{2} 3-2 / 3$.

Three Node Network

Techniques so far:

$$
\begin{aligned}
R_{1} & \geq I\left(X ; Y_{1}\right) \\
R_{2} & \geq I\left(X ; Y_{2}\right) \\
R_{1}+R_{2} & \geq I\left(X ; Y_{1}\right)+I\left(X, Y_{2}\right)+I\left(Y_{1} ; Y_{2} \mid X\right)
\end{aligned}
$$

Three Node Network

Common message to both:
(similar to Berger-Zhang scheme for Multiple Descriptions)

$$
\begin{aligned}
R_{1} & \geq I\left(X ; U, Y_{1}\right) \\
R_{2} & \geq I\left(X ; U, Y_{2}\right) \\
R_{1}+R_{2} & \geq I\left(X ; U, Y_{1}\right)+I\left(X ; U, Y_{2}\right)+I\left(Y_{1} ; Y_{2} \mid X, U\right)
\end{aligned}
$$

Three Node Network

Rates for optimized common message quality \hat{X}.
Communication rate with common message: $R_{\text {ave }}=\log 3-\log \phi$. The golden ratio $\phi=\frac{\sqrt{5}+1}{2}$. [Cuff, Permuter, Cover 09]

Three Node Networks

Each of these networks benefits from a common message.

Large Networks

Cascade - One Assigned

Cascade - One Assigned

Optimal Communication:

$$
X \xrightarrow{R=\log \left(\frac{k}{k-1}\right)} \begin{aligned}
& R=\log \left(\frac{k-1}{k-2}\right)
\end{aligned} Y_{k-1}
$$

Cascade - One Assigned

Optimal Communication:

$$
\begin{aligned}
R_{k-1} & =\log \left(\frac{k}{k-1}\right) \\
R_{k-2} & =\log \left(\frac{k}{k-1}\right)+\log \left(\frac{k-1}{k-2}\right)=\log \left(\frac{k}{k-2}\right) \\
R_{i} & =\log \left(\frac{k}{i}\right)
\end{aligned}
$$

Cascade - One Assigned

Sum rate:

$$
\begin{aligned}
R & =\sum_{i=1}^{k-1} \log \left(\frac{k}{i}\right) \\
& =k \log k-\sum_{i=1}^{k} \log i \\
& =k \log k-\log k! \\
& \approx k \log k-\log \left(\frac{k}{e}\right)^{k} \\
& =k \log e
\end{aligned}
$$

Cascade - All But One Assigned

X_{i} unique in $\{1, \ldots, k\}$ for all i.
Y must be the remaining task.

Cascade - All But One Assigned

X_{i} unique in $\{1, \ldots, k\}$ for all i.
Y must be the remaining task.
Idea - Accumulate information:

$$
\begin{aligned}
R_{1} & =\log (k-1) \\
R_{2} & =\log (k-1)+\log (k-2)-\log 2 \\
R_{i} & =\log \binom{k-1}{i}
\end{aligned}
$$

Cascade - All But One Assigned

X_{i} unique in $\{1, \ldots, k\}$ for all i.
Y must be the remaining task.

Better Idea - Accumulate $\bmod k$ sum: $\quad R_{i}<\log k$, for all i.

Sum rate:

$$
R<(k-1) \log k
$$

Cascade - Lower Bounds

$$
R_{i} \geq \log (i+1) . \quad \text { Sum rate: } R=\sum_{i=1}^{k-1} R_{i} \geq \approx k \log \frac{k}{e} .
$$

Cascade - Lower Bounds

$$
R_{i} \geq \log (i+1) . \quad \text { Sum rate: } R=\sum_{i=1}^{k-1} R_{i} \geq \approx k \log \frac{k}{e}
$$

Upper and lower bounds both scale like $k \log k$.

Star Network

Try $R_{i}=\log \frac{k}{k-1}$ for all i. (Doesn't work)

Star Network

Assign Default Tasks: $R_{i}=h\left(\frac{1}{k}\right) \approx \frac{\log k}{k}$. Sum rate: $R \approx \log k+\log e$.

Star Network

Lower bound: $R \geq I\left(X ; Y_{1}, \ldots, Y_{k-1}\right)=H(X)=\log k$.

Star Network

Two phase: Specify low-rate estimate \hat{X}. Choose defaults to exclude \hat{X}.

