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Physical, biological, and chemical transformations are initiated by changes in the

electronic configuration of the species involved. These electronic changes occur on

the timescales of attoseconds (10�18 s) to femtoseconds (10�15 s) and drive all

subsequent electronic reorganization as the system moves to a new equilibrium or

quasi-equilibrium state. The ability to detect the dynamics of these electronic

changes is crucial for understanding the potential energy surfaces upon which

chemical and biological reactions take place. Here, we report on the determination

of the electronic structure of matter using a single self-seeded femtosecond x-ray

pulse from the Linac Coherent Light Source hard x-ray free electron laser. By

measuring the high energy resolution off-resonant spectrum (HEROS), we were

able to obtain information about the electronic density of states with a single

femtosecond x-ray pulse. We show that the unoccupied electronic states of the

scattering atom may be determined on a shot-to-shot basis and that the measured

spectral shape is independent of the large intensity fluctuations of the incoming

x-ray beam. Moreover, we demonstrate the chemical sensitivity and single-shot

capability and limitations of HEROS, which enables the technique to track the

electronic structural dynamics in matter on femtosecond time scales, making it an

ideal probe technique for time-resolved X-ray experiments. VC 2014 Author(s). All

article content, except where otherwise noted, is licensed under a Creative

Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4868260]

The recent development of hard x-ray free electron lasers (XFELs) has resulted in the rapid

development of research that takes advantage of the intense, femtosecond x-ray pulses generated

by these facilities. XFELs have enabled the investigation of dynamic processes on the femtosec-

ond timescale using x-ray techniques, they have introduced the ability to perform damage-free

room temperature protein crystallography measurements, and they have opened the field of non-

linear x-ray processes due to their enormous peak power as compared to other sources.1–4

One of the more difficult techniques to apply at a free electron laser (FEL) has been x-ray

absorption spectroscopy (XAS). The self-amplified stimulated emission (SASE) process, which

generates the short x-ray pulses from the FEL, results in significant instability in both the num-

ber of photons generated per pulse, as well as in the photon energy.5 The result is a very unsta-

ble source of x-rays, with pulse-to-pulse intensity fluctuations of monochromatic x-rays of up to

100%.6 This introduces significant noise in any data that requires a series of sequential
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measurements to be performed; such as scanning the incident photon energy during an x-ray

absorption scan or a resonant x-ray emission scan (RXES).7–9 Consequently, the ability to per-

form such measurements is entirely dependent on the precision with which the incoming x-ray

flux can be measured. Until now, the only spectroscopic method that has proven to be insensi-

tive to the XFEL pulse instabilities is x-ray emission spectroscopy (XES), where a dispersive

spectrometer was used to obtain an XES spectrum on a shot-to-shot basis.10,11 XES gives

access to the occupied electronic states and therefore provides only a partial picture of the elec-

tronic structure. To study intensity-induced X-ray transparency,12 non-linear absorption mecha-

nisms,13 or electron relaxation and rearrangement processes,14 it is crucial that information

from both the occupied and unoccupied electronic states are to be measured.

XAS is the technique of choice to probe the unoccupied density of states. One possible

XAS technique that allows a range of x-ray of energies to be collected at once, partially avoid-

ing the XFEL normalization problem, is dispersive XAS.15,16 The primary drawback of this

technique at an XFEL is that in addition to the intensity fluctuations, the incident spectrum also

shifts in photon energy. This technique thus requires both incident pulse energy normalization

as well as incident spectrum normalization. The incident x-ray spectrum has been measured at

Linac Coherent Light Source (LCLS) on a pulse-to-pulse basis, but the spectrometer used is not

broadly tunable in energy, making it only effective over a narrow photon energy range.17 The

second drawback to this approach is the narrow bandwidth of the XFEL, approximately

0.25%–0.5%,18–20 which restricts the range over which the XAS can be measured without

requiring the incident photon energy to be scanned, something which is still non-trivial at an

