Communication on Noisy Channels: A Coding Theorem for
Computation

Leonard J. Schulman*
Department of Mathematics
Massachusetts Institute of Technology
Cambridge MA 02139

Abstract

Communication is critical to distributed computing,
parallel computing, or any situation in which automata
interact — hence its significance as a resource in compu-
tation. In view of the likelihood of errors occurring in a
lengthy interaction, it is desirable to incorporate this pos-
sibility in our model of communication.

In the noisy channel model for communication complex-
ity, two automata are to reliably solve a problem to which
each has only part of the input, by communicating across
a faulty channel. This contrasts with the standard model
for communication complexity, introduced by A. Yao, in
which the channel is noiseless (does not introduce errors).

Noisy communication channels were first considered by
Shannon in his seminal work in information theory. Shan-
non considered the “one-way” problem of transmitting a
large block of data over a noisy channel. He described the
intrinsic capacity of a channel and established his coding
theorem, which states that the data can be encoded for
transmission in such a way that the transmission time is
proportional to the quantity of data and inversely propor-
tional to the channel capacity, while a vanishing probabil-
ity of error is incurred in the decoding.

We relate the noisy channel and the standard (noise-
less channel) complexities of a communication problem by
establishing a “two-way” or interactive analogue of Shan-
non’s coding theorem: every noiseless channel protocol
can be simulated by a private-coin noisy channel protocol
whose time bound is proportional to the original (noiseless)
time bound and inversely proportional to the capacity of
the channel, while the protocol errs with vanishing proba-
bility.

Our method involves simulating the original proto-
col while implementing a hierarchical system of progress
checks which ensure that errors of any magnitude in the
simulation are, with high probability, rapidly eliminated.

*Support for this research was provided by an ONR graduate
fellowship, an MIT Applied Mathematics graduate fellowship,
and grants NSF 8912586 CCR and AFOSR 89-0271.

0-8186-2900-2/92 $3.00 © 1992 IEEE

724

1 Introduction

The study of message transmission over noisy chan-
nels was pioneered in Shannon’s work of 1948 [21].
Some of his fundamental contributions may be out-
lined as follows: (a) Message sources are usefully mod-
eled as continual stochastic processes; the “rate” with
which such a source produces information is measured
by its entropy. (b) Communication channels have an
intrinsic “capacity” which measures how much infor-
mation they can carry in each transmission. (c¢) Mes-
sages may be transmitted over the channel at rates
arbitrarily close to capacity (but no more), with ar-
bitrarily low probability of error. The fundamental
technique used to approach this objective, is the joint
encoding for transmission of increasingly long input
blocks.

Information theory, as taken to mean the study
of information sources, communication channels, and
the problem of message transmission, has been stud-
ied extensively since Shannon’s seminal paper. In re-
cent years however, communication has come to be
investigated from a very different perspective, within
computer science. A. Yao introduced the following
model [26] of communication: The argument (input)
of a function is split between two processors A and B.
The processors are provided with a noiseless communi-
cation channel which can transmit one bit at a time in
either direction. Their goal is to compute the value of
the function, by communicating with each other using
some agreed-upon protocol. The protocol can termi-
nate when both parties know the value of the function.
The primary object of interest is the communication
complezity of the function: the number of bits that
must be exchanged in the protocol, in order to solve
the problem. (Measured on a “worst” input; often an
average is also considered).

Shannon’s work focused on the {ransmission of in-
formation: and he was able to say first, what is infor-

mation, and second, what is a channel. In our time the
telephone or telegraph have been joined by communi-
cating, interacting computing devices: for example in
integrated circuits, distributed networks of computers,
and robotic control of remote devices. Communica-
tion complexity focuses on the two-way ezchange of
information, and is an attempt to understand compu-
tation.

The distinction is not primarily in the communi-
cation apparatus — much work has focused on the
potential of feedback channels for assisting in message
transmission — but in the problem. A two-way or in-
teractive problem may depend on the inputs at both
processors. One-way or transmission problems are the
special case when the problem depends on only one of
the inputs.

The critical role of communication in distributed
and parallel computing, has motivated considerable
interest in the study of communication as a computa-
tional resource. (Beginning with [26, 27, 14, 23, 12];
and see [13] for a survey). In view of the likelihood of
transmission errors occurring in the course of lengthy
communications, it is desirable to incorporate this pos-
sibility in our study of communication complexity.

In this paper we present one step in this direction:
an analogue of Shannon’s coding theorem for interac-
tive communication problems.

The correspondence between Shannon’s theorem
and ours is as follows. On a noiseless channel, capable
of carrying one bit per transmission, processor A can,
in n transmissions, send processor B a block of n bits.
Now fix a channel (“binary, symmetric”) of capacity
C (0 € € < 1). Shannon’s theorem shows how the
noiseless-channel procedure can be simulated on the
noisy channel: i.e. how, for any small v, A can encode
the n bits into n5(1+7) channel transmissions, from
which B can correctly decode A’s data, except for an
exponentially small failure probability e=#("),

In our interactive analogue we consider any com-
munication problem for which the processors have a
noiseless-channel protocol x, which terminates within
n transmissions on every input to the processors. We
show how to simulate 7 on the noisy channel in 8(n/C)
transmissions, except for an exponentially small fail-
ure probability e~n' T,

As in the one-way case, the computational resources
of time and space available to each processor will be
unrestricted. Unlike the one-way case, each proces-
sor will also have access to a private source of random
coins. Our method involves simulating the original
protocol while implementing a hierarchical system of
progress checks, which ensure that errors of any mag-

725

nitude in the simulation are, with high probability,
rapidly eliminated.

