Communication Requirements for Generating Correlated Random Variables

Paul Cuff
Stanford University
International Symposium on Information Theory
Toronto - July 9, 2008

Overview

X is random and specified by nature.
How much must be told about X to generate Y correlated with X ? What is the effect of common randomness?

- Application:
- Game theory - mixed strategies among participants on a team. [Anantharam, Borkar 07]

Talk Outline

(1) Correlation Encryption
(2) Channel Simulation
(3) Proof

- Achievability
- Converse

4 Examples

Correlation Encryption

Secret Key

X is given by nature iid according to $p_{0}(x)$.

Goal:
(1) Construct Y correlated with X according to $p_{0}(y \mid x)$.
(2) Message doesn't give away anything about X and Y.

Correlation Encryption

Secret Key

Encoder: $p\left(m \mid x^{n}, z\right)$.
Decoder: $p\left(y^{n} \mid m, z\right)$.
Induced Distribution:

$$
p\left(x^{n}, y^{n}, m, z\right)=p\left(x^{n}\right) p(z) p\left(m \mid x^{n}, z\right) p\left(y^{n} \mid m, z\right)
$$

Achievable if there exists a sequence of encoders and decoders such that

$$
\lim _{n \rightarrow \infty} I\left(M ; X^{n}, Y^{n}\right)=0
$$

and

$$
\lim _{n \rightarrow \infty}\left\|p\left(x^{n}, y^{n}\right)-\prod_{i=1}^{n} p_{0}\left(x_{i}\right) p_{0}\left(y_{i} \mid x_{i}\right)\right\|_{T V}=0 .
$$

Correlation Encryption Rate Region

$$
S_{1} \triangleq C l\left\{\text { encryption achievable }\left(R_{1}, R_{2}\right)\right\}
$$

Theorem: Encryption Rate Region

$$
S_{1}=\left\{\left(R_{1}, R_{2}\right):\right.
$$

$$
\begin{aligned}
& R_{1} \geq I(X ; U), \\
& R_{2} \geq I(X, Y ; U),
\end{aligned}
$$

for some U such that $X-U-Y$ forms a
Markov chain and $|\mathcal{U}| \leq|\mathcal{X}||\mathcal{Y}|+1$.\}

Correlation Encryption Rate Region

$$
S_{1} \triangleq C l\left\{\text { encryption achievable }\left(R_{1}, R_{2}\right)\right\}
$$

Theorem: Encryption Rate Region

$$
S_{1}=\left\{\left(R_{1}, R_{2}\right):\right.
$$

$$
\begin{aligned}
& R_{1} \geq I(X ; U), \\
& R_{2} \geq I(X, Y ; U),
\end{aligned}
$$

for some U such that $X-U-Y$ forms a
Markov chain and $|\mathcal{U}| \leq|\mathcal{X}||\mathcal{Y}|+1$.\}

Wyner's Common Information

C(X ; Y) \triangleq \min _{X-U-Y} I(X, Y ; U) .
\]

Wyner's Common Information

C(X ; Y) \triangleq \min _{X-U-Y} I(X, Y ; U) .
\]

How much common randomness is needed to generate X and Y ?

Result: $R>C(X ; Y)$.

Talk Outline

(1) Correlation Encryption

(2) Channel Simulation

(3) Proof

- Achievability
- Converse
(4) Examples

Channel Simulation

Common Randomness

X is given by nature iid according to $p_{0}(x)$.

Goal:
(1) Construct Y correlated with X according to $p_{0}(y \mid x)$.

