Communication Requirements for Generating Correlated Random Variables

Paul Cuff

Stanford University

International Symposium on Information Theory Toronto - July 9, 2008

Overview

X is random and specified by nature.

How much must be told about X to generate Y correlated with X? What is the effect of common randomness?

• Application:

 Game theory — mixed strategies among participants on a team. [Anantharam, Borkar 07]

Talk Outline

1 Correlation Encryption

2 Channel Simulation

3 Proof

- Achievability
- Converse

Correlation Encryption

X is given by nature iid according to $p_0(x)$.

Goal:

- Construct Y correlated with X according to $p_0(y|x)$.
- 2 Message doesn't give away anything about X and Y.

Correlation Encryption

Encoder: $p(m|x^n, z)$. Decoder: $p(y^n|m, z)$. Induced Distribution:

$$p(x^n, y^n, m, z) = p(x^n)p(z)p(m|x^n, z)p(y^n|m, z)$$

Achievable if there exists a sequence of encoders and decoders such that

$$\lim_{n \to \infty} I(M; X^n, Y^n) = 0,$$

and

$$\lim_{n \to \infty} \left\| p(x^n, y^n) - \prod_{i=1}^n p_0(x_i) p_0(y_i | x_i) \right\|_{TV} = 0$$

Correlation Encryption Rate Region

 $S_1 \triangleq Cl\{ \text{ encryption achievable } (R_1, R_2) \}$

Theorem: Encryption Rate Region $S_1 = \{(R_1, R_2) :$ $R_1 \ge I(X; U),$ $R_2 \ge I(X, Y; U),$ for some U such that X - U - Y forms a Markov chain and $|\mathcal{U}| \le |\mathcal{X}||\mathcal{Y}| + 1.\}$

Correlation Encryption Rate Region

 $S_1 \triangleq Cl\{ \text{ encryption achievable } (R_1, R_2) \}$

Theorem: Encryption Rate Region $S_1 = \{(R_1, R_2) : R_1 \geq I(X; U), R_2 \geq I(X, Y; U),$ for some U such that X - U - Y forms a Markov chain and $|\mathcal{U}| \leq |\mathcal{X}||\mathcal{Y}| + 1.\}$

Paul Cuff (Stanford University)

Wyner's Common Information

[Wyner 75]:

$$C(X;Y) \triangleq \min_{X-U-Y} I(X,Y;U).$$

Wyner's Common Information

[Wyner 75]: $C(X;Y) \triangleq \min_{X-U-Y} I(X,Y;U).$

How much common randomness is needed to generate X and Y?

Talk Outline

Correlation Encryption

2 Channel Simulation

Proof

- Achievability
- Converse

4 Examples

Channel Simulation

X is given by nature iid according to $p_0(x)$.

Goal:

• Construct Y correlated with X according to $p_0(y|x)$.

Channel Simulation

Encoder: $p(m|x^n, z)$. Decoder: $p(y^n|m, z)$. Induced Distribution:

$$p(x^n, y^n, m, z) = p(x^n)p(z)p(m|x^n, z)p(y^n|m, z)$$

Achievable if there exists a sequence of encoders and decoders such that

$$\lim_{n \to \infty} \left\| p(x^n, y^n) - \prod_{i=1}^n p_0(x_i) p_0(y_i | x_i) \right\|_{TV} = 0.$$

Correlation Encryption — Channel Simulation

Difference between Correlation Encryption and Channel Simulation:

• One-time pad needed for Correlation Encryption

Theorem: Correlation Encryption relates to Channel Simulation Define,

$$R'_1 = R_1,$$

 $R'_2 = R_1 + R_2.$

Then,

 $(R_1',R_2')\in S_1 \quad \Leftrightarrow \quad (R_1,R_2)\in S_2.$

Reminder: S_1 is encryption rate region; S_2 is simulation rate region.