2 A Coding Theorem

We begin by specifying a model of a noisy commu-
nication channel. The binary symmetric channel is a
synchronous communication link which, in every unit
of time, accepts at one end either a 0 or 1; and in
response produces either a 0 or a 1 at the other end.
With some fixed probability ¢ the output differs from
the input, while with probability 1 — ¢ they are the
same. This random event for a particular transmis-
sion, is statistically independent of the bits sent and
received in all other channel transmissions. (Thus the
channel is “memoryless”.)

The average mutual information between two en-
sembles {P(z)}zex and {P(y)}yey, which have
a joint distribution {P(zy)}rexyey, is defined as
Y ey Plzy)log P—(I:()ipl();)-. This is a measure of how
much information is provided about one ensemble by
the specification of a point (chosen at random from
the joint distribution) of the other ensemble.

The capacity of a channel was defined by Shannon
as the maximum, ranging over probability distribu-
tions on the inputs, of the average mutual informa-
tion between the input and output distributions. In
the case of the binary symmetric channel the capacity
(in base 2) is C = 1 —¢lg{ — (1 — ¢)lg 7t Ob-
serve that 0 < C < 1; and that a noiseless channel
has capacity C = 1. Gallager [9] provides a thorough
exposition of these concepts.

In the standard (noiseless) communication com-
plexity model, the argument (input) z = (z4,28) of a
function f(z) is split between two processors A and B,
with A receiving z4 and B receiving zp; the proces-
sors compute f(z) (solve the communication problem
f) by exchanging bits over a noiseless link between
them. Each processor has unbounded time and space
resources. Randomness may be allowed as a resource,
and is typically considered at one of three levels: none
{deterministic protocols); private coins (each proces-
sor has its own unbounded source of random coins,
but cannot see the other processor’s coins); and pub-
lic coins (the processors can see a common unbounded
source of random coins.) The procedure which de-
termines the processors’ actions based on their local
input and transmissions received, is called a commu-
nication protocol.

In the present paper the noiseless link is replaced
(in each direction) by a binary symmetric channel of
capacity C.

Here is a precise statement of Shannon’s coding the-

orem. (Not in its most general form. See [21]; [9],
theorem 5.6.4).

Theorem 1 (Shannon) Let a binary symmetric
channel of capacity C be given. For every n and every
¥ > 0 there exists a code x : {0,1}* — {0,1}"& 1+
and a decoding map x' : {0,1}"31+") {0, 1}* such
that every codeword transmitted across the channel is
decoded correctly with probability 1 — e—5(n),

If all one wants is to transmit one bit (or a fixed
number of bits) and a very small probability of error
is desired, then there is only one thing to be done: the
redundancy of the transmission must be increased, in
order to drive down the error probability. (By redun-
dancy we mean the number of transmissions per bit
of the message). Shannon’s theorem says that this is
not necessary if one may assume that the message to
be transmitted is long. In that case codewords (the
images of n-bit input blocks via x, as above) can be
selected in such a manner that when any one of them
is transmitted over the channel, the probability that
it so changed by the channel noise as to be mistaken
by the receiver for another codeword, is exponentially
small in n. Since the exponential error is gained from
the block size, n, which may be chosen as large as de-
sired, it is not necessary to invest extra redundancy
for this purpose. It is enough just to bring the redun-
dancy past the threshold value 1/C.

Following is an analogue of Shannon’s theorem for
the more general case of two-way, or interactive, com-
munication.

Theorem 2 In each direction between the processors
let a binary symmetric channel of capacity C be given.
There is a constant o such that for every n, every y >
0 and every communication problem f with a noiseless
channel protocol of length n, there ezists a private-
coin noisy channel protocol of length n&(1+7) which

Jor every input pair, solves f correctly with probability
1-0(1)
1—-em .

There is a point to be noticed here. In a general
protocol m, there are no large input blocks. In the
nature of interaction, processors generally do not know
what they want to transmit more than one bit ahead.
Thus the methods used for the transmission problem
do not suffice for the interactive problems.

A naive simulation of the noiseless channel protocol
7 might involve repeating every character transmitted
in m, k times. The receiving processor would decode
the transmission by taking a majority vote among the

726

k characters received. The probability of an error oc-
curring in such a transmission is e=%(*©)| where C is
the capacity of the channel.

However, if any of these transmissions fails, the re-
mainder of the protocol is wasted, as each processor
will be laboring under a misunderstanding.

Thus in order to assure even a constant or poly-
nomial probability of error, the redundancy needed is
nonconstant, k = (% logn). Further in order to as-
sure an exponentially small probability of error, as we
desire, this naive simulation needs polynomial redun-
dancy k = 2nf().