Channel Simulation

> Common Randomness

Encoder: $p\left(m \mid x^{n}, z\right)$.
Decoder: $p\left(y^{n} \mid m, z\right)$.
Induced Distribution:

$$
p\left(x^{n}, y^{n}, m, z\right)=p\left(x^{n}\right) p(z) p\left(m \mid x^{n}, z\right) p\left(y^{n} \mid m, z\right)
$$

Achievable if there exists a sequence of encoders and decoders such that

$$
\lim _{n \rightarrow \infty}\left\|p\left(x^{n}, y^{n}\right)-\prod_{i=1}^{n} p_{0}\left(x_{i}\right) p_{0}\left(y_{i} \mid x_{i}\right)\right\|_{T V}=0
$$

Correlation Encryption - Channel Simulation

Difference between Correlation Encryption and Channel Simulation:

- One-time pad needed for Correlation Encryption

Theorem: Correlation Encryption relates to Channel Simulation Define,

$$
\begin{aligned}
R_{1}^{\prime} & =R_{1} \\
R_{2}^{\prime} & =R_{1}+R_{2}
\end{aligned}
$$

Then,

$$
\left(R_{1}^{\prime}, R_{2}^{\prime}\right) \in S_{1} \quad \Leftrightarrow \quad\left(R_{1}, R_{2}\right) \in S_{2} .
$$

Reminder: S_{1} is encryption rate region; S_{2} is simulation rate region.

Channel Simulation Rate Region

$$
S_{2} \triangleq C l\left\{\text { simulation achievable }\left(R_{1}, R_{2}\right)\right\}
$$

Theorem: Simulation Rate Region

$$
\begin{aligned}
S_{2}=\left\{\left(R_{1}, R_{2}\right):\right. & \\
R_{1} & \geq I(X ; U), \\
R_{1}+R_{2} & \geq I(X, Y ; U),
\end{aligned}
$$

for some U such that $X-U-Y$ forms a Markov chain and $|\mathcal{U}| \leq|\mathcal{X}||\mathcal{Y}|+1$. $\}$

Channel Simulation Rate Region

$$
S_{2} \triangleq C l\left\{\text { simulation achievable }\left(R_{1}, R_{2}\right)\right\}
$$

Theorem: Simulation Rate Region

$$
S_{2}=\left\{\left(R_{1}, R_{2}\right):\right.
$$

$$
\begin{aligned}
R_{1} & \geq I(X ; U), \\
R_{1}+R_{2} & \geq I(X, Y ; U),
\end{aligned}
$$

Channel Simulation Rate Region

$$
S_{2} \triangleq C l\left\{\text { simulation achievable }\left(R_{1}, R_{2}\right)\right\}
$$

Talk Outline

(1) Correlation Encryption
(2) Channel Simulation
(3) Proof

- Achievability
- Converse
(4) Examples

Achievability via Random Coding

Let (R_{1}, R_{2}) satisfy

$$
\begin{aligned}
R_{1} & >I(X ; U), \\
R_{1}+R_{2} & >I(X, Y ; U),
\end{aligned}
$$

for some U such that $X-U-Y$ form a Markov chain.

Achievability via Random Coding

Let (R_{1}, R_{2}) satisfy

$$
\begin{aligned}
R_{1} & >I(X ; U), \\
R_{1}+R_{2} & >I(X, Y ; U),
\end{aligned}
$$

for some U such that $X-U-Y$ form a Markov chain.

Construct Codebook randomly:

$$
\mathcal{C}=\left\{U^{n}(m)\right\}_{m=1}^{2^{n\left(R_{1}+R_{2}\right)}} \text { where } U^{n}(m) \sim \prod_{i=1}^{n} p\left(u_{i}\right)
$$

Binning: Bin the codewords into $2^{n R_{2}}$ bins.
Common randomness specifies the bin.
Encoder: Finds all jointly typical U^{n} in bin and randomly chooses one. Sends index.

Decoder: Decodes $U^{n}(m)$ and generates Y^{n} according to

$$
\prod_{i=1}^{n} p\left(y_{i} \mid u_{i}(m)\right) .
$$

Achievability

Resolvability: [Wyner 75](%5B) [Han, Verdú 93]

Achievability

Resolvability: [Wyner 75](%5B) [Han, Verdú 93]

Talk Outline

(1) Correlation Encryption
(2) Channel Simulation
(3) Proof

- Achievability
- Converse
(4) Examples

Converse

Assume $\left(R_{1}, R_{2}\right)$ is achievable.