Paul Cuff (Stanford University)

ISIT 2008 - Toronto

Channel Simulation Rate Region

 $S_2 \triangleq Cl\{ \text{ simulation achievable } (R_1, R_2) \}$

Theorem: Simulation Rate Region $S_2 = \{(R_1, R_2) :$ $R_1 \ge I(X; U),$ $R_1 + R_2 \ge I(X, Y; U),$ for some U such that X - U - Y forms a Markov chain and $|\mathcal{U}| \le |\mathcal{X}||\mathcal{Y}| + 1.\}$

Channel Simulation Rate Region

 $S_2 \triangleq Cl\{ \text{ simulation achievable } (R_1, R_2) \}$

Channel Simulation Rate Region

 $S_2 \triangleq Cl\{ \text{ simulation achievable } (R_1, R_2) \}$

Theorem: Simulation Rate Region $S_2 = \{(R_1, R_2) :$ $R_1 \ge I(X; U),$ $R_1 + R_2 \ge I(X, Y; U),$

for some U such that X-U-Y forms a Markov chain and $|\mathcal{U}| \leq |\mathcal{X}||\mathcal{Y}|+1.\}$

Previous Results: [Bennett et al. 02]: Reverse Shannon Th.: $(I(X;Y),\infty) \in S_2.$ [Wyner 75]: $(C(X;Y),0) \in S_2.$

Talk Outline

Correlation Encryption

2 Channel Simulation

Converse

Achievability via Random Coding Let (R_1, R_2) satisfy

$$R_1 > I(X;U),$$

 $R_1 + R_2 > I(X,Y;U),$

for some U such that X - U - Y form a Markov chain.

Achievability via Random Coding Let (R_1, R_2) satisfy

> $R_1 > I(X;U),$ $R_1 + R_2 > I(X,Y;U),$

for some U such that X-U-Y form a Markov chain.

Construct Codebook randomly:

$$\mathcal{C} = \{U^n(m)\}_{m=1}^{2^{n(R_1+R_2)}} \text{ where } U^n(m) \sim \prod_{i=1}^n p(u_i).$$

Binning: Bin the codewords into 2^{nR_2} bins.

Common randomness specifies the bin.

Encoder: Finds all jointly typical U^n in bin and randomly chooses one. Sends index.

Decoder: Decodes $U^n(m)$ and generates Y^n according to $\prod_{i=1}^n p(y_i|u_i(m)).$

Paul Cuff (Stanford University)

ISIT 2008 - Toronto

Achievability

Resolvability: [Wyner 75] [Han, Verdú 93]

Achievability

Resolvability: [Wyner 75] [Han, Verdú 93]

Talk Outline

- Achievability
- Converse

Assume (R_1, R_2) is achievable.

Assume (R_1, R_2) is achievable.

Markovity by construction:

$$p(x^n, y^n, m, z) = p(x^n)p(z)p(m|x^n, z)p(y^n|m, z).$$

Therefore,

$$X^{n} - (M, Z) - Y^{n},$$
$$X^{n} \perp Z.$$

Assume (R_1, R_2) is achievable.

$$X^{n} - (M, Z) - Y^{n},$$
$$X^{n} \perp Z.$$

Assume (R_1, R_2) is achievable.

$$X^n - (M, Z) - Y^n,$$
$$X^n \perp Z.$$

$$n(R_1 + R_2) \geq H(M, Z) \qquad nR_1 \geq H(M)$$

$$\geq I(X^n, Y^n; M, Z) \qquad \geq H(M|Z)$$

$$\geq I(X^n; M|Z)$$

$$= I(X^n; M, Z)$$

Assume (R_1, R_2) is achievable.

$$X^n - (M, Z) - Y^n,$$
$$X^n \perp Z.$$

$$\begin{split} n(R_1 + R_2) &\geq H(M, Z) & nR_1 \geq H(M) \\ &\geq I(X^n, Y^n; M, Z) & \geq H(M|Z) \\ & \text{(sequence of lemmas)} &\geq I(X^n; M|Z) \\ &\vdots & = I(X^n; M, Z) \\ &\geq &\approx \sum_{i=1}^n I(X_i, Y_i; M, Z) & \vdots \\ &\approx & nI(X_Q, Y_Q; M, Z, Q). & \approx & nI(X_Q; M, Z, Q). \end{split}$$

where $Q \sim Unif(\{1, ..., n\})$.