We will prove the coding theorem by using a more
sophisticated simulation of 7. In section 4 we describe
a public-coin protocol to simulate 7, and in section 5
we analyze that protocol, showing how it avoids sacri-
ficing efficiency for reliability. In section 6 we show
how to transform the public-coin protocol into one
that uses only private coins.

First however we describe the notion of progress
checks. They will play an important role in our so-
lution, although as we shall see, they are not alone
sufficient.

3 Progress Checks

Here is a possible general strategy: the processors
alternate rounds of simulation of 7, with “progress
check” rounds in which they try to determine whether
the simulation is proceeding correctly; and if not, they
backtrack in the simulation until the checks show that
they have undone the error, at which point they re-
sume the simulation.

At time ¢, processor A holds a binary vector, recy,
of length t, representing its record of the protocol to
date: these are the bits transmitted from 4 to B (be-
fore repetition), as well as the bits A has decoded from
B’s transmissions. Similarly B holds such a binary
vector, recg. Observe that the simulation to date is
correct if, and only if, rec4 = recg. Thus a progress
check might be implemented by having the processors
compare the vectors rec4 and recpg.

These vectors can be quite long: t ranges up to
n. Even for a noiseless channel, A. Yao has shown
[26] that deterministically comparing two vectors of
length ¢ requires §2(¢) transmissions. However, using
randomness, a comparison can be implemented in far
fewer transmissions: A constant number of transmis-
sions suffice in order to compare a pair of arbitrarily
long vectors, with only a small constant failure proba-
bility. Specifically, let R be a ¢ x k matrix with entries
independently and uniformly selected in GF(2).

Lemma 1 If recy # recg then with probability 1 —
2-% recaR # recgR. If reca = recg then recaR =
recg R. (Operations in GF(2).)

Proof: Standard. (]

In the public-coin model, both processors can see
the same random matrix R. They can implement a
progress check by first using R to calculate a k-bit
parity-check vector of their own record and then us-
ing a deterministic Shannon code to encode the parity-
check vector into 6(k/C) channel transmissions. Ex-
cept for a failure event of probability e=*¥¥), each pro-
cessor will correctly decode the other’s parity-check
vector.

There are two ways in which this procedure can fail.
First, the random matrix R might map two different
rec vectors to the same parity-check vector — result-
ing, in case of a successful channel transmission, in
the processors mistakenly believing the simulation is
correct. This is not a problem: the difference between
their rec vectors will persist, and most likely they will
soon discover it and backtrack in the simulation.

The second way in which this check might fail, is
through channel errors during the checking procedure.
If both processors suffer from the error, then this is
no worse a problem than the first kind: in case of
a “false equality” the processors lose a round before
backtracking, while in the case of “false inequality”, a
round of the simulation is needlessly erased.

A more serious problem is that channel errors dur-
ing the checking procedure will occasionally cause one
processor to believe the simulation is correct, and
therefore continue in the simulation; while the other
believes there is an error, and backtracks a step. In
this situation the processors differ in their notions of
the simulation step ¢ (i.e. in the positions of their
“pointers” into the noiseless protocol), and necessar-
ily therefore their rec vectors differ!. Henceforth in
most rounds, the processors will be engaged in back-
tracking in order to undo the error which they detect.
Unfortunately this does not help them close the gap
between their pointers: in fact the only way the gap
can be closed, is by further asymmetric errors which
cancel the effect of the first. Since the asymmetric er-
rors do occur with some constant frequency, the gap
between the pointers will undergo an unbiased ran-
dom walk. The gap starts at just one unit, and so
with very high probability it will in fact vanish within
a constant number of rounds; moreover the probability

1The linear test we have described will not distinguish be-
tween a vector and some extension of it with only 0’s at the
end. This is easily remedied, for instance by augmenting the
rec vectors with a representation of the pointer value t.

727

of it eventually vanishing is 1. However: the ezpected
time until the gap vanishes is infinite. This is a clas-
sic phenomenon in gambler’s ruin ([5] §X1.3, XIV). In
terms of the protocol, it means that the simulation
will completely unravel.

Roughly speaking, the above simulation was too ho-
mogeneous. In the next section we will describe a solu-
tion which assists in bringing the processors’ pointers
together by funnelling them through a hierarchy of
prearranged “meeting points”.

4 Public-Coin Simulation Protocol

In this section we describe a public-coin protocol for
theorem 2. We defer the private-coin case to section 6.

We distinguish two notions of time. Step ¢ will re-
fer exclusively to the #*# bit in the noiseless protocol
7. Round t will refer exclusively to the t*» occasion
on which the noisy simulation simulates a step of =.
Due to the synchronicity of the model, the processors
always know and agree on what the current round is;
on account of channel errors they might, however, dif-
fer as to what step they are currently simulating. We
will describe each processor as having a pointer, whose
value is equal to ¢ during a certain round if the pro-
cessor is then trying to simulate step t of .

We will assume without loss of generality that in the
noiseless protocol 7 the processors alternate single-bit
transmissions; this is the “hardest” case.

