
Communication-Optimal Parallel 2.5D Matrix

Multiplication and LU Factorization Algorithms

Edgar Solomonik and James Demmel

Department of Computer Science
University of California at Berkeley, Berkeley, CA, USA

solomon@eecs.berkeley.edu, demmel@eecs.berkeley.edu

Abstract. Extra memory allows parallel matrix multiplication to be
done with asymptotically less communication than Cannon’s algorithm
and be faster in practice. “3D” algorithms arrange the p processors in
a 3D array, and store redundant copies of the matrices on each of p1/3

layers. ‘2D” algorithms such as Cannon’s algorithm store a single copy of
the matrices on a 2D array of processors. We generalize these 2D and 3D
algorithms by introducing a new class of “2.5D algorithms”. For matrix
multiplication, we can take advantage of any amount of extra memory
to store c copies of the data, for any c ∈ {1, 2, ..., ⌊p1/3⌋}, to reduce
the bandwidth cost of Cannon’s algorithm by a factor of c1/2 and the
latency cost by a factor c3/2. We also show that these costs reach the
lower bounds, modulo polylog(p) factors. We introduce a novel algorithm
for 2.5D LU decomposition. To the best of our knowledge, this LU algo-
rithm is the first to minimize communication along the critical path of
execution in the 3D case. Our 2.5D LU algorithm uses communication-
avoiding pivoting, a stable alternative to partial-pivoting. We prove a
novel lower bound on the latency cost of 2.5D and 3D LU factorization,
showing that while c copies of the data can also reduce the bandwidth
by a factor of c1/2, the latency must increase by a factor of c1/2, so
that the 2D LU algorithm (c = 1) in fact minimizes latency. We provide
implementations and performance results for 2D and 2.5D versions of
all the new algorithms. Our results demonstrate that 2.5D matrix mul-
tiplication and LU algorithms strongly scale more efficiently than 2D
algorithms. Each of our 2.5D algorithms performs over 2X faster than
the corresponding 2D algorithm for certain problem sizes on 65,536 cores
of a BG/P supercomputer.

1 Introduction

Goals of parallelization include minimizing communication, balancing the work
load, and reducing the memory footprint. In practice, there are tradeoffs among
these goals. For example, some problems can be made embarrassingly parallel
by replicating the entire input on each processor. However, this approach may
use much more memory than necessary and require significant redundant com-
putation. At the other extreme, one stores exactly one copy of the data spread
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evenly across the processors, tries to balance the load, and minimize communi-
cation subject to this constraint.

However, some parallel algorithms do successfully take advantage of limited
extra memory to increase parallelism or decrease communication. In this paper,
we examine the trade-off between memory usage and communication cost in
linear algebra algorithms. We introduce 2.5D algorithms (the name is explained
below), which have the property that they can utilize any available amount of
extra memory beyond the memory needed to store one distributed copy of the
input and output. 2.5D algorithms use this extra memory to provably reduce
the amount of communication they perform to a theoretical minimum.

We measure costs along the critical path to make sure our algorithms are well
load balanced as well as communication efficient. In particular, we measure the
following quantities along the critical path of our algorithms (which determines
the running time):

– F , the computational cost, is the number of flops done along the critical
path.

– W , the bandwidth cost, is the number of words sent/received along the
critical path.

– S, the latency cost, is the number of messages sent/received along the critical
path.

– M , the memory footprint, is the maximum amount of memory, in words,
utilized by any processor at any point during algorithm execution.

Our communication model does not account for network topology. However, it
does assume that all communication has to be synchronous. So, a processor can-
not send multiple messages at the cost of a single message. Under this model a
reduction or broadcast among p processors costs O(log p) messages but a one-
to-one permutation requires only O(1) messages. This model aims to capture
the behavior of low-dimensional mesh or torus network topologies. Our LU com-
munication lower-bound is independent of the above collective communication
assumptions, however, it does leverage the idea of the critical path.

Our starting point is n-by-n dense matrix multiplication, for which there are
known algorithms that minimize both bandwidth and latency costs in two special
cases:

1. Most algorithms assume that the amount of available memory, M , is enough
for one copy of the input/output matrices to be evenly spread across all p
processors (so M ≈ 3n2/p). If this is the case, it is known that Cannon’s
Algorithm [7] simultaneously balances the load (so F = Θ(n3/p)), minimizes
the bandwidth cost (so W = Θ(n2/p1/2)), and minimizes the latency cost (so
S = Θ(p1/2)) [15,5]. We call Cannon’s algorithm a “2D algorithm” because
it is naturally expressed by laying out the matrices across a p1/2-by-p1/2 grid
of processors.

2. “3D algorithms” assume the amount of available memory, M , is enough
for p1/3 copies of the input/output matrices to be evenly spread across all
p processors (so M ≈ 3n2/p2/3). Given this much memory, it is known
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that algorithms presented in [8,1,2,16] simultaneously balance the load (so
F = Θ(n3/p)), minimize the bandwidth cost (so W = Θ(n2/p2/3)), and
minimize the latency cost (so S = Θ(log p)) [15,5]. These algorithms are
called “3D” because they are naturally expressed by laying out the matrices
across a p1/3-by-p1/3-by-p1/3 grid of processors.

