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Cellular Communication Systems
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Distributed Sensing and Control
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Competitive Settings
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Parallel Processing in the Brain
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Data Centers

Paul Cuff (Stanford University) PhD Oral Exam June 5, 2009 6 / 38



Data Center

Computations can be
divided among
computers in a data
center.
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Overview - Coordinating Actions in a Network

Network of nodes with communication:

Other work moving information in networks:

The Gossiping Dons Problem [Bollobas, The Art of Mathematics]

Distributed Average Consensus [Tsitsiklis, Bertsekas, Athans 84]

Communication Complexity [Yao 79]

Function Computation [Ayaso, Shah, & Dahleh 08]
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Two Nodes

Tasks are identified by numbers.

R bits/task

X ∈ {1, 2}

X ∼ Unif

Y 6= X

Y ∈ {1, 2}
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Two Nodes

Tasks are identified by numbers.

R bits/task

X ∈ {1, ..., k}

X ∼ Unif

Y 6= X

Y ∈ {1, ..., k}
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Buffer of Tasks

Example (R = 1
4
, k = 5):

Tasks assigned to X: X1 X2 ... each independent

Sample realization: 3 1 2 5 3 5 2 4
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Buffer of Tasks

Example (R = 1
4
, k = 5):

Tasks assigned to X: X1 X2 ... each independent

Sample realization: 3 1 2 5 3 5 2 4

Message bits: b1b2 = 01
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Buffer of Tasks

Example (R = 1
4
, k = 5):

Tasks assigned to X: X1 X2 ... each independent

Sample realization: 3 1 2 5 3 5 2 4

Message bits: b1b2 = 01

Codebook:

b1 b2 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

0 0 1 2 3 4 5 1 2 3
0 1 2 4 1 3 5 2 4 1
1 0 ...
1 1 ...
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Two Nodes

Tasks are identified by numbers.

R bits/task

X ∈ {1, ..., k}

X ∼ Unif

Y 6= X

Y ∈ {1, ..., k}
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Concept from Rate-distortion Theory

To generate correlated actions ∼ p(x, y),

R ≥ I(X ; Y ) is required.

I(X;Y ) = H(X) + H(Y ) − H(X,Y ),

H(X) = E log
1

p(X)
.
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Concept from Rate-distortion Theory

To generate correlated actions ∼ p(x, y),

R ≥ I(X ; Y ) is required.

I(X;Y ) = H(X) + H(Y ) − H(X,Y ),

H(X) = E log
1

p(X)
.

Choose (X, Y ) ∼ Unif{(i, j) : i 6= j}.

Rmin = log
(

k
k−1

)

.
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Three Node Network

X ∈ {1, 2, 3}

Y1

Y2

R1

R2

Ideas for assigning tasks uniquely (i.e. X 6= Y1 6= Y2 6= X).
Assign Y1 first: R1 = log

(

3
2

)

.
Assign Y2 using full rate: R2 = log 3.
Rave = log2 3 − 1/2.
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Three Node Network

X ∈ {1, 2, 3}

Y1

Y2

R1

R2

1

2

Ideas for assigning tasks uniquely (i.e. X 6= Y1 6= Y2 6= X).
Assign Y1 ∈ {1, 3}: R1 = H

(

1
3

)

.
Assign Y2 ∈ {2, 3}: R2 = H

(

1
3

)

.
Rave = log2 3 − 2/3.
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Three Node Network

X ∈ {1, 2, 3}

Y1

Y2

R1

R2

Techniques so far:

R1 ≥ I(X;Y1),

R2 ≥ I(X;Y2),

R1 + R2 ≥ I(X;Y1) + I(X,Y2) + I(Y1;Y2|X).
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Three Node Network

X ∈ {1, 2, 3}

Y1

Y2

R1

R2

Common message to both:
(similar to Berger-Zhang scheme for Multiple Descriptions)

R1 ≥ I(X;U, Y1),

R2 ≥ I(X;U, Y2),

R1 + R2 ≥ I(X;U, Y1) + I(X;U, Y2) + I(Y1;Y2|X,U).
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Three Node Network

X ∈ {1, 2, 3}

Y1

Y2

R1

R2

X̂ + 1

X̂ + 2

Rates for optimized common message quality X̂.
Communication rate with common message: Rave = log 3 − log φ.

The golden ratio φ =
√

5+1
2

.
[Cuff, Permuter, Cover 09]
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Three Node Networks

X ∼ p0(x)

Y1

Y2

R1

R2

X ∼ p0(x)

Y1 Y2

R1 R2

X1 ∼ p0(x1, x2) X2 ∼ p0(x1, x2)

Y

R1 R2

Each of these networks benefits from a common message.