If 7 is a protocol of complexity n, the processors
will run the simulation for N = 2M'871+! simulation
rounds. (Note that 2n < N < 4n.) Each round will
consist of one of the processors simulating a single
step of =, by repeating that bit k/C times (for some
constant k)Z. In between rounds the protocol will also
execute a hierarchical system of progress checks, each
associated with an internal node of a complete binary
tree, according to the following schedule. Checks will
be labeled by their level in the tree (the root being
at the highest level). The actual rounds of simulation
will be associated with the leaves of the tree (level 0).
The protocol is scheduled in “postorder” on this tree:
that is, a level I check will be executed after first its
left subtree, and then its right subtree, have been fully
executed (see figure 1).

We now describe the progress checks of the proto-
col. Recall that errors may result in a separation be-
tween the processors’ pointers, as well as in differing
bits in the records. The progress checks are designed

?Note that due to redundancy in the implementation of the
simulation rounds, and to progress checks intervening between
the rounds, the elapsed simulation time will be greater than
the round number. However they will be the same to within a
constant factor.

(7)
level 2

(3)
level 1

(6)
level 1

(1)

round

(2)
round

(4)
round

(5)
round

Figure 1: Simulation schedule

to deal with any combination of these events. If A’s
pointer is at step t4, and B’s pointer is at step tg,
then we define the current position of the protocol
to be max{t4,tp}. The current gap of the protocol
is the difference between the position, and the end of
the prefix of agreement of the two records (i.e. the
greatest ¢ such that the first ¢ bits of rec4 agree with
those of recp). The gap is the distance that one of the
processors must backtrack, and thus a measure of the
severity of the current error in the simulation. The
simulation is correct after some round precisely if the
gap is 0.

Performing a level-I check

A level-l check is performed as follows. Processor A
writes its position ¢4 in the form ¢f12' + ¢4 (for 0 <
¢§ < 2'), and forms the three vectors of length N:

® a; =recy restricted to positions {1, ..., (cff — 1)2'}.
(Set a; to 0in {(cf —1)2' +1,...,N}).

® az = recy restricted to positions {1, ...,ci‘?'}.
(Set az to 0 in {(cf! —1)2' +1,...,N}).

e a3 =recy.
(Set a3 to 0 in {(cft —1)2' +1,...,N}).

Similarly B forms by, b5, b3 from recp.

Now the processors observe a common random
N x 8(2'/1?) matrix R. A encodes each of the par-
ity check vectors a)R, asR, asR into 6(2'/1C) chan-
nel transmissions using a deterministic Shannon code,
and sends the three codewords to B. Similarly B sends
encodings of b; R, bR, baR to A.

The construction should be understood in this way.
The positions (cf! — 1)2' and c{!2' are places at which
A proposes the two processors meet, in case any recent
errors have occurred in the simulation. (The compar-
ison of ag with b3 is meant to detect such errors.) B
also proposes two meeting places, (cf —1)2! and ¢P2'.
The key to the processors’ success is that, so long as

728

the gap is no more than 2', they will always propose
at least one common meeting point, and share a com-
mon history of the protocol through that point. So
they can agree to shift their pointers to that point
and resume the simulation from there.

This idea is implemented as follows. Each processor
represents the information available to it as a bipartite
graph. On one side are three vertices representing A’s
three vectors a;, as and az. On the other side are three
vertices representing b;,b; and b3. In A’s graph, an
edge connects a; to b; if a; R equals the decoding of
the transmission of b; R. Similarly in B’s graph, an
edge connects a; to b; if bj R equals the decoding of
the transmission of a;R. Thus edges of each graph
represent presumed equivalences between the a; and
b; vectors.

Observe that in any state of the simulation, there
is some underlying correct graph representing which
of the pairs a;,b; are indeed equal. We will classify
checks as “good” or “bad”:

Definition A check is good if it results in both pro-
cessors drawing the correct graph. Otherwise the
check is bad.

A check may be bad due either to channel errors or
to a poor choice of R (creating spurious equivalences
between the parity check vectors).

Each processor acts, depending upon its graph, as
follows (description for A; everything for B is sym-
metric):

Case 1 A’s graph is a “parallel” matching with three
edges (see figure 2).

1 By by

Figure 2: Graph for case 1

This suggests to A that the simulation is cor-
rect. So A continues simulating # from its current
pointer position.

Case 2 A’s graph is one of the “partial parallel”
matchings in figure 3.

This suggests to A that, although an error exists
in the simulation, the prefix of agreement never-
theless persists through a;,as or as (depending
on the case). So A moves its pointer back to the
latest of a1, a2, a3 that is incident to an edge, and

(1.7
by B By B B by b b b
(a) (b) (c)
NN
R T T
(4) (e} (f)

Figure 3: Graphs for case 2

continues the simulation from there. (I.e to a3 in
(a); a; in (b); a2 in (c); a; in (d); a3 in (e); and
az in (f)3.)

Case 3 A’s graph is empty. This suggests to A that
there is an error in the simulation and that no
a; and b; are equal. (Thus that the gap is
greater than 2'). So A does nothing. (Which
means that it keeps its pointer fixed until a future
check indicates otherwise. If there is a simulation
round immediately after the check, A can send
some default message, but it does not advance its
pointer.)

Case 4 If A’s graph is anything not described above,
then the check must have been bad. So A does
nothing (which means the same as in case 3).

Properties of a level-l check

Let us specify what a level-1 check accomplishes.

If the check is bad, as defined above — that is if
one of the processors draw a graph different from the
correct one — then the check will not cause a loss
in position, or an increase in gap, of more than 2'+!
steps.

