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Abstract. Multiple cooperating robots are able to complete many tasks more quickly and reliably than
one robot alone. Communication between the robots can multiply their capabilities and e�ectiveness, but
to what extent? In this research, the importance of communication in robotic societies is investigated
through experiments on both simulated and real robots. Performance was measured for three di�erent
types of communication for three di�erent tasks. The levels of communication are progressively more
complex and potentially more expensive to implement. For some tasks, communication can signi�cantly
improve performance, but for others inter-agent communication is apparently unnecessary. In cases where
communication helps, the lowest level of communication is almost as e�ective as the more complex type.
The bulk of these results are derived from thousands of simulations run with randomly generated initial
conditions. The simulation results help determine appropriate parameters for the reactive control system
which was ported for tests on Denning mobile robots.
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1. Introduction

Robot system designers must carefully consider

each component of their design. The inclusion of

sensors, actuators, or additional robots must be

justi�ed by contributing to e�cient task comple-

tion. Components that do not directly contribute

add cost without bene�t. Communication is an-

other component of multiagent robotic systems

that merits careful consideration. The question is

not simply whether or not to include inter-robot

communication, but what type, speed, complexity

and structure. How should these design decisions

be made?

As in other disciplines, a formal methodology

helps the designer answer these questions. At the

Georgia Tech Mobile Robotics Laboratory, such

a robot system design methodology has been de-

veloped and re�ned for both single and multia-

gent robotic systems. These systems are imple-

mented in both simulation and on mobile robots

(e.g., [3], [13]). The approach relies on two key

points: 1) an objective metric of system perfor-

mance, and 2) an iterative cycle of simulation and
instantiation on real systems. Through simula-

tion, the designer can quickly discover which sen-
sors, actuators, and control parameters are most

critical. Parameters are varied as performance is
measured and compared to that of other con�gu-

rations. The goal is to �nd a system that maxi-
mizes (or minimizes) the performance metric. Fi-
nally, the con�guration is ported to a real robotic

system for testing. In this article, the approach is
applied to communication in reactive multiagent

robotic systems.

To discover how communication impacts multi-
agent robotic system performance, three societal

robot tasks were devised. The performance in
simulation of a team of robots is measured for
each of these tasks for three di�erent types of

communication. The experiments are designed so
that performance for each type of communication

can be compared across di�erent tasks. In all, a
six-dimensional space of task, environment, and

control parameters was explored including: task,
communication type, number of robots, number
of attractors, mass of attractors, and percentage
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of obstacle coverage. The simulation results were
supported by porting the control system to a team
of Denning mobile robots.

2. Related Work

2.1. Multiagent Robotic Systems

Multiagent robotic systems constitutes a very ac-
tive area of research. A large body of literature
exists regarding systems ranging in size from two
to thousands of robots. Dudek et al [19] provide
a taxonomy of these systems classi�ed along the
dimensions of group size, recon�gurability, pro-
cessing ability, and communication range, topol-
ogy and bandwidth. The research in this article
concentrates on relatively small group sizes, typ-
ically on the order of two to ten agents. Large
scale swarm robotic systems (e.g., [27]) are not
considered.

Fukuda was among the �rst to study multia-
gent robotic systems in the context of what he
refers to as cellular robotics [24]. This pioneer-
ing work is mainly concerned with heterogeneous
agents. The research reported in this article is
for homogeneous societies, where all the agents
are functionally equivalent. Recently, researchers
at MIT's AI Laboratory [16], [40] have studied
aspects of subsumption-based reactive control us-
ing robot societies consisting of up to 20 agents.

In particular, learning methods have been evalu-
ated (e.g., [45]). Applications of multiagent sys-
tems are also being investigated in military envi-
ronments in both the United States and Europe
[43], [34]. Extra-terrestrial planetary exploration
has also been proposed as a useful target domain
for these societies [41].

Our research focuses on three tasks: forag-
ing, consuming, and grazing. Foraging consists
of searching the environment for objects (referred

to as attractors) and carrying them back to a cen-
tral location. Consuming requires the robot to
perform work on the attractors in place, rather
than carrying them back. Grazing is similar to
lawn mowing; the robot or robot team must ad-
equately cover the environment. Of these three,
foraging has been the most widely studied to date.
Floreano [21] describes nest-based foraging strate-

gies using a neural network architecture. Drogoul

and Ferber [20] report results of simulations of for-
aging robots demonstrating the spontaneous evo-

lution of structure such as chains from extremely
simple agents.

A pressing question, and one which the re-
search described in this article addresses, is the

role of communication in multiagent robotic sys-
tems. Arkin [5] previously reported that success-

ful task-achieving behavior can occur even in the

absence of communication between agents. Al-
tenburg and Pavicic created a multi-robot society

consisting of a group of small robots conducting a
search and retrieve task using either an infra-red

or incandescent recruitment signal. The authors

reported an approximately 50% improvement in
performance for target acquisition using this type

of signal. The work as reported in [1] is very pre-
liminary.

Werner and Dyer [52] have studied the evolu-
tion of communication in synthetic agents. They

have demonstrated that directional mating sig-
nals can evolve in these systems given the pres-

ence of societal necessity. MacLennan [38] also

has studied this problem and has concluded that
communication can evolve in a society of simple

robotic agents. In his studies, the societies which
evolved communicationwere 84% �tter than those

in which communication was suppressed. An or-

der of magnitude better performance was observed
when learning was introduced. Franklin and Har-

mon, in simulation research conducted at ERIM
[22], used a rule-based cooperative multiagent sys-

tem to study the role of communication, cooper-
ation, and inference and how these relationships

lead to specialized categories of cooperative sys-

tems. Regarding communication, they recognized
that information need not be explicitly requested

by a receiver in order for it to be potentially useful
to the multiagent system as a whole.

Yanco studied communication speci�cally in
the context of robotic systems. In her research

[53], a task is de�ned which requires communi-
cation to coordinate two robots, Ernie and Bert.

The robots have a limited vocabulary which self-

organizes over time to improve the performance
of the task, which involves mimicking the behav-

ior of a leader robot. Noreils [44] describes coor-
dinated protocols as a basis for encoding commu-
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nication signals between robots for navigational

tasks. Formal theoretical methods are also being
applied in a limited way to this problem. For ex-

ample,Wang [51] has looked at distributed mutual
exclusion techniques for coordinating multi-robot

systems.

The research we report in this article is moti-

vated by the desire to create a design methodol-
ogy for multiagent reactive robotic systems. To

e�ectively design these systems it is important

to choose correctly the number of agents and the
communication mechanisms of a robot society for

a particular task. This goal is decidedly di�erent
than the studies reported above.

2.2. Biological Systems

Nature o�ers a wealth of existing successful be-

haviors which robot designers can often directly
apply to their work. Since communication is im-

portant in many natural societies it is appropriate

to look to them for inspiration. Our strategy for
creating multiagent systems has been signi�cantly

in
uenced by biological and ethological studies. In
[10], we reported the dimensions by which commu-

nication can be described in these systems. A few

speci�c examples of the role of communication in
animal societies are reported below.

One of the most commonly studied social bi-
ological systems is that of ants. Excellent refer-

ences on their social organization and communi-
cation methods include [29], [25]. Ants typically

use chemical communication to convey informa-
tion between them. Goss et al [26] have studied

foraging behavior in ants, creating computer mod-

els that are capable of replicating various species'
performance for this task. Franks [23] has looked

in particular at the behavior of army ants in the
context of group retrieval of prey regarding the

relationships of mass to objects retrieved and ve-

locity of return.