Paul Cuff (Stanford University) PhD Oral Exam June 5, 2009 14 / 38



Large Networks
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Cascade - One Assigned

R1 R2 Rk−1

X ∈ {1, ..., k}

Y1 Y2 Yk−2 Yk−1
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Cascade - One Assigned

R1 R2 Rk−1

X ∈ {1, ..., k}

Y1 Y2 Yk−2 Yk−1

Optimal Communication:

X Yk−1

Yk−2

R = log
(

k

k−1

)

R = log
(

k−1
k−2

)
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Cascade - One Assigned

R1 R2 Rk−1

X ∈ {1, ..., k}

Y1 Y2 Yk−2 Yk−1

Optimal Communication:

X Yk−1

Yk−2

R = log
(

k

k−1

)

R = log
(

k−1
k−2

)

Rk−1 = log

„

k

k − 1

«

,

Rk−2 = log

„

k

k − 1

«

+ log

„

k − 1

k − 2

«

= log

„

k

k − 2

«

,

Ri = log

„

k

i

«

.
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Cascade - One Assigned

R1 R2 Rk−1

X ∈ {1, ..., k}

Y1 Y2 Yk−2 Yk−1

Sum rate:

R =

k−1
∑

i=1

log

(

k

i

)

= k log k −

k
∑

i=1

log i

= k log k − log k!

≈ k log k − log

(

k

e

)k

= k log e. Linear in k

Paul Cuff (Stanford University) PhD Oral Exam June 5, 2009 16 / 38



Cascade - All But One Assigned

R1 R2 Rk−1

X1 X2 X3
Xk−1

Y

Xi unique in {1, ..., k} for all i.
Y must be the remaining task.
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Cascade - All But One Assigned

R1 R2 Rk−1

X1 X2 X3
Xk−1

Y

Xi unique in {1, ..., k} for all i.
Y must be the remaining task.

Idea - Accumulate information:

R1 = log(k − 1),

R2 = log(k − 1) + log(k − 2) − log 2,

Ri = log

(

k − 1

i

)

.
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Cascade - All But One Assigned

R1 R2 Rk−1

X1 X2 X3
Xk−1

Y

Xi unique in {1, ..., k} for all i.
Y must be the remaining task.

Better Idea - Accumulate mod k sum: Ri < log k, for all i.

Sum rate: R < (k − 1) log k.
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Cascade - Lower Bounds

Ri ≥ log(i + 1). Sum rate: R =
∑

k−1
i=1 Ri ≥≈ k log k

e
.
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Cascade - Lower Bounds

Ri ≥ log(i + 1). Sum rate: R =
∑

k−1
i=1 Ri ≥≈ k log k

e
.

Upper and lower bounds both scale like k log k.
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Star Network

X ∈ {1, ..., k} Y1

Y2

Y3

Y4

Yk−2

Yk−1

Try Ri = log k

k−1
for all i. (Doesn’t work)
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Star Network

X ∈ {1, ..., k} Y1

Y2

Y3

Y4

Yk−2

Yk−1

1

2

3
4

k − 2

k − 1

Assign Default Tasks: Ri = h
(

1
k

)

≈ log k

k
. Sum rate: R ≈ log k + log e.
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Star Network

X ∈ {1, ..., k} Y1

Y2

Y3

Y4

Yk−2

Yk−1

1

2

3
4

k − 2

k − 1

Lower bound: R ≥ I(X;Y1, ..., Yk−1) = H(X) = log k.
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Star Network

X ∈ {1, ..., k} Y1

Y2

Y3

Y4

Yk−2

Yk−1

X̂ + 1

X̂ + 2

X̂ + 3
X̂ + 4

X̂ − 2

X̂ − 1

Two phase: Specify low-rate estimate X̂. Choose defaults to exclude X̂ .

Paul Cuff (Stanford University) PhD Oral Exam June 5, 2009 19 / 38



Task Assignment Summary

X

Y1 Y2 Yk−2 Yk−1

X1 X2 X3
Xk−1

Y

replacements

X Y1

Y2

Y3

Y4

Yk−2

Yk−1

Sum rate:

Rmin ≈ k log e (linear)

Rmin ≈ k log k.

Rmin ≈ log k.

[Cuff, Permuter, Cover 09]
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Adversarial Settings

Coordination in the presence of an adversary
engages with two frameworks:

1 Cryptography

2 Game Theory

Other work connecting these fields:

[Dodis, Halevi, Rabin 2000]
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Game Theory

Payoff Matrix for a zero-sum game:

1 2

3 −1

0 1

0

1

Enemy

Me

p(x)
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Game Theory

Payoff Matrix for a zero-sum game:

1 2

3 −1

0 1

Enemy

00

01

My team

p(x, y)

0 1

−1 0

10

11

Paul Cuff (Stanford University) PhD Oral Exam June 5, 2009 23 / 38



Team Action

Person A Person B

Isolated Participants:
p(x)p(y)
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Team Action

Person A Person B

Isolated Participants:
p(x)p(y)

With Communication:
p(x, y)
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Reminder: Concept from Rate-distortion Theory

To generate correlated actions ∼ p(x, y),

R ≥ I(X ; Y ) is required.