The contributions of this paper are as follows.

1. We present a new matrix multiplication algorithm that uses M ≈ 3cn2/p
memory for c ∈ {1, 2, ..., ⌊p1/3⌋}, sends c1/2 times fewer words than the 2D
(Cannon’s) algorithm, and sends c3/2 times fewer messages than Cannon’s
algorithm. We call the new algorithm 2.5D matrix multiplication, because it
has the 2D and 3D algorithms as special cases, and effectively interpolates
between them, by using a processor grid of shape (p/c)1/2-by-(p/c)1/2-by-
c. Our 2.5D matrix multiplication algorithm attains lower bounds (modulo
polylog(p) factors) on the number of words and messages communicated.

Our implementation of 2.5D matrix multiplication achieves better
strong scaling and efficiency than Cannon’s algorithm and ScaLAPACK’s
PDGEMM [6]. On 2048 nodes of BG/P, our 2.5D algorithm multiplies square
matrices of size n = 65, 536 5.3X faster than PDGEMM and 1.2X faster than
Cannon’s algorithm. On 16,384 nodes of BG/P, our 2.5D algorithm multi-
plies a small square matrix (n = 8192), 2.6X faster than Cannon’s algorithm.

2. We present a 2.5D LU algorithm that also reduces the number of words
moved by a factor of c1/2 in comparison with standard 2D LU algorithms.
2.5D LU attains the same lower bound on the number of words moved as 2.5D
matrix multiplication Our 2.5D LU algorithm uses tournament pivoting as
opposed to partial pivoting [9,12]. Tournament pivoting is a stable alternative
to partial pivoting that was used to minimize communication (both number
of words and messages) in the case of 2D LU. We will refer to tournament
pivoting as communication-avoiding pivoting (CA-pivoting) to emphasize
the fact that this type of pivoting attains the communication lower-bounds.

We present 2.5D LU implementations without pivoting and with CA-
pivoting. Our results demonstrate that 2.5D LU reduces communication and
runs more efficiently than 2D LU or ScaLAPACK’s PDGETRF [6]. For an
LU factorization of a square matrix of size n = 65, 536, on 2048 nodes of
BG/P, 2.5D LU with CA-pivoting is 3.4X faster than PDGETRF with par-
tial pivoting. Further, on 16384 nodes of BG/P, 2.5D LU without pivoting
and with CA-pivoting are over 2X faster than their 2D counterparts.

3. 2.5D LU does not, however, send fewer messages than 2D LU; instead it sends
a factor of c1/2 more messages. Under minor assumptions on the algorithm,
we demonstrate an inverse relationship among the latency and bandwidth
costs of any LU algorithms. This relation yields a lower bound on the latency
cost of an LU algorithm with a given bandwidth cost. We show that 2.5D
LU attains this new lower bound. Further, we show that using extra memory
cannot reduce the latency cost of LU below the 2D algorithm, which sends
Ω(p1/2) messages. These results hold for LU with CA-pivoting and without
pivoting.
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2 Previous Work

In this section, we detail the motivating work for our algorithms. First, we recall
linear algebra communication lower bounds that are parameterized by memory
size. We also detail the main motivating algorithm for this work, 3D matrix
multiplication, which uses extra memory but performs less communication. The
communication complexity of this algorithm serves as a matching upper-bound
for our general lower bound.

2.1 Communication Lower Bounds for Linear Algebra

Recently, a generalized communication lower bound for linear algebra has been
shown to apply for a large class of matrix-multiplication-like problems [5]. The
lower bound applies to either sequential or parallel distributed memory, and
either dense or sparse algorithms. The distributed memory lower bound is for-
mulated under a communication model identical to that which we use in this
paper. This lower bound states that for a fast memory of size M (e.g. cache size
or size of memory space local to processor) the lower bound on communication
bandwidth is

W = Ω

(

#arithmetic operations√
M

)

words, and the lower bound on latency is

S = Ω

(

#arithmetic operations

M3/2

)

messages. On a parallel machine with p processors and a local processor memory
of size M , this yields the following lower bounds for communication costs of
matrix multiplication of two dense n-by-n matrices as well as LU factorization
of a dense n-by-n matrix:

W = Ω

(

n3/p√
M

)

, S = Ω

(

n3/p

M3/2

)

These lower bounds are valid for n2

p < M < n2

p2/3 and suggest that algorithms

can reduce their communication cost by utilizing more memory. If M < n2

p , the

entire matrix won’t fit in memory. As explained in [5], conventional algorithms,
for example those in ScaLAPACK [6], mostly do not attain both these lower
bounds, so it is of interest to find new algorithms that do.

2.2 3D Linear Algebra Algorithms

Consider we have p processors arranged into a 3D grid as in Figure 1(a), with
each individual processor indexed as Pi,j,k. We replicate input matrices on 2D
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layers of this 3D grid so that each processor uses M = Ω
(

n2

p2/3

)

words of memory.

In this decomposition, the lower bound on bandwidth is

W3d = Ω
(

n2/p2/3
)

.

According to the general lower bound the lower bound on latency is trivial: Ω (1)
messages. However, for any blocked 2D or 3D layout,

S3d = Ω (log p) .