Tinbergen's in
uential work on social behav-
ior in animals [50] describes a range of behav-

iors including: simple social cooperation involv-

ing sympathetic induction (doing the same things
as others), reciprocal behavior (e.g., feeding ac-

tivity), and antagonistic behavior; mating behav-
iors involving persuasion, appeasement, and orien-

tation; family and group life behaviors involving

ocking, communal attack (mobs), herding behav-
iors, and infectious behaviors (alarm, sleep, eat-
ing); and �ght-related behaviors involving repro-
ductive �ghting (spacing rivals), mutual hostility
(spacing group individuals), and peck-order (re-
ducing �ghting).

An interesting study showing environmental
impact on foraging behavior in �sh is presented in
[18]. The factors considered include food supply,
hunger, danger and competition. Mob behavior
and communication in the whiptail wallaby [31]
also provides an understanding for the emergent
organization of multiple agents and the nature of
communication that supports this group behavior.
Studies in primates have been conducted regard-
ing the organization of colonies [2] relative to their
environment. Finally, research in display behavior
in animals (e.g., [42]) provides insights in relation
to the state-based communicationmechanisms de-
scribed later in this article.

3. Three Tasks for Robotic Societies

The task a robotic system is to perform dictates
to some extent the sensors and actuators required.
It is not as apparent how the task impacts control
system and communication parameters. To inves-
tigate this question, three generic multiagent tasks
are considered: Forage, Consume, and Graze.

3.1. Forage

The Forage task for a robot is to wander about
the environment looking for items of interest (at-
tractors). Upon encountering one of these attrac-
tors, the robot moves towards it, �nally attach-
ing itself. After attachment, the robot returns
the object to a speci�ed home base. Many ant
species perform the Forage task as they gather
food. Robots performing this task would poten-
tially be suitable for garbage collection or speci-
men collection in a hazardous environment.

Figure 1a shows a simulation of two robots for-
aging for seven attractors and returning them to
a home base (the simulation environment is de-
scribed in Section 6). In the simulation, obsta-
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cles are shown as large black circles, attractors are
represented as small circles, and the paths of the
robots are shown as solid or dashed lines. They
leave dashed lines as they wander, and solid lines
when they acquire, attach, and return the attrac-
tors to home base.

The mass of the attractor item dictates how
quickly a robot can carry it. The heavier the at-
tractor, the slower the speed. Several robots co-
operating can move the attractor faster, but only
up to the maximum speed of an individual robot.

3.2. Consume

Like Forage, the Consume task involves wan-
dering about the environment to �nd attractors.
Upon encountering an attractor, the robot moves
towards it and attaches itself to the object. Un-
like the Forage task, however, the robot per-
forms work on the object in place after attach-
ment. The time required to do the in-place work
is proportional to the mass of the object. It is not
necessary for the robot to carry the object back
to home base. Applications might include toxic
waste cleanup, assembly, or cleaning tasks.

Figure 1b shows a simulation of two robots con-
suming seven attractors. Note that this task is
performed in exactly the same environment as the
forage task shown in Figure 1a. The robots leave
dashed lines as they wander, and solid lines when
they acquire and move to the attractors.

The mass of the attractor item dictates how
quickly a robot can consume it. The heavier the
attractor, the more time it takes. Several robots
cooperating can consume an attractor faster. For
this task the rate of consumption is linear with
the number of robots and has no ceiling.

3.3. Graze

The Graze task di�ers from Forage and
Consume in that discrete attractors are not in-
volved. Instead, the object is to completely cover,
or visit the environment. Some familiar exam-
ples are mowing the lawn, sowing seed, and of
course, cows grazing. The Graze task for a robot
is to search for an area that has not been grazed,
move towards it, then graze over it until the en-

tire environment (or some percentage of it) has
been covered. It is assumed that the robot pos-
sesses some means to \graze" and that it grazes
over a �xed \swath." The size of the task is dic-
tated by the proportion of environment that must
be covered before completion. Figure 1c shows
a simulation of two robots grazing over 95% of
the environment. The robots leave dashed lines
as they wander, and solid lines when they graze.
Grazing robots might be used to mow, plow or
seed �elds, vacuum houses [37], or remove scrub
in a lumber producing forest.

The size of the swath that a robot can graze,
and the percentage of the area that the robot must
graze over both a�ect how long it takes to com-
plete the task. Multiple robots can complete the
task faster if they avoid traversing already grazed
areas and if they can �nd ungrazed areas quickly.

3.4. Task Parameters

Each of the task de�nitions include parameters
that a�ect the speed at which a robotic system
can carry them out. These are the most impor-
tant:
� Number of attractors. Clearly the number

of attractors the robots must collect or consume
will a�ect how long it takes to accomplish the
task.

� Mass of attractors. In general terms, an at-
tractor's mass can be thought of as a \trans-
portability" factor for the Forage task, or a
\workability" factor for the Consume task.

� Graze coverage. For the Graze task, the to-
tal size of the area and the percentage required
to be grazed directly impacts the time to cover
it.
Sections 7 and 8 report experimental results on

how each of these factors a�ect performance.

3.5. Complex tasks

For this work, only the three basic tasks and the
behaviors necessary for robots to perform them
are considered. The results for these tasks are
important because more complex tasks are easily
described as combinations of simpler ones. Con-
sider a robot removing scrub from a forest, after
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Forage Consume Graze

Fig. 1. Simulation of Forage, Consume, and Graze with two robots and seven attractors.

working for a period of time, it must return to a

refueling station. The scrub removal portion of

the task is analogous to Graze, while refueling is

similar to Consume.

Another complex task, BoundingOverwatch,

is a movement tactic utilized by Army Scouts.

Usually employed by two groups of two ground

vehicles, it allows safe penetration into hostile

areas. Each group moves forward a short dis-

tance, then waits and \covers" the other group

as it moves forward. A behavior to perform

BoundingOverwatch can be built as a more spe-

cialized and coordinated Consume task. Once ap-

propriate waypoints for each group are selected,

virtual attractors can be placed there. The be-

havior would emerge as each two element group

successively moves from attractor to attractor.

Other research in our laboratory is underway

which investigates how complex behaviors may be

speci�ed as combinations of basic behaviors [36].

The research includes a language which allows in-

dividual robots, and societies of robots to be de-

scribed formally. Formal operators allow basic,

or primitive, behaviors to be grouped into more

complex assemblages. These assemblages are fur-

ther combined to form the overall behavior of the

robot. The language includes operators that coor-

dinate individual robots into cooperating groups.

For clarity, this article will describe the robot be-

haviors somewhat less formally than in this related

work, but the same recursive philosophy applies.

4. Reactive Control

A schema-based reactive control system is used in

this research. To provide the reader appropriate

background, a brief summary of reactive control

is �rst provided, followed by some of the special

characteristics of schema-based systems.

Reactive control is a paradigm which emerged

in the mid-1980's as a new approach to controlling

robots. It arose in response to perceived problems

in earlier research which required heavy reliance

on internal world models. Reactive control is char-

acterized by several distinct features:
� Multiple parallel behaviors are constructed in

a modular fashion.
� The design of the systems is in a bottom-up

manner, incrementally adding more and more

competence to the robot.
� Perception and action are tightly coupled.
� Reliance on explicit world models and represen-

tational knowledge is avoided during execution.
� They are particularly well-suited for dynamic

and unstructured domains.

Brooks' subsumption architecture is a well-

known example of this control paradigm [15].

Other representative examples include [3], [30],

[46], [39], [49]. These various strategies di�er in

several signi�cant ways including the organization
and decomposition of behaviors and whether arbi-

tration, action-selection, or concurrent processing

is used. The interested reader is referred to [8] for

a more complete review.