I(X;Y ) = H(X) + H(Y ) − H(X,Y ),

H(X) = E log
1

p(X)
.
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Reminder: Concept from Rate-distortion Theory

To generate correlated actions ∼ p(x, y),

R ≥ I(X ; Y ) is required.

I(X;Y ) = H(X) + H(Y ) − H(X,Y ),

H(X) = E log
1

p(X)
.

This does not produce independent actions in the sequence.
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Reminder: Concept from Rate-distortion Theory

To generate correlated actions ∼ p(x, y),

R ≥ I(X ; Y ) is required.

I(X;Y ) = H(X) + H(Y ) − H(X,Y ),

H(X) = E log
1

p(X)
.

This does not produce independent actions in the sequence.

What is the price of independence?
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Billy and the Bully

Billy hopes to avoid the Bully:

1 0

0 3

out home

home

out

Bully

Billy

P (home) = 3/4
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Billy and the Bully

Billy hopes to avoid the Bully:

1 0

0 3

out home

home

Bully

Billy

P (home) = 3/4

0

0 01

If friends go to hangout 0, Billy gets no enjoyment by going to 1.
How much information about hangout choice do friends need to give?
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Erasure Challenge

Person A

0 1 0 0 1 1 1 1
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Erasure Challenge

Person A

0 1 0 0 1 1 1 1

Person B

0 e e e e 1 e e
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Erasure Challenge

Person A

0 1 0 0 1 1 1 1

Person B

0 e e e e 1 e e

How much must Person A tell Person B?
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Erasure Challenge

Person A

0 1 0 0 1 1 1 1

Person B

0 e e e e 1 e e

How much must Person A tell Person B?

Tell all the bits
8 bits
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Erasure Challenge

Person A

0 1 0 0 1 1 1 1

Person B

0 e e e e 1 e e

How much must Person A tell Person B?

Tell all the bits
8 bits

Choose the sequence for B and tell it
log2

(

8
2

)

+ 2 bits
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Erasure Challenge

Person A

0 1 0 0 1 1 1 1

Person B

0 e e e e 1 e e

How much must Person A tell Person B?

Tell all the bits
8 bits

Choose the sequence for B and tell it
log2

(

8
2

)

+ 2 bits = log2 112 = 6.81 bits
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Erasure Challenge

Person A

0 1 0 0 1 1 1 1

Person B

0 e e e e 1 e e

How much must Person A tell Person B?

Tell all the bits
8 bits

Choose the sequence for B and tell it
log2

(

8
2

)

+ 2 bits = log2 112 = 6.81 bits

Split the randomization
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Erasure Challenge

Person A

0 1 0 0 1 1 1 1

Person B

0 e e e e 1 e e

How much must Person A tell Person B?

Tell all the bits
8 bits

Choose the sequence for B and tell it
log2

(

8
2

)

+ 2 bits = log2 112 = 6.81 bits

Split the randomization
log2

(

4
2

)

+ 4 bits
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Erasure Challenge

Person A

0 1 0 0 1 1 1 1

Person B

0 e e e e 1 e e

How much must Person A tell Person B?

Tell all the bits
8 bits

Choose the sequence for B and tell it
log2

(

8
2

)

+ 2 bits = log2 112 = 6.81 bits

Split the randomization
log2

(

4
2

)

+ 4 bits = log2 96 = 6.58 bits
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Wyner’s Common Information

[Wyner 75]: C(X;Y ) , min
X−U−Y

I(X,Y ;U).

Amount of common randomness needed to generate X and Y ?

Common Randomness

(Rate R)

X

Y

Paul Cuff (Stanford University) PhD Oral Exam June 5, 2009 28 / 38



Wyner’s Common Information

[Wyner 75]: C(X;Y ) , min
X−U−Y

I(X,Y ;U).

Amount of common randomness needed to generate X and Y ?