XFEL. However, very recent experiments have demonstrated the feasibility of dispersive XAS

spectroscopy in transmission mode at the SACLA XFEL (SPring-8, Japan).21 High energy reso-

lution off resonant spectroscopy (HEROS) allows measurement of a scattered X-ray spectrum

in a single acquisition that represents the unoccupied density of states and is complementary to

the ability of XES to probe the occupied density of states.22,23 HEROS has none of the draw-

backs of dispersive XAS and can be used, as we demonstrate here, with a self-seeded XFEL

beam to probe electronic states using single XFEL pulses.

The idea of using off-resonant excitations dates back to 1982 when, following the

Kramers-Heisenberg relation,24 Tulkki and Åberg developed simplified formulas to describe the

second-order photon-atom interaction.25 This theory is often used to calculate both the resonant

and non-resonant x-ray emission spectra around the absorption edge of a scattering atom.26–29

In their original work, Tulkki and Åberg noticed that for incident beam energies tuned below

an x-ray absorption edge (called the off-resonance region), the shape of the x-ray emission

spectrum is proportional to the unoccupied density of states of an atom. However until recently,

the potential of extracting the electronic structure from a single x-ray emission spectrum

recorded at off-resonant excitations was not explored, likely due to the extremely weak scatter-

ing cross section as compared to the resonant x-ray emission spectrum.28,29 By combining

off-resonant excitation and an x-ray spectrometer operating in a dispersive geometry at a syn-

chrotron, HEROS has been experimentally demonstrated.22,23 HEROS is an alternative to XAS,

with significant advantages when used with pulsed x-ray sources. By taking advantage of its

ability to record an x-ray spectrum in a single measurement, it has been applied to monitoring

the kinetics of a chemical reaction.22

In this work, we explore the use of the HEROS technique to measure the electronic struc-

ture of copper and copper oxides at an XFEL. The experiment was performed at the Coherent

X-ray Imaging instrument30 at the Linac Coherent Light Source, USA. As reported previ-

ously22,23 HEROS requires monochromatic photon energies for the incoming beam. One

approach to generating this type of beam at an XFEL is the so-called “self-seeding” method,31

which allows the FEL to produce a narrow energy bandwidth beam with more stable beam

characteristics than during normal SASE operation with a monochromator.6,18 The experimental

setup is schematically drawn in Figure 1. The x-rays delivered by the LCLS are generated by

SASE and monochromatized to seed the electron beam in the second part of the undulator,

imparting a suitable structure to the electron bunch to enable it to produce monochromatic

pulses.18,31 However, because fine scanning of the seeded beam energy is not generally feasible
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at this point at XFELs, we could not perform comparative studies of HEROS and scanning-

mode XAS during the experiment. For the present experiment, we used x-rays at an energy

around the Cu K-absorption edge (Einitial¼ 8979 eV), and the energy bandwidth of the incoming

beam was around 1.7 eV. The x-ray spot size on the sample was controlled by placing the sam-

ple away from the focus of the X-ray mirrors to produce a 10 � 10 lm2 focal spot. A typical

bright x-ray shot contained approximately 5–6 � 1011 photons/pulse, corresponding to �0.9mJ.

The LCLS machine was operated in high charge mode providing 50 fs long x-ray pulses at a

repetition rate of 120Hz. During the experiment we moved the sample continuously at a speed

of 0.5mm/s, and the analysis was performed only on well-seeded, spectrally narrow shots with

a minimum spatial separation of 50 lm between measurements. For x-ray detection we

employed a von Hamos type spectrometer operating at 25 cm radius of curvature.32 The use of

a von Hamos x-ray emission spectrometer ensures that the measured spectra are of high energy

resolution and can be collected without scanning any components. As a consequence, the ulti-

mate acquisition time is limited only by the efficiency of the setup and the number of photons

incident on the sample. The Cu x-ray fluorescence around Ka1,2 was acquired using two

segmented-type Si(444) crystals32 providing x-ray diffraction at Bragg angles of approximately