This cost arises from the row and column dependencies of dense matrix-
multiplication-like problems. Information from a block row or block column of
can only be propagated to one processor with Ω(log p) messages.

Algorithm 1. [C] = 3D-matrix-multiply(A,B,n,p)
Input: n-by-n matrix A distributed so that Pij0 owns n

p1/3
-by- n

p1/3
block Aij for each i, j

Input: n-by-n matrix B distributed so that P0jk owns n

p1/3
-by- n

p1/3
block Bjk for each j, k

Output: n-by-n matrix C = A · B distributed so that Pi0k owns n

p1/3
-by- n

p1/3
block Cik for each i, k

// do in parallel with all processors

forall i, j, k ∈ {0, 1, ..., p1/3 − 1} do

Pij0 broadcasts Aij to all Pijk /* replicate A on each ij layer */

P0jk broadcasts Bjk to all Pijk /* replicate B on each jk layer */

Cijk := Aij · Bjk

Pijk contributes Cijk to a sum-reduction to Pi0k

end

3D matrix multiplication. For matrix multiplication, Algorithm 1 [8,1,2,16]
achieves the 3D bandwidth and latency lower bounds. The amount of mem-

ory used in this 3D matrix multiplication algorithm is M = Θ
(

n2

p2/3

)

so the

3D communication lower bounds apply. The only communication performed is
the reduction of C and, if necessary, a broadcast to spread the input. So the

bandwidth cost is W = O
(

n2

p2/3

)

, which is optimal, and the latency cost is

S = O (log p), which is a optimal for a blocked layout.

Memory efficient matrix multiplication. McColl and Tiskin [18] present
a memory efficient variation on the 3D matrix multiplication algorithm for a
PRAM-style model. They partition the 3D computation graph to pipeline the
work and therefore reduce memory in a tunable fashion. However, their theo-
retical model is not reflective of modern supercomputer architectures, and we
see no clear way to reformulate their algorithm to be communication optimal.
Nevertheless, their research is in very similar spirit to and serves as a motivating
work for the new 2.5D algorithms we present in later sections.
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Previous work on 3D LU factorization. Irony and Toledo [14] introduced
a 3D LU factorization algorithm that minimizes total communication volume
(sum of the number of words moved over all processors), but does not minimize
either bandwidth or latency along the critical path. This algorithm distributes
A and B cyclically on each processor layer and recursively calls 3D LU and 3D
TRSM routines on sub-matrices.

Neither the 3D TRSM nor the 3D LU base-case algorithms given by Irony
and Toledo minimize communication along the critical path which, in practice,
is the bounding cost. We define a different 2.5D LU factorization algorithm that
does minimize communication along its critical path.

Ashcraft [4,3] suggested that total communication volume can be reduced for
LU and Cholesky via the use of aggregate data. Aggregate data is a partial sum
of updates, rather than simply the matrix entries. Our 2.5D LU algorithm uses
aggregate data to reduce communication by the amount Ashcraft predicted.

3 2.5D Lower and Upper Bounds

The general communication lower bounds are valid for a range of M in which
2D and 3D algorithms hit the extremes. 2.5D algorithms are parameterized
to be able to achieve the communication lower bounds for any valid M . Let
c ∈ {1, 2, . . . , ⌊p1/3⌋} be the number of replicated copies of the input matrix.
Consider the processor grid in Figure 1(b) (indexed as Pi,j,k) where each proces-

sor has local memory size M = Ω
(

cn2

p

)

. The lower bounds on communication
are

W2.5d = Ω

(

n2

√
cp

)

S2.5d = Ω

(

p1/2

c3/2

)

.

The lower bound in Section 6 of [5] is valid while c <= p1/3. When c = p1/3, the
latency lower bound is trivial, Ω(1) messages, and the bandwidth lower bound is
Ω(n2/p2/3) words. If the initial data is not replicated, we claim the Ω(n2/p2/3)
bandwidth lower bound also holds for c > p1/3. A total of Ω(cn2−n2) = Ω(cn2)
words must be communicated to produce the replicated copies without local
entry duplicates. Therefore, some processor must communicate Ω(cn2/p) words.
When c > p1/3, this replication bandwidth cost is bound from below by cn2/p =
Ω(n2/p2/3) words.

From a performance-tuning perspective, by formulating 2.5D linear algebra
algorithms, we are essentially adding an extra tuning parameter to the algorithm.
Also, as a sanity check for our 2.5D algorithms, we made sure they reduced
to practical 2D algorithms when c = 1 and to practical 3D algorithms when
c = p1/3.

3.1 2.5D Matrix Multiplication

For matrix multiplication, Algorithm 2 achieves the 2.5D bandwidth lower bound
and gets within a factor of O(log p) of the 2.5D latency lower bound (likely
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(a) 3D processor grid of dimension p1/3-
by-p1/3-by-p1/3.

(b) 2.5D processor grid of dimen-
sion (p/c)1/2-by-(p/c)1/2-by-c (replica-
tion factor c).

Fig. 1.

optimal). Algorithm 2 generalizes Cannon’s algorithm (set c = 1). At a high
level, our 2.5D algorithm does a portion of Cannon’s algorithm on each set of
copies of matrices A and B, then combines the results. To make this possible,
we adjust the initial shift done by Cannon’s algorithm to be different for each
set of copies of matrices A and B.