On the other hand if the check is “good” then:

1. If the gap is 0: Both processors will know this,
and will continue in the simulation.

2. If the gap is nonzero but bounded by 2': the check
will enable the processors to eliminate the gap

3Cases (e) and (f) are unusual. Case (e), asserting a3 = bz,
can correctly occur only if ¢ = 2'. Similarly (f) asserting
b3 = az can correctly occur only if ci,B =2

729

while incurring a loss of at most 2! in the posi-
tion.

3. If the gap is greater than 2: Both processors will
know this, and neither will move its pointer.

5 Analysis

Observe that if the simulation protocol is run for
N = 6(n) rounds, the total transmission time will be
#(n/C), as we desire. For, each level I has §(N2')
nodes, each using 9(2'/1?C) transmissions. The to-
tal number of transmissions is thus 8(3", N/I2C) =
8(N/C) = 6(n/C).

We now restate the coding theorem for the case of
public coins, and prove it. Since we will not determine
the true value of &, the # notation will suffice in place
of o(1+7) V¥ > 0.

Theorem 3 Let a binary symmelric channel of ca-
pacity C be given. For every n and every communi-
cation problem f with a noiseless channel protocol
of length n, there ezists a public-coin noisy channel
protocol of length 6(n/C) whick for every input pair,
solves f correctly with probability I b

Proof: We analyze the protocol in two stages. First,
we will assign a certain “bad weight” to every bad
node of the simulation tree, and show that with high
probability, the total bad weight of the simulation is
small (bounded by a constant fraction of r). Second,
we will show that a simulation with small bad weight
completes 7 correctly.

We have already defined bad checks (internal nodes
of the simulation tree) as those in which some pro-
cessor draws an incorrect graph. Now we also define
what it means for a round to be bad. Recall that each
round of the simulation is concerned with simulating
the transmission of a single bit of the noiseless proto-
col.

Definition A round of the simulation (leaf of the sim-
ulation iree) is good if the character decoded
equals that transmitted. Otherwise the round is
bad.

We will assign bad weight 2' to a bad node at level {
(e.g. a bad round has weight 1). The total bad weight
of the simulation, denoted B, is the sum of the bad
weights of its nodes. In view of the fact that N > 2n,
the theorem is implied by the following two claims,
whose proofs will be presented in the remainder of
this section.

1. With probability 1 — e~®(N/108*N) B < N/34.
(With high probability the bad weight is small.)

II. The simulation completes at least N — 178 steps
of m correctly.
(A simulation with small bad weight is correct.)

=]

I. With high probability the bad weight is small

Observe that, regardless of any other event in the pro-
tocol, the probability that a given node of level { is bad
is e=0(2'/1%),

We will argue in each level of the tree separately,
showing that with high probability only a small frac-
tion of the nodes in that level are bad. Let M be any
constant.

Proposition 1 With probability 1 — e=8(N/1og* N) g
most N/M2'I? of the N/2! nodes at level | are bad.

Proof: Let b N/M2'2, and

P(more than b nodes at level [are bad).
By a union bound and by the independence in our

bound on the probability of any node being bad,

let ¢

< (5 et

Now we apply the standard entropy bound M) <
eNHE) (valid for all 0 < z < 1; H is the entropy
function H(z) = zlog 1/z+(1-z)log1/(1—z).) Thus

@ < eNZ"H(l/MI’)—ﬂ(Z’/I’)b,.

Next we apply the inequality H(z) < x]ﬁﬁéﬁ%—)— (valid
for all 0 < z < 1.) Thus
A e SUCED

@ < e

log(eM)421og1 "
= e almdgs —ON/T) = e~ 0(N/TY).

Now since | < IgN,
@ < e— 0N/ 1og‘1v)_

o

Now note that if every level has at most b bad
nodes, then the total bad weight B of the simula-
tion is at most Y, 2'b = > N/MI?, which by a
suitable choice of M we can arrange to be an ar-
bitrarily small constant fraction of N. Thus, ap-
plying the above lemma and taking a union bound
over the Ig N levels of the tree (while noting that
IgN . e=0(N/log* N) _ ,—a(N/ log* M) we find:

Corollary 1 With probability 1 — e—¢(N/10g*N) p <
N/34. o

730

II. A simulation with small bad weight is cor-
rect

In this section we will apply an amortized analysis to
relate the performance of the nodes (as measured by
the total bad weight of the simulation) to the progress
of the simulation.

At any point in the simulation, and in particular
when it terminates, the prefix of agreement of the
two processors’ rec vectors represents the portion of
7 which has been correctly simulated. Recall that the
length of this prefix is equal to the position minus
the gap. Thus the simulation is successful if, at ter-
mination, this difference is at least n.

Proposition 2 The simulation completes at least
N — 17B steps of m correctly.

Recall that the simulation consists of running the pro-
tocol of section 4 for N rounds (with N > 2n). Thus
the simulation is successful if B < N/34.

Proof: We mark every node of the simulation accord-
ing to its behavior. There are three kinds of nodes:

Bad: As defined earlier: either a faulty simulation
round, or a bad check.