80�. Additionally, a Ge(800) crystal was employed at a Bragg angle of 80� to monitor the elas-

tically scattered x-rays which provide information about the incoming x-ray energy and experi-

mental resolution. The setup was aligned such that the diffracted x-rays were focused in three

spatially separated spots onto the two 140K CSPAD detectors33 used to measure the scattered

spectra. With the present setup, we could cover an energy bandwidth for a single-shot x-ray

emission spectrum of a few tens of eV.

Figure 2 shows the HEROS spectrum (black line) of Cu metal (Cu0) recorded for 2000

XFEL shots with an incident beam energy of 8967 eV (i.e., 12 eV below the K ionization

threshold, Einitial). The average pulse energy for the displayed spectrum was 0.9 mJ/shot. Any

inherent variation in the number of incident photons influences uniformly the intensity of the

measured HEROS spectrum (i.e., area of the measured spectrum), and not single data points.

Thus, the HEROS spectra do not require any normalization procedures. As shown in Figure 2,

the measured spectrum is characterized by a fast rise in intensity around 8036 eV when going

from the high energy side to the low energy side. Following the fast rise in intensity, several

resonances are detected at lower emission energies. The total fluorescence intensity then

decreases by 50% over a 60 eV energy range.

To explain the shape of the HEROS spectrum and the origin of the detected structures, we

performed calculations employing formulas developed by Tulkki and Åberg. In the case of off-

resonant scattering around the Cu K-edge, the following equation was used to calculate the

HEROS spectrum:

FIG. 1. Experimental setup for a high energy resolution off-resonant experiment at an x-ray free electron laser source. The

first part of the LCLS undulator is used to generate sufficient X-ray energy through the SASE process, to generate a mono-

chromatic seed pulse using a diamond crystal. This seed interacts with the electron beam and results in amplification of

only a narrow energy bandwidth for the second part of the undulator. As a result monochromatic, 50 fs long x-ray pulses

incident on the sample are obtained. The x-ray beam energy is tuned to below an absorption edge (E1<Einitial) to access

the off-resonant excitations. The resulting x-ray fluorescence is recorded in dispersive mode by means of a von Hamos

spectrometer consisting of a cylindrically bent crystal and a position sensitive detector.
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XESðE2Þ ¼
X

final¼1
2
;3
2

ð
E2

E1

ðEinitial � Ef inalÞðEinitial þ EÞ � XASðEÞ

ðEinitial þ E� E1Þ
2 þ C

2
initial=4

dðE1 � Ef inal � E� E2ÞdE:

E1 and E2 are the energies of the incoming and emitted x-rays, respectively. Einitial and Efinal

stand for energies of initial (1s1/2) and final (2p1/2,3/2) electronic states probed in the experi-

ment. The natural lifetime of the initial state is represented by Cinitial, and E stands for the

energy of the photoelectron. The XAS(E) function describes the p-projected density of unoccu-

pied electronic states. Energies (Einitial and Efinal) and lifetime (Cinitial) were taken from tabu-

lated values,34,35 while for the XAS(E) dependence we used a high energy resolution XAS

spectrum of a Cu reference foil measured at a synchrotron facility (see Figure 2 inset). The

computed curve is plotted in Figure 2 as a blue line together with the separate contributions of

the final states (dashed lines). As shown, good agreement is obtained indicating that the same

electronic states are probed with HEROS at an XFEL as with XAS at a synchrotron source.

Following the XAS data interpretation in the literature,36,37 the resonances A and B relate to

1s ! 4p and multiple scattering of the photoelectron processes probed by the 2p3/2 ! 1s

core-core electronic transition. The features A0 and B0 are sensitive to the same 1s electron ex-

citation paths, however, probed by the 2p1/2 ! 1s decay channel. The second set of resonances

are shifted down in energy according to the binding energy difference between the 2p1/2 and

2p3/2 states (i.e., 20 eV), as shown by dashed lines in Figure 2.