Our 2.5D algorithm doesn’t quite generalize Algorithm 1 since C is reduced
in a different dimension and shifted initially. However, in terms of complexity,
only two extra matrix shift operations are required by the 3D version of our 2.5D
algorithm. Further, the 2.5D algorithm has the nice property that C ends up
spread over the same processor layer that both A and B started on. The algo-

rithm moves W = O
(

n2

√
cp

)

words and sends S = O
(

√

p/c3 + log c
)

messages.

This cost is optimal according to the general communication lower bound. The
derivations of these costs are in Appendix A in [19].

We also note that if the latency cost is dominated by the intra-layer
communication S = O(

√

p/c3), our 2.5D matrix multiplication algorithm can
achieve perfect strong scaling in certain regimes. Suppose we want to multiply
n × n matrices, and the maximum memory available per processor is Mmax.
Then we need to use at least pmin = Θ(n2/Mmax) processors to store one
copy of the matrices. The 2D algorithm uses only one copy of the matrix and
has a bandwidth cost of Wpmin

= O(n2/
√

pmin) words and latency cost of
Spmin

= O(
√

pmin) messages. If we use p = c · pmin processors, with a total
available memory of p · Mmax = c · pmin · Mmax, we can afford to have c copies
of the matrices. The 2.5D algorithm can store a matrix copy on each of c
layers of the p processors. Utilizing c copies reduces the bandwidth cost to
Wp = O(n2/

√
cp) = O(n2/(c

√
pmin)) = O(Wpmin

/c) words, and the latency cost

to Sp = O(
√

p/c3) = O(
√

pmin/c) = O(Spmin
/c) messages. This strong scaling is
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Algorithm 2. [C] = 2.5D-matrix-multiply(A,B,n,p,c)
Input: square n-by-n matrices A, B distributed so that Pij0 owns n√

p/c
-by- n√

p/c
blocks Aij and Bij

for each i, j

Output: square n-by-n matrix C = A · B distributed so that Pij0 owns n√
p/c

-by- n√
p/c

block Cij

for each i, j

/* do in parallel with all processors */

forall i, j ∈ {0, 1, ...,
√

p/c − 1}, k ∈ {0, 1, ..., c − 1} do

Pij0 broadcasts Aij and Bij to all Pijk /* replicate input matrices */

s := mod (j − i + k
√

p/c3,
√

p/c) /* initial circular shift on A */

Pijk sends Aij to Alocal on Pisk

s′ := mod (i − j + k
√

p/c3,
√

p/c) /* initial circular shift on B */

Pijk sends Bij to Blocal on Ps′jk

Cijk := Alocal · Blocal

s := mod (j + 1,
√

p/c)

s′ := mod (i + 1,
√

p/c)

for t = 1 to
√

p/c3 − 1 do

Pijk sends Alocal to Pisk /* rightwards circular shift on A */

Pijk sends Blocal to Ps′jk /* downwards circular shift on B */

Cijk := Cijk + Alocal · Blocal

end

Pijk contributes Cijk to a sum-reduction to Pij0

end

Fig. 2. LU diagonal block dependency path. These blocks must be factorized in order
and communication is required between each block factorization.

perfect because all three costs (flops, bandwidth and latency) fall by a factor of
c. (up to a factor of c = p1/3, and ignoring the log(c) latency term).

4 2.5D LU Communication Lower Bound

We argue that for Gaussian-elimination style LU algorithms that achieve the
bandwidth lower bound, the latency lower bound is actually much higher, namely
Slu = Ω

(√
cp

)

.
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Given a parallel LU factorization algorithm, we assume the algorithm must
uphold the following properties

1. Consider the largest k-by-k matrix A00 factorized sequentially such that

A =

[

A00 A01

A10 A11

]

(we can always pick some A00 since at least the top left

element of A is factorized sequentially), the following conditions must hold,
(a) Ω(k3) flops must be done before A11 can be factorized (it can be updated

but Gaussian elimination cannot start).
(b) Ω(k2) words must be communication before A11 can be factorized.
(c) Ω(1) messages must be sent before A11 can be factorized.

2. The above condition holds recursively (for factorization of A11 in place of
A).

We now lower bound the communication cost for any algorithm that follows
the above restrictions. Any such algorithm must compute a sequence of di-
agonal blocks {A00, A11, . . . , Ad−1,d−1}. Let the dimensions of the blocks be
{k0, k1, . . . , kd−1}. As done in Gaussian Elimination and as required by our con-
ditions, the factorizations of these blocks are on the critical path and must be
done in strict sequence.

Given this dependency path (shown in Figure 2), we can lower bound the
complexity of the algorithm by counting the complexity along this path. The
latency cost is Ω(d) messages, the bandwidth cost is

∑d−1
i=0 Ω(k2

i ) words and the

computational cost is
∑d−1

i=0 Ω(k3
i ) flops. Due to the constraint,

∑d−1
i=0 ki = n,

it is best to pick all ki = k, for some k (we now get d = n/k), to minimize
bandwidth and flop costs. Now we see that the algorithmic costs are

Flu = Ω(nk2) Slu = Ω(n/k) Wlu = Ω(nk).