GC: Good, correcting: These are good checks in
which the processors were in case 2 of the pro-
tocol: i.e. they found that the protocol was in
error, and corrected the error by bringing their
pointers back to a step at which their rec vectors
are in agreement.

GNC: Good, noncorrecting: These are good rounds;
or good checks in which both processors were in
either case 1 or case 3 of the protocol. This means
that either they found that the simulation is cor-
rect, and continued (case 1); or they found that
the protocol was in error but could not correct it
(case 3).

In terms of these categories, a gap can be created or
increased in only two ways in the protocol: (1) A bad
node at level [can increase the gap by at most 2/+1,
(2) Immediately following a bad check, one or both of
the processors may mistakenly advance their pointer
one step (as if they were in case 1, although they are
not), thus contributing 1 to the gap.

We will charge both of these effects to the bad
nodes, thus saying that a bad check can increase the
gap by at most 2'+! +1, while a bad simulation round
can increase the gap by at most 1. Observe that the
contribution to the gap is at most 5/2 times the bad
weight of the node.

A good node (of either kind) never contributes
to the gap. This is true of good leaves (simulation
rounds) because they can contribute gap only if they
follow immediately after a bad check, to which we have
charged the gap. It is true of good internal nodes
(checks) because the processors agree on their assess-
ment of the state of the protocol, and therefore either
eliminate or avoid increasing the gap; furthermore if
there is an error which they cannot correct (case 3),
they avoid increasing the gap in the following simula-
tion round.

Observe that after a GC node the gap is always 0
(thus the processors’ pointers agree and the simulation
is correct through that step).

The length of the final prefix of agreement is equal
to the number of correct simulation rounds in the
protocol, minus the position loss (from Bad and GC
nodes) and any gap remaining at termination. Thus
the proposition will follow from the two following
claims, which we prove separately:

(A) At least N — 5B of the N simulation rounds of
the protocol, are correct simulations of the steps
of .

(B) The total position loss at Bad and GC nodes,
plus the gap remaining when the protocol halts,
is at most 12B.

Proof of claim (A). Observe that a simulation
round is correct provided that it starts with 0 gap,
and that it itself is good.

We will isolate certain subtrees of the simulation,
which we will call dismissable, and argue that all the
simulation rounds outside the dismissable subtrees are
correct.

We say that the subtree rooted at a node v of level
| is dismissable if:

1. The bad weight in the subtree is at most 22'. (In
particular v must be good.)

2. One of the subtrees rooted at a child of v, has bad
weight more than 22'-1,

3. Nosubtree rooted at an ancestor of v satisfies prop-
erties 1,2. (Thus dismissable subtrees are dis-
joint).

The definition implies that every bad node is con-
tained within some dismissable subtree, unless B >
%N in which case the proposition is trivial. Now we
show that all nodes outside of the dismissable sub-
trees, start with 0 gap. No gap is created outside of
the dismissable subtrees, because all the nodes on the

731

outside (as well as the roots of the dismissable sub-
trees) are good. Therefore it suffices to show that
every dismissable subtree ends with 0 gap. By induc-
tion (on their order of occurrence in the simulation,
namely postorder) we can assume that each dismiss-
able subtree starts with 0 gap. Since the total bad
weight inside a dismissable subtree rooted at level [is
at most 22/, the total gap encountered (if any) by the
check node at its root is at most 2'. Since the root is
good, it can correct this, hence the subtree ends with
0 gap.

We now place an upper bound on the number of
leaves within the dismissable subtrees. A dismissable
subtree rooted at level | has 2' leaves, and bad weight
at least %2"1. Since the dismissable subtrees are dis-
joint, the total number of leaves in their union is at
most 5B.

We have shown that any leaf (simulation round)
outside the union of the dismissable subtrees is good,
and starts with 0 gap; and furthermore that there are
at least N — 5B such leaves. Claim (A) follows.

Proof of claim (B). The only ways in which posi-
tion is lost in the protocol are:

(i) A bad node at level ! can decrease the position by
at most 2'+1.

(ii)) A GC node at level I can decrease the position
by at most 2!*1.

Our argument now runs as follows. The difference
between the number of correctly simulated steps of
(which we lower-bounded in (A)), and the length of
the final prefix of agreement of the rec vectors, is equal
to the sum of:

(a) The total position loss as in (i), (i1) above.
(b) The gap remaining at the end of the simulation.

We will amortize each of these effects against the bad
weight of the simulation. We have indicated above
how gap is amortized against bad weight, at a rate of
5/2 steps per unit of bad weight. Next we examine
the position loss, L.

(i) The total position loss at the bad nodes is
bounded by 2B.

(ii) The amortization of position loss at the GC
nodes against bad weight must be made indirectly,
through an intermediate amortization against the gap
being corrected at the GC nodes. The gap is due en-
tirely to the effect of bad nodes (see (1,2) above); and
as observed, the total amount of gap to be corrected
is bounded by %B. Thus as an intermediate step, we

will say that a bad node at level ! creates %2‘ “gap
coins”. Next we show that the GC nodes convert gap
coins into position loss, at a constant rate.

Lemma 2 The total position loss at the GC nodes is
at most four times the total gap currency.