HEROS, as shown here, provides a complementary method for studying changes in the

electronic structure induced by the chemical surrounding of the scattering atom at an XFEL. In

order to test the capability of HEROS for chemical speciation, HEROS spectra for metallic Cu

(Cu0) and powder CuO (Cu2þ) were recorded, and are plotted in Figure 3. The HEROS spectra

were acquired for 2000 (Cu) and 1000 (CuO) x-ray shots, at an incident beam energy of

8967 eV. As shown, relatively large spectral differences are observed due to the electronic

structure difference of the Cu atom. The HEROS spectra are composed of two main contribu-

tions: the electronic structure of the unoccupied states and electronic structure of the final

states. The chemical effects on final states are known to induce an energy shift of 2p3/2 ! 1s

(Ka1) and 2p1/2 ! 1s emission (Ka2). For the off-resonant excitations, the strongest

FIG. 2. HEROS spectra of Cu metal for 2000 self-seeded shots (black curve). The error bars represent the standard devia-

tion of the total counts. For comparison, we plot the calculated spectrum using the Kramers-Heisenberg relation and a Cu

K-edge XAS spectrum recorded at a synchrotron facility shown in inset (for more details see the text). The calculated curve

represents the sum of two spectra relating to the final electronic states of 2p3/2 and 2p1/2.
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contribution to the spectral shape is given by the unoccupied electronic states, which will shift

in energy with the change from Cu0 to Cu2þ. Therefore, the measured HEROS spectra are

modulated mostly by the change in the unoccupied electronic structure, but are also slightly

energy shifted by the final electronic state contribution. The origin of the resonances C and D

in CuO are related to those observed in metallic Cu. Peak C corresponds to the 1s ! 4p dipole

excitation, while the D resonance is described as multielectron scattering including shake-up

processes to higher orbitals.37,38 The energy shift of the absorption edge of the HEROS spec-

trum between Cu and CuO samples (marked by an arrow) relates directly to the edge shift as

observed in XAS. The energy position of the HEROS spectra edge (Ecut-off) is given by energy

conservation principle and is expressed by

Ecut�off ¼ E1 þ Efinal!initial � Eedge:

Therefore, the energy shift (DE) in HEROS spectra, measured at the same incident x-ray energy

(E1), is expressed by

DEcut�off ¼ ðECu � ECuOÞfinal!initial � ðECu � ECuOÞedge:

For the present experiment, we obtained DEcut-off of �5 eV, a value close to the reported Eedge

shift from synchrotron-based XAS spectra of �4.4 eV.39 The difference of 0.6 eV may be attrib-

uted to the chemical shift of the 2p3/2 ! 1s transition.40 These results show that single shot

HEROS spectroscopy can provide detailed information about the electronic structure of matter

at an XFEL, similar to how XAS provides information about the unoccupied electronic struc-

ture at synchrotrons. HEROS is equivalent to high resolution XAS, also called HERFD (“high

energy resolution fluorescence detected”), in that the energy resolution of both techniques is

limited only by the final state lifetime broadening, thus providing better resolution measure-

ments than standard transmission or total fluorescence yield XAS. Both techniques have their

advantages and disadvantages. High resolution XAS combined with focusing/scanning type

FIG. 3. HEROS spectra of Cu (black) and CuO (red) recorded for 2000 and 1000 XFEL pulses, respectively. For compari-

son, the spectra were normalized to 1 at an emission x-ray energy of 7980 eV. The origins of the marked resonances A, B,

C, and D are discussed in the text.
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spectrometers provides higher count-rates and peak-to-background ratio. Therefore, it is best

applied to dilute or low-concentration samples. On the other hand, the scanning-free capability

of HEROS allows for spectroscopy measurements where the incident beam stability and/or tun-

ability is an issue. Moreover, the fixed incident beam energy used for HEROS allows HEROS

to be combined with other x-ray techniques such as diffraction or inelastic X-ray scattering.