Task Assignment Summary

Sum rate:
$R_{\text {min }} \approx k \log e$ (linear)

$R_{\min } \approx k \log k$.
$R_{\text {min }} \approx \log k$.
[Cuff, Permuter, Cover 09]

ऽvK@Eऽv

Adversarial Settings

Coordination in the presence of an adversary engages with two frameworks:
(1) Cryptography
(2) Game Theory

Other work connecting these fields:
[Dodis, Halevi, Rabin 2000]

Game Theory

Payoff Matrix for a zero-sum game:

Me$p(x)$	0	Enemy	
		0	1
		1	2
	1	3	-1

Game Theory

Payoff Matrix for a zero-sum game:

	Enemy		
My team $p(x, y)$	00	1	2
	01	3	-1
	10	0	1
	11	-1	0

Team Action

Person B

Isolated Participants:

$$
p(x) p(y)
$$

Team Action

Isolated Participants:

$$
p(x) p(y)
$$

With Communication:

$$
p(x, y)
$$

Reminder: Concept from Rate-distortion Theory

To generate correlated actions $\sim p(x, y)$,

$R \geq I(X ; Y)$ is required.

$$
\begin{aligned}
I(X ; Y) & =H(X)+H(Y)-H(X, Y), \\
H(X) & =\mathbb{E} \log \frac{1}{p(X)} .
\end{aligned}
$$

Reminder: Concept from Rate-distortion Theory

To generate correlated actions $\sim p(x, y)$,

$R \geq I(X ; Y)$ is required.

$$
\begin{aligned}
I(X ; Y) & =H(X)+H(Y)-H(X, Y) \\
H(X) & =\mathbb{E} \log \frac{1}{p(X)} .
\end{aligned}
$$

This does not produce independent actions in the sequence.

Reminder: Concept from Rate-distortion Theory

To generate correlated actions $\sim p(x, y)$,

$$
R \geq I(X ; Y) \text { is required. }
$$

$$
\begin{aligned}
I(X ; Y) & =H(X)+H(Y)-H(X, Y) \\
H(X) & =\mathbb{E} \log \frac{1}{p(X)}
\end{aligned}
$$

This does not produce independent actions in the sequence. What is the price of independence?

Billy and the Bully

Billy hopes to avoid the Bully:

Billy and the Bully

Billy hopes to avoid the Bully:

If friends go to hangout 0 , Billy gets no enjoyment by going to 1 . How much information about hangout choice do friends need to give?

Erasure Challenge

> Person A
> $\begin{array}{llllllll}0 & 1 & 0 & 0 & 1 & 1 & 1 & 1\end{array}$

Erasure Challenge

Person A
$\begin{array}{llllllll}0 & 1 & 0 & 0 & 1 & 1 & 1 & 1\end{array}$

Person B
0 e e e e 1 e e

Erasure Challenge

Person A
$\begin{array}{llllllllllllllll}0 & 1 & 0 & 0 & 1 & 1 & 1 & 1\end{array} \quad 0 \quad$ e e e e 1

Erasure Challenge

Person A
$\begin{array}{llllllllllllllll}0 & 1 & 0 & 0 & 1 & 1 & 1 & 1\end{array} \quad 0 \quad$ e e e e 10 e

How much must Person A tell Person B?

- Tell all the bits 8 bits

Erasure Challenge

> Person A

Person B
$\begin{array}{llllllllllllllll}0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & e & e & e & e & 1 & e & e\end{array}$

How much must Person A tell Person B?

- Tell all the bits 8 bits
- Choose the sequence for B and tell it $\log _{2}\binom{8}{2}+2$ bits

Erasure Challenge

> Person A

Person B
$\begin{array}{llllllllllllllll}0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & e & e & e & e & 1 & e & e\end{array}$

How much must Person A tell Person B?

- Tell all the bits 8 bits
- Choose the sequence for B and tell it $\log _{2}\binom{8}{2}+2$ bits $=\log _{2} 112=6.81$ bits

Erasure Challenge

Person A

0	1	0	0	1	1	1	1

How much must Person A tell Person B?

- Tell all the bits 8 bits
- Choose the sequence for B and tell it $\log _{2}\binom{8}{2}+2$ bits $=\log _{2} 112=6.81$ bits
- Split the randomization

Erasure Challenge

Person A

0	1	0	0	1	1	1	1

How much must Person A tell Person B?