Evidently, if we want to do O(n3/p) flops we need k = O
(

n√
p

)

, which would

necessitate S = Ω(
√

p). Further, the cost of sacrificing flops for latency is large.

Namely, if S = O
(√

p

r

)

, the computational cost is F = Ω
(

r2n3

p

)

, a factor of

r2 worse than optimal. Since we are very unlikely to want to sacrifice so much
computational cost to lower the latency cost, we will not attempt to design
algorithms that achieve a latency smaller than Ω(

√
p).

If we want to achieve the bandwidth lower bound we need,

Wlu = O
(

n2/
√

cp
)

k = O (n/
√

cp) Slu = Ω(
√

cp).

A latency cost of O(
√

cp/r), would necessitate a factor of r larger bandwidth
cost. So, an LU algorithm can do minimal flops, bandwidth, and latency as
defined in the general lower bound, only when c = 1. For c > 1, we can achieve
optimal bandwidth and flops but not latency.

It is also worth noting that the larger c is, the higher the latency cost for LU
will be (assuming bandwidth is prioritized). This insight is the opposite of that
of the general lower bound, which lower bounds the latency as Ω(1) messages for



Communication-Optimal Parallel 2.5D Matrix Multiplication 99

3D (c = p1/3). However, if a 3D LU algorithm minimizes the number of words
communicated, it must send Ω(p2/3) messages. This tradeoff suggests that c
should be tuned to balance the bandwidth cost and the latency cost.

5 2.5D Communication Optimal LU

In order to write down a 2.5D LU algorithm, it is necessary to find a way to
meaningfully exploit extra memory. A 2D parallelization of LU typically factor-
izes a vertical and a top panel of the matrix and updates the remainder (the
Schur complement). The dominant cost in a typical parallel LU algorithm is the
update to the Schur complement. Our 2.5D algorithm exploits this by accumu-
lating the update over layers. However, in order to factorize each next panel we
must reduce the contributions to the Schur complement. We note that only the
panel we are working on needs to be reduced and the remainder can be further
accumulated. Even so, to do the reductions efficiently, a block-cyclic layout is
required. This layout allows more processors to participate in the reductions and
pushes the bandwidth cost down to the lower bound.

Algorithm 3. [L, U ] = 2.5D-LU-factorization(A,n,p,c)
Input: n-by-n matrix A distributed so that for each l, m, (n/c)-by-(n/c) block Alm is spread over Pij0 in

(n/
√

pc)-by-(n/
√

pc) blocks.

Output: triangular n-by-n matrices L, U such that A = L · U and for each l, m, (n/c)-by-(n/c) blocks

Llm, Ulm are spread over Pij0 .

Pij0 broadcasts its portion of A to each Pijk

for t = 0 to c − 1 do

[Ltt, Utt] = 2D-LU(Att) /* redundantly factorize top right (n/c)-by-(n/c) block */

[LT
t+k+1,t] = 2D-TRSM(UT

tt ,A
T
t+k+1,t) /* perform TRSMs on (n/c)-by-(n/c) blocks */

[Ut,t+k+1] = 2D-TRSM(Ltt,At,t+k+1)

Pijk broadcasts its portions of Lt+k+1,t and Ut,t+k+1 to Pijk′ for all k′ /* all-gather panels */

if ⌊k
√

p/c3⌋ ≤ j < ⌊(k + 1)
√

p/c3⌋ then /* broadcast sub-panels of L */

Pijk broadcasts its portion of Lt+1:c−1,t to each Pij′k for all j′

end

if ⌊k
√

p/c3⌋ ≤ i < ⌊(k + 1)
√

p/c3⌋ then /* broadcast sub-panels of U */

Pijk broadcasts its portion of Ut,t+1:c−1 to each Pi′jk for all i′

end

Pijk computes and accumulates its portion of the Schur complement

update S /* multiply sub-panels */

All-reduce (sum and subtract from A) St+1:c−1,t+1, St+1,t+2:c−1 /* reduce next big block panels */

end

Algorithm 3 (work-flow diagram in Figure 3) is a communication optimal LU
factorization algorithm for the entire range of c ∈ {1, 2, . . . , ⌊p1/3⌋}. The algo-
rithm replicates the matrix A on each layer and partitions it block cyclically
across processors with block size (n/

√
pc)-by-(n/

√
pc). Note that this block di-

mension corresponds to the lower bound derivations in the previous section.
Every processor owns one such block within each bigger block of size n/c-by-
n/c. We will sometimes refer to big blocks (block dimension n/c) and small
blocks (block dimension n/

√
pc) for brevity.
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Fig. 3. 2.5D LU algorithm work-flow

Algorithm 3 has a bandwidth cost of W = O
(

n2

√
cp

)

words and a latency cost

of S = O
(√

cp log(p)
)

messages. Therefore, it is asymptotically communication
optimal for any choice of c (modulo a log(p) factor for latency). Further, it is
also always asymptotically computationally optimal (the redundant work is a
low order cost). These costs are derived in Appendix B in [19].