Converse

Assume $\left(R_{1}, R_{2}\right)$ is achievable.

Markovity by construction:

$$
p\left(x^{n}, y^{n}, m, z\right)=p\left(x^{n}\right) p(z) p\left(m \mid x^{n}, z\right) p\left(y^{n} \mid m, z\right)
$$

Therefore,

$$
\begin{gathered}
X^{n}-(M, Z)-Y^{n}, \\
X^{n} \perp Z .
\end{gathered}
$$

Converse

Assume $\left(R_{1}, R_{2}\right)$ is achievable.

$$
\begin{gathered}
X^{n}-(M, Z)-Y^{n}, \\
X^{n} \perp Z .
\end{gathered}
$$

Converse

Assume (R_{1}, R_{2}) is achievable.

$$
\begin{gathered}
X^{n}-(M, Z)-Y^{n} \\
X^{n} \perp Z .
\end{gathered}
$$

$$
\begin{aligned}
n\left(R_{1}+R_{2}\right) & \geq H(M, Z) \\
& \geq I\left(X^{n}, Y^{n} ; M, Z\right)
\end{aligned}
$$

$$
\begin{aligned}
n R_{1} & \geq H(M) \\
& \geq H(M \mid Z) \\
& \geq I\left(X^{n} ; M \mid Z\right) \\
& =I\left(X^{n} ; M, Z\right)
\end{aligned}
$$

Converse

Assume $\left(R_{1}, R_{2}\right)$ is achievable.

$$
\begin{gathered}
X^{n}-(M, Z)-Y^{n} \\
X^{n} \perp Z .
\end{gathered}
$$

$$
\begin{aligned}
n\left(R_{1}+R_{2}\right) \geq & H(M, Z) \\
\geq & I\left(X^{n}, Y^{n} ; M, Z\right) \\
& (\text { sequence of lemmas) } \\
& \vdots \\
\geq & \approx \sum_{i=1}^{n} I\left(X_{i}, Y_{i} ; M, Z\right) \\
\approx & n I\left(X_{Q}, Y_{Q} ; M, Z, Q\right) .
\end{aligned}
$$

where $Q \sim \operatorname{Unif}(\{1, \ldots, n\})$.

$$
\begin{aligned}
n R_{1} \geq & H(M) \\
\geq & H(M \mid Z) \\
\geq & I\left(X^{n} ; M \mid Z\right) \\
= & I\left(X^{n} ; M, Z\right) \\
& \vdots \\
\geq & \approx \sum_{i=1}^{n} I\left(X_{i} ; M, Z\right) \\
\approx & n I\left(X_{Q} ; M, Z, Q\right)
\end{aligned}
$$

Converse

Assume $\left(R_{1}, R_{2}\right)$ is achievable.

$$
\begin{gathered}
X^{n}-(M, Z)-Y^{n} \\
X^{n} \perp Z .
\end{gathered}
$$

$$
\begin{aligned}
R_{1} & \geq \approx I\left(X_{Q} ; M, Z, Q\right) \\
R_{1}+R_{2} & \geq \approx I\left(X_{Q}, Y_{Q} ; M, Z, Q\right) .
\end{aligned}
$$

where $Q \sim \operatorname{Unif}(\{1, \ldots, n\})$.

Converse

Assume $\left(R_{1}, R_{2}\right)$ is achievable.

$$
\begin{gathered}
X^{n}-(M, Z)-Y^{n} \\
X^{n} \perp Z \\
R_{1} \geq \approx I\left(X_{Q} ; M, Z, Q\right) \\
R_{1}+R_{2} \geq \approx I\left(X_{Q}, Y_{Q} ; M, Z, Q\right)
\end{gathered}
$$

where $Q \sim \operatorname{Unif}(\{1, \ldots, n\})$.

Label (M, Z, Q) as U.