Schema-based reactive control has been widely
used with success in our laboratory for both sim-

ulation studies and real robot implementations



6 Balch and Arkin

(e.g., [3], [5], [12], [13], [14]). Some features
which distinguish schema-based robotic control

from other reactive approaches include:
� A dynamic network of processes (schemas) is

used rather than a hardwired layered system.
� No arbitration is used, instead behaviors

(schemas) execute concurrently.
� Potential �eld techniques are used to encode

the robot's behavioral response.
� Flexibility is introduced by allowing high-level

knowledge and planning to select and parame-

terize the system [6].
� Adaptation and learning are facilitated through

this 
exibility [17], [47], [48].
� Neuroscienti�c, psychological, and ethological

studies provide motivation for schema use. [7]

In schema-based control, each of the active be-
haviors (motor schemas) computes its reaction to

its perceptual stimuli using a method analogous

to potential �elds [3]. It must be noted that un-
like traditional potential �elds [33], [32], the entire

�eld is never computed, only the robot's reaction
to its current perception of the world at its present

location. All of these independent computations

are summed and normalized and then sent to the
robot for execution. This perceive-react cycle is

repeated as rapidly as possible and is facilitated
by the use of action-oriented perception [4] which

permits only task-relevant information to be pro-

cessed on a need-to-know basis. Problems with
local minima, maxima, and cyclic behavior which

are endemic to many potential �elds strategies are
handled by several methods including: the injec-

tion of noise into the system [3]; resorting to high-

level planning [6]; repulsion from previously vis-
ited locales [14]; continuous adaptation [17]; and

other learning strategies [47], [48]. Schema-based
robot control has been demonstrated to provide

robust navigation in complex and dynamic worlds.

The Appendix contains information on the spe-
ci�c computation of the individual schemas used

in this research.

4.1. Baseline Assemblage Parameters

Experimental results were generated for the tasks

described in Section 3 by comparing performance
of proposed robotic systems to baseline, or con-

trol, performance results. The baseline data was
computed by �rst selecting a reasonable set of con-
trol parameters, then running a statistically sig-
ni�cant number of simulations. Values for these
parameters are based on previous research [5]. In
this section, the behaviors for executing the three
tasks (Forage, Consume, and Graze) and their
baseline parameters are described.

At the highest level, the tasks themselves
are assemblages which are represented as �nite
state acceptors (FSAs) consisting of several states.
FSAs provide an easy means for both expressing
and reasoning about behavioral sets by providing
formal semantics [11]. Each state corresponds to
a separate assemblage in which a constituent set
of motor schemas is instantiated if that particular
state is active. Perceptual T riggers cause tran-
sitions between states. Each active motor schema
has a perceptual schema associated with it to pro-
vide the information necessary for the robot to
interact with its environment.

4.2. Forage

For the Forage task, the robots can be in one of
three states: wander, acquire, and deliver. All
robots begin in the wander state. If there are
no attractors within the robot's �eld of view, the
robot remains in wander until one is encountered.
When an attractor is encountered, a transition to
the acquire state is triggered. While in the ac-

quire state, the robot moves towards the attrac-
tor and when it is su�ciently close, attaches to
it. The last state, deliver, is triggered when the
robot attaches to the attractor. While in the de-
liver state the robot carries the attractor back to
home base. Upon reaching home base, the robot
deposits the attractor there and reverts back to
the wander state. Figure 2 shows the FSA for
Forage. 1

For each state, the active schemas and their
parameters are:
� Wander State

noise: high gain, moderate persistence to
cover a wide area of the environment.

avoid-static-obstacle for objects: su�-
ciently high to avoid collisions.
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avoid-static-obstacle for robots 2: mod-
erately high repulsion to force individual
robots apart and more e�ciently cover the
environment.

detect-attractor: perceptual schema
that triggers the acquire state when the
robot senses an attractor.

� Acquire State

noise: low gain, to deal with local minima.

avoid-static-obstacle for objects: su�-
ciently high to avoid collisions.

avoid-static-obstacle for robots: very
low gain, to allow robots to converge on
the same attractor and thus cooperate, but
avoid colliding with one another.

move-to-goal: high gain to move the
robot to the detected attractor.

detect-attachment: a perceptual
schema that triggers a state transition to
deliver when the robot is close enough to
attach to the attractor.

� Deliver State

noise: as in acquire, low gain to deal with
local minima.

avoid-static-obstacle for objects: as in
acquire, su�ciently high to avoid collisions.

avoid-static-obstacle for robots: same
as in acquire.

move-to-goal: high gain, with home base
as the target.

detect-deposit: a perceptual schema
that triggers a state change when the robot
reaches home base.

Speci�c values used for schema gains and pa-
rameters in this study are listed in Table 1
(Sec. 6.3).

Deliver

Acquire
Encounter

Deposit
Attach

Wander

Fig. 2. The Forage FSA

4.3. Consume

The FSA and behaviors for the Consume task
(Figure 3) are similar to those used in Forage.
In fact, the schemas and their gains are identi-
cal in the wander and acquire states. The con-

sume state, however, is unique to to this behav-
ior. In the consume state, only one motor schema,
consume-attractor is activated. It reduces the
mass of the attractor at a �xed rate over time.
When the attractor is fully consumed (mass zero)
it is deactivated and the robot transitions back
to the wander state. Table 1 shows the schema
parameters for Consume.

4.4. Graze

For the Graze task, the wander and acquire states
are again similar to those of Forage and Con-

sume. The primary di�erence is that detect-
attractor in the wander state is replaced with a
similar detect-ungrazed-area schema. Detect-
ungrazed-area has the same �xed sensor range
as detect-attractor, but it detects ungrazed ar-
eas instead of attractors. Each robot starts in
the wander state and searches for ungrazed areas.
Upon encountering one, it transitions to the ac-

quire state and moves towards it. When the robot
arrives at the graze site, it transitions to the graze
state. The graze state is quite di�erent from the
corresponding states in the other FSAs. While in
the graze state, the robot tends to move along its
current heading as it \grazes" over a �xed swath
of the environment. As long as there continues
to be ungrazed areas directly ahead, the robot re-
mains in the graze state. The active schemas for
this state are:
� noise: low gain, to deal with local minima.

Acquire
Encounter

Attach

Consume

Complete

Wander

Fig. 3. The Consume FSA
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Acquire
Encounter

Complete

Graze

Arrive

Wander

Fig. 4. The Graze FSA

� avoid-static-obstacle for objects: high
enough to avoid collisions.

� avoid-static-obstacle for robots: very low, to
allow robots to graze close by, but avoid colli-

sions.
� probe - moderate gain, to encourage the robot

to keep moving along its current heading to-
wards ungrazed areas.

� graze - performs the actual graze operation
over a �xed swath.

� detect-grazed-area - perceptual schema that
triggers a state change once the robot has com-

pletely grazed the local area.

For simulation purposes, Graze is implemented
by maintaining and marking a high resolution grid

corresponding to the environment. Initially, the
entire grid is marked as ungrazed. As robots

graze, they mark visited areas on the grid accord-
ingly.

Gains and parameters for each of the schemas
active in the graze state are listed in Table 1.

5. Forms of Inter-agent Communication

Three di�erent types of communication are evalu-
ated in this research. Using a minimalist philoso-

phy, the �rst type actually involves no direct com-
munication between the agents. The second type

allows for the transmission of state information
between agents in a manner similar to that found

in display behavior in animals [42]. The third
type (goal communication) requires the transmit-

ting agent to recognize and broadcast the loca-
tion of an attractor when one is located within

detectable range. Each of these forms of commu-
nication is described in more detail below.