- Tell all the bits 8 bits
- Choose the sequence for B and tell it $\log _{2}\binom{8}{2}+2$ bits $=\log _{2} 112=6.81$ bits
- Split the randomization

Erasure Challenge

Person A

Person B

| 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad| 0 | 1 | e | e | 1 | 1 | e | e |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

How much must Person A tell Person B?

- Tell all the bits 8 bits
- Choose the sequence for B and tell it $\log _{2}\binom{8}{2}+2$ bits $=\log _{2} 112=6.81$ bits
- Split the randomization

Erasure Challenge

Person A

Person B

0	1	0	0	1	1	1	1

How much must Person A tell Person B?

- Tell all the bits 8 bits
- Choose the sequence for B and tell it $\log _{2}\binom{8}{2}+2$ bits $=\log _{2} 112=6.81$ bits
- Split the randomization

Erasure Challenge

Person A

Person B

0	1	0	0	1	1	1	1

How much must Person A tell Person B?

- Tell all the bits 8 bits
- Choose the sequence for B and tell it $\log _{2}\binom{8}{2}+2$ bits $=\log _{2} 112=6.81$ bits
- Split the randomization
$\log _{2}\binom{4}{2}+4$ bits

Erasure Challenge

Person A

Person B

0	1	0	0	1	1	1	1

0	e	e	e	e	1	e	e

How much must Person A tell Person B?

- Tell all the bits 8 bits
- Choose the sequence for B and tell it $\log _{2}\binom{8}{2}+2$ bits $=\log _{2} 112=6.81$ bits
- Split the randomization

$$
\log _{2}\binom{4}{2}+4 \text { bits }=\log _{2} 96=6.58 \text { bits }
$$

Wyner's Common Information

[Wyner 75]: $\quad C(X ; Y) \triangleq \min _{X-U-Y} I(X, Y ; U)$.

Amount of common randomness needed to generate X and Y ?

Wyner's Common Information

[Wyner 75]: $\quad C(X ; Y) \triangleq \min _{X-U-Y} I(X, Y ; U)$.

Amount of common randomness needed to generate X and Y ?

[Cuff 08]: Best use of common randomness in repeated zero-sum game.

Encryption

Sensitive
Information

Encryption

Sensitive
Information

Enemy

Encryption

Sensitive
Information

Secret Key

$$
R_{1}=R_{2}=H(X)
$$

[Shannon 45]

One-time Pad

Message:

01011011101

Secret Key (random):

11100101101

One-time Pad

Message:

01011011101

Secret Key (random):

11100101101

Transmission:

10111110000

One-time Pad

Message:

01011011101

Secret Key (random):

11100101101

Transmission:
10111110000

Decoded Message:

01011011101

Correlation Encryption

Goals:
(1) Y correlated with X according to desired $p(y \mid x)$.
(2) Enemy knows nothing about X or Y.

Correlation Encryption Rate Region

$$
S \triangleq C l\left\{\text { encryption achievable }\left(R_{1}, R_{2}\right)\right\}
$$

Theorem: Encryption Rate Region

$$
S=\left\{\left(R_{1}, R_{2}\right):\right.
$$

$$
\begin{aligned}
& R_{1} \geq I(X ; U) \\
& R_{2} \geq I(X, Y ; U)
\end{aligned}
$$

for some U such that $X-U-Y$ forms a Markov chain and $|\mathcal{U}| \leq|\mathcal{X}||\mathcal{Y}|+1$.
[Cuff 08]

Correlation Encryption Rate Region

$$
S \triangleq C l\left\{\text { encryption achievable }\left(R_{1}, R_{2}\right)\right\}
$$

[Cuff 08]

Achievability

X^{n}

Y^{n}

Achievability

X^{n}

Y^{n}

Achievability

Achievability

Achievability

- Generate many codebooks of u^{n} sequences $\sim \prod_{i=1}^{n} p\left(u_{i}\right)$.
- The secret key specifies the codebook to use.
- Encoder finds a u^{n} sequence correlated with x^{n} and sends the index i.