Talk Outline

(1) Correlation Encryption

(2) Channel Simulation
(3) Proof

- Achievability
- Converse

4 Examples

Simulation Rate Region Examples

Simulation Rate Region

$$
S_{2}=\left\{\left(R_{1}, R_{2}\right):\right.
$$

$$
\begin{aligned}
R_{1} & \geq I(X ; U) \\
R_{1}+R_{2} & \geq I(X, Y ; U)
\end{aligned}
$$

for some U such that $X-U-Y$ forms a Markov chain and $|\mathcal{U}| \leq|\mathcal{X}||\mathcal{Y}|+1$.

Simulation Rate Region Examples

Simulation Rate Region

$$
S_{2}=\left\{\left(R_{1}, R_{2}\right):\right.
$$

$$
\begin{aligned}
R_{1} & \geq I(X ; U) \\
R_{1}+R_{2} & \geq I(X, Y ; U)
\end{aligned}
$$

for some U such that $X-U-Y$ forms a Markov chain and $|\mathcal{U}| \leq|\mathcal{X}||\mathcal{Y}|+1$.

Binary Symmetric Channel ($X \sim \operatorname{Bern}\left(\frac{1}{2}\right)$):

Simulation Rate Region Examples

Simulation Rate Region

$$
S_{2}=\left\{\left(R_{1}, R_{2}\right):\right.
$$

$$
\begin{aligned}
R_{1} & \geq I(X ; U) \\
R_{1}+R_{2} & \geq I(X, Y ; U)
\end{aligned}
$$

for some U such that $X-U-Y$ forms a Markov chain and $|\mathcal{U}| \leq|\mathcal{X}||\mathcal{Y}|+1$.

Binary Symmetric Channel ($X \sim \operatorname{Bern}\left(\frac{1}{2}\right)$):

$$
\begin{aligned}
& p_{1}\left(1-p_{2}\right)+p_{2}\left(1-p_{1}\right)=P_{e} \\
& p_{1} \leq p_{2} \leq P_{e}
\end{aligned}
$$

Simulation Rate Region Examples

Simulation Rate Region

$$
S_{2}=\left\{\left(R_{1}, R_{2}\right):\right.
$$

$$
\begin{aligned}
R_{1} & \geq I(X ; U) \\
R_{1}+R_{2} & \geq I(X, Y ; U)
\end{aligned}
$$

for some U such that $X-U-Y$ forms a Markov chain and $|\mathcal{U}| \leq|\mathcal{X}||\mathcal{Y}|+1$.

Binary Erasure Channel ($X \sim \operatorname{Bern}\left(\frac{1}{2}\right)$):

Simulation Rate Region Examples

Simulation Rate Region
$S_{2}=\left\{\left(R_{1}, R_{2}\right):\right.$

$$
\begin{aligned}
R_{1} & \geq I(X ; U) \\
R_{1}+R_{2} & \geq I(X, Y ; U)
\end{aligned}
$$

for some U such that $X-U-Y$ forms a Markov chain and $|\mathcal{U}| \leq|\mathcal{X}||\mathcal{Y}|+1$.

Binary Erasure Channel $\left(X \sim \operatorname{Bern}\left(\frac{1}{2}\right)\right)$:

$$
\begin{aligned}
& \left(1-p_{1}\right)\left(1-p_{2}\right)=1-P_{e} \\
& 0 \leq p_{2} \leq \min \left\{P_{e}, 1 / 2\right\}
\end{aligned}
$$

Example: Binary Erasure Channel

Figure: Boundary of the simulation rate region for a binary erasure channel with erasure probability $P_{e}=0.75$ and a Bernoulli-half input.