5.1. No Communication

For this type of multiagent society no direct com-
munication is allowed. The robots are able to
discriminate internally three perceptual classes:
other robots, attractors, and obstacles. None of
this information, however, is communicated to
other agents. Each robot must rely entirely upon
its own perception of the world. Arkin has shown
in previous work [5] that this basic information is
enough to support cooperation in robot retrieval
tasks (Forage). Cooperation in this context refers
to the observed phenomena of recruitment, where
multiple agents converge together to work on the
same task. The baseline results (Section 7) show
that cooperation also emerges in the Consume

and Graze tasks as well.

5.2. State Communication

When state communication is permitted, robots
are able to detect the internal state (wander, ac-
quire, or deliver) of other robots. For the results
reported in this article, the communication is even
simpler than that, where only one bit of data is
transmitted: with zero indicative of an agent be-
ing in the wander state and one indicating that
it is in any state other than wander (i.e., acquire,
deliver, consume, or graze). In [9], this type of
communication was shown to provide a distinct
advantage over no communication for performance
of the Forage task. Communication is often con-
sidered a deliberate act, but state communication
is not necessarily \intentional" since information
can be relayed by passive observation. The sender
does not necessarily explicitly broadcast its state,
but allows others to observe it. In nature this
type of communication is demonstrated when an
animal changes its posture or external appearance,
such as a dog raising its hackles or exhibiting 
ight
behavior in response to fear.

To take advantage of state information in reac-
tive control, the behavioral assemblages for each
task are modi�ed slightly. >From a robot's point
of view, the most important states to look for in
another robot are those where the other robot has
found an attractor or an area to graze; that means
that the other robot has found useful work. If the
robot goes to the same location, it is likely to �nd
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useful work as well, or at least be able to assist
cooperatively. The appropriate states are acquire,

deliver, consume, or graze ; in the wander state
the robot has not yet found any work to do.

For all three tasks, the behaviors are modi�ed
so that a robot will transition to acquire if it dis-

covers another robot in acquire, deliver, consume,

or graze. Since the robot may not yet know the
location of the attractor, it follows the other robot

instead. Once the attractor is detectable it heads
directly for it.

5.3. Goal Communication

Goal communication involves the transmission

and reception of speci�c goal-oriented informa-
tion. Implementation on mobile robots requires

data to be encoded, transmitted, received, and de-

coded. Goal communication di�ers from the other
two levels in that the sender must deliberately

send or broadcast the information. A natural ex-
ample of this type of communication is found in

the behavior of honeybees. When a bee discovers

a rich source of nectar, it returns to the hive and
communicates the location with a \dance" which

encodes the direction and distance from the hive
to the source.

For reactive control, goal communication is im-
plemented by modifying the behavioral assem-

blages in the same manner as described for state
communication. However, instead of following the

transmitting robot that discovered the attractor,

a receiving robot moves directly toward the loca-
tion of the attractor. The intent is that the agent

may now follow a more direct path (beeline) to
the attractor.

This very rudimentary form of communication
only broadcasts the goal that the transmitting

agent is involved with. Another mode of com-
munication, not yet explored, involves the trans-

mission of all detected attractors independent of

whether the transmitting agent is already acquir-
ing or delivering one. This would present more

options for the receiving agent, perhaps choosing
to move to the closest attractor independent of

whether or not the transmitting agent would ben-

e�t from its help. This additional form of commu-
nication is left for future work.

5.4. Explicit versus Implicit Communica-

tion

The implementation of goal and state communi-
cation requires explicit signaling and reception of
the communicated information. State communi-
cation can be implemented simply by mounting a
binary signal atop the robot which is either on or
o� depending on the robot's internal state. This
communication, although trivial, is explicit as it
requires the deliberate act of invoking the signal.

Information pertinent to cooperation might be
gathered by other means as well. The internal
state of a robot could be inferred by observing its
movement (e.g., recognizing a robot in the wan-

der state due to apparent random movements),
thereby placing a larger perceptual burden on the
receiving agent. Robots can also communicate
through their environment. In the graze task,
robots leave evidence of their passage since the
places they visit are modi�ed. This fact is observ-
able by the other robots. These types of commu-
nication are referred to as implicit since they do
not require a deliberate act of transmission.

Implicit communication was found to be an im-
portant mode of cooperation in simulations of the
graze task. Since this communication emerges
from the interaction of the agent and the environ-
ment, it cannot be \turned o�." Thus compar-
ative analyses of performance with and without
implicit communication are not meaningful.

6. Simulation Environment

The simulation environment should provide an ac-
curate estimate of robot performance in the real
world. Simulation is important because it o�ers a
means to test many robot system con�gurations
quickly. To be useful, the simulation must re-
port performance in terms of the prescribed per-
formance metric and realistically emulate the envi-
ronment and the robot's interaction with it. Fur-
thermore, the simulation must allow hardware,
control, and environmental variables to be read-
ily manipulated.

The test environment for this research is writ-
ten in C using the X Windows graphics package.
The simulator has been a useful tool for other re-
search in the Mobile Robot Lab at Georgia Tech,
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including [9], [17], [47], [37], [14] among others.
Results generated in this simulation environment

have routinely been demonstrated on actual mo-

bile robots (e.g., [3], [12], [13], [14]). Except for
minor changes 3, the present simulator is the same

one used in these earlier projects. The simulator
may be run in a visual mode, or in a text-only

mode. The visual mode is used primarily for de-

bugging and qualitative accessments. The text-
only mode is used for multiple runs to gather ex-

tensive statistical data.

Each robot is an identical holonomic vehicle

which is controlled by one of the task assemblages
described above. Each agent's current state, how-

ever, is dependent solely on its own perception.

The robotic agents execute their tasks in a 64 x
64 unit environment. The units are dimensionless,

but for convenience of comparison to real robot
implementations they represent one foot. Time is

measured in steps. Each step is one iteration of

the program that calculates the robots' next posi-
tions. The robots are able to sense their location

in the environment, and detect obstacles, attrac-
tors and other robots within a �xed radius �eld of

view. They are able to grasp and carry attractors,

consume attractors, or graze as the task dictates.
The simulation automatically enforces the limits

and rules set forth in the task speci�cations, as
well as sensor/actuator limits. The robots are al-

lowed to move without restriction within the 64 x

64 environment, but they may not move outside
of it.

6.1. The Performance Metric

What is \performance"? Since one goal of this

research is to report the impact of communica-
tion on robotic societies, performance must be ob-

jectively measurable. Selection of a performance

metric is important because these metrics are of-
ten in competition - i.e., cost versus reliability.

Some potential metrics for multiagent robotic sys-
tems are:
� Cost - Build a system to accomplish the task

for the minimum cost. This may be appropri-

ate for many industrial tasks. Use of this metric

will tend to reduce the cost of the system and
minimize the number of robots used.

� Time - Build a system to accomplish the task
in minimum time. This metric will lead to a

solution calling for the maximum number of
robots that can operate without interference.

� Energy - Complete the task using the small-

est amount of energy. This is appropriate in
situations where energy stores are limited, e.g.,

space or undersea applications.
� Reliability/Survivability - Build a system

that will have the greatest probability to com-

plete the task even at the expense of time or
cost. This may be useful for certain strategic

military applications.

The task metric can also be a numeric combina-

tion of several measurements. Whatever the met-
ric is, it must be measurable, especially in simula-

tion. For this research, time to complete the task

was chosen as the primary performance metric. It
is easily and accurately measurable and conforms

to what is frequently thought of as performance.
No claim is made however that this is the \best"

metric; robot path length or energy consumption

may be equally useful. In the simulation stud-
ies described herein, performance is measured by

counting how many iterations the simulation pro-
gram executes before the task is completed.