Assume (R_1, R_2) is achievable.

$$X^n - (M, Z) - Y^n,$$
$$X^n \perp Z.$$

$$\begin{array}{rcl} R_1 & \geq & \approx I(X_Q;M,Z,Q), \\ R_1+R_2 & \geq & \approx I(X_Q,Y_Q;M,Z,Q). \end{array}$$
 where $Q\sim Unif(\{1,...,n\}).$

Assume (R_1, R_2) is achievable.

$$X^n - (M, Z) - Y^n,$$
$$X^n \perp Z.$$

$$\begin{array}{rcl} R_1 & \geq & \approx I(X_Q;M,Z,Q), \\ R_1+R_2 & \geq & \approx I(X_Q,Y_Q;M,Z,Q). \end{array}$$
 where $Q\sim Unif(\{1,...,n\}).$

 $\mathsf{Label}\ (M,Z,Q) \text{ as } U.$

Talk Outline

Correlation Encryption

2 Channel Simulation

Proof

- Achievability
- Converse

Simulation Rate Region $S_2 = \{(R_1, R_2) : R_1 \geq I(X; U), R_1 + R_2 \geq I(X, Y; U),$ for some U such that X - U - Y forms a Markov chain and $|\mathcal{U}| \leq |\mathcal{X}||\mathcal{Y}| + 1.\}$

Binary Symmetric Channel $(X \sim Bern(\frac{1}{2}))$:

Binary Symmetric Channel $(X \sim Bern(\frac{1}{2}))$:

Binary Erasure Channel $(X \sim Bern(\frac{1}{2}))$:

Binary Erasure Channel $(X \sim Bern(\frac{1}{2}))$:

Example: Binary Erasure Channel

Figure: Boundary of the simulation rate region for a binary erasure channel with erasure probability $P_e = 0.75$ and a Bernoulli-half input.

Summary

Orrelation Encryption (Public Channel)

$$R_1 \geq I(X;U),$$

$$R_2 \geq I(X,Y;U),$$

for some U such that X - U - Y and $|\mathcal{U}| \le |\mathcal{X}||\mathcal{Y}| + 1$.

Second and the second as extreme points C(X;Y)

 R_1

20

 $C(X;Y) = R_1$

I(X;Y)

I(X;Y)

Person A

$0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1$

How much must Person A tell Person B?

• Tell all the bits 8 bits

How much must Person A tell Person B?

• Tell all the bits 8 bits

• Choose the sequence for B and tell it $\log_2{8 \choose 2} + 2$ bits

- Tell all the bits 8 bits
- Choose the sequence for B and tell it $\log_2{8 \choose 2} + 2$ bits $= \log_2 112 = 6.81$ bits

- Tell all the bits 8 bits
- Choose the sequence for B and tell it $\log_2 {8 \choose 2} + 2$ bits $= \log_2 112 = 6.81$ bits
- Split the randomization

- Tell all the bits 8 bits
- Choose the sequence for B and tell it $\log_2 {8 \choose 2} + 2$ bits $= \log_2 112 = 6.81$ bits
- Split the randomization

- Tell all the bits 8 bits
- Choose the sequence for B and tell it $\log_2 {8 \choose 2} + 2$ bits $= \log_2 112 = 6.81$ bits
- Split the randomization

- Tell all the bits 8 bits
- Choose the sequence for B and tell it $\log_2 {8 \choose 2} + 2$ bits $= \log_2 112 = 6.81$ bits
- Split the randomization

- Tell all the bits 8 bits
- Choose the sequence for B and tell it $\log_2 {8 \choose 2} + 2$ bits $= \log_2 112 = 6.81$ bits
- Split the randomization $\log_2 {4 \choose 2} + 4$ bits

- Tell all the bits 8 bits
- Choose the sequence for B and tell it $\log_2 {8 \choose 2} + 2$ bits $= \log_2 112 = 6.81$ bits
- Split the randomization $\log_2 {4 \choose 2} + 4$ bits $= \log_2 96 = 6.58$ bits