Proof: The gap coins created at any bad node will
be used to pay for the the position loss at the next-
occurring GC node (i.e. the next in postorder in the
simulation tree). Thus a gap coin will be used at a
unique GC node. Since a GC node at level I can reduce
the position by at most 2/*! steps, the lemma will
follow from showing that it has at least 2'~! gap coins
available.

We prove this as follows. Recall that immediately
after a GC node (as well as at the outset of the sim-
ulation), the gap is always 0. Therefore a GC node
always receives, in the above scheme, at least as much
gap currency as the size of the actual gap which it
encounters.

First we consider the level-1 GC nodes. They en-
counter a gap of at least one step, and therefore have
at least one gap coin available; furthermore they re-
duce the position by at most 4 steps.

Next we consider a GC node v of level I > 1. If v’s
right-hand child is bad, then at least %2"‘1 gap coins
flow to v, and we are done. Otherwise the right-hand
child is good; and since it left gap for v to correct, it
must be a GNC node. Since it could correct any gap
of up to 2/~ steps, the actual gap encountered by v
— and therefore the gap currency available — is at
least 2/-1. m]

Write B = B; + Bj, where B; represents the to-
tal bad weight occurring before the last GC node of
the protocol, and Bj is the weight due to later bad
nodes. The total position loss at Bad nodes of the
protocol is at most 2B; while the above lemma shows
that the total position loss at GC nodes is at most
10B,. Furthermore the gap remaining at termination
is at most %Bz. Thus the total position loss is at most
(2+10)By +(2+ $)B, < 12B. Part (B) of the propo-
sition follows.

This completes the proof of the proposition, and of
the public-coin coding theorem. a

6 Private Coins

The proofs of Shannon’s coding theorem are via the
probabilistic method. In variations, the proofs consist
of describing a random coding technique, and show-
ing that most random seeds give codes with favorable
qualities; hence there exists a good code.

732

Our technique is similar. We have described a
public-coin random protocol such that on any input
pair, most random seeds give a protocol with favor-
able qualities. Unfortunately in the present case, due
to the possibility that different input pairs favor dif-
ferent random seeds, it is not as easy to remove the
randomness in favor of an existential statement. Nev-
ertheless we can remove enough randomness to turn
our public-coin protocol into a private-coin protocol.

The public-coin protocol used #(n?) random coins,
i.e. a sample space of size 20") Theorem 3
showed that for any input pair, if random seeds in
this space were sampled uniformly, the average condi-
tional probability of the simulation failing was at most

—_pl-4loglogn/logn

We will show that there exists a relatively small
subset Q of these random seeds, of size 2¢(") such that
for any input, if the random seeds in @ are sampled
uniformly, the average conditional probability of the
simulation failing is e Y,

The processors thus run the private-coin protocol as
follows: one processor picks an element of @ uniformly.
Then the seed is identified to the other processor with
O(%) channel transmissions (using a Shannon code,
and erring with probability e=%(®)); following which
the processors run the public-coin protocol on the se-
lected seed.

Proposition 3 There ezists a sel of random seeds
Q, of size ¢ = 2°™) such that for every input
pair, the protocol which uses a uniformly selected
seed from Q, succeeds in simulating m with probabil-
e_o(nl—lloglogn/logn)'

iy 1 —

Proof: Omitted.]

This completes the demonstration of the private-
coin coding theorem (theorem 2). D

7 Discussion

Insofar as interactive protocols represent the work-
ings of a computer whose inputs and processing power
are not localized, we have presented here a coding
theorem for computation. There are two questions
prompted directly by this theorem. The first is,
whether it can be reproduced with a deterministic
(rather than randomized private-coin) protocol. The
second regards the constant o: is it 1, as for transmis-
sion?

It seems also interesting and important to ask, with
regard to networks of more than two processors: to
what extent might the coding theorem for interac-
tive protocols be extended to the efficient simulation

of noiseless distributed protocols, on networks with
noise.

In this connection we draw attention to the work of
Gallager [10], who has previously considered the prob-
lem of noise occurring in a distributed computation.
He allowed for a complete network of n processors,
each of which in a single transmission can broadcast
one bit, which arrives at each of the other processors
subject to independent noise. He studied a specific
problem on this network: supposing that each pro-
cessor receives a single input bit, he showed how to
efficiently and reliably compute the combined parity
of all the inputs.

Karchmer and Wigderson [11] observed a certain
equivalence between communication complexity and
circuit complexity, and thereby stimulated great re-
cent interest in communication complexity. While
noisy circuits have been studied in the literature (e.g.
(24, 16, 18, 17, 1, 2, 8, 20]), the correspondence be-
tween circuits and communication protocols does not
appear to extend to the noisy cases of each. Elias [3]
and later Peterson and Rabin [15] investigated the
possibility of encoding data for computation on noisy
gates, and the extent to which these gates might be
said to have a finite (nonzero) capacity for compu-
tation. (Here as for channel transmission, noiseless
encoding and decoding of the data before and after
the computation are allowed).

Finally, we mention two lines of research in the lit-
erature which, although they address different prob-
lems from ours, nevertheless anticipate our work in
philosophy or in method. The first is work on se-
quential coding [25, 19, 4]: a method of implement-
ing data transmission without the computational ex-
plosion of block codes. In this method the receiver
branches on intermediate guesses regarding the mes-
sage, and backtracks when inconsistencies mount. Our
“progress checks” (section 3) are similarly motivated.