There are a few initial conditions for some
tasks that prevent the robots from completing it.

For example, if an attractor was somehow placed

within a circle of obstacles, the robots would never
be able to reach it. Such a scenario is not solvable

by any robot system without the capacity to move
the obstacles. Other scenarios, however, may ul-

timately be solvable, but may potentially defeat

the purely reactive strategies presented here. To
provide for these situations, the simulation is al-

lowed to continue for 8000 steps before failure is
declared. Since most runs complete in less than

2000 steps, it is highly likely that the system will

never complete the task if it does not do so before
failure is declared. The objective is to evaluate the

impact communication makes on performance, so

it is not important to know why the system failed,
just to measure how it improves with communica-

tion. In cases of failure, the run is recorded as
having taken 8000 steps. This approach reports

optimistic performance since the run might never

have completed (in�nite steps). But, to show im-
provement over a failure case, the system must
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actually complete the task and in less than 8000
steps.

6.2. Environmental Factors

As much as can be known about the target sys-
tem's operating environment should be incorpo-
rated into the design process for the control sys-
tem. If these factors are known a priori, they can
be included in the simulation. Important environ-
mental factors include:
� Mobility factors: Is the terrain mountainous

or 
at? What percent of the environment is
served by roadways?

� Obstacle coverage: What percent of the en-
vironment is cluttered with obstacles?

� Metric a priori knowledge: Does the robot
have a good map of the area or is it completely
unknown?

� Static or dynamic: Is the environment �lled
with moving objects, thus reducing the utility
of maps, or is the environment a static one?
For this study, a static 
at environment with

randomly scattered obstacles is assumed. No a

priori knowledge of the obstacles' location is avail-
able. Obstacle coverage is varied from 5% to 20%
of the total area, with 15% as a baseline.

6.3. Motor and Sensor Constraints

As a step in the robot system design methodology,
realistic bounds on the expected motor and sen-
sor capabilities of robots are set. These bounds
help reduce the search space for an optimum solu-
tion. The a�ect of communication on performance
is the main thrust of this research, so �xed val-
ues representing the expected performance of the
robots were used. If the goal were to determine
optimal sensor or motor requirements, those pa-
rameters could be varied as well. Table 1 shows
the experimental motor and sensor values used in
the simulations.

7. Baseline Results and Analysis Tools

To build a baseline database of performance mea-
surements, a con�guration of environment, con-

trol, and task parameters was selected empiri-
cally (Table 1). The baseline database serves as

a control for comparison in the evaluation of the
communication experiments described below. The

database is generated by running the simulation

using the baseline con�guration parameters for
each of the three tasks: Forage, Consume, and

Graze. For each task, the number of robots and
the number of attractor objects (or percentage of

graze coverage) is varied. For each combination of

robots and attractors, a measure of performance
is taken by timing runs on 30 di�erent randomly

generated scenarios. Overall performance is the
average of those 30 runs. For each run, the sim-

ulation records the number of steps taken, and

whether or not the run timed-out (failed).

The baseline performance measurements were

made with no communication allowed between
the robots. This control is then compared with

the performance in each of the three tasks when
state or goal communication is allowed (Section

7). >From these comparisons, one can see quan-

titatively how these modes of communication im-
pact performance.

7.1. Basic Performance

Performance data is visualized as a 3-dimensional

surface with the X axis re
ecting the number of
robots and the Y axis indicating the number of at-

tractors or percent coverage4 (see Figure 6). The

Z, or height, axis shows the average time to com-

plete the task for that combination of robots and

attractors (smaller numbers are indicative of bet-

ter performance).

The plots for all three tasks share a simi-
lar shape. Notice that the back left corner is

the highest point on the three surfaces. This is

expected since that location represents the case
where one robot by itself must complete the most

work (seven attractors for forage and consume,

95% coverage for graze). Similarly, the right front
is the lowest point, since the largest number of

robots (�ve) complete the least amount of work
(one attractor). It is also apparent for all three

tasks that performance initially improves sharply

as more robots are added, but then tapers o�. In
some cases, performance does not improve much
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Table 1. Experimental Parameter Values. Unless noted otherwise, the values are the same for all three tasks.

Factor Baseline Experimental Range

Task Factors

Number of attractors - 1 to 7

Mass of attractors 5 avg 1 to 8
Graze Coverage 95% 13% to 95%

Environmental Factors

Obstacle Coverage 15% 10% to 25%
Obstacle radius - 1.0 to 4.0

Number of Robots - 1 to 5

Sensor and Motor Constraints

Maximum Velocity 2 ft/step �xed
Attractor Sensor Range 20 ft �xed
Obstacle Sensor Range 20 ft �xed
Communication Range 100 ft �xed
Communication Type No No,State,Goal

Graze Swath 2 ft �xed
Consume Rate 0.01 units/step �xed

Control Parameters

Obstacle Sphere of In
uence 5 ft �xed
Obstacle Repulsion Gain 1.0 �xed

Robot Repulsion Sphere 20 ft �xed
Robot Repulsion Gain (wander) 0.5 �xed

Robot Repulsion Gain (acquire) 0.1 �xed
Robot Repulsion Gain (deliver; graze) 0.1 �xed
Move-to-Goal Gain (acquire) 1.0 �xed
Move-to-Goal Gain (deliver) 1.0 �xed

Probe Gain (graze) 1.0 �xed

at all with more than 4 robots. This is important

if robots are expensive.

To illustrate, suppose a robotic system for the

Forage task should be both fast and inexpensive.

Fig. 5. Optimizing in Forage for time and cost. Perfor-
mance here is de�ned as time to complete the task plus the
number of robots times 300 (no communication).

Performance is then a combination of the time to
complete the task and the cost of the system. Ulti-
mately, the designer must balance the importance
of cost versus speed of completion, but one ap-

proach is to amortize the cost of the robotic sys-
tem over its expected lifetime. Thus the cost of
one run is the overall cost divided by the expected
number of runs. For this example, suppose the
amortized cost of each robot per run is valued the
same as 300 time steps. Then if N is the number
of robots, and T is the time to complete the task,
the overall performance is:

P = N � 300 + T (1)

Using timing measurements taken for Forage and
adding in amortized cost, a three dimensional sur-
face is generated for the new performance metric
(Figure 5). A system with two robots is generally
best for three or more attractors. If the environ-
ment is expected to contain only one or two at-
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Fig. 6. Time to complete the Forage, Consume, and Graze tasks for one to �ve robots and one to seven attractors with
no communication.

tractors, one robot is the best choice. Even though
more robots may be faster, the overall goals of the
designer may call for fewer.

7.2. Speedup

Another e�ective tool is speedup measurement. A
plot of speedup reveals how much more e�cient
several robots are than just one in completing a
task. If P [i; j] is the performance for i robots and
j attractors, the speedup at that point is:

S[i; j] =
P [1;j]

i

P [i; j]
(2)

So, if two robots complete the task exactly
twice as fast as one robot, speedup is 1.0 (higher
numbers are better). Mataric introduced a simi-
lar metric of robot performance in [40]. Anywhere
speedup is equal to 1.0, the performance is said
to be linear. Superlinear performance is greater
than 1.0, and sublinear is less than 1.0. Realize,

however, that in some cases more robots will be
faster for actual task completion time, but still
o�er sublinear speedup.

Figure 7 shows speedup plots for Forage,
Consume, and Graze without communication.
Note that speedup for all tasks is generally higher
for larger numbers of attractors. Researchers in
other branches of computer science have found
that randomized search tasks are often completed
in superlinear time on parallel systems [28]. Since
the wander behavior used in all three tasks essen-
tially solves a randomized search task, it is not sur-
prising that performance is superlinear when this
behavior is heavily utilized, as is the case when
there are large numbers of attractors.