Common Randomness

(Rate R)

X

Y

[Cuff 08]: Best use of common randomness in repeated zero-sum game.
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Encryption

X X
R

Enemy

Sensitive

Information
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Encryption

X X
R

Enemy

Secret Key
Sensitive

Information
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Encryption

X X
R

Enemy

Secret Key
Sensitive

Information

R1 = R2 = H(X). [Shannon 45]
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One-time Pad

Message:
01011011101

Secret Key (random):
11100101101
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One-time Pad

Message:
01011011101

Secret Key (random):
11100101101

⊕

Transmission:
10111110000
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One-time Pad

Message:
01011011101

Secret Key (random):
11100101101

⊕

Transmission:
10111110000

⊕

Decoded Message:
01011011101
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Correlation Encryption

X Y
R1

Enemy

Secret Key (Rate R2)
Sensitive

Information

Goals:
1 Y correlated with X according to desired p(y|x).
2 Enemy knows nothing about X or Y .
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Correlation Encryption Rate Region

S , Cl{ encryption achievable (R1, R2)}

X Y

R2

R1

Theorem: Encryption Rate Region

S = {(R1, R2) :

R1 ≥ I(X;U),

R2 ≥ I(X,Y ;U),

for some U such that X − U − Y forms a
Markov chain and |U| ≤ |X ||Y| + 1.}

[Cuff 08]
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Correlation Encryption Rate Region

S , Cl{ encryption achievable (R1, R2)}

X Y

R2

R1

R1

R2

I(X;Y )

C(X;Y )

Theorem: Encryption Rate Region

S = {(R1, R2) :

R1 ≥ I(X;U),

R2 ≥ I(X,Y ;U),

for some U such that X − U − Y forms a
Markov chain and |U| ≤ |X ||Y| + 1.}

[Cuff 08]
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Achievability

Xn Y n
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Achievability

Xn Y n

x
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Achievability

Xn Y n

x
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Achievability

Xn Un Y n

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

Generate many codebooks of un sequences ∼
∏

n

i=1 p(ui).

The secret key specifies the codebook to use.
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Achievability

Xn Un Y n

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

Generate many codebooks of un sequences ∼
∏

n

i=1 p(ui).

The secret key specifies the codebook to use.

Encoder finds a un sequence correlated with xn and sends the index i.
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Achievability

Xn Un Y n

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

Generate many codebooks of un sequences ∼
∏

n

i=1 p(ui).

The secret key specifies the codebook to use.

Encoder finds a un sequence correlated with xn and sends the index i.

Decoder generates yn randomly conditioned on un(i).
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Achievability

Xn Un Y n

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

R1 ≥ I(X;U),

R2 ≥ I(X;U) + I(U ;Y |X).

Resolvability: [Wyner 75] [Han, Verdú 93]
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Converse

M is the message.
W is the secret key.

nR1 ≥ H(M)

≥ H(M |W )

≥ I(Xn;M |W )

≥ I(Xn;M,W )...
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Converse

M is the message.
W is the secret key.

nR1 ≥ H(M)

≥ H(M |W )

≥ I(Xn;M |W )

≥ I(Xn;M,W )...

nR2 = H(W )

≥ H(W |M)

≥ H(Xn, Y n;W |M)

= I(Xn, Y n;W,M) − I(Xn, Y n;M)...
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Example

Task assignment in an adversarial setting.
System Monitor

X ∼ Unif{1, ..., k}.

Y needs to be different from X
and random among the choices.

X Y
R1

Enemy

Secret Key (Rate R2)
Sensitive
Information

R1

R2

(1, 2)
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Example

Task assignment in an adversarial setting.
System Monitor

X ∼ Unif{1, ..., k}.

Y needs to be different from X
and random among the choices.

X Y
R1

Enemy

Secret Key (Rate R2)
Sensitive
Information

R1

R2

(1, 2)

(

log k

k−1
, log k

)
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Recap

Network of nodes with communication:

X1

X2

Observations:

Tools: Random coding, auxiliary variables, common randomness.

Different networks require very different techniques.
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Summary

Non-adversarial:

X

Y1 Y2 Yk−2 Yk−1

X1 X2 X3
Xk−1

Y

X Y1

Y2

Y3
Y4

Yk−2

Yk−1

Adversarial:

Two Nodes:

Secret key required

Tradeoff between
communication and secret key

Game theory perspective

Fundamental Limits:

Communication: R1 > I(X;Y ).

Secret key: R2 > C(X;Y ).
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S J D Q P O E W N Z M X C N Z H B A H G J A K S D F X P I U C I O P U Q R E

T Y Q W J R H X C M N B C V H A V B C N Z M X M Q P W E O I R E Y W O Z X

C V N B C M L A S D F K G J H Y S T E U Q S J D Q P O E W N Z M X C N Z J D

Q P O E W N Z M X C N Z H B A H G J A K S D F X P I U C I O P U Q R E T Y Q

W J R H X C M N B C V H A V B C N Z M X M Q P W E O I R E Y W O Z X C V N

B C M L A S D F K G J H Y S T E U Q S J D Q P O E W N Z M X C N Z J D Q P O

E W N Z M X C N Z H B A H G J A K S D F X P I U C I O P U Q R E T Y Q W J R

H X C M N B C V H A V B C N Z M X M Q P W E O I R E Y W O Z X C V N B C M

L A S D F K G J H Y S T E U Q S J D Q P O E W N Z M X C N Z
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