The most important feature of XFEL sources is the delivery of very short and intense fem-

tosecond x-ray pulses. To probe the capability of measuring electronic structure using a single

femtosecond x-ray pulse, we analyzed the set of data for different numbers of pulses. The

resulting spectra are plotted in Figure 4. Only the most intense pulses were considered, and the

average energy was 0.9 mJ/pulse for the 2000 shots spectrum, 1.2 mJ/pulse for the 10 shots

spectrum and 1.4 mJ/pulse for the single-shot spectrum. For comparison, the calculated HEROS

signal from Figure 2 is shown by the dashed curve. Besides the decreasing signal-to-noise of

the spectra with decreasing number of shots, all spectra exhibit the same structures and overall

shape. The single-shot spectrum is of good enough quality to distinguish the rising edge and

main electronic structures related to the 1s ! 4p excitation. This result indicates that the unoc-

cupied electronic states may be probed using a single femtosecond x-ray pulse and that the

recorded data quality is limited only by the number of incident x-rays and the efficiency of the

detection setup. The addition of further crystal analyzers is a straightforward way to increase

the efficiency of the detection setup.41 We would like to emphasize that the time resolution for

detection is in principle limited only by the duration of the x-ray pulse. Therefore, HEROS

may be applied as both the probe technique in a pump-probe configuration, as well as being

used for measurements beyond the femtosecond limit when x-ray sources delivering shorter

pulses will become available. The present HEROS experiment was performed on solid samples.

When applied to less concentrated systems, for example a dilute protein sample in solution, the

accumulation of a few tens to hundreds of x-rays shots may be necessary to obtain spectra of

good quality. Because HEROS does not require normalization using the incident pulse energy,

as opposed to a scanning measurement, this means that the only restriction is the availability of

FIG. 4. HEROS spectra of Cu recorded for different number of shots. As shown, a 50 fs long X-ray pulse allows the main char-

acteristic features (rising edge and resonance A) of the Cu electronic structure to be distinguished. For comparison, the calcu-

lated HEROS spectrum is plotted with a black dashed line. The marked features A, B, A0, and B0 are discussed in the text.
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enough sample to obtain the desired signal-to-noise. Single-shot spectroscopy can, however, be

performed on solid samples to study, for example, non-linear phenomena or plasma creation

with strong x-ray pulses.

Recent progress in the development of advanced X-ray sources is devoted to understanding

the fundamental processes arising in matter. Fourth-generation light sources, such as XFELs,

produce intense femtosecond X-ray pulses that enable investigation of ultra-fast processes

in matter. To advance the fundamental understanding of physical and chemical processes, new

experimental techniques are required. We have demonstrated that high energy resolution off-

resonant spectroscopy is capable of measuring unoccupied electronic density of state informa-

tion with self-seeded femtosecond x-ray pulses. The HEROS spectra are derived at a single

excitation energy and therefore corrections for the incident beam intensity fluctuations are not

needed. Because the incoming and the measured photon energies are well below the absorption

edge of the target atom, self-absorption processes do not affect the measured spectra. In other

words, the derived HEROS spectra can be treated as measured. Finally, application of self-

seeding XFEL operation leads to no pulse duration broadening caused by monochromator crys-

tals.42 Temporal broadening of a short x-ray pulse relates to the extinction length of the x-rays

into the monochromator crystal. For x-rays with a photon energy of a few keV, the extinction

length amounts to few lm and may lead to pulse broadening of up to 20–30 fs.43 In summary,

HEROS provides a complementary technique to those already successfully implemented at

XFELs, including x-ray diffraction, x-ray emission and x-ray absorption techniques.
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cial support of the Swiss National Science Foundation.
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