Surprisingly, speedup in the Consume task is
sublinear at all but one point (Figure 7b). The
behavior in the consume state can at most o�er
linear speedup (the limit is set by the speci�cation
of the task). So an environment with massive at-
tractors will force the speedup to be limited near
1.0.

Fig. 7. Speedup in the Forage, Consume, and Graze tasks for one to �ve robots and one to seven attractors (no commu-
nication).
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Table 2. Summary of speedup data for three tasks.

Task Avg. Speedup Best Worst

Forage 0.93 1.15 0.64

Consume 0.82 1.01 0.65
Consume(low mass) 0.89 1.26 0.66
Graze 1.07 1.21 0.97

This hypothesis was tested by reducing the
average mass of the attractors, then rerunning
the simulations. In the baseline runs, attractor
mass varies from 2.0 to 8.0 units, but for these
experimental runs, mass was reduced to 1.0 to
4.0 units. Reducing attractor mass allows the
robots to spend more time wandering (a superlin-
ear task) instead of consuming (at most linear).
The speedup for Consume with lower mass at-

tractors is shown in Figure 7. At every point on

the surface, speedup is better for low mass attrac-

tors than for high mass. In fact, in many cases

speedup is superlinear.

Speedup in the Graze task is superlinear at all

but three points on the surface (Figure 7). In the

very worst case, speedup dips to 0.97. Situations

requiring a high percentage of graze coverage re-

sult in the best speedup; the peak is 1.21 for �ve

robots and 95% coverage. In cases where high

graze coverage is required, robots spend more time

in wander as they look for the last bit of area to

graze. Again, since wander is a superlinear time

task, the best speedups should be expected for

those regimes.

Speedup results are summarized in Table 2.

Fig. 7. Side by side comparison of speedup in the Consume task (without communication). Performance with attractors
of average mass 5.0 (left) and 2.5 (right).

7.3. Timeouts

A timeout occurs when a simulation run ex-

ceeds a time limit (for these experiments, the limit

is 8000 steps). A timeout mechanism is neces-

sary to avoid lockups in in�nite loops in the event

the society is unable to complete the task for that

particular world. Frequency of timeouts for each

combination of robots and attractors is measured

and plotted in Figure 8. The frequency of time-

outs serves primarily as a measure of data quality.

In situations where timeout frequency is higher,

the experimenter cannot know for sure how long

the runs would have taken if they were allowed to

complete. Some runs may have completed while

others may have run inde�nitely. When there are

relatively few timeouts, the performance is known

with greater certainty. As would be expected,

most timeouts occur when fewer robots must solve

a task with more attractors or a higher graze cov-

erage requirement.

7.4. Summary of Baseline Results

Baseline results serve as a control for experimen-

tal comparison in assessing the impact of other

communication modes on performance. It is im-

portant to derive and understand fully these basic

results before testing more complex robot con�g-

urations. Important results for the baseline con-

�guration are:

� For a given number of attractors, more robots

complete a task faster than fewer robots.
� For a given number of robots, it takes longer to

complete a task with more attractors.
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Fig. 8. Frequency of timeouts (percent) in the Forage, Consume, and Graze tasks for one to �ve robots and one to seven
attractors (no communication).

� Some performance metrics may result in a sys-
tem that is optimized with lower numbers of
robots than for other metrics.

� Speedup is greater in scenarios where larger
numbers of attractors are present.

� Speedup in the Consume task is mostly sub-
linear, but can be superlinear for lower mass
attractors.

� Speedup in the Graze task is mostly superlin-
ear.

� Timeouts occur more often for low numbers of
robots and high numbers of attractors.

8. Results with Communication

8.1. Communication in the Forage Task

Figure 9 shows a typical simulation run of two
robots foraging for seven attractors with no, state,

and goal communication. Inspecting the images
from left to right reveals an apparent improvement
in the \orderliness" of the robots' paths. The
quantitative experimental results summarized in
Table 3 con�rm these qualitative impressions.

Figure 6a shows a typical performance plot for
Forage, in this case for no communication (better
performance is lower). Each data point represents
30 di�erent simulation runs. The plots for no,
state, and goal communication are quite similar in
contour but there is improvement in performance
evidenced by lower surfaces as the communication
becomes more complex. The statistical analysis in
Table 3 summarizes these observations.

To quantify the di�erence between performance
with and without communication, a performance

ratio plot is computed (Fig. 10). At each point,
the performance with communication is divided
by the performance without communication. Re-
sults greater than 1.0 imply improved perfor-
mance. For instance, a value of 1.1 indicates 10%
improvement. For all the cases tested, State com-
munication improved performance in the Forage
task an average of 16%. On the average, goal com-
munication is 3% better than state communication
in the Forage task.

8.2. Communication in the Consume Task

The impact of communication on performance of
the Consume task is similar to that in Forage.
Figure 11 shows a typical simulation of two robots
consuming seven attractors with no, state, and
goal communication. A surprising result is that
the simulation with goal communication actually
takes longer than the one with state communi-
cation. This slight increase in run time with goal
versus state communication is typical for this task.

A representative example of the basic perfor-
mance data for simulations of the Consume task
is plotted in Figure 6b. Again, the contours for
all three forms of communication are quite simi-
lar. A comparative analysis reveals that on the
average, state communication o�ers a 10% perfor-
mance advantage over no communication. Goal
communication is 4% worse on the average than
state communication. Goal communication, how-
ever, is still 6% better than no communication at
all. Table 3 summarizes these results.
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No Communication State Communication Goal Communication

Fig. 9. Typical run for Forage task No (left), State (center), and Goal (right) Communication. The simulations required
5145, 4470 and 3495 steps, respectively, to complete.

Fig. 10. Performance ratio plot for the Forage task for
Goal versus State communication.

Recall that speedup in the Consume task is
linked to attractor mass (Section 4). Attractor
mass may also impact the bene�t of communica-
tion. Analysis of the data from runs with lowmass
attractors reveals that goal communication per-

formance is almost indistinguishable from that of
state communication (1% worse). Future research
may determine if this result is just an anomaly or
if environmental and task parameters might shift
this trend.

8.3. Communication in the Graze Task

The surprising result from Graze task simulations

is that communication hardly helps at all. Plots

of basic performance data for each of the di�erent

levels of communication are not shown because

they are visually identical (see Figure 6c for the

case with no communication). On average, state

communication is only 1% better than no commu-

nication. Performance with goal communication

is virtually indistinguishable from that with state

communication (0% di�erence). Table 3 summa-

rizes these results.

As robots graze they inevitably leave a record

of their passage: the graze swath. This physical

change in the environment is actually a form of

implicit communication. The robots leave marks

that advise others where work has or has not been

completed. This result is important because it

implies that for tasks where such implicit com-

munication is available, explicit communication is

unnecessary.

No Communication State Communication Goal Communication

Fig. 11. The Consume task with No, State, and Goal Communication. The simulations required 4200, 3340 and 3355
steps, respectively, to complete.
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Task Average Improvement Best Worst

Forage

State vs No Communication 16% 66% -5%

Goal vs No Communication 19% 59% -7%
Goal vs State Communication 3% 34% -19%

Consume

State vs No Communication 10% 46% -9%
Goal vs No Communication 6% 44% -16%
Goal vs State Communication -4% 5% -30%
Goal vs State (low mass attractors) -1% 23% -19%

Graze

State vs No Communication 1% 19% 0%
Goal vs No Communication 1% 19% 0%
Goal vs State Communication 0% 0% 0%

Table 3. Summary of performance ratios for no, state and goal communication.

