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A new method based on an extension of ring-polymer molecular dynamics is proposed for the cal-
culation of thermal correlation functions in electronically nonadiabatic systems. The ring-polymer
dynamics are performed using a continuous-variable representation of the electronic states within
the mapping approach, such that the electronic and nuclear degrees of freedom are treated on an
equal footing. Illustrative applications of the method show good agreement with exact quantum
results for the dynamics over short to moderate times and reveal a systematic improvement over
the classical implementation of the mapping approach (single-bead limit). Being based on trajec-
tories, the method scales well with the number of degrees of freedom and will be applicable to
simulate certain nonadiabatic processes in complex molecular systems. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4816124]

INTRODUCTION

A long-standing goal in theoretical chemistry is the ac-
curate simulation of electronically nonadiabatic processes
in complex molecular systems.1–5 While fully quantum-
mechanical methods can provide numerically exact descrip-
tions of such processes, approximate trajectory-based meth-
ods are typically computationally less demanding and can
be combined with an on-the-fly calculation of the poten-
tial energy, thus avoiding the precalculation of multidimen-
sional potential energy surfaces. A variety of trajectory-based
methods for nonadiabatic dynamics have been developed in
the last decades including (quasi)classical, mixed quantum-
classical, and semiclassical approaches.6 In this paper, we
propose a novel approach to electronically nonadiabatic dy-
namics, which is based on an extension of the ring-polymer
molecular dynamics (RPMD) method.

The RPMD method is an approximate quantum-
dynamical approach based on the imaginary-time path-
integral formulation of the Boltzmann operator7 in statis-
tical mechanics. The method was originally developed for
the simulation of dynamical processes which can be de-
scribed by a single potential energy surface, i.e., where the
Born-Oppenheimer approximation is valid.8 For such sys-
tems, RPMD provides directly an approximation to Kubo-
transformed thermal correlation functions which is exact in
the short-time8 and classical limits, and for linear opera-
tors in harmonic potentials. The method has been success-
fully employed in a wide range of applications.9 Application
of RPMD to the simulation of electron-transfer processes,
which often exhibit significant nonadiabatic character, has
also been performed employing a pseudopotential approxi-
mation in which the electron is treated as a particle, without
explicitly introducing electronic states.10 The combination of
this approach with electronic structure calculations is there-
fore not obvious. Nonetheless, RPMD was shown to provide
very good results in the normal regime of electron transfer but
failed in the inverted regime.

The new method proposed here, in the following re-
ferred to as nonadiabatic RPMD, employs the mapping ap-
proach, which represents the electronic states by continu-
ous variables.2, 11–13 The nonadiabatic RPMD trajectories are
initialized from an equilibrium distribution similar to that
derived by Ananth and Miller14 and evolve according to a
ring-polymer Hamiltonian obtained from the mapping ap-
proach. The mapping approach has previously been applied
to simulate nonadiabatic dynamics in a variety of systems
employing (quasi)classical, semiclassical, centroid molecular
dynamics (CMD), and other implementations.2, 12–17 Within
a (quasi)classical implementation, problems with the flow of
zero-point energy between the nuclear and electronic coor-
dinates have been identified.2 RPMD, on the other hand, is
well-known to preserve the zero-point energy correctly in nu-
clear modes and may go some way to solving this problem
without the need to adjust the zero-point energy.15 In con-
trast to the recently proposed ring-polymer surface-hopping
approach,18 the nonadiabatic RPMD method introduced here
treats electronic and nuclear motion on the same dynamical
footing, which has been shown to be of advantage in previous
applications of the mapping approach.2

MAPPING REPRESENTATION

To facilitate the outline of the nonadiabatic RPMD
method, we first review briefly the basic idea of the mapping
approach to nonadiabatic quantum dynamics.2, 12, 13 We con-
sider a system with L electronic states and, for notational sim-
plicity, a single vibrational mode described by the following
Hamiltonian in the diabatic representation:

Ĥ = p̂2

2m
+ V0(x̂) +

L∑
n,m=1

|φn〉 [V(x̂)]nm 〈φm| , (1)

where x and p are the nuclear positions and momenta, m is
the nuclear mass, V0(x) is a state-independent potential, and
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V(x) is the diabatic potential matrix in the basis of electronic
states |φn〉.