6 2.5D Communication Optimal LU with Pivoting

Regular partial pivoting is not latency optimal because it requires Ω(n)
messages if the matrix is in a 2D blocked layout. Ω(n) messages are required by
partial pivoting since a pivot needs to be determined for each matrix column
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Algorithm 4. [V, L, U ] = 2.5D-TSLU-pivot-factorization(A,n,m,p,c)
Let [V ] = CA-Pivotl (Al,n,b) be a function that performs CA-pivoting with block size b on A of size n-by-b

and outputs the pivot matrix V to all processors.

Input: n-by-m matrix A distributed so that for each i, j, Pijk owns m√
p/c

-by- m√
p/c

blocks Alij for

li ∈ {i, i +
√

p/c, i + 2
√

p/c, . . . , i + (n/m − 1)
√

p/c}.
Output: n-by-n permutation matrix V and triangular matrices L, U such that V · A = L · U and for each

i, j, Pijk owns n√
pc

-by- n√
pc

blocks Llij and Uij for each i, li, and j.

for s = 0 to
√

p/c − 1 do

Pisk compute [Vs] = CA-Pivot
k
√

p/c+i
(A

k
√

p/c+i,s
,n,m)

Pijk pivots rows between A
k
√

p/c+i,j
and each copy of Asj stored on each Psjk according to Vs

Ass := V ′T
s LssUss /* factorize top left small block redundantly using GEPP */

Usj := L−1
ss V ′

s Asj for j > s /* do TRSMs on top small block row redundantly */

LT
is := U−T

ss AT
is for i > s /* do TRSMs on the top part of a small block column redundantly */

LT
k
√

p/c+i,s
:= U−T

ss AT
k
√

p/c+i,s
/* do TRSMs on rest of small block column */

Pisk broadcasts Lis and L
k
√

p/c+i,s
to all Pijk

Psjk broadcasts Usj to all Pijk

Aij := Aij − Lis · Usj for i, j > s /* update top big block redundantly */

A
k
√

p/c+i,j
:= A

k
√

p/c+i,j
− L

k
√

p/c+i,s
· Usj for j > s /* update remaining big blocks */

Update V with Vs

end

Pijk broadcasts L
k
√

p/c+i,j
to Pijk′ for all k′

which always requires communication unless the entire column is owned by one
processor. However, tournament pivoting (CA-pivoting) [9], is a new LU pivot-
ing strategy that can satisfy the general communication lower bound. We will
incorporate this strategy into our 2.5D LU algorithm.

CA-pivoting simultaneously determines b pivots by forming a tree of factor-
izations as follows,

1. Factorize each 2b-by-b block [A0,2k, A0,2k+1]
T = PT

k LkUk for k ∈ [0, n
2b − 1]

using GEPP.
2. Write Bk = Pk[A0,2k, A0,2k+1]

T , and Bk = [B′
k, B′′

k ]T . Each B′
k represents

the ’best rows’ of each sub-panel of A.
3. Now recursively perform steps 1-3 on [B′

0, B
′
1, ..., B

′
n/(2b)−1]

T until the num-
ber of total best pivot rows is b.

For a more detailed and precise description of the algorithm and stability analysis
see [9,12].

To incorporate CA-pivoting into our LU algorithm, we would like to do piv-
oting with block size b = n/

√
pc. The following modifications need to be made

to accomplish this,

1. Previously, we did the big-block side panel Tall-Skinny LU (TSLU) via
a redundant top block LU-factorization and TRSMs on lower blocks. To
do pivoting, the TSLU factorization needs to be done as a whole rather
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Algorithm 5. [V, L, U ] = 2.5D-LU-pivot-factorization(A,n,p,c)
Input: n-by-n matrix A distributed so that for each l, m, (n/c)-by-(n/c) block Alm is spread over Pij0 in

(n/
√

pc)-by-(n/
√

pc) blocks.

Output: n-by-n matrices V and triangular L, U such that V · A = L · U and for each l, m, (n/c)-by-(n/c)

blocks Llm, Ulm are spread over Pij0 .

S1:n,1:n := 0 /* S will hold the accumulated Schur complemented updates to A */

Pij0 broadcasts its portion of A to each Pijk

for t = 0 to c − 1 do

[Vt, Lt:n/c−1,t, Utt] = 2.5D-TSLU-pivot-factorization(At:c−1,t ,n − tn/c,n/c,p,c)

Update V with Vt

Swaps any rows as required by Vt to (A, S)t,1:c−1 /* pivot remainder of matrix redundantly */

All-reduce (sum and subtract from A) St,t+1:c−1 /* reduce big block top panel */

[Ut,t+k+1] = 2D-TRSM(Ltt,At,t+k+1) /* perform TRSMs on (n/c)-by-(n/c) blocks */

Pijk broadcasts its portion of Ut,t+k+1 to each Pijk′ for all k′ /* all-gather top panel */

if ⌊k
√

p/c3⌋ ≤ j < ⌊(k + 1)
√

p/c3⌋ then /* broadcast sub-panels of L */

Pijk broadcasts its portion of Lt+1:c−1,t to each Pij′k for all j′

end

if ⌊k
√

p/c3⌋ ≤ i < ⌊(k + 1)
√

p/c3⌋ then /* broadcast sub-panels of U */

Pijk broadcasts its portion of Ut,t+1:c−1 to each Pi′jk for all i′

end

Pijk computes and accumulates its portion the Schur complement update S /* multiply sub-panels */

All-reduce (sum and subtract from A) St+1:c−1,t+1 /* reduce next big block vertical panel */

end

than in blocks. We can still have each processor layer compute a different
’TRSM block’ but we need to interleave this computation with the top block
LU factorization and communicate between layers to determine each set of
pivots as follows (Algorithm 4 gives the full TSLU algorithm),
(a) For every small block column, we perform CA-pivoting over all layers to

determine the best rows.
(b) We pivot the rows within the panel on each layer. Interlayer communi-

cation is required, since the best rows are spread over the layers (each
layer updates a subset of the rows).