8.4. Summary of Results with Communication

The performance improvements each type of com-
munication o�ers for each task are summarized in
Table 3. Several important conclusions may be

drawn:
� Communication improves performance signi�-

cantly in tasks with little implicit communica-
tion (Forage and Consume).

� Communication appears unnecessary in tasks
for which implicit communication exists

(Graze).
� More complex communication strategies (Goal)

o�er little bene�t over basic (State) communi-

cation for these tasks (i.e., display behavior is
a rich communication method).

9. Results on Mobile Robots

The ultimate goal of this research is a work-
ing multiagent robotic system; simulation serves
only as a development tool. To demonstrate

the simulation results, and to move towards a
completely functional society, the behaviors for
Forage, Consume, and Graze must be instan-

tiated on mobile robots. The target system is
a group of three Denning mobile robots, George,
Ren, and Stimpy. They each have three-wheeled
kinematically holonomic suspensions and a ring

of 24 ultrasonic range sensors. George, is a DRV-
1; Ren and Stimpy are MRV-2s. Initial results
were obtained by porting tasks to Driver, a menu-

driven motor schema-based reactive control sys-
tem written in C.

9.1. Omnidirectional Sensing

The behaviors used here can bene�t from an omni-
directional sensor which enables robots to discrim-
inate between other robots, attractors and obsta-
cles. Two omnidirectional sensor systems have
been evaluated for multiagent robot implementa-
tion at Georgia Tech: a conic mirror camera sys-

tem, and a laser barcode reading system.
The conic mirror camera system was originally

developed by MacKenzie for the Georgia Tech Un-
manned Aerial Vehicle Team [35]. It is intended
for localization of an unmanned robotic helicopter.
Bright lights located about the environment serve
as reference points for triangulation. The chief ad-
vantage is speed; image processing demands are

comparatively low.
Conic vision can be readily adapted for mobile

robot systems as follows. Marker lights are af-
�xed to attractors and other robots. For di�eren-
tiation, robots have two lights arranged vertically,
while attractors only have one. A typical con�g-
uration is shown in Figure 12 (the system can be

seen atop the robot Ren in Figure 11). Figure
13 is an actual image from the system. An at-
tractor and robot are visible as short bright blobs
on the left side of the image. Azimuth to an at-
tractor may be computed trigonometrically. Since
the robots are equipped with two lights having
a known separation, both azimuth and range are
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Attractor Camera Robot

Conic Mirror

Fig. 12. Typical scene for conic vision processing.

Fig. 13. Image from the conic vision system. The bright

blobs identify an attractor and another robot in the envi-
ronment.

computable. Figure 14 shows how the separation
between the blobs resulting from the two lights on

a robot grows as it approaches.

The laser barcode reader is manufactured by

Denning Mobile Robots. An upward-�ring laser

is positioned in the center of the device. A rotat-
ing mirror inclined at 45 degrees allows it to scan

360 degrees. The sensor is able to detect and ac-

curately report the azimuth to targets coded with
retro-re
ective tape up to 60 feet away. The bar-

code reader is shown on Ren in Figure 15.

The barcode reader is supported by the Driver

reactive control system, and has been utilized for

both localization and attractor detection tasks.
The system is well suited for multiagent robotic

research. Presently only one barcode reader is
available at Georgia Tech, so multi-robot deploy-

ment is impossible. The conic vision system is not

yet supported by Driver.

Other omnidirectional sensing capabilities for

George, Ren and Stimpy should be available
shortly as our laboratory acquires new sensors

such as IR or laser range scanners.

9.2. Forage

The Forage task described in Section 4 was
ported and tested on Ren and Stimpy. Most of
the required schemas had already been coded in
Driver, but the lack of an existing omnidirectional
sensor system for attractor and robot detection
complicated matters. The problem was circum-
vented by simulating the sensor within an em-
bedded perceptual schema utilizing shaft encoder
data. Spatial locations of attractors and mov-
ing robots are maintained in continuously updated
shared �les. Fidelity is maintained by coding the

perceptual schema so that it does not \reveal" the
location of attractors or other robots until they are
within sensor range.

A test with one robot, Ren, is depicted in Fig-
ure 11. The sequence shown was �rst videotaped
and then images were captured for print from that
tape later. Telemetry from the run is shown at the
right of Figure 11. Initially, Ren is set up at home
base. Two attractors are available for collection,
marked by circles on the 
oor in the foreground
and background. Another inactive robot, Stimpy
is just o� to the left. Even though Stimpy was not
involved in the task directly, the avoid-static-
obstacle schema for robot to robot repulsion was
active on Ren.

Except for sensor range, parameters were set
as in the baseline simulations (Table 1). Since
the test area is rather small, attractor sensor
range was reduced from 20 to 10 feet. This
value, nonetheless, prevented Ren from immedi-
ately sensing both attractors at home base.

Fig. 14. In this image the other robot has been drawn

closer. Note the increased separation between the two
blobs.
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Stimpy

Homebase
Attractor Attractor

Fig. 11. A Denning robot, Ren, demonstrates the Forage task (left). Ren tags an attractor (center). Telemetry from the
Single-Agent Forage demonstration is shown at right. Home base is in the center. Two attractors are located on the left
and right. The inactive robot Stimpy is in the lower left.

The foreground attractor is eight feet from
home base, so at the start of the test it is imme-
diately visible. Ren moves towards it and \tags"
it in Figure 11. The notional attractor is carried
back to home base. Ren transitions to wander.
Note that the other robot, Stimpy, is located be-
tween Ren and the remaining attractor. Since
wander includes a strong robot to robot repulsion,
Ren continues to search away from the attractor.
The assumption is that Stimpy would search the
rest of the space, but since Stimpy is inactive and
there is no communication present, the attractor
might take an inordinate amount of time to be dis-
covered. A human steps in to help. The human is
able to herd Ren towards the attractor by placing
his hands near the ultrasonic sensors. Once Ren
gets within 10 feet of the attractor, it transitions
to acquire (the human leaves), and then the robot
tags it. Finally, the attractor is deposited at home

base.
A two robot run of the Forage task is shown in

Figure 15. Again, the parameters are those from
the baseline simulation runs, except for the at-
tractor sensor range which was set at 10 feet. The
minimum range a robot could approach an obsta-
cle was set at two feet. There are three attractors
(boxes) and one obstacle (chair) in the environ-
ment. Both robots were initialized at home base.
This run was made without communication. At
the beginning of the run (Fig. 15), the robots enter
the wander state, and are repulsed by each other.
They immediately detect separate attractors. Af-
ter tagging their respective attractors, the robots
deliver them to home base. Again the robots cy-

cle to wander. Only one attractor remains (in the
foreground). The attractor is within Ren's sensor
range, but outside Stimpy's, so Ren approaches
it alone. As Ren returns the attractor to home
base, it carries it within Stimpy's sensor range.
Stimpy responds by approaching Ren and helping
to deliver the attractor. A (hand-drawn) recon-
struction of this run is shown in Figure 16.

9.3. Communication modes and Consume

All three levels of communication for the
Consume task have been implemented and tested
on Ren and Stimpy. A scenario for the two
robots with one attractor was used in testing the
Consume behavior (Figure 17). Although the sce-
nario is simple it serves to illustrate the advan-
tages of and the qualitative di�erences between
the three levels communication described in Sec-
tion 5. Runs on mobile robots are directly com-
pared with simulations of the same scenario in Fig-
ure 17.