Within the mapping approach, each of the electronic
states |φn〉 can be rigorously mapped12 onto a particular set of
L harmonic oscillator eigenstates |n〉 ≡ |01, . . . , 1n, . . . , 0L〉
referred to as a singly excited oscillator (SEO) state and given
in the continuous (dimensionless) position and momentum
representations by

〈X|n〉 =
√

2

πL/4
[X]n e− 1

2 |X|2, 〈P|n〉 = −i
√

2

πL/4
[P]n e− 1

2 |P|2 ,

where [X]n and [P]n are elements of the vectors X and P.
The Hamiltonian in the mapping representation, equiva-

lent to that of Eq. (1), is defined as11, 12

Ĥ = p̂2

2m
+ V̂, (2)

where

V̂ = V0(x̂) + 1
2

[
X̂TV(x̂)X̂ + P̂TV(x̂)P̂ − tr V(x̂)

]
. (3)

The mapping provides a representation of the discrete elec-
tronic states in terms of continuous variables which is exact
on the quantum-mechanical level of theory.

For later use, we note that there is a certain degree of
freedom in the choice of separation into state-independent and
state-dependent parts of the potential which does not affect
the quantum-mechanical result or the short-time limit of the
proposed method. However, for what follows, we recommend
the choice be made to force the lowest eigenvalue of V(x) to
be zero everywhere, as this greatly improves the convergence
of the sampling within the nonadiabatic RPMD method.

FORMULATION OF THE NONADIABATIC
RPMD METHOD

Following a similar derivation to that of standard
RPMD,8 we begin by deriving exact expressions for static
quantities using a discretized path-integral approach,7 in this
case using the mapping representation of the electronic states.
This is similar to the derivation followed by Ananth and
Miller14 except that we also introduce sampling over the mo-
menta of the mapping coordinates, which is necessary to ini-
tialize the ring-polymer mapping dynamics proposed in this
paper.

The partition function Z = tr[e−βĤ] at reciprocal temper-
ature β = (kBT)−1 can be formulated in the limit of an infinite
number of ring-polymer beads N, such that βN = β/N → 0,
by inserting identities of nuclear position states and position
and momenta mapping states, ensuring the correct projection
onto the finite subspace of SEOs.14

Z � tr

[ N∏
i=1

L∑
k,l,m,n=1

∫∫∫ ∞

−∞
|k〉 〈k|Xi〉 〈Xi |l〉 〈l| e−βN V̂/2

× |xi〉 〈xi | e−βN p̂2/2m |m〉 〈m|Pi〉 〈Pi |n〉 〈n|

× e−βN V̂/2 dxi dXi dPi

]
(4a)

=
∫∫∫ ∞

−∞
e−βN UN (x)

N∏
i=1

√
m

2πβN¯2

4

πL
e−|Xi |2−|Pi |2

× (
PT

i−1MiXi

) (
XT

i MiPi

)
dx dX dP, (4b)

where x = {x1, . . . , xN }, X = {X1, . . . , XN } and likewise for
p and P, and these subscripts refer to the bead index. The
L × L matrices,

Mi = e−βN V(xi )/2, (5)

can be computed using eigenvalue decomposition or more ef-
ficiently for the case of L = 2 using the analytical result. The
standard ring-polymer potential is given by

UN (x) =
N∑

i=1

V0(xi) + m

2β2
N¯

2
(xi − xi+1)2. (6)

The relative locations for the insertion of the mapping
states in Eq. (4a) are arbitrary for the calculation of equilib-
rium averages, but the symmetric choice above can be shown
to give the most accurate zero-time value of Eq. (12b) for a
separable system with only one bead.

It is noted that the integrand of the partition function is
not positive-definite except in the single-bead case. Nonethe-
less, we can define a probability distribution

ρ(x, p, X, P) ∼ |W | e−|X|2−|P |2−βN [| p|2/2m+UN (x)], (7)

where

W ≡ W (x, X, P) =
N∏

i=1

(
PT

i−1MiXi

) (
XT

i MiPi

)
, (8)

which can be sampled using a Metropolis algorithm, and
when corrected by the sign of W , gives true Boltzmann
statistics. In the simulations, attempted moves were gener-
ated for the mapping coordinates of individual beads from the
distribution e−|Xi |2−|Pi |2 and interspersed with standard path-
integral Monte Carlo moves.19

Time-independent equilibrium quantities can be obtained
from a derivation similar to that of Eqs. (4). For example, the
population of the diabatic state |φn〉 is computed using

1

Z
tr

[
e−βĤ |n〉〈n| ] = 〈Ān(x, X, P) sgn W 〉ρ

〈sgn W 〉ρ
, (9)

Ān(x, X, P) = 1

N

N∑
i=1

[Pi−1]n[MiXi]n(
PT

i−1MiXi

) , (10)

where the angular brackets 〈. . .〉ρ denote an average over the
distribution given in Eq. (7).