Summary

(1) Correlation Encryption (Public Channel)

$$
\begin{aligned}
& R_{1} \geq I(X ; U) \\
& R_{2} \geq I(X, Y ; U)
\end{aligned}
$$

for some U such that $X-U-Y$ and $|\mathcal{U}| \leq|\mathcal{X}||\mathcal{Y}|+1$.
(2) Fundamental quantities discovered as extreme points

Erasure Challenge

Person A
$\begin{array}{llllllll}0 & 1 & 0 & 0 & 1 & 1 & 1 & 1\end{array}$

Erasure Challenge

> Person A
> Person B
> $\begin{array}{llllllll}0 & 1 & 0 & 0 & 1 & 1 & 1 & 1\end{array}$
> 0 e e e e 1 e e

Erasure Challenge

Person A Person B
$\begin{array}{llllllllllllllll}0 & 1 & 0 & 0 & 1 & 1 & 1 & 1\end{array} \quad 0 \quad$ e e e e
How much must Person A tell Person B?

Erasure Challenge

> Person A Person B
> $\begin{array}{llllllllllllllll}0 & 1 & 0 & 0 & 1 & 1 & 1 & 1\end{array} \quad 0 \quad$ e e elecer How much must Person A tell Person B?

- Tell all the bits 8 bits

Erasure Challenge

$$
\begin{aligned}
& \text { Person A }
\end{aligned}
$$ How much must Person A tell Person B?

- Tell all the bits 8 bits
- Choose the sequence for B and tell it $\log _{2}\binom{8}{2}+2$ bits

Erasure Challenge

Person A

Person B
$\begin{array}{llllllllllllllll}0 & 1 & 0 & 0 & 1 & 1 & 1 & 1\end{array} \quad 0 \quad$ e e e e $\begin{aligned} & 1 \\ & e\end{aligned}$
How much must Person A tell Person B?

- Tell all the bits 8 bits
- Choose the sequence for B and tell it $\log _{2}\binom{8}{2}+2$ bits $=\log _{2} 112=6.81$ bits

Erasure Challenge

Person A

0	1	0	0	1	1	1	1

0 e e e e 1 e e
How much must Person A tell Person B?

- Tell all the bits 8 bits
- Choose the sequence for B and tell it $\log _{2}\binom{8}{2}+2$ bits $=\log _{2} 112=6.81$ bits
- Split the randomization

Erasure Challenge

Person A

0	1	0	0	1	1	1	1

0 e e e e 1 e e
How much must Person A tell Person B?

- Tell all the bits 8 bits
- Choose the sequence for B and tell it $\log _{2}\binom{8}{2}+2$ bits $=\log _{2} 112=6.81$ bits
- Split the randomization

Erasure Challenge

Person A
Person B

0	1	0	0	1	1	1	1

0	1	e	e	1	1	e	e

How much must Person A tell Person B?

- Tell all the bits 8 bits
- Choose the sequence for B and tell it $\log _{2}\binom{8}{2}+2$ bits $=\log _{2} 112=6.81$ bits
- Split the randomization

Erasure Challenge

Person A
Person B

0	1	0	0	1	1	1	1

0	e	e	e	e	1	e	e

How much must Person A tell Person B?

- Tell all the bits 8 bits
- Choose the sequence for B and tell it $\log _{2}\binom{8}{2}+2$ bits $=\log _{2} 112=6.81$ bits
- Split the randomization

Erasure Challenge

Person A
Person B

0	1	0	0	1	1	1	1

0	e	e	e	e	1	e	e

How much must Person A tell Person B?

- Tell all the bits 8 bits
- Choose the sequence for B and tell it $\log _{2}\binom{8}{2}+2$ bits $=\log _{2} 112=6.81$ bits
- Split the randomization $\log _{2}\binom{4}{2}+4$ bits

Erasure Challenge

Person A
Person B

0	1	0	0	1	1	1	1

0	e	e	e	e	1	e	e

How much must Person A tell Person B?

- Tell all the bits 8 bits
- Choose the sequence for B and tell it $\log _{2}\binom{8}{2}+2$ bits $=\log _{2} 112=6.81$ bits
- Split the randomization $\log _{2}\binom{4}{2}+4$ bits $=\log _{2} 96=6.58$ bits