In the test scenario, two robots and one attrac-
tor are arranged so that one robot is immediately
within sensor range of the attractor, while the
other is just outside sensor range. In the simula-
tions, the attractor is 20 feet from the lower robot.
If no communication is allowed, one robot should
initially move towards the attractor. The other
robot should move away, due to inter-robot repul-
sion. If communication is allowed, both robots
should initially move towards the attractor since
at least one of them senses it.
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Fig. 15. Two Denning robots, Ren and Stimpy, demonstrate the Forage task (upper left). Ren tags an attractor (upper

right). Stimpy \tags" an attractor (lower left). Ren and Stimpy deliver the attractors to home base (lower right).

These predictions are borne out in the simula-

tions shown in the top row of Figure 17. The sim-

ulations were run in the environment described

in Section 6 using the baseline control parame-

ters (Table 1). In the case of No Communication,

Robot 1 immediately moves to the attractor and

begins consuming it (top left). Robot 2 moves

away, and continues to search for attractors in the

wander state. Eventually it too falls within sen-

sor range of the attractor, moves towards it, and

helps consume it. In the case of State Communi-

cation (top center), Robot 1 again initially moves

towards the attractor. Robot 2 begins to follow it

(dotted line), then transitions to the acquire state

(solid line) when it comes within sensor range of

the attractor. Finally, in the case of Goal Com-

munication (top right), both robots immediately

move to the attractor and consume it. A quali-

tative di�erence between State and Goal Commu-

nication is visible in the paths Robot 2 takes to

the attractor in Figure 17 (top row). With State

Communication, Robot 2, initially outside sensor

range of the attractor, makes a curved path to the

attractor since it can only follow Robot 1 initially

(top center). When Goal Communication is al-

lowed, however, Robot 2 can proceed directly to

the attractor (top right).

Now compare the simulations (top row) with

runs on the robots Ren and Stimpy (bottom row).

Since the sensor range of the robots is set at 10

feet, the scenario was altered for runs on mobile

robots so that the attractor is only 10 feet away

from the lower robot. The telemetry is shown at

half the scale of the simulated runs to account for

the smaller scale of the scenario.

Qualitatively, performance for mobile robots

with No Communication is quite similar to sim-

ulated performance (Figure 17 bottom left). Ini-

tially, Ren does not sense the attractor and ex-

plores the left side of the laboratory instead.

But eventually, it comes within sensor range and

moves to the attractor. When State Communica-

tion is allowed Ren follows Stimpy to the attrac-

tor, making a curved path (bottom center). Fi-
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Fig. 16. A reconstruction (from above) of the Forage demonstration.

nally, when Goal Communication is allowed, Ren
travels directly to the attractor (bottom right).

The path of the lower robot for the cases of
State and Goal Communication is somewhat dif-
ferent in simulation than on mobile robots. On

mobile robots, the lower robot curves away from
the upper robot much more than in simulation.
This is a result of two factors. First, the scale
of the telemetry re-creations are half that of the
simulations. Thus, the e�ects of inter-robot re-

pulsion are visually exaggerated. Second, the per-
ceptual process for obstacle detection (a ring of
ultrasonic sensors) is not sophisticated enough to
ignore robots: robots are detected as robots and

as obstacles. The repulsion between them is fur-
ther exaggerated. This problem will be resolved
as better omnidirectional sensors and perceptual
processes are incorporated into our research.

10. Summary and Conclusions

The impact of communication on performance in

reactive multiagent robotic systems has been in-
vestigated through extensive simulation studies.
Performance results for three generic tasks illus-
trate how task and environment can a�ect com-
munication payo�s. Initial results from testing on

mobile robots are shown to support the simulation
studies.

The principal results for these tasks are:
� Communication improves performance signi�-

cantly in tasks with little environmental com-

munication.
� Communication is not essential in tasks which

include implicit communication.

� More complex communication strategies o�er

little or no bene�t over low-level communica-
tion.

More detailed conclusions appear in Sections 7.4
and 8.4 of this article.

Future work involves three major research
thrusts. The �rst is concerned with societal per-

formance in fault-tolerant multiagent robotic sys-
tems; where unreliable communication may be

present and the robotic agents have the potential

for failure. The second research thrust involves in-
tegrating humans more e�ectively with the control

of a society through teleoperation. The last area
includes developing novel methods for formalizing

and expressing multiagent robotic systems with

the goals of producing tools which will facilitate
their use and to establish formally provable prop-

erties (i.e., necessary and su�cient conditions) re-
garding their speci�cations.

Appendix : Motor Schema Formulae

This appendix contains the methods by which
each of the individual primitive schemas used in

this research compute their component vectors.

The results of all active schemas are summed and
normalized prior to transmission to the robot for

execution.
� Move-to-goal: Attract to goal with variable

gain. Set high when heading for a goal.
Vmagnitude = adjustable gain value

Vdirection = in direction towards perceived

goal
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Attractor Stimpy
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Fig. 17. Comparison of simulated Consume task runs (top row) with runs on mobile robots (bottom row).

� Avoid-static-obstacle: Repel from object

with variable gain and sphere of in
uence. Used

for collision avoidance.

Omagnitude =

0 for d > S
S�d
S�R

�Gfor R < d � S

1 for d � R

where:

S = Adjustable Sphere of In
uence

(radial extent of force from

the center of the obstacle)

R = Radius of obstacle

G = Adjustable Gain

d = Distance of robot to center of obstacle

Odirection = along a line from robot to center

of obstacle moving away from obstacle

� Noise: Randomwander with variable gain and

persistence. Used to overcome local maxima,

minima, cycles, and for exploration.

Nmagnitude = Adjustable gain value

Ndirection = Random direction that persists

for Npersistence steps

(Npersistence is adjustable)

� Probe: Used in Graze for favoring continued
motion in the current directional heading.

Vmagnitude = adjustable gain value or 0 if
no ungrazed areas detected

Vdirection = Straight ahead along an extrap-
olated path from the current location only if
grazed area ahead. Direction not important if
no ungrazed area ahead as gain is 0.

Acknowledgements

This research has been supported by the Na-
tional Science Foundation under grant #IRI-
9100149 and ONR/ARPA under grant #N00014-
94-1-0215. The Mobile Robot Laboratory is sup-
ported by additional grants from NSF and the
Westinghouse-Savannah River Technology Center.
The authors would like to thank Doug MacKenzie
and Russ Clark for their development of software
that has been useful for this project.



Communication in Reactive Multiagent Robotic Systems 23

Notes

1. This task was described earlier in [9]. The \forage"
state mentioned there corresponds to the \wander"
state here.

2. Avoid-static-obstacle is also used for non-
threatening moving objects. Other schemas such as
escape and dodge can be used for non-cooperative
moving objects when appropriate.

3. The di�erences are in three areas: 1) How test scenar-
ios are generated, 2) What happens when robots fail to
complete the task, and 3) Restrictions on robot move-
ment. In the new simulator, obstacles are not allowed
to overlap one another. Previously, this was allowed,
resulting in a less accurate accounting of obstacle cov-
erage. For this research robots are initially placed in
the center of the environment, at home base. In earlier
research they were placed randomly about the environ-

ment. The authors believe a single starting location for
all robots is more likely in real world implementations.

The previous simulator allowed runs not to exceed a
maximum of 2000 steps. If a run exceeded this time
limit it was halted and discarded. Here the limit is

raised to 8000 steps and runs that timeout are counted
as taking 8000 time steps. In the new simulator, robots

are not allowed to move outside the visual boundaries
of the environment, as was previously the case.

4. For Graze, the percent of area to be grazed is varied in

increments of 13.57%. This allows the di�culty to be
varied in seven discrete steps from 13.57% to 95%. Re-

sults can be directly compared to Forage and Consume
tasks with one to seven attractors.
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