Such equilibrium averages are exact in the N → ∞
limit and also with any value of N for electronic properties
of Hamiltonians without vibronic coupling. Although sam-
pling becomes more difficult for large N as the denomina-
tor tends to zero, we will show below that often only a small
number of beads are needed, where for the N = 4 results,
only about a quarter of the trajectories had negative weights.
This sampling issue is lessened if the initial state is approxi-
mately adiabatic20 and has no bearing on the scaling to larger
systems.
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Of course, these static quantities could be computed in
a much simpler manner employing the original representa-
tion of the Hamiltonian with discrete electronic states.21 How-
ever, the real-time dynamics cannot be performed in this
way because, although in the adiabatic limit they tend cor-
rectly to standard RPMD, transitions would erroneously be
allowed between electronic states where the electronic cou-
pling is zero. This stems from the neglect of Rabi oscillations
in such a Boltzmann-weighted mean-field approach. To de-
scribe real-time dynamics, the proposed nonadiabatic RPMD
method uses equations of motion derived from the following
ring-polymer mapping Hamiltonian:

HN (x, p, X, P)

= | p|2
2m

+ UN (x)

+
N∑

i=1

1
2

[
XT

i V(xi)Xi + PT
i V(xi)Pi − tr V(xi)

]
. (11)

The equations of motion preserve the total electronic popu-
lation of each bead, 1

2 (|Xi |2 + |Pi |2 − L), and it is noted that
the coupling between the electronic coordinates of different
beads is provided only through the ring-polymer springs on
the nuclei.

The proposed method provides approximations to the
Kubo-transformed thermal correlation functions,

C̃AB(t) = 1

Zβ

∫ β

0
tr

[
e−(β−λ)Ĥ Âe−λĤ eiĤ t/¯B̂e−iĤ t/¯

]
dλ.

In this paper, we consider specifically the two cases of the au-
tocorrelation functions of the nuclear position, Â = B̂ = x̂,
and the electronic population, Â = B̂ = |φn〉〈φn|. The appro-
priate ring-polymer correlation functions are

C̃xx(t) ≈ 〈x̄0 x̄t sgn W (x0, X0, P0)〉ρ
〈sgn W (x0, X0, P0)〉ρ

, (12a)

C̃nn(t) ≈ 〈Ān(x0, X0, P0)B̄n(X t , P t ) sgn W (x0, X0, P0)〉ρ
〈sgn W (x0, X0, P0)〉ρ

,

(12b)

where the subscripts give the time along the trajectories and
the centroids of the variables are defined by

x̄ = 1

N

N∑
i=1

xi, (13)

B̄n(X, P) = 1

N

N∑
i=1

1
2

(
[Xi]

2
n + [Pi]

2
n − 1

)
, (14)

where, in the latter, we have made use of the mapping relation
|φn〉〈φn| → 1

2 (X̂2
n + P̂2

n − 1).22

The correlation functions are evaluated using the same
methods used in classical mechanics and standard RPMD.
First, values of x0, X0, and P0 are selected from a Metropo-
lis simulation, whereas p0 is chosen from a multidimensional
normal distribution. Trajectories are then run from these ini-
tial values using a velocity Verlet scheme, taking advantage

of analytical updates for both the free ring-polymer normal
modes and the harmonic mapping coordinate motions.

In the separable case where V is independent of x,
the electronic and nuclear degrees of freedom are indepen-
dent and Eq. (12b) converges, in the large N limit, to the
exact analytic quantum result. The correct Rabi frequency
is recovered in both the classical (single-bead) and ring-
polymer versions. However unlike the computation of pop-
ulation probabilities,13 it is necessary, just as with semiclassi-
cal methods,14 to use multiple beads in order to compute the
correct amplitude of this thermal autocorrelation function of
a nonlinear operator.

Due to the lowest eigenvalue of V(x) (the adiabatic sur-
face) being zero, Eq. (12a) tends to standard RPMD in the
adiabatic limit and thus the Born-Oppenheimer approxima-
tion is automatically recovered where valid. There are, how-
ever, cases where a different potential separation in Eq. (11)
may be advantageous, such as tr V(x) = 0 for systems with
very weak electronic coupling in the region of an avoided
crossing. In fact, in this case, for a system like Eq. (15) with
� = 0, Eqs. (12) give exact results for any N. Either way, the
short-time results are not affected, and in the following calcu-
lations, we will employ the former definition.