(c) Each ij processor layer redundantly performs small TRSMs and the
Schur complement updates in the top big block.

(d) Each ij processor layer performs TRSMs and updates on a unique big-
block of the panel.

2. After the TSLU, we need to pivot rows in the rest of the matrix. We do this
redundantly on each layer, since each layer will have to contribute to the
update of the entire Schur complement.

3. We still reduce the side panel (the one we do TSLU on) at the beginning
of each step but we postpone the reduction of the top panel until pivoting
is complete. Basically, we need to reduce the ’correct’ rows which we know
only after the TSLU.
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Fig. 4. 2.5D LU with pivoting panel factorization (step A in Figure 3)

Algorithm 5 details the entire 2.5D LU with CA-pivoting algorithm and Figure 4
demonstrates the workflow of the new TSLU with CA-pivoting. Asymptotically,
2.5D LU with CA-pivoting has almost the same communication and computa-
tional cost as the original algorithm. Both the flops and bandwidth costs gain an
extra asymptotic log p factor (which can be remedied by using a smaller block
size and sacrificing some latency). Also, the bandwidth cost derivation requires
a probabilistic argument about the locations of the pivot rows, however, the
argument should hold up very well in practice. For the full cost derivations of
this algorithm see Appendix C in [19].
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7 Performance Results

We implemented 2.5D matrix multiplication and LU factorization using MPI [13]
for inter-processor communication. We perform most of the sequential work us-
ing BLAS routines: DGEMM for matrix multiplication, DGETRF, DTRSM,
DGEMM, for LU. We found it was fastest to use provided multi-threaded BLAS
libraries rather than our own threading. All the results presented in this paper
use threaded ESSL routines.

We benchmarked our implementations on a Blue Gene/P (BG/P) machine lo-
cated at Argonne National Laboratory (Intrepid). We chose BG/P as our target
platform because it uses few cores per node (four 850 MHz PowerPC proces-
sors) and relies heavily on its interconnect (a bidirectional 3D torus with 375
MB/sec of achievable bandwidth per link). On this platform, reducing inter-node
communication is vital for performance.

BG/P also provides topology-aware partitions, which 2.5D algorithms are able
to exploit. For node counts larger than 16, BG/P allocates 3D cuboid partitions.
Since 2.5D algorithms have a parameterized 3D virtual topology, a careful choice
of c allows them to map precisely to the allocated partitions (provided enough
memory).

Topology-aware mapping can be very beneficial since all communication hap-
pens along the three dimensions of the 2.5D virtual topology. Therefore, net-
work contention is minimized or, in certain scenarios, completely eliminated.
Topology-aware mapping also allows 2.5D algorithms to utilize optimized line
multicast and line reduction collectives provided by the DCMF communication
layer [11,17].

We study the strong scaling performance of 2.5D algorithms on a 2048 node
partition (Figures 5(a), 6(a), 7(a)). The 2048 node partition is arranged in a 8-by-
8-by-32 torus. In order to form square layers, our implementation uses 4 processes
per node (1 process per core) and folds these processes into the X dimension.
Now, each XZ virtual plane is 32-by-32. We strongly scale 2.5D algorithms from
256 nodes c = Y = 1 to 2048 nodes c = Y = 8. For ScaLAPACK we use smp or
dual mode on these partitions, since it is not topology-aware.

We also compare performance of 2.5D and 2D algorithms on 16,384 nodes
(65,536 cores) of BG/P. The 16,384 node partition is a 16-by-32-by-32 torus. We
run both 2D and 2.5D algorithms in SMP mode. For 2.5D algorithms, we use
c = 16 YZ processor layers.

7.1 2.5D Matrix Multiplication Performance

Our 2.5D matrix multiplication implementation is a straight-forward adjustment
of Cannon’s algorithm. We assume square and correctly padded matrices, as
does Cannon’s algorithm. A more general 2.5D matrix multiplication algorithm
ought to be built on top of a more general 2D algorithm (e.g. the SUMMA
algorithm [20]). However, our algorithm and implementation provide an idealistic
and easily reproducible proof of concept.
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Fig. 5. Performance of 2.5D MM on BG/P

Figure 5(a) demonstrates that 2.5D matrix multiplication achieves better
strong scaling than its 2D counter-part. However, both run at high efficiency
(over 50%) for this problem size, so the benefit is minimal. The performance of
the more general ScaLAPACK implementation lags behind the performance of
our code by a large factor.