The second is work on the active maintenance of
data stored in an unreliable medium (e.g. cellular au-
tomata subject to local noise) [22, 6, 7]: a data trans-
mission problem from the past to the future. The use
of hierarchical, rather than homogeneous, schemes was
found to be important in that work [6]: a theme evi-
dent also in the present paper.

Acknowledgments

I thank Mike Sipser, whose encouragement of my
work on this project, and supervision of its progress,
have been invaluable. Further I thank Peter Elias for
much advice and assistance. For consultations and
comments thanks also to Dan Abramovich, Robert

733

Gallager, Wayne Goddard, Mauricio Karchmer, Dan
Kleitman, Mike Klugerman and Andrew Sutherland.

References

{1} R. L. Dobru and 8. 1. Ortyukov. Lower bound for the redundancy of
seli-correcting arrangements of unreliable functional elements. Prob. Inf.
Trans., 13:59-65, 1977,

R L Dobnuhin and 8. 1. Ortyukov. Upper bound for the redundancy of
arren of uareliable functional ¢lements. Prob. laf.
Tu-l.. 13.205—2!!, 1977,

13}

i3]

P. Elias. Computation in the presence of noise. IBM Journal of Research
and Development, 2(4):346-353, October 1958.

(4] R. M. Fano. A heurlstic discussion of probabilistic decoding. IEEE Trans-
actions on Information Theory, pages 64-T4, 1963.

[8] W. Feller. An Introduction to Probability Theory and its Applications,
volume I. Wiley, third edition, 1968.

P. Géce. Reliable tion with cellul " ta
System Sciences, 33: 15—7;, 1986.

J. Computer and

le]

P.Gécs and J. Reif. A simple th di i 1 reliable cellul
array. J. Computer and System Sclences, 36:125-147, 1968,

Y]

{8] A. G4l Lower bounds for the complexity of reliable boclean circuits with
noisy gates. In Proceedings of the 32nd Anrual Symposium on Founda-
tions of Computer Science, pages 594-601, 1991,

[9] R.G. Gallager. Information Theory and Reliable Communication. Wiley,
1968.

IEEE

[10] R. G. Gallager. Finding parity in & simple broadcast metwork.

Trans. Inform. Theory, 34(2):176-180, March 1988.

M. Karchmer and A. Wigd M i lts for comnectivity re-
quire super-logarithmic dapih in Proceedh‘n of the 30th Annual Sym-
posium on Theory of Computing, pages 539-550, 1988,

11)

{13] Lipton and Sedgewick. Lower bounds for VLSI. Ia Proceedings of the

13th Annusl Symposium on Theory of Computing, pages 300-307, 1981,

L. Lovéss. C icati b : A survey. In Korde et al, editor,
Algorithms and Combinatorics. Springer.Verlag, 1990.

[13)

[14] C. H. Papadimitricu and M. Sipser. Communication complexity. In Pro-
ceedings of the 14th Annual Symposium on Theoty of Computing, pages

196-200, 1982,

W. W. Peterson and M. O. Rabin. On codes for checking logical opera.
tions. 1BM Journal of R h and Develop » 3:163-168, April 1959.

18]

[16} In Proceedhp of the 26th

pages 30-36,

N. Pippenger. On networks of noisy ,ue-
Annual Symposium on Foundati of
1985.

[17] N. Pippenger. Reliable computation by formulas in the presence of noise.

IEEE Transactions on Information Theory, 34(3):194-197, March 1988.
(18] N. Pippenger. Invariance of complexity measures for networks with un-
teliable gates. J. ACM, 36:531-539, 1989.
[19] B. Reiffen. Sequential encodiag and decoding for the discrete memoryless
channel. Res. Lab. of Electronies, M.I.T. Technical Report, 374, 1960.

{20] R. Reischuk and B. Schmelts. Reliable P i with noisy ci
and decision trees — a general nlogn lower bound. In Proceedings of
the 32nd Annual Symposium on Foundations of Computer Science, pages

602-611, 1991,

[21) C. E. Shannon. A mathematical theory of communication. Bell System

Tech. J., 2T:379-423; 623656, 1948,
{33] M. C. Taylor.
unreliable components. Bell System Tech.

Reliable information storage in memories designed from
J., 47(10):2299-2337, 1968.
{23} €. D.Th Area-ti for VLSI. In Proceedings of the
11th Annual Symposium on Theoty of Computing, pages 81-88, 1979.

[34] J. von Neumann. Probabilistic logics and the synthesis of reliable organ-
isms from unreliable P ts. In C. E. Sh and J. McCarthy,

editers, Automata Studies. Princeton University Press, 1956.

[a5] J. M. Wouncnﬂ Sequential decndln; for reliable communications. Res.

Lab. of Elect M.LT. Te 1 Report, 325, 1957.

{26] A. C. Yao. Some complexitly quesiions related to distributive computing.
In Proceedings of the 111h Annual Symposium on Theory of Computing,
pages 209-213, 1979,

[27) A. C. Yao. The entropic limitations om VLSI computations. Ia Pro-
ceedings of the 13th Annual Symposium on Theory of Computing, pages
308-311, 1981.