RESULTS

For illustration of the performance of the new method,
we consider a system with two electronic states and a sin-
gle vibrational mode, modelling, e.g., a vibrationally coupled
electron-transfer process between a donor and acceptor state:

Ĥ = p̂2

2m
+ 1

2mω2x̂2 +
(

α + κx̂ �

� −α − κx̂

)
. (15)

Thereby, � is the electronic coupling, κ is the vibronic cou-
pling, and 2α is the energy bias. Reduced units are used such
that m and ¯ are equal to 1, and by setting the frequency
ω = 1, we effectively measure energy in units of ω. To fa-
cilitate comparison with Ref. 14, where this model was con-
sidered, we chose κ = 1, β = 1, and unless stated otherwise,
α = 0. Correlation functions were computed for three nonsep-
arable systems and compared with numerically exact quan-
tum results from a discrete-variable representation (DVR)
calculation.

For strong electronic coupling, � = 4, the timescale of
the electronic oscillations is much shorter than that of the nu-
clear dynamics, such that the nuclei move in a mean field
of the diabatic surfaces. This is close to the adiabatic limit
where the nuclear dynamics tend to standard RPMD, which
is shown in Fig. 1(a), are almost exact in this case as V0(x) is
approximately harmonic.8 The proposed nonadiabatic RPMD
method, converged with four beads, also provides an excellent
approximation to the electronic correlation function, which
only degrades slightly after a few oscillations, and is a signif-
icant improvement over the single-bead result.

With the parameters α = 2 and � = 1, the system enters
the inverted Marcus regime. The major dynamical effects can
be captured with the proposed method as shown in Fig. 1(b),
where again at least four beads are needed to describe them
accurately. It is seen that the equilibrium population of the
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FIG. 1. Calculated correlation functions, Eqs. (12), for three systems with κ = 1 and β = 1: (a) close to the adiabatic limit with α = 0 and � = 4; (b) with a
strong bias, α = 2 and � = 1; (c) in an intermediate regime with α = 0 and � = 1; compared with the DVR results (black dots). The blue, green, and red lines
show the results of one, four, and eight bead calculations.

|φ1〉 state is much reduced in this case and is quickly lost to the
lower-energy |φ2〉 state. The position autocorrelation function
also shows that the system remains almost entirely on only
one diabatic surface, but only with N ≥ 4 is the method able
to predict the correct amount of anharmonicity.

We finally consider a more challenging intermediate sys-
tem with � = 1 but without bias such that the timescales of
the nuclear and electronic vibrations are similar. As seen in
Fig. 1(c), short-time results correct to within graphical ac-
curacy are obtained with at least four beads. The approx-
imation does however degrade after the first electronic os-
cillation, although this can be improved slightly using eight
beads. The comparison of the RPMD results with the (non-
Kubo-transformed) semiclassical initial-value representation
(SC-IVR) calculations of Ref. 14 shows that nonadiabatic
RPMD is a great improvement over the linearized form
(LSC-IVR) and comparable in accuracy to the Herman-Kluk
IVR (for the available data). The latter approach is, however,
far more computationally expensive due to phase oscillations
depending on the trajectories.

CONCLUSIONS

In this paper, we have proposed a novel method that ex-
tends RPMD to the simulation of nonadiabatic dynamics by
employing the mapping approach to incorporate the electronic
degrees of freedom. The results show that the nonadiabatic
RPMD method performs well in all regimes tested and tends
to the exact or at least standard RPMD results in a number of
limiting cases. It was also found to consistently improve upon
the classical (single-bead) implementation of the mapping ap-
proach, presumably because of its accuracy of the short-time
limit and better conservation of the SEO subspace and Boltz-
mann distribution.

As in the cases of the classical mapping approach, LSC-
IVR or standard RPMD, the method will not provide correct
long-time results in systems where nuclear quantum coher-
ences play an important role, and we should expect it to be
subject to the usual RPMD limitations such as causing spu-
rious frequencies to appear in vibrational spectra.9 However,
the accurate treatment of electronic coherences and the short-

time accuracy of the coupled dynamics should facilitate the
description of rate constants23 for nonadiabatic processes, in
particular electron-transfer reactions in complex condensed-
phase molecular systems, which will be the subject of future
work.
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