Figure 5(b) shows that 2.5D matrix multiplication outperforms 2D matrix
multiplication significantly for small matrices on large partitions. The network
latency and bandwidth costs are reduced, allowing small problems to execute
much faster (up to 2.6X for the smallest problem size).

7.2 2.5D LU Performance

We implemented a version of 2.5D LU without pivoting. While this algorithm
is not stable for general dense matrices, it provides a good upper-bound on the
performance of 2.5D LU with pivoting. The performance of 2.5D LU is also
indicative of how well a 2.5D Cholesky implementation might perform.

Our 2.5D LU implementation has a structure closer to that of Algorithm 5
rather than Algorithm 3. Processor layers perform updates on different big-block
subpanels of the matrix as each corner small block gets factorized.

Our 2.5D LU implementation made heavy use of subset broadcasts (multi-
casts). All communication is done in the form of broadcasts or reductions along
axis of the 3D virtual topology. This design allowed our code to utilize efficient
line broadcasts on the BG/P supercomputer.

Figure 6(a) shows that 2.5D LU achieves more efficient strong scaling than
2D LU. 2D LU maps well to the 2D processor grid on 256 nodes. However, the
efficiency of 2D LU suffers when we use more nodes, since the network parti-
tion becomes 3D. On 3D partitions, the broadcasts within 2D LU are done via
topology-oblivious binomial trees and suffer from contention. For this problem
configuration, 2.5D LU achieves a 2.2X speed-up over the 2D algorithm on 2048
nodes.
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Fig. 7. Performance of 2.5D LU with pivoting on BG/P

Figure 6(b) demonstrates that 2.5D LU is also efficient and beneficial at a
larger scale. However, the efficiency of both 2D and 2.5D LU falls off for small
problem sizes. The best efficiency and relative benefits are seen for the largest
problem size (n = 131, 072). We did not test larger problem sizes, since execution
becomes too time consuming. However, we expect better performance and speed-
ups for larger matrices.

7.3 2.5D LU with CA-Pivoting Performance

2.5D LU performs pivoting in two stages. First, pivoting is performed only in
the big-block panel. Then the rest of the matrix is pivoted according to a larger,
accumulated pivot matrix. We found it most efficient to perform the subpanel
pivoting via a broadcast and a reduction, which minimize latency. For the rest of
the matrix, we performed scatter and gather operations to pivot, which minimize
bandwidth. We found that this optimization can also be used to improve the
performance of 2D LU and used it accordingly.
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Figure 7(a) shows that 2.5D LU with CA-pivoting strongly scales with
higher efficiency than its 2D counter-part. It also outperforms the ScaLAPACK
PDGETRF implementation. Though, we note that ScaLAPACK uses partial
pivoting rather than CA-pivoting and therefore computes a different answer.

On 16,384 nodes, 2D and 2.5D LU run efficiently only for larger problem
sizes (see Figure 7(b)). The latency costs of pivoting heavily deteriorate the
performance of the algorithms when the matrices are small. Since, 2.5D LU
does not reduce latency cost, not much improvement is achieved for very small
matrix sizes. However, for medium sized matrices (n = 131, 072) over 2X gains
in efficiency are achieved. We expect similar trends and better efficiency for even
larger matrices.

The absolute efficiency achieved by our 2.5D LU with CA-pivoting algorithm is
better than ScaLAPACK and can be improved even further. Our implementation
does not exploit overlap between communication and computation and does
not use prioritized scheduling. We observed that, especially at larger scales,
processors spent most of their time idle (waiting to synchronize). Communication
time, on the other hand, was heavily reduced by our techniques and was no longer
a major bottleneck.

8 Future Work

Preliminary analysis suggests that a 2.5D algorithm for TRSM can be written
using a very similar parallel decomposition to what we present in this paper for
LU. We will formalize this analysis.

Our 2.5D LU algorithm can also be modified to do Cholesky. Thus, using
Cholesky-QR we plan to formulate many other numerical linear algebra opera-
tions with minimal communication. As an alternative, we are also looking into
adjusting the algorithms for computing QR, eigenvalue decompositions, and the
SVD which use Strassen’s algorithm [10] to using our 2.5D matrix multiplica-
tion algorithm instead. Further, we plan to look for the most efficient and stable
2.5D QR factorization algorithms. In particular, the 2D parallel Householder al-
gorithm for QR has a very similar structure to LU, however, we have not found
a way to accumulate Householder updates across layers. The Schur complement
updates are subtractions and therefore commute, however, each step of House-
holder QR orthogonalizes the remainder of the matrix with the newly computed
panel of Q. This orthogonalization is dependent on the matrix remainder and is
a multiplication, which means the updates do not commute. Therefore it seems
to be difficult to accumulate Housholder updates onto multiple buffers.

We plan to implement a more general 2.5D MM algorithm based on
SUMMA [20]. We also plan to further tune our 2.5D LU algorithms. Incorporat-
ing better scheduling and overlap should improve the absolute efficiency of our
implementation. We hope to apply these implementations to accelerate scientific
simulations that solve distributed dense linear algebra problems. Our motivat-
ing scientific domain has been quantum chemistry applications, which spend a
significant fraction of execution time performing small distributed dense matrix
multiplications and factorizations.
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