Achievability

- Generate many codebooks of u^{n} sequences $\sim \prod_{i=1}^{n} p\left(u_{i}\right)$.
- The secret key specifies the codebook to use.
- Encoder finds a u^{n} sequence correlated with x^{n} and sends the index i.
- Decoder generates y^{n} randomly conditioned on $u^{n}(i)$.

Achievability

$$
\begin{aligned}
& R_{1} \geq I(X ; U) \\
& R_{2} \geq I(X ; U)+I(U ; Y \mid X)
\end{aligned}
$$

Resolvability: [Wyner 75] [Han, Verdú 93]

Converse

M is the message.

W is the secret key.

$$
\begin{aligned}
n R_{1} & \geq H(M) \\
& \geq H(M \mid W) \\
& \geq I\left(X^{n} ; M \mid W\right) \\
& \geq I\left(X^{n} ; M, W\right) \ldots
\end{aligned}
$$

Converse

M is the message.
W is the secret key.

$$
\begin{aligned}
n R_{1} & \geq H(M) \\
& \geq H(M \mid W) \\
& \geq I\left(X^{n} ; M \mid W\right) \\
& \geq I\left(X^{n} ; M, W\right) \ldots \\
n R_{2} & =H(W) \\
& \geq H(W \mid M) \\
& \geq H\left(X^{n}, Y^{n} ; W \mid M\right) \\
& =I\left(X^{n}, Y^{n} ; W, M\right)-I\left(X^{n}, Y^{n} ; M\right) \ldots
\end{aligned}
$$

Example

Task assignment in an adversarial setting. System Monitor
$X \sim U n i f\{1, \ldots, k\}$.
Y needs to be different from X and random among the choices.

Example

Task assignment in an adversarial setting. System Monitor
$X \sim U n i f\{1, \ldots, k\}$.
Y needs to be different from X and random among the choices.

Recap

Network of nodes with communication:

Observations:

- Tools: Random coding, auxiliary variables, common randomness.
- Different networks require very different techniques.

Summary

Non-adversarial:

Adversarial:

Two Nodes:

- Secret key required
- Tradeoff between communication and secret key
- Game theory perspective

Fundamental Limits:

- Communication: $R_{1}>I(X ; Y)$.
- Secret key: $R_{2}>C(X ; Y)$.

Acknowledgments

MWVPUECRLIAPOBNHDSAGVSYARKEMIOASRYNLAW

Acknowledgments

MWVPUECRLIAPOBNHDSAGVSYARKEMIOASRYNLAW

Acknowledgments

MWVPUECRLIAPOBNHDSAGVSYARKEMIOASRYNLAW

Acknowledgments

MWVPUECRLIAPOBNHDSAGVSYARKEMIOASRYNLAW

Acknowledgments

```
MWVPUECRLIAPOBNHDSAGVSYARKEMIOASRYNLAW
```


Acknowledgments

MWVPUECRLIAPOBNHDSAGVSYARKEMIOASRYNLAW

Acknowledgments

MWVPUECRLIAPOBNHDSAGVSYARKEMIOASRYNLAW

Acknowledgments

MWVPUECRLIAPOBNHDSAGVSYARKEMIOASRYNLAW

Acknowledgments

MWVPUECRLIAPOBNHDSAGVSYARKEMIOASRYNLAW

Acknowledgments

MWVPUECRLIAPOBNHDSAGVSYARKEMIOASRYNLAW

Acknowledgments

M WVPUECRLIAPOBNHDSAGVSYARKEMIOASRYNLAW

And many more!

Acknowledgments

```
SJDQPOEWNZMXCNZHBAHGJAKSDFXPIUCIOPUQRE
TYQW JRHXCMNBCVHAVBCNZMXMQPWEOIREYWOZX
CVNBCMLASDFKGJHYSTEUQSJDQPOEWNZMXCNZJD
QPOEWNZMXCNZHBAHGJAKSDFXPIUCIOPUQRETYQ
WJRHXCMNBCVHAVBCNZMXMQPWEOIREYWOZXCVN
BCMLASDFKGJHYSTEUQSJDQPOEWNZMXCNZJDQPO
EWNZMXCNZHBAHGJAKSDFXPIUCIOPUQRETYQWJR
HXCMNBCVHAVBCNZMXMQPWEOIREYWOZXCVNBCM
LASDFKGJHYSTEUQSJDQPOEWNZMXCNZ
```

